A FINE-CYCLIC ADDITIVITY THEOREM FOR A FUNCTIONAL¹

BY

CHRISTOPH J. NEUGEBAUER

Introduction

Let J be a closed finitely connected Jordan region, and let (T, J) be a continuous mapping from J into E_3 . L. Cesari has introduced in his papers [2; 3] the concept of a fine-cyclic element of (T, J), and he has proven that the Lebesgue area is fine-cyclicly additive, thus extending a well-known cyclic additivity theorem for the Lebesgue area [8]. A fine-cyclic element is actually a decomposition of a proper cyclic element, and, in case J is a 2-cell, is equivalent to a proper cyclic element.

In [6] a B-set and a fine-cyclic element of a Peano space is introduced as a generalization of an A-set and a proper cyclic element. Specifically, a B-set of a Peano space P is a nondegenerate (more than one point) continuum of P such that either B = P or else every component of P - B has a finite frontier. A fine-cyclic element of P is a B-set of P whose connection is not destroyed by removing any finite set. It has been shown in [6] that in a Peano space P whose degree of multicoherence r(P) is finite, B-sets and fine-cyclic elements possess essentially the same properties as A-sets and proper cyclic elements.

In this paper a generalization of Cesari's fine-cyclic additivity theorem for the Lebesgue area is studied. The generalization proceeds along lines similar to [4] by considering nonnegative functionals Φ defined for each continuous mapping T from a Peano space P into a metric space P^* . Let T = sf, $f:P \to M, s: M \to P^*, r(M) < \infty$, be an unrestricted factorization of T (§1), and let $\{\Delta\}$ be the collection of fine-cyclic elements of M. With each Δ there is associated a connected open set $G_{\Delta} \subset M$ containing Δ such that Δ is a (G_{Δ}, A) -set [7]. Denote by t_{Δ} the natural retraction [7] from G_{Δ} onto Δ , and let $A_{\Delta} = f^{-1}(G_{\Delta})$. If Φ satisfies the conditions of §2, the main result of this paper states that $\Phi(T, P) = \sum \Phi(st_{\Delta} f, A_{\Delta}), \Delta \subset M$.

1. Mappings

Let P be a Peano space, and let P^* be a metric space. Denote by \mathfrak{A} the collection of all open subsets of P. Let \mathfrak{T}^* be the class of all continuous mappings (T, A) from any $A \in \mathfrak{A}$ into P^* . The subclass of \mathfrak{T}^* consisting of all mappings (T, P) from P into P^* will be designated by \mathfrak{T} . It is well-known that each $(T, P) \in \mathfrak{T}$ admits of a monotone-light factorization [10]. However, this paper is independent of this particular factorization of (T, P), and hence we will consider *unrestricted* factorizations [4].

Received June 20, 1957.

¹ The present research was partially supported by ARDC.

DEFINITION 1. An unrestricted factorization of a mapping $(T, A) \in \mathfrak{T}^*$ consists of a Peano space M, called *middle space*, and two continuous mappings s, f such that $f: A \to M, s: M \to P^*, (T, A) = sf$.

The definition below is a suitable generalization of the corresponding one in [4].

DEFINITION 2. Let $(T, P) \in \mathfrak{T}$ be given. Two mappings (T', A'), (T'', A'')of \mathfrak{T}^* constitute a *partition* of (T, P) provided there are a finite set of points F in P^* and a pair of nonempty closed subsets E', E'' of P such that

(1) $P = E' \cup E'', E' \subset A', E'' \subset A'';$

(2) T'(x) = T(x) for $x \in E'$, and T' maps A' - E' into F;

(3) T''(x) = T(x) for $x \in E''$, and T'' maps A'' - E'' into F;

(4) $T(E' \cap E'') \subset F$.

2. Functional

In the sequel we will consider real-valued functionals Φ defined on \mathfrak{T}^* satisfying the following conditions:

(a) $\Phi(T, A) \ge 0$ for all $(T, A) \in \mathfrak{T}^*$. For some $(T, A) \in \mathfrak{T}^*$ we may have $\Phi(T, A) = +\infty$.

(b) Φ is lower semicontinuous on \mathfrak{T} , i.e., if (T_n, P) , $n = 1, 2, \cdots$, is a sequence of mappings in \mathfrak{T} converging on P uniformly to a mapping (T, P), then $\Phi(T, P) \leq \liminf \Phi(T_n, P)$ as $n \to \infty$.

(c) Φ is additive under partition, i.e., if (T', A'), (T'', A'') constitute a partition of a mapping (T, P) in \mathfrak{T} , then $\Phi(T, P) = \Phi(T', A') + \Phi(T'', A'')$. (d) If $(T, A) \in \mathfrak{T}^*$ admits of an unrestricted factorization (T, A) = sf,

 $f: A \to M$, $s: M \to P^*$, where M is a dendrite, then $\Phi(T, A) = 0$.

Remark. In view of (d) if (T, A) is constant, then $\Phi(T, A) = 0$. Moreover, $\Phi(T, A)$ will be defined to be zero in case $A = \emptyset$.

3. Preliminary results

In this paragraph we will make use of the theory of B-sets, local A-sets, and the concept of retraction [6; 7].

Let $(T, P) = sf, f: P \to M, s: M \to P^*$ be an unrestricted factorization of a mapping $(T, P) \in \mathfrak{T}$. Let B be a local A-set of M, and let t be a retraction from M onto B, i.e., (1) there exists a connected open set G of M containing B such that B is a (G, A)-set of M; (2) $t \mid G$ is the identity on B and sends every component of G - B into its frontier relative to G; (3) t(M - G) is a subset of a dendrite $D \subset B$.

Let $\{Q\}$ be the collection of components of M - B for which $Q - G \neq \emptyset$. By [7, §5] the collection $\{Q\}$ is finite, and since B is a (G, A)-set of M, the set $C = \bigcup \operatorname{Fr}(Q)$, where the union is extended over all $Q \in \{Q\}$, is finite, say $C = \{x_1, \dots, x_n\}$. Let $2\eta = \min [\rho(x_i, x_j), i \neq j, i, j = 1, \dots, n]$, where ρ is the distance function of M. Let for each i, O_i be a connected open set with diameter less than η containing x_i . Denote by K the union of all $Q \in \{Q\}$, and let $O = O_1 \cup \cdots \cup O_n$. The set $G' = K \cup O$ is clearly open in M. In the lemma c(K) stands for the closure of K.

LEMMA. The mapping t' from G' onto c(K) defined by t'(x) = x, if $x \in c(K)$, and $t'(x) = x_i$, if $x \in O_i - c(K)$, $i = 1, \dots, n$, is continuous.

Proof. It suffices to show that t' restricted to $c(K) \cup O_i$ is continuous. Clearly, t' is continuous on c(K) and on $O_i - c(K)$. Since the frontier of $O_i - c(K)$ relative to G' is the point x_i , it follows that t' is continuous on $c(K) \cup O_i$.

(i) THEOREM. Under the above conditions, let Φ be a real-valued, nonnegative functional on \mathfrak{T}^* satisfying (c), (d) of §2. Let $A = f^{-1}(G)$. Then $\Phi(stf, P) = \Phi(stf, A)$.

Proof. We may assume that $f(P) \cap B \neq \emptyset$. For, if $f(P) \cap B = \emptyset$, we have in view of (d), $\Phi(stf, P) = \Phi(stf, A) = 0$ (see also [7, §8]). We may also assume that $f(P) \cap (M - G) \neq \emptyset$. Otherwise, $f(P) \subset G$ and consequently A = P. Since $f(P) \cap (M - G) \neq \emptyset$, it follows that $f(P) \cap K \neq \emptyset$. Let now $E' = f^{-1}[c(K)]$ and let $E = f^{-1}(M - K)$. Then E', E are two nonempty closed sets of P whose union is P. Let $A' = f^{-1}(G')$. Then A', A are open subsets of P such that $A' \supset E'$, $A \supset E$. Let t' be the mapping of the lemma.

Let $F = s(x_1 \cup \cdots \cup x_n)$. Then the mappings (stf, A), (stt'f, A') constitute a partition of (stf, P). Consequently, $\Phi(stf, P) = \Phi(stf, A) + \Phi(stt', A')$. We will show now that (stt'f, A') admits of an unrestricted factorization whose middle space is the dendrite D. By [7, §8] we infer that $t[c(K)] \subset D$, and thus $(stt'f, A') = s(tt'f), tt'f:A' \to D, s:D \to P^*$. By (d), $\Phi(stt'f, A') = 0$, and therefore $\Phi(stf, P) = \Phi(stf, A)$.

(ii) COROLLARY. Under the conditions of (i), if B is a (G^*, A) -set of M and $A^* = f^{-1}(G^*)$, then $\Phi(st^*f, A^*) = \Phi(stf, A)$, where t^* is a retraction from M onto the (G^*, A) -set B.

In the sequel the following observation will prove useful. Let P be a Peano space which can be written as the union of two B-sets B_1 , B_2 with $B_1 \cap B_2$ finite. Then B_1 , B_2 are local A-sets. To prove this, note that every component G of $P - B_i$, i = 1, 2, has its frontier in $B_1 \cap B_2$, and thus the number of components G of $P - B_i$, i = 1, 2, with a nondegenerate frontier is finite. From [7] the assertion follows.

Let $(T, P) = sf, f: P \to M, s: M \to P^*$ be an unrestricted factorization of a mapping $(T, P) \in \mathfrak{T}$. Assume that M can be written as the union of two B-sets B_1 , B_2 with $B_1 \cap B_2$ finite. Then from the above remark, B_i is a (G_i, A) -set of M, i = 1, 2. Let t_i be a retraction from M onto the (G_i, A) -set $B_i, i = 1, 2$. Finally, let Φ be a real-valued nonnegative functional defined on \mathfrak{T}^* satisfying (c), (d) of §2.

(iii) THEOREM. Under the above conditions, the following formula subsists: $\Phi(T, P) = \Phi(st_1 f, P) + \Phi(st_2 f, P).$ Proof. For $i = 1, 2, t_i$ maps each component of $M - B_i$ into either a single point or into a given dendrite $D_i \subset B_i$. We may assume that $B_i \cap f(P) \neq \emptyset$, i = 1, 2, as otherwise the theorem follows readily in view of (d). Let $F = s(B_1 \cap B_2)$. Then F is a finite set of points in P^* . Define $A_1 = f^{-1}(G_1), A_2 = f^{-1}(G_2), E_1 = f^{-1}(B_1), E_2 = f^{-1}(B_2)$. Then A_1, A_2 are open subsets of P such that $E_1 \subset A_1, E_2 \subset A_2$. Finally, define mappings T_1, T_2 from A_1, A_2 into P^* by $T_1(x) = st_1 f(x), x \in A_1$ and $T_2(x) = st_2 f(x)$,

 $x \in A_2$. We assert that (T_1, A_1) , (T_2, A_2) constitute a partition of (T, P). We only have to verify that T_i maps $A_i - E_i$ into F, i = 1, 2. Let $p \in A_i - E_i$. Then $f(p) \in G_i - B_i$ and consequently $t_i f(p) \in B_1 \cap B_2$. Thus $st_i f(p) \in F$, which proves the assertion. Accordingly we have $\Phi(T, P) = \Phi(T_1, A_1) + \Phi(T_2, A_2)$. Application of (i) completes the proof.

For later reference we will state here a cyclic additivity theorem due to E. J. Mickle and T. Radó [4]. Let Φ be a real-valued nonnegative functional satisfying the conditions of §2. On \mathfrak{T} , the class of all continuous mappings (T, P) from P into P^* , Φ satisfies the conditions of [4]. Consequently, we have by [4] the following theorem.

(iv) THEOREM. Under the above conditions, we have for $(T, P) \in \mathfrak{T}$ the additivity formula

(1)
$$\Phi(T, P) = \sum \Phi(sr_c f, P), \qquad C \subset \mathbf{M},$$

where $(T, P) = sf, f: P \to M, s: M \to P^*$ is an unrestricted factorization of $(T, P), r_c$ is the monotone retraction from M onto a proper cyclic element C of M, and where the summation in (1) is extended over all proper cyclic elements C of M.

4. Some lemmas

Let $(T, P) = sf, f: P \to M, s: M \to P^*$ be an unrestricted factorization of a mapping $(T, P) \in \mathfrak{T}$. Assume there exists a finite number of *B*-sets B_1, \cdots, B_n of *M* such that (1) $M = B_1 \cup \cdots \cup B_n$; (2) $(B_1 \cup \cdots \cup B_i) \cap B_{i+1}$ is finite, $i = 1, \cdots, n-1$. Finally, let Φ be a real-valued nonnegative functional defined on \mathfrak{T}^* satisfying (c), (d) of §2.

(i) LEMMA. Under the above conditions, there exist retractions t_1, \dots, t_n from M onto B_1, \dots, B_n , respectively, such that $\Phi(T, P) = \sum_{i=1}^n \Phi(st_i f, P)$.

Proof. In view of (2) we have by [6] that $B_1 \cup \cdots \cup B_{n-1} = B_{n-1}^*$ is a *B*-set of *M*, and $B_{n-1}^* \cap B_n$ reduces to a finite number of points. Let now t_{n-1}^* , t_n be retractions from *M* onto B_{n-1}^* , B_n , respectively. Then by §3(iii) there follows that $\Phi(T, P) = \Phi(st_{n-1}^*f, P) + \Phi(st_n f, P)$.

Proceeding inductively assume that retractions t_i from M onto B_i , $1 < k \leq i \leq n$, and a retraction t_{k-1}^* from M onto $B_{k-1}^* = B_1 \cup \cdots \cup B_{k-1}$ have been defined such that

(3)
$$\Phi(T, P) = \Phi(st_{k-1}^*f, P) + \sum_{i=k}^n \Phi(st_i f, P).$$

The mapping (st_{k-1}^*f, P) admits of an unrestricted factorization $t_{k-1}^*f: P \to B_{k-1}^*$, $s: B_{k-1}^* \to P^*$. Set $B_{k-2}^* = B_1 \cup \cdots \cup B_{k-2}$. Since B_{k-2}^* , B_{k-1} have a finite intersection, they are local A-sets. By [7] we have retractions τ_{k-2} , t_{k-1}' from B_{k-1}^* onto B_{k-2}^* , B_{k-1} , respectively, such that $t_{k-2}^* = \tau_{k-2}t_{k-1}^*$, $t_{k-1} = t_{k-1}'t_{k-1}^*$. Thus by §3(iii),

$$\Phi(st_{k-1}^*f, P) = \Phi(s\tau_{k-2}t_{k-1}^*f, P) + \Phi(st_{k-1}'t_{k-1}^*f, P) = \Phi(st_{k-2}^*f, P) + \Phi(st_{k-1}f, P),$$

and in view of (3), $\Phi(T, P) = \Phi(st_{k-2}^*f, P) + \sum_{i=k-1}^n \Phi(st_if, P).$

In the sequel we will have to restrict ourselves to factorizations whose middle space M is of finite degree of multicoherence. Let us note that every B-set of a Peano space P of finite degree of multicoherence r(P) is a local

A-set of P [7]. DEFINITION. A Peano space M will be termed a generalized dendrite pro-

vided M possesses no fine-cyclic elements.

dendrite, then $\Phi(T, P) = 0$.

(ii) LEMMA. Let Φ be a real-valued nonnegative functional defined on \mathfrak{T}^* satisfying (c), (d) of §2. If (T, P) admits of an unrestricted factorization $(T, P) = sf, f: P \to M, s: M \to P^*, r(M) < \infty$, where M is a generalized

Proof. By [7], M can be written as a finite union of dendrites D_1, \dots, D_n which are *B*-sets of *M*, and $(D_1 \cup \dots \cup D_i) \cap D_{i+1}$ is finite, $i = 1, \dots, n-1$. By (i) we have retractions t_1, \dots, t_n from *M* onto D_1, \dots, D_n such that $\Phi(T, P) = \sum_{i=1}^{n} \Phi(st_i f, P)$. For each *i*, $st_i f$ admits of an unrestricted factorization $t_i f: P \to D_i, s: D_i \to P^*$, and consequently $\Phi(st_i f, P) = 0, i = 1, \dots, n$. This completes the proof.

5. Fine-cyclic additivity theorem

Let $(T, P) = sf, f: P \to M, s: M \to P^*, r(M) < \infty$, be an unrestricted factorization of a mapping $(T, P) \in \mathfrak{T}$. Let $\{\Delta\}$ be the sequence of finecyclic elements of M [6]. Each $\Delta \in \{\Delta\}$ is also a local A-set [7], and consequently with each $\Delta \in \{\Delta\}$ there is associated a connected open set G_{Δ} containing Δ such that Δ is a (G_{Δ}, A) -set of M. Let now t_{Δ} be the retraction from G_{Δ} onto Δ [7], and set $A_{\Delta} = f^{-1}(G_{\Delta}), \Delta \in \{\Delta\}$.

THEOREM. Let Φ be a functional defined on \mathfrak{T}^* satisfying the conditions of §2. Then

(1)
$$\Phi(T, P) = \sum \Phi(st_{\Delta}f, A_{\Delta}), \qquad \Delta \in \{\Delta\}.$$

Proof. If M contains no fine-cyclic elements, M is a generalized dendrite, and thus from §4(ii) the formula (1) follows. We may thus assume that Mpossesses fine-cyclic elements. By [7] we have a finite number of B-sets B_1, \dots, B_n of M satisfying the following properties: (a) $M = B_1 \cup \cdots \cup B_n$, (b) $(B_1 \cup \cdots \cup B_i) \cap B_{i+1}$ is a finite set of points, $i = 1, \dots, n-1$, (c) each fine-cyclic element of M is a proper cyclic element of a unique B_i , (d) each proper cyclic element of B_i is a fine-cyclic element of M.

In view of (a) and (b) we have by §4(i) retractions t_1, \dots, t_n from M onto B_1, \dots, B_n , respectively, such that

(2)
$$\Phi(T, P) = \sum_{i=1}^{n} \Phi(st_i f, P).$$

We may assume that none of the B_i are dendrites. Let then Δ be a finecyclic element of B_i . By (c), Δ is a proper cyclic element of B_i . Let r_{Δ} be the monotone retraction from B_i onto Δ . By §3(iv), in view of (c) and (d),

(3)
$$\Phi(st_i f, P) = \sum \Phi(sr_{\Delta} t_i f, P), \qquad \Delta \subset B_i.$$

By [7], $r_{\Delta} t_i = t_{\Delta}$ is a retraction from M onto Δ , and hence by (2) and (3),

(4)
$$\Phi(T, P) = \sum_{i=1}^{n} \sum_{\Delta \subset B_i} \Phi(st_{\Delta} f, P).$$

By applying 3(i), (ii) the desired formula (1) follows.

BIBLIOGRAPHY

- 1. L. CESARI, Surface area, Ann. of Math. Studies, no. 35, Princeton University Press, 1956.
- Fine-cyclic elements of surfaces of the type v, Riv. Mat. Univ. Parma, vol. 7 (1956), pp. 149-185.
- ——, A new process of retraction and the definition of fine-cyclic elements, Anais da Academia Brasileira de Ciencias, vol. 29 (1957), pp. 1–7.
- E. J. MICKLE AND T. RADÓ, On cyclic additivity theorems, Trans. Amer. Math. Soc., vol. 66 (1949), pp. 347-365.
- 5. C. B. MORREY, JR., An analytic characterization of surfaces of finite Lebesgue area. Part II, Amer. J. Math., vol. 58 (1936), pp. 313-322.
- C. J. NEUGEBAUER, B-sets and fine-cyclic elements, Trans. Amer. Math. Soc., vol. 88 (1958), pp. 121–136.
- 7. ——, Local A-sets, B-sets, and retractions, Illinois J. Math., vol 2 (1958), pp. 386-395.
- 8. T. RADÓ, Length and area, Amer. Math. Soc. Colloquium Publications, vol. 30, 1948.
- 9. J. W. T. YOUNGS, The topological theory of Fréchet surfaces, Ann. of Math. (2), vol. 45 (1944), pp. 753-785.
- G. T. WHYBURN, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, 1942.

Purdue University LAFAYETTE, INDIANA 401