LOCAL A-SETS, B-SETS, AND RETRACTIONS¹

BY

Christoph J. Neugebauer

Introduction

In the papers [2; 3], L. Cesari introduced the concept of a fine-cyclic element of a mapping (T, J) from a closed finitely connected Jordan region J into the Euclidean space E_3 . Fine-cyclic elements constitute a decomposition of proper cyclic elements, and, in case J is unicoherent, coincide with proper cyclic elements. In [5] Cesari's concept of a fine-cyclic element has been extended to a Peano space in the following manner. First, a *B*-set of a Peano space P has been introduced as a generalization of an A-set of P. Specifically, a *B*-set B of P is a nondegenerate (more than one point) continuum of Psuch that either B = P or else each component of P - B has a finite frontier. A fine-cyclic element of P is defined to be a *B*-set of P whose connection is not destroyed by removing any finite set. It has been shown in [5] that in Peano spaces of finite degree of multicoherence the properties of *B*-sets and fine-cyclic elements are suitable extensions of the corresponding properties of *A*-sets and proper cyclic elements.

The first part of this paper shows that fine-cyclic elements are proper cyclic elements relative to some decomposition of a Peano space into a finite number of B-sets.

The second part deals with questions of retractions onto *B*-sets of a Peano space *P*. For technical reasons, the concept of a *local A*-set of a Peano space is introduced. For this preliminary survey it suffices to consider a local *A*-set as a set *B* which is an *A*-set relative to some connected open set $G \supset B$. A natural retraction from *G* onto *B* suggests itself, namely the one that sends each component of G - B into its frontier relative to *G*. This retraction is similar to the one used by L. Cesari in [2; 3]. One of the main results of this paper states that this retraction can be extended to *P* so as to map P - G into a dendrite in *B*. The last theorem provides some useful information on the composition of two retractions.

It will be shown that every local A-set is a B-set, and in case the underlying Peano space is of finite degree of multicoherence, every B-set is a local A-set.

1. Notation

Let X be a metric space, and let E be a subset of X. The distance function in X will be denoted by ρ , and the diameter of E will be abbreviated by $\delta(E)$. The closure and frontier of E will be designated by c(E) and Fr(E). If

Received June 20, 1957.

¹ The present research was partially supported by ARDC.

 $E \subset A \subset X$, then the closure and frontier of E relative to A will be written as $c_A(E)$ and $\operatorname{Fr}_A(E)$. The degree of multicoherence of a Peano space P will be denoted by r(P) ([8]).

2. Lemma

Let P be a Peano space. If r(P) = 0, then P is unicoherent, and consequently every B-set of P is an A-set of P. Thus if B is a B-set of a Peano space P which is not an A-set of P, we infer that $r(P) \ge 1$.

LEMMA. Let P be a Peano space with $r(P) = n < \infty$, and let B be a B-set of P which is not an A-set of P. Then there exists a decomposition of P into B-sets B_1 , B_2 such that

(1) $P = B_1 \cup B_2, \quad B \subset B_1;$

(2) $r(B_i) < n, i = 1, 2;$

(3) $B_1 \cap B_2$ reduces to at most n + 1 points.

Proof. Since B is not an A-set of P, there is a component G of P - Bwhose frontier consists of more than one point. By [5], $P - G = B_1$, $c(G) = B_2$ are B-sets of P satisfying (1) and (3). To prove (2) let us first observe that by [5], $r(B_i) \leq n, i = 1, 2$. Assume now that $r(B_1) = n$. Then there exist two continua F_1 , F_2 of B such that $F_1 \cup F_2 = B_1$ and $F_1 \cap F_2$ decomposes into n + 1 distinct components. Let now A_1, A_2 be two continua in $B_2 = c(G)$ such that $A_1 \cap A_2 = \emptyset$; $Fr(G) \cap A_i \neq \emptyset, i = 1, 2$; $Fr(G) \subset A_1 \cup A_2$. Let T be a closed set in B_2 separating A_1, A_2 in B_2 . Since $Fr(G) \subset A_1 \cup A_2$, there follows that $T \subset G$. We may assume that the number of components of T is minimal in the sense of [5; §3 (iii), (iv)]. Let now S_1 be the union of all components of c(G) - T not containing A_2 , and let S_2 be the component of c(G) - T containing A_2 . By [5; §3(iv)], $T \cup S_1$ is a continuum. We consider now two cases.

Case 1. $F_i \cap \operatorname{Fr}(G) \neq \emptyset$, i = 1, 2. Then, say $F_1 \cap A_1 \neq \emptyset$, $F_2 \cap A_2 \neq \emptyset$. The sets $F_1^* = F_1 \cup T \cup S_1$, $F_2^* = F_2 \cup c(S_2)$ are two continua whose union is P, and since $T \subset G$, $F_1^* \cap F_2^* = (F_1 \cap F_2) \cup (F_2 \cap S_1) \cup (F_1 \cap c(S_2)) \cup$ $(T \cap c(S_2))$. Since $E = (F_2 \cap S_1) \cup (F_1 \cap c(S_2)) \subset \operatorname{Fr}(G)$ and since $\operatorname{Fr}(G)$ is finite, the set E is finite. Moreover, $T \cap c(S_2) \neq \emptyset$, and $T \cap c(S_2) \subset G$. Consequently, $F_1^* \cap F_2^*$ decomposes into at least n + 2 distinct components, contradicting r(P) = n.

Case 2. $F_2 \cap \operatorname{Fr}(G) = \emptyset$. Then $\operatorname{Fr}(G) \subset F_1$. Let α be a simple arc in B_1 joining a point $x \in F_2$ to a point $x_0 \in \operatorname{Fr}(G)$. Denote by x^* the first point on α from x_0 in $F_1 \cap F_2$. If β is the subarc of α with endpoints x_0, x^* , then $\beta - x^* \subset F_1 - F_2$. Define $F'_1 = F_1, F'_2 = F_2 \cup \beta$. Then $F'_1 \cap F'_2$ decomposes into n + 1 distinct components. The continua F'_1, F'_2 satisfy the conditions of case 1.

Therefore we have proved that $r(B_1) < n$. An entirely similar argument yields $r(B_2) < n$. Thereby, the proof of the lemma is complete.

3. Decomposition theorem

In this paragraph we will prove the following theorem.

THEOREM. Let P be a Peano space with $r(P) < \infty$. Then there exists a finite number of B-sets B_1, \dots, B_n of P satisfying the following conditions:

(1) $P = B_1 \cup \cdots \cup B_n$;

(2) $B_i \cap B_j$ is either empty or else finite, $i \neq j$, $i, j = 1, \dots, n$;

(3) Each proper cyclic element of B_i , $1 \leq i \leq n$, is a fine-cyclic element of B_i and hence of P;

(4) Each fine-cyclic element of P is a proper cyclic element of a unique B_i , $1 \leq i \leq n$.

Proof. We will first show that every decomposition of P satisfying (1), (2), and (3) also has the property (4). For, let Δ be a fine-cyclic element of P. Then by [5], Δ is a fine-cyclic element of a unique B_i , $1 \leq i \leq n$. Since Δ is nondegenerate and cyclic, there is a unique proper cyclic element C of B_i containing Δ . By (3), C is a fine-cyclic element of P and $C = \Delta$.

We will now prove that P possesses a decomposition with the properties (1), (2), and (3). We may assume that there is a proper cyclic element C of P which is not a fine-cyclic element of P. Then we have a finite set of points K in C such that C - K is not connected. Let G be a component of C - K. By [5], B = c(G) is a B-set of P, and since C is cyclic, B is not an A-set of P. We can now apply §2 and obtain two B-sets B_1 , B_2 of P such that $P = B_1 \cup B_2$, $B \subset B_1$, $r(B_i) < r(P)$, $i = 1, 2, B_1 \cap B_2$ reduces to a finite number of points. If each proper cyclic element of B_1 , B_2 is also a fine-cyclic element of P, we are finished. Otherwise, apply §2 to B_1 or B_2 , and since $r(P) < \infty$, this process terminates after a finite number of steps. It should also be noted that in unicoherent Peano spaces fine-cyclic elements coincide with proper cyclic elements.

4. Dendrites

In the sequel we will have occasion to use some properties of *dendrites* i.e., Peano spaces possessing no proper cyclic elements. The proof of (i) and (ii) is left to the reader.

(i) A nondegenerate continuum of a dendrite D is an A-set of D and thus a subdendrite of D.

(ii) Let E_1, \dots, E_n be a finite collection of mutually disjoint subsets of a Peano space P such that E_i is either a dendrite or else a single point, $i = 1, \dots, n$. Then there exists a dendrite $D \subset P$ such that $D \supset E_1 \cup \dots \cup E_n$.

Let *M* be a connected metric space which can be written as the union of a continuum *P* and a dendrite *D* such that $P \cap D$ is finite, say $\{x_0, \dots, x_n\}$.

388

(iii) LEMMA. Under the above conditions there exists a continuous mapping t from P into D such that $t(x_i) = x_i$, $i = 0, 1, \dots, n$.

Proof. If n = 0, map P into x_0 . We may therefore assume that $n \ge 1$. Let F be the mapping on $\{x_0, \dots, x_n\}$ taking x_i into i/n, $i = 0, 1, \dots, n$. By [4], F can be extended continuously to P preserving bounds. Let F^* be the extended mapping, and observe that F^* maps P onto the closed unit interval I. For each i, let H_i be the homeomorphism from $I_i = [(i-1)/n, i/n]$ onto the simple arc γ_i of D joining x_{i-1} , x_i such that $H_i[(i-1)/n] = x_{i-1}$, $H_i(i/n) = x_i$. The mapping t defined by $t(x) = H_i F^*(x)$, if $F^*(x) \in I_i$, satisfies the desired properties.

5. Local A-sets

Let P be a Peano space.

DEFINITION. A nondegenerate closed subset B of P will be termed a *local A-set* of P provided either P = B or else there exists a connected open set G of P containing B such that the collection of components $\{O\}$ of G - B satisfies the following conditions:

(1) For $O \in \{O\}$, $Fr_{\mathcal{G}}(O)$ is a single point.

(2) If O', O'' are two components of $\{O\}$ with $\operatorname{Fr}_{G}(O') \neq \operatorname{Fr}_{G}(O'')$, then $c(O') \cap c(O'') = \emptyset$.

Remark. The closure in (2) is relative to P. It should also be noted that $\operatorname{Fr}_{\mathcal{G}}(O)$ is in B for every $O \in \{O\}$. If B is a local A-set of P, we shall use the notation B is a (G, A)-set of P so as to display the connected open set G containing B. Every A-set of P is a (G, A)-set of P for any $G \supset A$.

(i) THEOREM. Let B be a (G, A)-set of a Peano space P and let $\{O\}$ be the collection of components of G - B. Then $\{O\}$ forms a null collection, i.e., for any $\varepsilon > 0$ there exists at most a finite number of $O \in \{O\}$ such that $\delta(O) > \varepsilon$.

The proof is essentially the same as the one in [8, p. 68].

(ii) COROLLARY. Let B be a (G, A)-set of a Peano space P, and let for $x \in B, S_x$ be the union of all components O of G - B such that $\operatorname{Fr}_G(O) = x$. Then for $x' \neq x'', c(S_{x'}) \cap c(S_{x'}) = \emptyset$.

Proof. Let $\{O'\}$, $\{O''\}$ be the components of G - B such that $\operatorname{Fr}_{G}(O') = x'$, $\operatorname{Fr}_{G}(O'') = x''$, respectively. Then from (i), $c(S_{x'}) = \bigcup c(O')$, $c(S_{x''}) = \bigcup c(O'')$, where the unions are extended over the respective classes. Since $c(O') \cap c(O'') = \emptyset$, the result follows.

(iii) THEOREM. Let B be a (G, A)-set of a Peano space P. Then B is arcwise connected and therefore B is a continuum.

Proof. Let α be a simple arc joining two points x_1 , x_2 of B such that $\alpha \subset G$. Such a simple arc exists since G is arcwise connected. If α were not contained in B, a simple argument would show that there is a component of G - B whose frontier is nondegenerate. Thus $\alpha \subset B$ and the theorem follows.

Since a Peano space is locally connected, we have the following theorem and corollary.

(iv) THEOREM. Let B be a (G, A)-set of a Peano space P. Then P - B has only a finite number of components O with $O - G \neq \emptyset$.

COROLLARY. Under the conditions of (iv), P - B has only a finite number of components with a nondegenerate frontier.

6. Retractions onto local A-sets

Let B be a (G, A)-set of a Peano space P. Define a mapping t from G onto B by (1) $t(x) = x, x \in B$, (2) $t(O) = \operatorname{Fr}_{G}(O)$, where O is a component of G - B. The proof of the next two theorems offers no difficulty ([7, pp. 85–86]).

(i) THEOREM. Let B be a (G, A)-set of a Peano space P. Then the mapping t defined above is continuous and monotone, and t is the unique continuous and monotone retraction from G onto B.

(ii) THEOREM. Let B be a (G, A)-set of a Peano space P. Then for any connected subset K of G, K \cap B is connected (possibly empty).

Applying Sierpinski's criterion for local connectedness we have in view of (ii) the following result.

(iii) COROLLARY. A (G, A)-set of a Peano space P is a Peano subspace of P.

(iv) THEOREM. Let B' be a (G', A)-set of a Peano space P, and let B" be a (G'', A)-set of B'. Then B" is a (G, A)-set of P.

Proof. Since G'' is a connected open set of B' containing B'', we have a set G^* open in P such that $G'' = B' \cap G^*$. Define G to be the component of $G^* \cap G'$ containing B''. Let O be a component of G - B''. If $O \subset G' - B'$, it follows that $\operatorname{Fr}_G(O)$ is a single point. If $O \subset B'$, then $O \subset B' \cap G^* = G''$, and $\operatorname{Fr}_G(O)$ is a single point. We may thus assume that $O \cap B' = O \cap G'' \neq \emptyset$ and $O \cap (G' - B') \neq \emptyset$. By (ii), $O \cap G''$ is connected and thus lies in a component O'' of G'' - B''. Since for every component O' of G' - B' with $O' \cap O \neq \emptyset$ we have that $\operatorname{Fr}_{G'}(O') \in O \cap B' = O \cap G'' \subset O''$, it follows by §5(i) that $\operatorname{Fr}_{G''}(O'') = \operatorname{Fr}_G(O)$ is a single point.

Let now O_x , O_y be two components of G - B'' such that $\operatorname{Fr}_G(O_x) = x$, $\operatorname{Fr}_G(O_y) = y$ with $x \neq y$. Let K_x be the collection of all components O'_x of G' - B' such that $O'_x \cap O_x \neq \emptyset$. Let $O''_x = O_x \cap B' \subset B' \cap G^* = G''$. By (ii), O''_x is a connected set in G'' - B'', and $O_x \subset O''_x \cup (UO'_x)$, where the last union is extended over all $O'_x \in K_x$. In case $O''_x = \emptyset [O''_x \neq \emptyset]$, we see that $\operatorname{Fr}_{G'}(O'_x) = x [\operatorname{Fr}_{G'}(O'_x) \in O''_x]$, and hence by §5(i), $c(O_x) \subset c(O''_x) \cup [Uc(O'_x)]$. Similarly $c(O_y) \subset c(O''_y) \cup [Uc(O'_y)]$. Since $c(O'_x) \cap c(O'_y) = \emptyset$, $c(O''_x) \cap c(O''_y) = \emptyset$,

390

 $c(O''_x) \cap c(O'_y) = c(O''_x) \cap \operatorname{Fr}_{G'}(O'_y) = \emptyset$, and $c(O''_y) \cap c(O'_x) = \emptyset$, it follows that $c(O_x) \cap c(O'_y) = \emptyset$, and the proof is complete.

7. B-sets and local A-sets

In this section we will study the relationship between local A-sets and B-sets of a Peano space P. Since a B-set need not be a Peano subspace of P ([5]), it follows that a B-set need not be a local A-set.

(i) THEOREM. Let B be a (G, A)-set of a Peano space P. Then B is a B-set of P.

Proof. Deny, and assume that there is a component Q of P - B with $\operatorname{Fr}(Q)$ infinite. Then there is an infinite number of components O_1, \dots, O_n, \dots of G - B such that $O_n \subset Q$, $n = 1, 2, \dots$. Determine $\varepsilon > 0$ so that the set $E(\varepsilon) = \{x: \rho(B, x) < \varepsilon\}$ is contained in G. Since by §5(i), $\delta(O_n) \to 0$ as $n \to \infty$, we infer that for n large, $\delta(O_n) < \varepsilon$. Since Q is connected, $c(O_n) \cap (Q - O_n) \neq \emptyset$. Let x be a point in $c(O_n) \cap (Q - O_n)$. Then $x \notin G$; for, if $x \in G$, then $x \in O_n$, which is impossible. Since $O_n \subset G$, we conclude that $x \in \operatorname{Fr}(G)$ and hence $\rho(B, x) \geq \varepsilon$. This contradicts $\delta(O_n) < \varepsilon$.

(ii) THEOREM. Let B be a B-set of P such that P - B decomposes into a finite number of components with a nondegenerate frontier. Then B is a (G, A)-set of P.

Proof. Let $P^* = P - \bigcup Q$, where the union is extended over all components Q of P - B with a single frontier point. Then P^* is an A-set of P, and every component of $P^* - B$ has a nondegenerate frontier. By hypothesis the number of components of $P^* - B$ is finite, say G_1, \dots, G_n . Let now $F = \{x_1, \dots, x_k\} = \operatorname{Fr}(G_1) \cup \dots \cup \operatorname{Fr}(G_n)$, and let $2\eta = \min [\rho(x_i, x_j), i \neq j, i, j = 1, \dots, k]$.

Let $\{G'_i\}$ be connected open sets of P^* such that $x_i \in G'_i$ and $\delta(G'_i) < \eta$, $i = 1, \dots, k$. Define $G^* = B \cup (G'_1 \cup \dots \cup G'_k)$. Then G^* is open in P^* . Set $G \cup G^* \cup (\bigcup Q)$, where the last union is extended over all components of P - B with a single frontier point. Since $P - G = P^* - G^*$, the set P - Gis closed, and consequently G is a connected open set of P containing B.

Let now O be a component of G - B. We assert that $\operatorname{Fr}_{G}(O)$ is a single point. Since this is obvious if O is a component of P - B with a single frontier point, we may assume that $O \subset G^* - B$. There is then a unique $i, 1 \leq i \leq k$, such that $O \subset G'_i$. Consequently, $\operatorname{Fr}_{G}(O) = x_i$. Finally, if O', O'' are two components of G - B for which $\operatorname{Fr}_{G}(O') \neq \operatorname{Fr}_{G}(O'')$, then it follows readily that $c(O') \cap c(O'') = \emptyset$. This completes the proof.

In view of [5, §4] we have the following corollary.

(iii) COROLLARY. Let P be a Peano space with $r(P) < \infty$. Then a nondegenerate closed subset of P is a (G, A)-set of P if and only if it is a B-set of P.

Let B be a (G, A)-set of a Peano space P. In §5 (iv) we have shown that P - B decomposes into a finite number of components G_1, \dots, G_n with

more than one frontier point. From (i) there follows that $Fr(G_i)$ is finite, $i = 1, \dots, n$. Let $C = Fr(G_1) \cup \dots \cup Fr(G_n) = \{x_1, \dots, x_j\}$. If $j \ge 2$, let k = j, and if $C = \emptyset$, i.e., if B is an A-set of P, let k = 1.

(iv) THEOREM. Under the above conditions, let K be a continuum of P. Then $B \cap K$ is either empty or else decomposes into at most k components.

Proof. If $C = \emptyset$, the result is well-known. We assume then that $C \neq \emptyset$. Let P^* be the intersection of all A-sets of P containing B. Then P^* is an A-set of P and $K^* = P^* \cap K$ is connected. We may suppose that $B \cap K \neq \emptyset$, $(P^* - B) \cap K \neq \emptyset$, $P^* \neq B$. Then $B \cap K = B \cap K^*$. For Q a component of $K^* - C$ we have by [6, p. 84], $c(Q) \cap C \neq \emptyset$. Thus every component of $B \cap K^*$ intersects C, and since C consists of k points, the proof is complete.

(v) THEOREM. Let P, P* be Peano spaces, and let m be a continuous and monotone mapping from P onto P*. If B is a (G, A)-set of P, then $m(B) = B^*$ is either a single point or else a (G^*, A) -set of P*.

Proof. Assume that B^* does not reduce to a single point. By (ii) it suffices to show that B^* is a B-set of P^* such that $P^* - B^*$ reduces to a finite number of components with a nondegenerate frontier. Let now G^* be a component of $P^* - B^*$ with $\operatorname{Fr}^*(G^*)$ nondegenerate, where Fr^* denotes the frontier operation relative to P^* . The set $G' = m^{-1}(G^*)$ is a connected open set in P - B and hence G' lies in a component G of P - B. We assert that $m[\operatorname{Fr}(G)] \supset \operatorname{Fr}^*(G^*)$. It is readily seen that for $x \in \operatorname{Fr}^*(G^*)$ the set $m^{-1}(x)$ is a continuum intersecting B and $\operatorname{Fr}(G') \subset c(G)$. Hence $m^{-1}(x) \cap \operatorname{Fr}(G) \neq \emptyset$, from which the desired conclusion follows. Since by (i) $\operatorname{Fr}(G)$ is finite, we infer that $\operatorname{Fr}^*(G^*)$ is finite and B^* is a B-set of P^* . Let now G_1, \dots, G_n be the components of P - B with a nondegenerate frontier, and let $F = \operatorname{Fr}(G_1) \cup \cdots \cup \operatorname{Fr}(G_n)$. Then F is finite, and for every component G^* of $P^* - B^*$ with a nondegenerate frontier we have $\operatorname{Fr}^*(G^*) \subset m(F)$. Since m(F) is finite and since P^* is locally connected, the number of components of $P^* - B^*$ with a nondegenerate frontier is finite.

8. Extension of retractions

Let B be a local A-set of a Peano space P.

DEFINITION. A continuous mapping t from P onto B will be termed a retraction from P onto B provided there exists a connected open set G of P with $G \supset B$ such that

(1) B is a (G, A)-set of P;

(2) t | G, t restricted to G, is the continuous and monotone retraction from G onto B (§4);

(3) t(P-G) is a subset of a dendrite $E \subset B$.

Remark. It is clear that a mapping t as above is in general not monotone. In the sequel an expression such as "t is a retraction from P onto a (G, A)-set B of P" means that t satisfies the conditions (2), (3) relative to G. (i) LEMMA. Let t be a retraction from a Peano space P onto a (G, A)-set B of P, and let E be the dendrite in B such that $t(P - G) \subset E$. If O is a component of P - B for which $O - G \neq \emptyset$, then $t(O) \subset E$.

Proof. If we deny $t(O) \subset E$, we have a point $y \in O \cap G$ such that $t(y) \notin E$. Let O' be the component of G - B which contains y. Then $O' \subset O$ and t(y) = t(O') = x, $x = \operatorname{Fr}_{G}(O')$. Since O is connected and $O - O' \neq \emptyset$, we have a point $z \in c(O') \cap (O - O')$. It follows that $z \notin G$ and hence $t(z) \in E$. Since $z \in c(O')$ and since t is continuous, t(z) = x, and thus t(y) = t(z), a contradiction.

(ii) LEMMA. Under the conditions of (i), if O is a component of P - B for which $t(O) \subset E$, then Fr (O) $\subset E$.

Proof. Since E is closed and t is continuous, we have that $t[Fr(O)] \subset E$. From the fact that $Fr(O) \subset B$ and $t(x) = x, x \in B$, the desired inclusion follows.

THEOREM. Let B be a (G, A)-set of a Peano space P. Then there exists a retraction from P onto B.

Proof. Let $\{O\}$ be the collection of all components of P - B such that $O - G \neq \emptyset$. The collection $\{O\}$ is finite, and $C = \bigcup \operatorname{Fr}(O)$, where the union is extended over all $O \in \{O\}$, is a finite set (\$7(i)), say $C = \{x_1, \dots, x_k\}$. Let E be a dendrite in B containing C. For $i = 1, \dots, k$ let S_i be the union of all components of G - B whose frontier relative to G is x_i . If we set $K_i = c(S_i)$, we infer from \$5(i) that $\{K_i\}$ is a collection of disjoint continua. Let K be the collection K_1, \dots, K_k plus all the single points of $P - (K_1 \cup \cdots \cup K_k)$. Since K is an upper semicontinuous collection of continua of P, we have by well-known theorems a Peano space P', whose points are the elements of K, and we have a monotone mapping m from P onto P' such that for $x \in P$, m(x) is the unique element in K containing x.

Since m(B) = B' is nondegenerate, it follows from 7(v) that B' is a (G', A)set of P'. Let P^* be the smallest A-set of P' containing B' (P^* is the intersection of all A-sets of P' containing B'). Denote by Fr^* the frontier operation relative to P^* . It is readily seen that for every component G^* of $P^* - B'$, $Fr^*(G^*)$ is a nondegenerate subset of $m(K_1 \cup \cdots \cup K_k)$, and that the number of components of $P^* - B'$ is finite (proof of §7(v)). Denote the components of $P^* - B'$ by G_1^*, \cdots, G_n^* .

Let h be the mapping m restricted to B. Then h is a homeomorphism on B, and consequently h(E) = E' is a dendrite in B' containing $\operatorname{Fr}^*(G_i^*)$, $i = 1, \dots, n$. The continuum $E' \cup G_i^* \cup \operatorname{Fr}^*(G_i^*)$ satisfies the conditions of §4(ii), and hence we have a continuous mapping t_i^* from $G_i^* \cup \operatorname{Fr}(G_i^*)$ into E' leaving fixed the points in $\operatorname{Fr}^*(G_i^*)$. Define a mapping t from P^* onto B' by (1) $t^*(x) = x$, if $x \in B'$; (2) $t^*(x) = t_i^*(x)$, if $x \in G_i^*$, $1 \leq i \leq n$. Denote by r^* the monotone retraction from P' onto P*. The mapping $t = h^{-1}t^*r^*m$ is the desired retraction from P onto B.

9. Composition of retractions

Let B' be a local A-set of a Peano space P, and let B" be a local A-set of B'. If t' is a retraction from P onto B' and t" is a retraction from B' onto B" in the sense of §8, then the composite mapping t = t"t' may fail to be a retraction from P onto B". In fact, a component of P - B" need not map under t into a dendrite.

THEOREM. Let B' be a local A-set of a Peano space P, and let B" be a local A-set of B'. If t' is a retraction from P onto B', then there exists a retraction t" from B' onto B" such that t"t' is a retraction from P onto B".

Proof. There is a connected open set $G' \subset P$ with $G' \supset B'$ such that B' is a (G', A)-set, $t' \mid G'$ reduces to the monotone retraction from G' onto B', and $t'(P - G') \subset E'$, where E' is a dendrite in B'. By §7(iv), $B'' \cap E'$ decomposes into a finite number of components which are either nondegenerate dendrites or single points.

Since B'' is a local A-set of B' we have a connected open set G'' of B' such that $G'' \supset B''$ and B'' is a (G'', A)-set. Let G^* be an open subset of P such that $G'' = B' \cap G^*$, and let G be the component of $G^* \cap G'$ containing B''. It follows from §6(iv) that B'' is a (G, A)-set of P. Let $\{Q\}$ be the collection of components of P - B'' such that $Q - G \neq \emptyset$. Since the collection $\{Q\}$ is finite, we have in view of §7(i) that $C = \bigcup \operatorname{Fr}(Q)$ is a finite set of points, where the union is extended over all $Q \in \{Q\}$. By §4(ii) we have a dendrite $E'' \subset B''$ such that $E'' \supset C \cup (B'' \cap E')$.

If Q'' is a component of B' - B'' with $Q'' - G'' \neq \emptyset$, we assert that Fr' $(Q'') \subset E''$, where Fr' is the frontier relative to B'. To prove this, let Q be the component of P - B'' containing Q''. Then Fr' $(Q'') \subset$ Fr (Q), and the assertion follows if we can show that $Q \in \{Q\}$. However, if $Q \subset G$, then $Q'' \subset Q \cap B' \subset G \cap B' \subset G^* \cap B' = G''$, contradicting $Q'' - G'' \neq \emptyset$. Proceeding as in the previous paragraph, we have a retraction t'' from B'onto the (G'', A)-set B'' such that $t''(B' - G'') \subset E''$.

We will now verify that t = t''t' is a retraction from P onto the (G, A)-set B''. To prove that $t \mid G$ reduces to the monotone retraction from G onto B'', it suffices to verify that for O a component of G - B'', t(O) is a single point. This is immediate in case $O \subset P - B'$ or $O \subset B'$. We may thus assume that $O \cap B' \neq \emptyset$, $O \cap (P - B') \neq \emptyset$. Since t' is continuous, t'(O) is a connected subset of G'' - B'', and hence t'(O) lies in a component of G'' - B''. Thus t''t'(O) is a single point.

We will now prove that $t(P - G) \subset E''$. Let $x \in P - G$, and let Q', Q''be the components of P - B', P - B'', respectively, containing x. It follows that $\operatorname{Fr}(Q'') \subset E''$. If $t'(x) \in c(Q')$, then $t'(x) \in c(Q'')$ and $t''t'(x) \in E''$. We may thus assume that $t'(x) \in E'$ and $Q' - G' \neq \emptyset$. Moreover, we may suppose that $t'(x) \notin B''$. For, if $t'(x) \in B''$, then $t'(x) \in B'' \cap E' \subset E''$, and $t''t'(x) \in E''$. Let Q be the component of B' - B'' such that $t'(x) \in Q$. If $Q - G'' \neq \emptyset$, then $\operatorname{Fr}'(Q) \subset E''$, and $t''t'(x) \in E''$. If $Q \subset G''$, then $\operatorname{Fr}'(Q)$ is a single point, and thus either $E' \supset \operatorname{Fr}'(Q)$ or else $E' \cap \operatorname{Fr}'(Q) = \emptyset$. In the first case, $t''t'(x) = \operatorname{Fr}'(Q) \subset E' \cap B'' \subset E''$. In the second case, $E' \subset Q$ and thus $\operatorname{Fr}(Q') \subset E' \subset Q$ ((i) and (ii) of §8) and hence $Q'' \supset Q$. Consequently, $\operatorname{Fr}'(Q) \subset E''$ and $t''t'(x) \in E''$. This completes the proof.

Remarks. (1) In view of §7(iii), the theory of retraction developed above applies to *B*-sets of a Peano space of finite degree of multicoherence. (2) Let B' be a local *A*-set of *P*, and let B'' be an *A*-set of *B'*. Let *t* be a retraction from *P* onto *B'*, and let *r* be the monotone retraction from *B'* onto *B''*. Then G'' in the above theorem can be taken as *B'* and *G* as *G'*. Consequently, *rt* is a retraction from *P* onto *B''*.

BIBLIOGRAPHY

- 1. L. CESARI, Surface area, Ann. of Math. Studies, no. 35, Princeton University Press, 1956.
- 2. ——, Fine-cyclic elements of surfaces of the type v, Riv. Mat. Univ. Parma., vol. 7 (1956), pp. 149–185.
- 3. ———, A new process of retraction and the definition of fine-cyclic elements, Anais da Academia Brasileira de Ciencias, vol. 29 (1957), pp. 1–7.
- E. J. MCSHANE, Extension of range of functions, Bull. Amer. Math Soc., vol. 40 (1934), pp. 837-842.
- 5. C. J. NEUGEBAUER, B-sets and fine-cyclic elements, Trans. Amer. Math. Soc., vol. 88 (1958), pp. 121-136.
- 6. M. H. A. NEWMAN, *Elements of the topology of plane sets of points*, Cambridge University Press, 1951.
- 7. T. RADÓ, Length and area, Amer. Math. Soc. Colloquium Publications, vol. 30, 1948.
- 8. G. T. WHYBURN, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, 1942.

PURDUE UNIVERSITY LAFAYETTE, INDIANA