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1. Introduction

In this pper we re interested in the problem of determining the char-
acteristic vlues of the Sturm-Liouville equation

(1) u" + Xa(t)u O, u(O) u(1) O.

It will be clear from wht follows that the methods we discuss cn be pplied
to questions of this type involving quite general boundary conditions, s
long s the interval is finite.

There re, t present, number of powerful techniques vilable for treat-
ing problems of this genre, bsed upon vritionl techniques, nd upon
mtrix techniques pplied to finite difference version of the foregoing dif-
ferential equation.
The vritionl pproch depends upon the fct that if a() stisfies

reasonable condition such s

(2) 0 < a =< a(t) <-_ b < 0, 0 <= <= 1,

then the characteristic values, X < h2 < are the respective relative min-
ima of the functional

(3) J(u) u’ dt a(t)u dt

as u ranges over the space of functions for which the integrals exist and for
which u(0) u(1) 0.

In particular,

(4) , <- u’ dt a(t)u dt

for all functions u() satisfying the prescribed boundary conditions. We
thus have a means of obtaining upper bounds for M which turn out to be
remarkably accurate even for simple choices of trial functions u(t).
Another method is based upon using equations of the form

(5) u,+ 2u+ + u + hAa,u, O,

u(O) u(N) 0, and applying any of a number of methods used to derive
the characteristic roots and vectors of a symmetric matrix. For a detailed
discussion of these methods, and others, we refer to the book by Collatz
[2].
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There is, however, a significant difference between a problem of this type,
and the Sturm-Liouville problem described above. This is due to the fact
that it is quite easy to find asymptotic solutions to (1) for large X, and thus,
approximate expressions for the higher characteristic values.

Let, for simplicity of notation, a(t) q(t); then the Liouville transforma-
tion (cf. [1], p. 109) s fro q(h)dh, converts

(6) u" + Xq(t)u 0

into
du q’ (t) du(7)
ds

q
q(t) ds

The further transformation

’u=O.

(8)

converts (7) into

v uV/t(t) u exp d

(9) 1 d (a’(t) 1 (a’(t) V -’0.

The new boundary conditions are

(10) v(0) 0,

Writing (9) in the form
)(folq(t) dt) O.

(11) v(s) -t- (X q- b(s))v(s) O,

we know that we can find asymptotic developments for v(s) starting from
the integral equation

(12) v(s) c cos hi/s q- c sin X/s f [sin xl/2(8 r)]
X/

b(r)v(r) dr
JO

and iterating (cf. [1], pp. 55-62 for analogous treatment over the infinite
interval). Approximate values of X are now determined by means of the
constraint v( q(t) dr) 0. Thus, the higher characteristic values have the
principal term

(13) X nr q(t) dt

To obtain more precise results, we can use further terms of the asymptotic
series derived from (12), and we can combine this with numerical integration
of (1).

It follows from these considerations that the greatest difficulty is experi-
enced in obtaining accurate estimations of the first characteristic value. In
many investigations this is all that is desired.
We wish to present a new method, suitable for hand or digital computer

calculation, which furnishes monotone convergence, through sequences of
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upper and lower bounds, to the smallest characteristic value. Similar se-
quences can be used to obtain monotone convergence to products of the
form II--1 hi. The method has the advantage of permitting M to be de-
termined to a high degree of accuracy.
To illustrate these techniques, we consider the equation

(14) u" + h(1 + t)u O, u(O) u(1) 0,

which is connected with Airy’s function, or Bessel functions of order 1/2.
The computations were performed with the assistance of Marvin Shapiro
and Oliver Gross of the Rand Corporation.

2. The equation determining the characteristic values
Let us note in passing that the method we use is an application of an ap-

proach we have used, in various lecture courses on differential equations,
to derive the fundamental results of Sturm-Liouville theory.

Consider the linear differential equation

(1) u" -- ,a(t)u O, u(O) O, u’(O) 1.

The solution of this initial value problem may be obtained over 0 -< _-<
as a power series in in the form

(2) u +
where the sequence of coefficient functions {u,(t)}, n 1, 2, ..., may be
determined by means of the recurrence relations

uo(t) t,
(3) f0u,(t) (t- s)u,_(s)a(s) ds, n 1, 2,....

It is easy to see that u, as defined by (2), is an analytic function of for
all finite ), for 0 =< =< 1. The roots of the equation

(4) f(),) u(1) 1 q- := u,(1), 0

are the desired characteristic values.

3. Discussion

If we assume that the sequence of coefficients is determined by means of
either a hand or machine computation, a matter we will discuss again below,
there is the problem of determining the first few roots of the equation in
(2.4).
This is a problem which can be treated in several ways. It would seem

that an efficient procedure would be to use the sequences we shall describe
presently to obtain reasonably accurate estimates for the characteristic
values, and then use Newton’s method, or a modification, to obtain very ac-
curate values.
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4. Analytic preliminaries
Referring to the equation in (2.1), we easily see that

for 0 -< t =< 1, where/c is a constant. Consequently, the Weierstrass fac-
torization of f(k) takes the form

(2) (1
As we know, , O(n:) as n --. , in view of the assumptions we have made
concerning a(t) in (1.2).
Our aim is now, by following the technique used by Newton to relate the

sums of the powers of the roots and the elementary symmetric functions,
which are the coefficients, to obtain relations for the sums

(3) b =1 1/),, r-- 1, 2,

in terms of the coefficients u,(1).
It is clear that

logf(k) ,=1 log (1 X/X,) -,__,,= (X’/r){,= 1/,,}
(4)

for h < 1.
It is important then to obtain the coefficients of the expression of log f(h).

Although this cun be done directly, it is easier to proceed as follows. Write

(5)  o f(x)

Then

(6) f’(k)/f(X) _.k kck k-,
whence

(7) := nu(1)kn- (L kc kk-) (1 + := u.(1)kn),
whence we obtain the well-known recurrence relations

(8) nu, nc, + ’: kce

These permit us to calculate the c. in a very simple fashion once the sequence
{u.(1)} has been determined, and thence the b.

5.
Let us now show that the sequence {bk} can be used to obtain sequences

which converge monotonically from above and below to the first character-
istic value M.
THEOREM 1. We have the inequalities

l.llk(1) b/b+ > kl > l/v k 1, 2,’".
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II.lllThe sequence {bk/bk+l} is monotone decreasing; the sequence {1/uk is mono-
tone increasing, and

/l.1]k(2) kl limk. b/bl limk l/v

Proof. The monotone character of the ratio b/b+ follows directly from
Schwarz’s inequality, since

(3)

l/kThe monotone behavior of is a consequence of the well-known inequality

for any set of nonnegative x.
The proof of the limiting relation is clear.

6. Re of convergence
Since

b(1) b+--
we see that

(2)
for large k.

Similarly,

(1/1+)[1 -F (Xl/2)k+1 + "]
M[1 + (Xl/X2) k + ...],

for large k.
It is to be expected that b/bk+l will furnish a better approximation to, for large k.

7. Discussion

For the case where a(t) 1, },/X. . Consequently, in general, the
rate of convergence of these sequences will not be too rapid. There are two
things we can do to obtain more accurate estimations of Xl. In the first
place, we can use the root-squaring technique. Since

(1) I(X) IIl (1
we see that

(2) fx(X)

Using the power series development for f(X) we obtain a sequence {b} with

(3) lim_, bk/b+l
and a rate of convergence depending upon

(3) u’ (l/X1)(1 "+" (Xl/X2)k - )l/k,. (l/M)(1 + k(M/)k)
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Alternatively, once we have an estimate for M with an accuracy of 1 in
10-8, we can then turn to the power series for f(h) and use the Newton ap-
proximation technique,

(4) )/j Ai ).

This will yield a further approximation with accuracy of essentially 1 in 10-’.
Continued use of this technique is limited only by the number of u.(1) which
are computed, and the accuracy of this computation. There is no difficulty
involved in using this technique here, since we know from theoretical con-
siderations that the roots of f() are simple.

8. Inequalities for r.+ll= X
Similar upper bounds can be obtained for the

R 1,2,-.-
Consider the determinant

products I-I+1

(1) b(R)
bk bk+l

bk+R bk++

bk+R

bk+21
R 1,2,....

It is not difficult to show that

(2)

To show that
(3) (R) /1., (R) 1,. (R) /1., (R)

k /Uk4-1 " UkA-1/Uk-l-2, 1,2,

for R 1, 2, we use the well-known fact that the matrix

b b+ b+./(4) B(’)

b+, b+,+l b+=,J

is positive definite for all k and R, and hence that (B())- is positive definite.
The sequence (b(’))-1/ does not seem to have any simple monotonicity

properties.
9. The equation u" -!- X(1 q- t)u 0

Let us now illustrate some of the ideas discussed above by means of the
equation

(1) u" q- X(1 q- t)u O, u(O) u(1) 0.

The first problem we face is that of computing the sequence {u.(t)} by
means of the recurrence relations of (2.3). Since u(t) is an entire function
of for 0 -< =< 1, the coefficients, u,(t), become quite small as n increases.
If a(t) 1, the coefficient of " is (-1)"/(2n + 1)! Hence, if we are using
a digital computer, even one with floating point arithmetic, it is necessary
to renormalize. A very simple renormalization is one which sets

(2) v,(t) (-- 1)’(2n + I)! u,(t).
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Then

(3)
1 fov(t)

(2n + 1)2n

vo(t) 1.

(t s)v,_l(s)a(s) ds, n= 1,2,...,

Since (3) is equivalent to the differential recurrence relation
p!

(4) v,(t) a(t)v_l(t)/2n(2n -[- 1) v.(0) v(0) 0,

we can use a Runge-Kutta integration procedure to obtain fairly accurate
values of v(1) (see Table 1).
The decision as to how many elements of the sequence {u(1)} to compute

depends upon an a priori estimate of the magnitude of ,1, .the time involved
in the computation, the accuracy of the computation, and the accuracy with
which ),1 is desired.

Since 1 - ->_ 1, we see that ),1 < r 10. Hence the order of magnitude
of the last term computed in the power series would be

(5) u(1)hl .< 53.5. 1010 < 10. 101 < 102. 101 10-s

(2 1) (20) 220. 1020 220

(using Sterling’s approximation). This is more than sufficient, considering

TABLE 1

0
1
2
3
4
5
6
7
8
9
10

Vn(1) (--1)n(2n -b 1)! un(1)

1. 000 000 000
1. 499 999 92
2. 238 094 66
3. 333 330 15
4. 960 358 93
7. 378 146 87

10. 971 261 4
16. 310 824 0
24. 244 529 3
36. 028 967 6
53. 522 379 4

TABLE 2

25.0000
251.984
3621.03
54595.5

831261.0
12685100.0

193679 X 103
29575 X 105

bb/bk+l

9.921 26
6.958 90
6.632 47
6.567 79
6.553 06
6.549 54
6.548 66

b-l ik

(slide rule evaluation)

4.00
6.30
6.51
6.54
6.55
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TABLE 3

(1)bk bk bk+2 k+

27030.0
645330.0
29353 X 10
15537 X 10
86634 X 106

bl)/b (1)
"-k+

418.85
219.85
188.93
179.34

(bl)) -1/k

.37
12.45
32.45
89.5

the inaccuracy involved in numerical integration, for the determination of
),1, and is sufficient for the determination of 2 -< 4r2.
The next step is to compute the sequence of coefficients in log f(h), namely

{bk}, using (4.8). The results are given in Table 2, together with the ratios
bk/b+l and the roots b-1/

For the purposes of using the Newtonian scheme mentioned above, (7.4),
we see that b4/b5 and b-1/4 yield sufficiently good initial approximations with
an error of about 1 in 600. One or two applications of (7.4) would yield ),1
to an accuracy sufficient for most purposes.
The convergence of the sequences for Xl X2 is much less rapid, as is to be

expected. The results are shown in Table 3.
Using the value of ),1 obtained above, we obtain a first approximation of

X 27. From the monotonicity of the ratios, we know that X2 is actually
less than this. An application of Newton’s approximation will yield a greatly
improved result.
Note that X. is sufficiently large so that the asymptotic techniques dis-,.

cussed in 1 can be used to provide an independent check of the accuracy of
the first approximation to

10. Alternate computational scheme for polynomial coefficients

In what has preceded, we have spoken in terms of numerical evaluation
of the sequence {un(t)}. Although this procedure has the great advantage
of straightforwardness and simplicity, via hand computation or digital
computation, it suffers from the fact that errors of integration arise, and grow
with each new member of the sequence.

Consequently, it is worth noting a special, but important, case in which
we can avoid mechanical quadrature and carry out the entire operation by
hand.

Suppose that a(t) is a polynomial of the form

(1) a(t) ao - al 2v 2_ a .
It will be clear then that the elements of the sequence {u.(t)} will also be

polynomials. Furthermore, it is clear that u,(t) will have the form
2n+kt’+I/(2n + 1)I -[- -[- a +(2) u.(t) ao
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Using the recurrence relation of (2.3), we can then obtain linear recurrence
relations for the sequence {a},/c 1, 2, n 1, 2, ....

There are a number of renormalization questions concerned with the ef-
fective calculation of the sequence, and asymptotic relations which can be
used to speed the computation. A discussion of these would take us too far
afield.

11. Extension to higher order equations

Let us now consider the equation

(1) u() + ha(t)u 0

with the boundary conditions

(2) u(0) u’(0) 0, u(1) u’(1) 0.

Proceeding as above, we consider the solution, u(t, ), of the initial value
problem

(3) u(0) 0, u’I0) 0, u’(0) cl, u’"(0) c2,

which we can write in the form

(4) U el

where u and us are determined by the initial conditions

u(O) o, u(O) 0, u(O) o, u(O) 0,(5) ul(0) 1, u2(0) 0, ua (0) 0, ua (0) 1.

As before, there is no difficulty in obtaining the power series developments
in terms of h for the functions u and u.

Applying the boundary conditions in (2), we obtain the simultaneous
equations

(6) c u(1, h) + c2 u2(1, X) 0, c ul(1, X) -[- c. u2(1, h) 0,

whence the determining equation for X is

ux(1,
(7) f(h) 0.

u’(1,
From here on, the argumentation is as before.
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