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Introduction

If is a field and x belongs to an algebraic extension of , then the alge-
braic properties of x are completely determined by the irreducible polynomial
over which vanishes at x. Similarly, if is an ordinary differential field
(i.e., a field with given derivation) of characteristic zero and x belongs to a
differentially algebraic differential field extension of , the differential alge-
braic properties of x are completely determined by the irreducible differential
polynomial F(y) {y} of lowest order which vanishes at x. We shall call
F(y), which is unique up to a nonzero factor in , the lowest differential poly-
nomial of x over , and we shall call the differential equation F(y) 0 the
lowest equation for x over .
Let be an ordinary differential field of characteristic zero, and let C, the

field of constants of , be algebraically closed. Let (xl, x) be a funda-
mental system of zeros of a homogeneous linear differential polynomial
L(y) {y} such that the field of constants of (xl,..., xn is C.
(x, x} is called a Picard-Vessiot extension of (hereafter denoted by
P.V.E.), and the group G of automorphisms of (x, Xn} over fi; can
be identified with an algebraic group of linear transformations of the vector
space V over C with basis (x, x.). (See [3].) We sometimes call G
the group of L,,(y)over fi;.

It is the purpose of this paper to obtain information about G when the
lowest equation over for some x e Vn is known, and about the lowest equa-
tion for every x e V when G is one of the classical groups.

Notation. Throughout this paper will stand for an ordinary differential
field of characteristic zero whose field of constants C is algebraically closed.
L,,(y) will always stand for a homogeneous linear differential polynomial of
order n. Whenever we speak of zeros of L,,(y) {y}, we restrict ourselves
to zeros which belong to a P.V.E. of . We shall therefore be able to say,
for some L,,(y) e { y}, that every one of its zeros satisfies a differential equa-
tion over fi; of lower order. If, for a given Ln(y) IY}, there exist an in-
tegerrandLr(y),L,,_r(y)e{y} such that 1 =< r =< n 1 and

Ln(y) L,_(L(y)),

we say that L,(y) is composite over fi;, that Ln(y) is the composite of L,(y)
and Ln_(y), and that Ln(y) is decomposable by Lr(y) on the right. If an
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element x of an extension of ff has a lowest equation over ff which is of order
r, we shall say that x is of order r over ft.
We repeatedly make use of the following:

(A) If F(y) is the lowest differential polynomial of x over f, then x is a
generic zero of the general component of F(y) over i, and the transcendence
degree of f(x) over f equals the order of x over f. For any P(y)
vanishing at x there exists a natural number such that SP IF], where S
is the separant of F; if the order of P equals that of F, then P is divisible
by F. (See [4].)

(B) If G is the algebraic group of i(xl, x) over f, where (xl, x)
is a fundamental system of zeros of L,(y) f{y}, then the dimension of G
equals the transcendence degree of f(x, x) over i. If Go is the com-
ponent of the identity of G, then Go is the group of f(x, x) over the
(relative) algebraic closure f0 of f in f(x, x), and also of
i(xl, ..., x) over i, where il is the (absolute) algebraic closure of
G is reducible (maps a nontrivial proper subspace of V. into itself) if and
only if L,(y) is composite over f. Go is reducible to triangular form if and
only if Go is solvable. (See [3].)

(C) If the dimension of G is -< 2, then Go is solvable.

(B) and (C) imply (D).

(D) If the transcendence degree of i(x, ..., x) over i is _-< 2, then
Ln(y) is the composite of n homogeneous linear differential polynomials of
order 1 in f01y}, f0 denoting the algebraic closure of i in f(xl,

(E) If G is irreducible and a nontrivial zero x of L,(y) is a zero of F(y),
then there exists a fundamental system of zeros of L,(y) consisting of zeros
of F(y).

(F) If L,(y) L,_r(Lr(y)) and (xl,"’, x) is a fundamental system
of zeros of L,(y) such that (x, xr) is a fundamental system of zeros
of L(y), then (Lr(x+),..., L(xn)) is a fundamental system of zeros of
L,_.(y).

1. Homogeneous elements

DEFINITION. An element x in a differential field extension of f is said to
be homogeneous over i if x is differentially algebraic over f and x -- cx is a
specialization over i, where c is u transcendental constant over if(x).

LEMMA 1. A necessary and. sucient condition for x to be homogeneous over
f is that the lowest equation for x over f be homogeneous.

Proof. Let F(y) be the lowest differentiM polynomial of x. Suppose x
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homogeneous over f. Then F(cx) 0 _.--o c F(x), where F is homo-
geneous of degree i. Since c is transcendental over if(x},

F(x) 0 (i O, 1, ..., m),

so that ech F is multiple of F, which is possible only if F is homogeneous.
Suppose F(y) is homogeneous. Then F(cx) cF(x) O. If P(y) y
is ny differential polynomial such that P(x) O, then StP(y) [F(y)],
where S is the seprnt of F. Since S(cx) c-S(x) O, P(cx) 0 nd
x cx is a speciMiztion over y, nd x is homogeneous over .

2. Decomposition of L(y)

EOEM 1. Let x be a zero of L(y) {y} qf order r over , let F(y) be
the lowest differential polynomial of x over , and let

OF (x)y()

() There exists an L_(y) e (x} {y} such that L(y) L,_(L(y)).
(b) x is a zero of L(y) if and only if x is homogeneous over .
(c) U (u,..., u_r) is a fundamental system of zeros of L_,(y) and

K(y) is the sum of the terms of F(y) of highest degree, then every zero of L(y)
which is homogeneous over (x, u u_,} is a zero of K(y).

Proof. Let F(y) be of degree m, and let v x + z x + z e (for-
mal power series) where the z, 1 i < , are in some differential field ex-
tension of ff and e is a transcendental constant over if(x, (z)<}. v is a
zero of F(y) if and only if F(v), when written as a power series in e, vanishes
identically in e.

1F(v)= F(x) (ffi (ffi z()) F(y))ffi
(L(z,) + Q,(z ,...

where

and
QI-0

Lr(y) is of order r, for (OF/Oy(r))(x) O.
to be zeros of

L(y) - Q(z ,...
If we choose the z,, successively,

v will be a zero of F(y). Now x is a specialization of v over f. Since x is
of order r, v must also be of order r. Therefore v --, x is a generic specializa-
tion over f and L,(v) O. Since L,(y) is linear, L,(v) Eil L,(zi)e O,
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so thatLn(zi) O, 1 <= i < . Since we may choosezltobeanyzeroof
Lr(y), any zero of Lr(y) must be a zero of Ln(y), so that

L,(y) L,_(L(y)) with L,,_(y) e (x} {y}.

To prove (b) note that if F(y) is homogeneous then the differential poly-
nomial P(y) "=o y()OF/Oy(j) equals mF(y). Conversely, if L(x) O, x
is a zero of P(y)e{y}, and consequently P(y) aF(y), a . Equating
coefficients we see that a is an integer, and by Euler’s theorem F(y) is homo-
geneous.
To prove (c) we note that, for 1 < s =< m,

plus terms all of which have at least one factor z with 1 < i < s and
0 =< j =< r. Let w be any zero of Lr(y) which is homogeneous over

(x, ul, un_.,}. Let zl w and suppose that

(( )w( F(y) O, 1 < s < t,

where is a natural number =< m, while

Thenwe may set, successively, z 0 for 1 < s < t, and zt a solution of

Since Ln(zt) O, L(zt) is a zero of L,_(y) and L,(zt)
Now the specialization w cw over (x, u, u_,} leaves the left-hand
side of (1) invariant while it multiplies the right-hand side of (1) by c t, which
is impossible. Hence

Since
)w( F(y) O, 1 < s <- m.

]=0 y=x

we see that w is a zero of K(y).

COnOLLAY 1. With notation and hypotheses as in Theorem 1, let L,(y) have
a zero of order r over (x, u,..., u,_}, and set L, (y) (OF/Oy(’))-L,(y).
The coecients of L*(y) are algebraic over , and K(y) is divisible by L*(y).

Proof. Let w be a zero of Lr(y) of order r over (x, u, un_}. Then
w is homogeneous over (x, u, u_} and, by Theorem 1, w is a zero
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of K(y). Since the order of K(y) is =< r, K(y) is divisible by Lr(y) and there-
fore by Lr (y); because one of the coefficients in the latter is 1 and the coeffi-
cients in K(y) all belong to f, all the coefficients in L*(y) are algebraic
over f.

Remark. It is well known (e.g. see [2]) that if an L2(y) e f{y} has a non-
trivial zero of order =< 1 over f then L2(y) is composite over an algebraic
extension of f. Indeed, if L2(y) is not composite over f, and if F(y) denotes
the lowest differential polynomial of x over f, then L2(y) has a fundamental
system of zeros (vl, v) consisting of zeros of F(y); as the transcendence de-
gree of f(vl, v2} over f is then =< 2, L(y) is composite over an algebraic ex-
tension of f.

COROLLARY 2. If L3(y) e f {y} has a nontrivial zero of order <- 1 over f,
then L3(y) is decomposable on the right by a homogeneous linear differemtial
polynomial of order 1 with coecients which are algebraic over f.

Proof. Let x be a nontrivial zero of L3(y) of order -< 1 over f; denote the
lowest differential polynomial of x over f by F, and set

nl(y) =o (OF/Oy())(x)y().

As L3(y) is decomposable on the right by y’ (x’/x)y, we may suppose that
x’/x is not algebraic over f, so that F is of order 1 and not homogeneous.
By Theorem 1 we may write La(y) L(L(y)), with L.(y)ef(x}[y}, and
L(x) O. Let w be a nontrivial zero of L(y). By the remark preceding
the present corollary, we may suppose that x is not a zero of any homo-
geneous linear differential polynomial in f{y} of order 2. It easily follows
that F(y) has a zero v such that (x, v, w) is a fundamental system of zeros
of L(y). Obviously (L(x), L(v)) is a fundamental system of zeros of L(y).
If w is of order 0 over if(x, L(v)}, then the transcendence degree of i(x, v, w}
over f is =< 2, and our result follows from (D) of the introduction. If w is
of order l over f(x, L(v)}, then, by Corollary 1, the coefficients in

L(y) (Of/Oy’(x))-L(y)

are algebraic over f, and obviously La(y) is decomposable by L (y) on the
right.

3. Dimension of G
A group of linear transformations of an n-dimensional vector space is said

to be reducible to diagonal form if the space is a direct sum of n invariant
one-dimensional subspaces. We shall say, for any divisor r of n, that the
group is reducible to r-diagonal form, if the space is a direct sum of n/r in-
variant r-dimensional subspaces.

THEOREM 2. Let L,(y) e f{y}, and suppose that the group G of L,(y) over
f is irreducible. If L,(y) has a nontrivial zero x of order r over f, then either
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the dimension of G is <= (n 1)r, or the dimension of G is (n 1)r -b 1 and
x is homogeneous over , or r divides n and the component of the identity Go of
G is reducible to r-diagonal form.

Proof. Let V. denote the vector space over C formed by the zeros of
L,(y), and let x be an element of V of order r over ft. Using the notation
of Theorem 1, we may write L,(y) L,_.,(L(y)). Suppose L,(y) has a non-
trivial zero w of order r over if(x, u,..., u_,}, where (u, ..., u._)
is some fundamental system of zeros of L_(y); then the coefficients in the

L, (y) of Corollary 1 to Theorem 1 are algebraic overdifferential polynomial *, so that L*(y)ff0{y}, where r0 is the algebraic closure of , in ff(V),
whence gL*(y) ri0{y} for every g e Go. Denoting the set of zeros of L, (y)
by V, we see that gV,, which is the set of zeros of gL, (y), is an r-dimen-
sional subspce of V invariant under Go. If V contains a nontrivial proper
subspace invariant under Go, then L,(y) has a nontrivial zero of order < r
over r0 and therefore over r, so that (because G is irreducible) V, has a basis
consisting of such zeros, and the transcendence degree of fi;(V) over r, that
is, the dimension of G, is-< n(r-- 1) -_< (n- 1)r; on the other hand, if V,
(and therefore each gV,.) contains no such invuriant subspace, then V,
which because of the irreducibility of G is the sum of the subspaces gV, is
the direct sum of certain of them, whence r divides n and Go is reducible to
r-diagonal form.

Suppose, then, that L(y) has no nontrivial zero w as above. By Theorem
1 and the irreducibility of G there exists a fundamental system of zeros,
(x, x_, w, w) of L(y), such that each F(x) O, (w, w,)
is a fundamental system of zeros of L(y), and either x is not homogeneous
over ff and x x, or x is homogeneous over and x w. Since

(L,(x), i(x_,))

is a fundamental system of zeros of L,_,(y), the order of w, for each i with
1 _-< i -< r in the nonhomogeneous case and for each i with 2 _-< i _-< r in the
homogeneous case, over

Y (x, L.(xl), L,.(x,,_,.) C (z, xl x,_,.},
is < r. As x and each x. have order -< r over 5:, the transcendence degree of
5:(xl,.", x_, wl,’.., w} overfi; is <- (n r)r - r(r 1) (n 1)r
in the nonhomogeneous case and is -< (n r + 1)r + (r- 1) (n 1)r + 1
in the homogeneous case.

COnOLLAnY 1. Let G be an irreducible algebraic group of linear transforma-
tions of an n-dimensional vector space V over an algebraically closed field of
characteristic zero, let H be the subgroup of G leaving invariant a fixed nonzero
element v V, and denote the dimension of G and H by s and respectively.
Then, either s- n, or s- n and s- divides n and the component
of the identity Go is reducible to (s t)-diagonal form, or

(s- )/(n- )’_-< s- < n.

Proof. It is known (see e.g. [3]) that we may regard V as the space of
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zeros of some Ln(y) e if{y} with group G; then s equals plus the order of v
overff, sothats- _-< n. If s-- n, then by Theorem 2 either

s_-< (n- 1)(s- t) + 1,

that is, s >- (s 1)/(n 1), or else s divides n and Go is reducible
to (s Q-diagonal form.

COrOLLArY 2. Let G be an irreducible algebraic group of linear trans-
formations of an n-dimensional vector space V over an algebraically, closed field
of characteristic zero, and suppose that the component of the identity Go leaves
invariant an r-dimensional subspace of V, 0 < r < n. Then either the dimen-
sion of G is <- (n 1)r - 1, or else r divides n and Go is reducible to r-diagonal
form.

Proof. As in the proof of Corollary 1, we may suppose that V is the space
of zeros of some L,(y) ff{yl with group G. If there exists a nontrivial zero
v of L,(y) such that order of v over ff is < r, it follows from the irreducibility
of G that the dimension of G is-< n(r- 1) _-< (n- 1)r + 1. Since Go leaves
invariant an r-dimensional subspace of V, L,(y) has a nontrivial zero v such
that the order of v over F is r, and the conclusion follows from Theorem 2.

4. Transitivity of G

LEMMA 2. Let Ln(y)eft{y}. A necessary and sucient condition that
every nontrivial zero of L,,(y) be of order n over ff is that the group G of L,(y)
over operate transitively on the space of zeros of L,,(y).

Proof. Let every zero of L,(y) be of order n over fl;. Then every non-
trivial zero is a generic zero of the prime differential ideal [L,(y)]. Hence
given any two nontrivial zeros u, v of L,(y), there exists an automorphism
g e G such that g(u) v. Therefore G is transitive.

Conversely, let G be transitive, and let x be any nontrivial zero of L,(y).
Every F(y)e if{y} vanishing at x must vanish at every zero of L,(y) and
therefore belongs to [Ln(y)]; every such F(y) has order >_- n so that the order
of x over ff is n.

COROLLARY. Let the group of L,(y) over be either the general linear group
GL,(C), the unimodular group SL,(C) (n >- 2), or the symplectic group Sp,(C)
(n even). Then L,(y) is the lowest differential polynomial over ff of each o its
nontrivial zeros.

5. The orthogonal group

THEOREM 3. Let L,(y) e {y}, suppose the coeilcient of y(") in L,(y) is 1,
and let F(y) be the lowest differential polynomial over ff of a nontrivial zero of
L,,(y) of order n 1 over ft. There exists p ff such that

(OF/Oy(n-1))L FP - pF.

If Fi denotes the homogeneous part of F of degree i, then, for every i for which
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Fi O, each. irreducible factor of Fi is of order n 1, and every nonsingular
zero of such a factor is a zero of L, if ci C and ci Fi O, then every non-
singular zero of c Fi is a zero of L,

Proof. Let x be a nontrivial zero of L(y) of order n 1 over f having
F(y) as lowest differential polynomial over f. (OF/Oy(n-1))L, F vanishes
at x and obviously has order =< n 1, and therefore is divisible by F;
consideration of degrees shows that (OF/Oy(n-I))L, F pF with p e f.
It immediately follows that

(OF/Oy(-))Ln F -pFi

for each i. Suppose F 0, let Q be an irreducible factor of F, and write
F QP with P not divisible by Q. If the order of Q were less than n 1,
the above equation would show that Q’ is divisible by Q, which is impossible
as Q’ has the same degree as Q but higher order. The same equation then
shows that

(n--l)(t(OQ/Oy(-I))P 4- Q(oP/oy ))in tQrP q- QP’ + pQP;

it follows that a generic point over f of the general manifold of Q over f is
a zero of L, so that every nonsingular zero of Q is a zero of L. Finally,
again by the same equation,

(0( ci Fi) (n--l)/Oy )L, ( ci FO’ q- p c F
so that every zero of c Fi which is not a zero of 0( c FO/Oy(-1) is a
zero of Ln.
THEOREM 4. Let Ln(y) e f/Y}, and suppose that the group of L,(y) over

is the orthogonal group O,(C), n >= 2. Then there exists an irreducible non-
zero homogeneous differential polynomial Q(y) if{y} of degree 2 and order
n 1 such that, for every nontrivial zero x of L(y), Q(x) C and Q(y) Q(x)
is the lowest differential polynomial of x over

Proof. By hypothesis there exists a fundamental system of zeros
(x, x) of L(y) such that the equations

gx ax 1 j n, g G,
establish an isomorphism of the group of automorphisms G of (x,
over ff onto the group On(C) of orthogonal matrices (a) with coefficients in
C. For the matrix

(Xi--1))lin,ljn
we obviously have (gx-1)) (x.i-1))(a), so that if we denote the inverse
of (x-) by (w) then (gw) --1(a) (w) (a)(w). It follows that
if we set (q) (wi)(wi) then

(eq) (v)(a)(a)() (q,),

so that q e if, and also q q.

This proof was conveyed to me by E. R. Kolchin.
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Define the differential polynomial B(y, z) f{y, z} by the formula

B(y, z) _,
qi1 Y(-)z(-).

For any zeros u, v of Ln(y) we may write u cA x, v dk xk, where
each cA and d is an element of C; clearly u(-1)

cA xa so that
U

(i-l)
cA -i wi and similarly d w. v(’-1). Thus

U(i-)V(-I)Ch dh Ei,j Whi Whj

whence cA d qu(-)v(-’, so that B(u, v) vide. Defining
the differential polynomial Q(y) e if{y} by the formula Q(y) B(y, y), we
see that for every zero u ci x of Ln(y), Q(u) c e C.
We now show that every nontrivial zero u of L,(y) is of order n 1 over

i. Indeed, if Q(u) 0, the set of all solutions v of L,(y) with B(u, v) 0
is an (n 1)-dimensional vector space over C not containing u; the group
pf L,(y) over f(u) is obviously isomorphic with 0_1(C) and therefore is of
dimension 1/2(n 1)(n 2), so that the order of u over f is equal to

1/2n(n-- 1) 1/2(n-- 1)(n-- 2) n-- 1.

On the other hand, if Q(u) 0, then u, x -- n/(-1)x, xl x/(-1)x all
have the same order over f. For if u, v are any two nontrivial zeros of
Ln(y) such that Q(u) Q(v) 0, there exists an automorphism of

<x, Xn>
over f which maps u onto v (e.g., see [1] Proposition 5, p. 18). Since the
group of L,(y) over t(x + v/( 1)x2, x v/( 1)x2} is On_2(C) and is
thus of dimension -(n 2)(n 3), we conclude that the transcendence
degree of f(x -t- v/( 1)x2, x /(-1)x2} over f is equal to

1/2n(n- 1) 1/2(n- 2)(n- 3) 2n- 3.

If the order of u over f were -<- n 2, then the transcendence degree of

x + v’(- )x., x v’(- )x>
over f would be -< 2n 4. Therefore u is of order n 1 over i.

This being the case, since Q(y) has order -< n 1 and vanishes at the zero
xl--/(-1)x of Ln(y), the order of Q(y) must be n 1. If Q(y) were
reducible over f, one of its irreducible factors L_(y) would vanish at
the nontrivial zero x + /(-1)x of Ln(y), which is impossible since O(C)
is irreducible.

Remark. If n ->. 3, the same theorem holds for the proper orthogonal
group O+(C) (same proof). If n 2, then Q(y) is no longer irreducible, as
then

Q(y) (xx X2Xl)"-2" 4- x22)A+(y)A_(y),
where

A=(y) y’ (x + X)--I(xIXtl - X2X2 /(--I)(XlX2 X2XI))Y2.
For a zero x of L(y) such that Q(x) 0 the lowest differential polynomial
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over is still Q(y) Q(x), but for an x such that Q(x) 0 the lowest dif-
ferential polynomial over is one of the two linear factors A+/-(y) of Q(y).
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