LOWEST ORDER EQUATION FOR ZEROS OF A HOMOGENEOUS LINEAR DIFFERENTIAL POLYNOMIAL

BY
Lawrence Goldman
\section*{Introduction}

If \mathfrak{F} is a field and x belongs to an algebraic extension of \mathfrak{F}, then the algebraic properties of x are completely determined by the irreducible polynomial over \mathfrak{F} which vanishes at x. Similarly, if \mathfrak{F} is an ordinary differential field (i.e., a field with given derivation) of characteristic zero and x belongs to a differentially algebraic differential field extension of \mathfrak{F}, the differential algebraic properties of x are completely determined by the irreducible differential polynomial $F(y) \in \mathfrak{F}\{y\}$ of lowest order which vanishes at x. We shall call $F(y)$, which is unique up to a nonzero factor in \mathcal{F}, the lowest differential polynomial of x over \mathfrak{F}, and we shall call the differential equation $F(y)=0$ the lowest equation for x over \mathfrak{F}.

Let \mathfrak{F} be an ordinary differential field of characteristic zero, and let C, the field of constants of \mathfrak{F}, be algebraically closed. Let $\left(x_{1}, \cdots, x_{n}\right)$ be a fundamental system of zeros of a homogeneous linear differential polynomial $L_{n}(y) \in \mathfrak{F}\{y\}$ such that the field of constants of $\mathfrak{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle$ is C. $\mathfrak{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle$ is called a Picard-Vessiot extension of \mathfrak{F} (hereafter denoted by P.V.E.), and the group G of automorphisms of $\mathfrak{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle$ over \mathfrak{F} can be identified with an algebraic group of linear transformations of the vector space V_{n} over C with basis $\left(x_{1}, \cdots, x_{n}\right)$. (See [3].) We sometimes call G the group of $L_{n}(y)$ over \mathfrak{F}.

It is the purpose of this paper to obtain information about G when the lowest equation over \mathfrak{F} for some $x \epsilon V_{n}$ is known, and about the lowest equation for every $x \in V_{n}$ when G is one of the classical groups.

Notation. Throughout this paper \mathfrak{F} will stand for an ordinary differential field of characteristic zero whose field of constants C is algebraically closed. $L_{n}(y)$ will always stand for a homogeneous linear differential polynomial of order n. Whenever we speak of zeros of $L_{n}(y) \in \mathscr{F}\{y\}$, we restrict ourselves to zeros which belong to a P.V.E. of \mathfrak{F}. We shall therefore be able to say, for some $L_{n}(y) \in \mathfrak{F}\{y\}$, that every one of its zeros satisfies a differential equation over \mathfrak{F} of lower order. If, for a given $L_{n}(y) \in \mathscr{F}\{y\}$, there exist an integer r and $L_{r}(y), L_{n-r}(y) \in \mathfrak{F}\{y\}$ such that $1 \leqq r \leqq n-1$ and

$$
L_{n}(y)=L_{n-r}\left(L_{r}(y)\right)
$$

we say that $L_{n}(y)$ is composite over \mathfrak{F}, that $L_{n}(y)$ is the composite of $L_{r}(y)$ and $L_{n-r}(y)$, and that $L_{n}(y)$ is decomposable by $L_{r}(y)$ on the right. If an

Received September 3, 1957.
element x of an extension of \mathfrak{F} has a lowest equation over \mathfrak{F} which is of order r, we shall say that x is of order r over \mathfrak{F}.

We repeatedly make use of the following:
(A) If $F(y)$ is the lowest differential polynomial of x over \mathfrak{F}, then x is a generic zero of the general component of $F(y)$ over \mathcal{F}, and the transcendence degree of $\mathfrak{F}\langle x\rangle$ over \mathfrak{F} equals the order of x over \mathfrak{F}. For any $P(y) \in \mathfrak{F}\{y\}$ vanishing at x there exists a natural number t such that $S^{t} P \in[F]$, where S is the separant of F; if the order of P equals that of F, then P is divisible by F. (See [4].)
(B) If G is the algebraic group of $\mathfrak{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle$ over \mathfrak{F}, where $\left(x_{1}, \cdots, x_{n}\right)$ is a fundamental system of zeros of $L_{n}(y) \in \mathfrak{F}\{y\}$, then the dimension of G equals the transcendence degree of $\mathfrak{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle$ over \mathfrak{F}. If G_{0} is the component of the identity of G, then G_{0} is the group of $\mathfrak{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle$ over the (relative) algebraic closure \mathfrak{F}_{0} of \mathcal{F} in $\mathfrak{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle$, and also of $\mathfrak{F}_{1}\left\langle x_{1}, \cdots, x_{n}\right\rangle$ over \mathfrak{F}_{1}, where \mathfrak{F}_{1} is the (absolute) algebraic closure of \mathfrak{F}. G is reducible (maps a nontrivial proper subspace of V_{n} into itself) if and only if $L_{n}(y)$ is composite over $\mathfrak{F} . \quad G_{0}$ is reducible to triangular form if and only if G_{0} is solvable. (See [3].)
(C) If the dimension of G is $\leqq 2$, then G_{0} is solvable.
(B) and (C) imply (D).
(D) If the transcendence degree of $\mathfrak{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle$ over \mathcal{F} is $\leqq 2$, then $L_{n}(y)$ is the composite of n homogeneous linear differential polynomials of order 1 in $\mathfrak{F}_{0}\{y\}, \mathfrak{F}_{0}$ denoting the algebraic closure of \mathfrak{F} in $\mathfrak{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle$.
(E) If G is irreducible and a nontrivial zero x of $L_{n}(y)$ is a zero of $F(y)$, then there exists a fundamental system of zeros of $L_{n}(y)$ consisting of zeros of $F(y)$.
(F) If $L_{n}(y)=L_{n-r}\left(L_{r}(y)\right)$ and $\left(x_{1}, \cdots, x_{n}\right)$ is a fundamental system of zeros of $L_{n}(y)$ such that $\left(x_{1}, \cdots, x_{r}\right)$ is a fundamental system of zeros of $L_{r}(y)$, then $\left(L_{r}\left(x_{r+1}\right), \cdots, L_{r}\left(x_{n}\right)\right)$ is a fundamental system of zeros of $L_{n-r}(y)$.

1. Homogeneous elements

Definition. An element x in a differential field extension of \mathcal{F} is said to be homogeneous over \mathfrak{F} if x is differentially algebraic over \mathfrak{F} and $x \rightarrow c x$ is a specialization over \mathfrak{F}, where c is a transcendental constant over $\mathfrak{F}\langle x\rangle$.

Lemma 1. A necessary and sufficient condition for x to be homogeneous over \mathfrak{F} is that the lowest equation for x over \mathfrak{F} be homogeneous.

Proof. Let $F(y)$ be the lowest differential polynomial of x. Suppose x
homogeneous over \mathfrak{F}. Then $F(c x)=0=\sum_{i=0}^{m} c^{i} F_{i}(x)$, where F_{i} is homogeneous of degree i. Since c is transcendental over $\mathfrak{F}\langle x\rangle$,

$$
F_{i}(x)=0 \quad(i=0,1, \cdots, m)
$$

so that each F_{i} is a multiple of F, which is possible only if F is homogeneous. Suppose $F(y)$ is homogeneous. Then $F(c x)=c^{m} F(x)=0$. If $P(y) \in \mathfrak{F}\{y\}$ is any differential polynomial such that $P(x)=0$, then $S^{t} P(y) \in[F(y)]$, where S is the separant of F. Since $S(c x)=c^{m-1} S(x) \neq 0, P(c x)=0$ and $x \rightarrow c x$ is a specialization over \mathfrak{F}, and x is homogeneous over \mathfrak{F}.

2. Decomposition of $L_{n}(y)$

Theorem 1. Let x be a zero of $L_{n}(y) \in \mathfrak{F}\{y\}$ of order r over \mathfrak{F}, let $F(y)$ be the lowest differential polynomial of x over \mathfrak{F}, and let

$$
L_{r}(y)=\sum_{j=0}^{r} \frac{\partial F}{\partial y^{(j)}}(x) y^{(j)}
$$

(a) There exists an $L_{n-r}(y) \in \mathcal{F}\langle x\rangle\{y\}$ such that $L_{n}(y)=L_{n-r}\left(L_{r}(y)\right)$.
(b) x is a zero of $L_{r}(y)$ if and only if x is homogeneous over \mathfrak{F}.
(c) If $\left(u_{1}, \cdots, u_{n-r}\right)$ is a fundamental system of zeros of $L_{n-r}(y)$ and $K(y)$ is the sum of the terms of $F(y)$ of highest degree, then every zero of $L_{r}(y)$ which is homogeneous over $\mathfrak{F}\left\langle x, u_{1}, \cdots, u_{n-r}\right\rangle$ is a zero of $K(y)$.

Proof. Let $F(y)$ be of degree m, and let $v=x+z=x+\sum_{i=1}^{\infty} z_{i} e^{i}$ (formal power series) where the $z_{i}, 1 \leqq i<\infty$, are in some differential field extension of \mathfrak{F} and e is a transcendental constant over $\mathfrak{F}\left\langle x,\left(z_{i}\right)_{1 \leqq i<\infty}\right\rangle . \quad v$ is a zero of $F(y)$ if and only if $F(v)$, when written as a power series in e, vanishes identically in e.

$$
\begin{aligned}
F(v) & =F(x)+\left(\sum_{k=1}^{m} \frac{1}{k!}\left(\sum_{j=0}^{r} z^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^{k} F(y)\right)_{y=x} \\
& =\sum_{s=1}^{\infty}\left(L_{r}\left(z_{s}\right)+Q_{s}\left(z_{1}, \cdots z_{s-1}\right)\right) e^{s}
\end{aligned}
$$

where

$$
Q_{1}=0
$$

and

$$
Q_{s} \in \mathfrak{F}\left\{x, z_{1}, \cdots, z_{s-1}\right\}, \quad 1 \leqq s<\infty ;
$$

$L_{r}(y)$ is of order r, for $\left(\partial F / \partial y^{(r)}\right)(x) \neq 0$. If we choose the z_{s}, successively, to be zeros of

$$
L_{r}(y)+Q_{s}\left(z_{1}, \cdots, z_{s-1}\right)
$$

v will be a zero of $F(y)$. Now x is a specialization of v over \mathfrak{F}. Since x is of order r, v must also be of order r. Therefore $v \rightarrow x$ is a generic specialization over \mathfrak{F} and $L_{n}(v)=0$. Since $L_{n}(y)$ is linear, $L_{n}(v)=\sum_{i=1}^{\infty} L_{n}\left(z_{i}\right) e^{i}=0$,
so that $L_{n}\left(z_{i}\right)=0,1 \leqq i<\infty$. Since we may choose z_{1} to be any zero of $L_{r}(y)$, any zero of $L_{r}(y)$ must be a zero of $L_{n}(y)$, so that

$$
L_{n}(y)=L_{n-r}\left(L_{r}(y)\right) \quad \text { with } \quad L_{n-r}(y) \epsilon \mathcal{F}\langle x\rangle\{y\}
$$

To prove (b) note that if $F(y)$ is homogeneous then the differential polynomial $P(y)=\sum_{j=0}^{r} y^{(j)} \partial F / \partial y^{(j)}$ equals $m F(y)$. Conversely, if $L_{r}(x)=0, x$ is a zero of $P(y) \in \mathfrak{F}\{y\}$, and consequently $P(y)=a F(y), a \in \mathfrak{F}$. Equating coefficients we see that a is an integer, and by Euler's theorem $F(y)$ is homogeneous.

To prove (c) we note that, for $1<s \leqq m$,

$$
Q_{s}=\left(\frac{1}{s!}\left(\sum_{j=0}^{r} z_{1}^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^{s} F(y)\right)_{y=x}
$$

plus terms all of which have at least one factor $z_{i}^{(j)}$ with $1<i<s$ and $0 \leqq j \leqq r$. Let w be any zero of $L_{r}(y)$ which is homogeneous over $\mathfrak{F}\left\langle x, u_{1}, \cdots, u_{n-r}\right\rangle . \quad$ Let $z_{1}=w$ and suppose that

$$
\left(\left(\sum_{j=0}^{r} w^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^{s} F(y)\right)_{y=x}=0, \quad 1<s<t
$$

where t is a natural number $\leqq m$, while

$$
\left(\left(\sum_{j=0}^{r} w^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^{t} F(y)\right)_{y=x} \neq 0
$$

Then we may set, successively, $z_{s}=0$ for $1<s<t$, and z_{t} a solution of

$$
\begin{equation*}
L_{r}(y)=-\left(\left(\sum_{j=0}^{r} w^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^{t} F(y)\right)_{y=x} \tag{1}
\end{equation*}
$$

Since $L_{n}\left(z_{t}\right)=0, L_{r}\left(z_{t}\right)$ is a zero of $L_{n-r}(y)$ and $L_{r}\left(z_{t}\right) \in \mathcal{F}\left\langle x, u_{1}, \cdots, u_{n-r}\right\rangle$. Now the specialization $w \rightarrow c w$ over $\mathfrak{F}\left\langle x, u_{1}, \cdots, u_{n-r}\right\rangle$ leaves the left-hand side of (1) invariant while it multiplies the right-hand side of (1) by c^{t}, which is impossible. Hence

$$
\left(\left(\sum_{j=0}^{r} w^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^{s} F(y)\right)_{y=x}=0, \quad 1<s \leqq m
$$

Since

$$
\left(\left(\sum_{j=0}^{r} y^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^{m} F(y)\right)_{y \rightarrow x}=m!K(y)
$$

we see that w is a zero of $K(y)$.
Corollary 1. With notation and hypotheses as in Theorem 1, let $L_{r}(y)$ have a zero of order r over $\mathcal{F}\left\langle x, u_{1}, \cdots, u_{n-r}\right\rangle$, and set $L_{r}^{*}(y)=\left(\partial F / \partial y^{(r)}\right)^{-1} L_{r}(y)$. The coefficients of $L_{r}^{*}(y)$ are algebraic over \mathfrak{F}, and $K(y)$ is divisible by $L_{r}^{*}(y)$.

Proof. Let w be a zero of $L_{r}(y)$ of order r over $\mathfrak{F}\left\langle x, u_{1}, \cdots, u_{n-r}\right\rangle$. Then w is homogeneous over $\mathfrak{F}\left\langle x, u_{1}, \cdots, u_{n-r}\right\rangle$ and, by Theorem $1, w$ is a zero
of $K(y)$. Since the order of $K(y)$ is $\leqq r, K(y)$ is divisible by $L_{r}(y)$ and therefore by $L_{r}^{*}(y)$; because one of the coefficients in the latter is 1 and the coefficients in $K(y)$ all belong to \mathfrak{F}, all the coefficients in $L_{r}^{*}(y)$ are algebraic over \mathfrak{F}.

Remark. It is well known (e.g. see [2]) that if an $L_{2}(y) \in \mathfrak{F}\{y\}$ has a nontrivial zero of order $\leqq 1$ over \mathfrak{F} then $L_{2}(y)$ is composite over an algebraic extension of \mathfrak{F}. Indeed, if $L_{2}(y)$ is not composite over \mathfrak{F}, and if $F(y)$ denotes the lowest differential polynomial of x over \mathfrak{F}, then $L_{2}(y)$ has a fundamental system of zeros (v_{1}, v_{2}) consisting of zeros of $F(y)$; as the transcendence degree of $\mathfrak{F}\left\langle v_{1}, v_{2}\right\rangle$ over \mathfrak{F} is then $\leqq 2, L_{2}(y)$ is composite over an algebraic extension of \mathfrak{F}.

Corollary 2. If $L_{3}(y) \in \mathfrak{F}\{y\}$ has a nontrivial zero of order $\leqq 1$ over \mathfrak{F}, then $L_{3}(y)$ is decomposable on the right by a homogeneous linear differemtial polynomial of order 1 with coefficients which are algebraic over \mathfrak{F}.

Proof. Let x be a nontrivial zero of $L_{3}(y)$ of order $\leqq 1$ over \mathfrak{F}; denote the lowest differential polynomial of x over \mathfrak{F} by F, and set

$$
L_{1}(y)=\sum_{j=0}^{1}\left(\partial F / \partial y^{(j)}\right)(x) y^{(j)}
$$

As $L_{3}(y)$ is decomposable on the right by $y^{\prime}-\left(x^{\prime} / x\right) y$, we may suppose that x^{\prime} / x is not algebraic over \mathfrak{F}, so that F is of order 1 and not homogeneous. By Theorem 1 we may write $L_{3}(y)=L_{2}\left(L_{1}(y)\right)$, with $L_{2}(y) \in \mathcal{F}\langle x\rangle\{y\}$, and $L_{1}(x) \neq 0$. Let w be a nontrivial zero of $L_{1}(y)$. By the remark preceding the present corollary, we may suppose that x is not a zero of any homogeneous linear differential polynomial in $\mathfrak{F}\{y\}$ of order 2 . It easily follows that $F(y)$ has a zero v such that (x, v, w) is a fundamental system of zeros of $L_{3}(y)$. Obviously ($\left.L_{1}(x), L_{1}(v)\right)$ is a fundamental system of zeros of $L_{2}(y)$. If w is of order 0 over $\mathfrak{F}\left\langle x, L_{1}(v)\right\rangle$, then the transcendence degree of $\mathfrak{F}\langle x, v, w\rangle$ over \mathfrak{F} is $\leqq 2$, and our result follows from (D) of the introduction. If w is of order 1 over $\mathfrak{F}\left\langle x, L_{1}(v)\right\rangle$, then, by Corollary 1 , the coefficients in

$$
L_{1}^{*}(y)=\left(\partial F / \partial y^{\prime}(x)\right)^{-1} L_{1}(y)
$$

are algebraic over \mathfrak{F}, and obviously $L_{3}(y)$ is decomposable by $L_{1}^{*}(y)$ on the right.

3. Dimension of G

A group of linear transformations of an n-dimensional vector space is said to be reducible to diagonal form if the space is a direct sum of n invariant one-dimensional subspaces. We shall say, for any divisor r of n, that the group is reducible to r-diagonal form, if the space is a direct sum of n / r invariant r-dimensional subspaces.

Theorem 2. Let $L_{n}(y) \in \mathfrak{F}\{y\}$, and suppose that the group G of $L_{n}(y)$ over \mathfrak{F} is irreducible. If $L_{n}(y)$ has a nontrivial zero x of order r over \mathfrak{F}, then either
the dimension of G is $\leqq(n-1) r$, or the dimension of G is $(n-1) r+1$ and x is homogeneous over \mathfrak{F}, or r divides n and the component of the identity G_{0} of G is reducible to r-diagonal form.

Proof. Let V_{n} denote the vector space over C formed by the zeros of $L_{n}(y)$, and let x be an element of V_{n} of order r over \mathfrak{F}. Using the notation of Theorem 1, we may write $L_{n}(y)=L_{n-r}\left(L_{r}(y)\right)$. Suppose $L_{r}(y)$ has a nontrivial zero w of order r over $\mathfrak{F}\left\langle x, u_{1}, \cdots, u_{n-r}\right\rangle$, where (u_{1}, \cdots, u_{n-r}) is some fundamental system of zeros of $L_{n-r}(y)$; then the coefficients in the differential polynomial $L_{r}^{*}(y)$ of Corollary 1 to Theorem 1 are algebraic over \mathfrak{F}, so that $L_{r}^{*}(y) \in \mathfrak{F}_{0}\{y\}$, where \mathfrak{F}_{0} is the algebraic closure of \mathfrak{F} in $\mathfrak{F}\left\langle V_{n}\right\rangle$, whence $g L_{r}^{*}(y) \in \mathcal{F}_{0}\{y\}$ for every $g \in G_{0}$. Denoting the set of zeros of $L_{r}^{*}(y)$ by V_{r}, we see that $g V_{r}$, which is the set of zeros of $g L_{r}^{*}(y)$, is an r-dimensional subspace of V_{n} invariant under G_{0}. If V_{r} contains a nontrivial proper subspace invariant under G_{0}, then $L_{n}(y)$ has a nontrivial zero of order $<r$ over \mathfrak{F}_{0} and therefore over \mathfrak{F}, so that (because G is irreducible) V_{n} has a basis consisting of such zeros, and the transcendence degree of $\mathfrak{F}\left\langle V_{n}\right\rangle$ over \mathfrak{F}, that is, the dimension of G, is $\leqq n(r-1) \leqq(n-1) r$; on the other hand, if V_{r} (and therefore each $g V_{r}$) contains no such invariant subspace, then V_{n}, which because of the irreducibility of G is the sum of the subspaces $g V_{r}$, is the direct sum of certain of them, whence r divides n and G_{0} is reducible to r-diagonal form.

Suppose, then, that $L_{r}(y)$ has no nontrivial zero w as above. By Theorem 1 and the irreducibility of G there exists a fundamental system of zeros, $\left(x_{1}, \cdots, x_{n-r}, w_{1}, \cdots, w_{r}\right)$ of $L_{n}(y)$, such that each $F\left(x_{i}\right)=0,\left(w_{1}, \cdots, w_{r}\right)$ is a fundamental system of zeros of $L_{r}(y)$, and either x is not homogeneous over \mathfrak{F} and $x=x_{1}$, or x is homogeneous over \mathfrak{F} and $x=w_{1}$. Since

$$
\left(L_{r}\left(x_{1}\right), \cdots, L_{r}\left(x_{n-r}\right)\right)
$$

is a fundamental system of zeros of $L_{n-r}(y)$, the order of w_{i}, for each i with $1 \leqq i \leqq r$ in the nonhomogeneous case and for each i with $2 \leqq i \leqq r$ in the homogeneous case, over

$$
\mathfrak{F}\left\langle x, L_{r}\left(x_{1}\right), \cdots, L_{r}\left(x_{n-r}\right)\right\rangle \subset \mathfrak{F}\left\langle x, x_{1}, \cdots, x_{n-r}\right\rangle,
$$

is <r. As x and each x_{j} have order $\leqq r$ over \mathfrak{F}, the transcendence degree of $\mathcal{F}\left\langle x_{1}, \cdots, x_{n-r}, w_{1}, \cdots, w_{r}\right\rangle$ over \mathcal{F} is $\leqq(n-r) r+r(r-1)=(n-1) r$ in the nonhomogeneous case and is $\leqq(n-r+1) r+(r-1)^{2}=(n-1) r+1$ in the homogeneous case.

Corollary 1. Let G be an irreducible algebraic group of linear transformations of an n-dimensional vector space V over an algebraically closed field of characteristic zero, let H be the subgroup of G leaving invariant a fixed nonzero element $v \in V$, and denote the dimension of G and H by s and t respectively. Then, either $s-t=n$, or $s-t<n$ and $s-t$ divides n and the component of the identity G_{0} is reducible to $(s-t)$-diagonal form, or

$$
(s-1) /(n-1) \leqq s-t<n
$$

Proof. It is known (see e.g. [3]) that we may regard V as the space of
zeros of some $L_{n}(y) \in \mathfrak{F}\{y\}$ with group G; then s equals t plus the order of v over \mathfrak{F}, so that $s-t \leqq n$. If $s-t<n$, then by Theorem 2 either

$$
s \leqq(n-1)(s-t)+1
$$

that is, $s-t \geqq(s-1) /(n-1)$, or else $s-t$ divides n and G_{0} is reducible to ($s-t$)-diagonal form.

Corollary 2. Let G be an irreducible algebraic group of linear transformations of an n-dimensional vector space V over an algebraically closed field of characteristic zero, and suppose that the component of the identity G_{0} leaves invariant an r-dimensional subspace of $V, 0<r<n$. Then either the dimension of G is $\leqq(n-1) r+1$, or else r divides n and G_{0} is reducible to r-diagonal form.

Proof. As in the proof of Corollary 1, we may suppose that V is the space of zeros of some $L_{n}(y) \in \mathfrak{F}\{y\}$ with group G. If there exists a nontrivial zero v of $L_{n}(y)$ such that order of v over \mathfrak{F} is $<r$, it follows from the irreducibility of G that the dimension of G is $\leqq n(r-1) \leqq(n-1) r+1$. Since G_{0} leaves invariant an r-dimensional subspace of $V, L_{n}(y)$ has a nontrivial zero v such that the order of v over F is r, and the conclusion follows from Theorem 2.

4. Transitivity of G

Lemma 2. Let $L_{n}(y) \in \mathfrak{F}\{y\}$. A necessary and sufficient condition that every nontrivial zero of $L_{n}(y)$ be of order n over \mathfrak{F} is that the group G of $L_{n}(y)$ over \mathfrak{F} operate transitively on the space of zeros of $L_{n}(y)$.

Proof. Let every zero of $L_{n}(y)$ be of order n over \mathfrak{F}. Then every nontrivial zero is a generic zero of the prime differential ideal $\left[L_{n}(y)\right]$. Hence given any two nontrivial zeros u, v of $L_{n}(y)$, there exists an automorphism $g \epsilon G$ such that $g(u)=v$. Therefore G is transitive.

Conversely, let G be transitive, and let x be any nontrivial zero of $L_{n}(y)$. Every $F(y) \in \mathscr{F}\{y\}$ vanishing at x must vanish at every zero of $L_{n}(y)$ and therefore belongs to $\left[L_{n}(y)\right]$; every such $F(y)$ has order $\geqq n$ so that the order of x over \mathcal{F} is n.

Corollary. Let the group of $L_{n}(y)$ over \mathfrak{F} be either the general linear group $G L_{n}(C)$, the unimodular group $S L_{n}(C)(n \geqq 2)$, or the symplectic group $S p_{n}(C)$ (n even). Then $L_{n}(y)$ is the lowest differential polynomial over \mathfrak{F} of each of its nontrivial zeros.

5. The orthogonal group

Theorem 3. Let $L_{n}(y) \in \mathfrak{F}\{y\}$, suppose the coefficient of $y^{(n)}$ in $L_{n}(y)$ is 1 , and let $F(y)$ be the lowest differential polynomial over \mathfrak{F} of a nontrivial zero of $L_{n}(y)$ of order $n-1$ over \mathfrak{F}. There exists $p \in \mathfrak{F}$ such that

$$
\left(\partial F / \partial y^{(n-1)}\right) L_{n}=F^{\prime}+p F
$$

If F_{i} denotes the homogeneous part of F of degree i, then, for every i for which
$F_{i} \neq 0$, each irreducible factor of F_{i} is of order $n-1$, and every nonsingular zero of such a factor is a zero of L_{n}; if $c_{i} \in C$ and $\sum c_{i} F_{i} \neq 0$, then every nonsingular zero of $\sum c_{i} F_{i}$ is a zero of L_{n}.

Proof. Let x be a nontrivial zero of $L_{n}(y)$ of order $n-1$ over \mathfrak{F} having $F(y)$ as lowest differential polynomial over \mathfrak{F}. $\quad\left(\partial F / \partial y^{(n-1)}\right) L_{n}-F^{\prime}$ vanishes at x and obviously has order $\leqq n-1$, and therefore is divisible by F; consideration of degrees shows that $\left(\partial F / \partial y^{(n-1)}\right) L_{n}-F^{\prime}=p F$ with $p \in \mathcal{F}$. It immediately follows that

$$
\left(\partial F_{i} / \partial y^{(n-1)}\right) L_{n}=F_{i}^{\prime}+p F_{i}
$$

for each i. Suppose $F_{i} \neq 0$, let Q be an irreducible factor of F_{i}, and write $F_{i}=Q^{t} P$ with P not divisible by Q. If the order of Q were less than $n-1$, the above equation would show that Q^{\prime} is divisible by Q, which is impossible as Q^{\prime} has the same degree as Q but higher order. The same equation then shows that

$$
\left(t\left(\partial Q / \partial y^{(n-1)}\right) P+Q\left(\partial P / \partial y^{(n-1)}\right)\right) L_{n}=t Q^{\prime} P+Q P^{\prime}+p Q P
$$

it follows that a generic point over \mathfrak{F} of the general manifold of Q over \mathfrak{F} is a zero of L_{n}, so that every nonsingular zero of Q is a zero of L_{n}. Finally, again by the same equation,

$$
\left(\partial\left(\sum c_{i} F_{i}\right) / \partial y^{(n-1)}\right) L_{n}=\left(\sum c_{i} F_{i}\right)^{\prime}+p \sum c_{i} F_{i}
$$

so that every zero of $\sum c_{i} F_{i}$ which is not a zero of $\partial\left(\sum c_{i} F_{i}\right) / \partial y^{(n-1)}$ is a zero of L_{n}.

Theorem 4. Let $L_{n}(y) \in \mathfrak{F}\{y\}$, and suppose that the group of $L_{n}(y)$ over \mathfrak{F} is the orthogonal group $O_{n}(C), n \geqq 2$. Then there exists an irreducible nonzero homogeneous differential polynomial $Q(y) \in \mathfrak{F}\{y\}$ of degree 2 and order $n-1$ such that, for every nontrivial zero x of $L_{n}(y), Q(x) \in C$ and $Q(y)-Q(x)$ is the lowest differential polynomial of x over \mathfrak{F}.

Proof. ${ }^{1}$ By hypothesis there exists a fundamental system of zeros (x_{1}, \cdots, x_{n}) of $L_{n}(y)$ such that the equations

$$
g x_{j}=\sum_{1 \leqq i \leqq n} a_{i j} x_{i}, \quad 1 \leqq j \leqq n, \quad g \in G
$$

establish an isomorphism of the group of automorphisms G of $\mathcal{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle$ over \mathfrak{F} onto the group $O_{n}(C)$ of orthogonal matrices $\left(a_{i j}\right)$ with coefficients in C. For the matrix

$$
\left(x_{j}^{(i-1)}\right)_{1 \leqq i \leqq n, 1 \leqq j \leqq n}
$$

we obviously have $\left(g x_{i}^{(i-1)}\right)=\left(x_{j}^{(i-1)}\right)\left(\alpha_{i j}\right)$, so that if we denote the inverse of $\left(x_{j}^{i-1}\right)$ by $\left(w_{i j}\right)$ then $\left(g w_{i j}\right)=\left(a_{i j}\right)^{-1}\left(w_{i j}\right)={ }^{t}\left(a_{i j}\right)\left(w_{i j}\right)$. It follows that if we set $\left(q_{i j}\right)={ }^{t}\left(w_{i j}\right)\left(w_{i j}\right)$ then

$$
\left(g q_{i j}\right)={ }^{t}\left(w_{\imath j}\right)\left(a_{i j}\right)^{t}\left(a_{i j}\right)\left(w_{i j}\right)=\left(q_{i j}\right),
$$

so that $q_{i j} \in \mathcal{F}$, and also $q_{i j}=q_{j i}$.

[^0]Define the differential polynomial $B(y, z) \in \mathcal{F}\{y, z\}$ by the formula

$$
B(y, z)=\sum_{1 \leqq i \leqq n, 1 \leqq j \leqq n} q_{i j} y^{(i-1)} z^{(j-1)}
$$

For any zeros u, v of $L_{n}(y)$ we may write $u=\sum_{(i-1)} c_{h} x_{h}, v=\sum_{(i-1)} d_{k} x_{k}$, where each c_{h} and d_{k} is an element of C; clearly $u^{(i-1)}=\sum c_{h} x_{h}^{(i-1)}$, so that $c_{h}=\sum_{i} w_{h i} u^{(i-1)}$, and similarly $d_{k}=\sum_{j} w_{k j} v^{(j-1)}$. Thus

$$
c_{h} d_{h}=\sum_{i, j} w_{h i} w_{h j} u^{(i-1)} v^{(j-1)}
$$

whence $\sum_{h} c_{h} d_{h}=\sum q_{i j} u^{(i-1)} v^{(j-1)}$, so that $B(u, v)=\sum c_{i} d_{i}$. Defining the differential polynomial $Q(y) \in \mathfrak{F}\{y\}$ by the formula $Q(y)=B(y, y)$, we see that for every zero $u=\sum c_{i} x_{i}$ of $L_{n}(y), Q(u)=\sum c_{i}^{2} \epsilon C$.

We now show that every nontrivial zero u of $L_{n}(y)$ is of order $n-1$ over \mathcal{F}. Indeed, if $Q(u) \neq 0$, the set of all solutions v of $L_{n}(y)$ with $B(u, v)=0$ is an $(n-1)$-dimensional vector space over C not containing u; the group $p f L_{n}(y)$ over $\mathfrak{F}\langle u\rangle$ is obviously isomorphic with $O_{n-1}(C)$ and therefore is of dimension $\frac{1}{2}(n-1)(n-2)$, so that the order of u over \mathfrak{F} is equal to

$$
\frac{1}{2} n(n-1)-\frac{1}{2}(n-1)(n-2)=n-1
$$

On the other hand, if $Q(u)=0$, then $u, x_{1}+\sqrt{ }(-1) x_{2}, x_{1}-\sqrt{ }(-1) x_{2}$ all have the same order over \mathfrak{F}. For if u, v are any two nontrivial zeros of $L_{n}(y)$ such that $Q(u)=Q(v)=0$, there exists an automorphism of

$$
\mathfrak{F}\left\langle x_{1}, \cdots, x_{n}\right\rangle
$$

over \mathfrak{F} which maps u onto v (e.g., see [1] Proposition 5, p. 18). Since the group of $L_{n}(y)$ over $\mathfrak{F}\left\langle x_{1}+\sqrt{ }(-1) x_{2}, x_{1}-\sqrt{ }(-1) x_{2}\right\rangle$ is $O_{n-2}(C)$ and is thus of dimension $\frac{1}{2}(n-2)(n-3)$, we conclude that the transcendence degree of $\mathfrak{F}\left\langle x_{1}+\sqrt{ }(-1) x_{2}, x_{1}-\sqrt{ }(-1) x_{2}\right\rangle$ over \mathfrak{F} is equal to

$$
\frac{1}{2} n(n-1)-\frac{1}{2}(n-2)(n-3)=2 n-3
$$

If the order of u over \mathfrak{F} were $\leqq n-2$, then the transcendence degree of

$$
\mathfrak{F}\left\langle x_{1}+\sqrt{ }(-1) x_{2}, x_{1}-\sqrt{ }(-1) x_{2}\right\rangle
$$

over \mathfrak{F} would be $\leqq 2 n-4$. Therefore u is of order $n-1$ over \mathfrak{F}.
This being the case, since $Q(y)$ has order $\leqq n-1$ and vanishes at the zero $x_{1}+\sqrt{ }(-1) x_{2}$ of $L_{n}(y)$, the order of $Q(y)$ must be $n-1$. If $Q(y)$ were reducible over \mathfrak{F}, one of its irreducible factors $L_{n-1}(y)$ would vanish at the nontrivial zero $x_{1}+\sqrt{ }(-1) x_{2}$ of $L_{n}(y)$, which is impossible since $O_{n}(C)$ is irreducible.

Remark. If $n \geqq 3$, the same theorem holds for the proper orthogonal group $O_{n}^{+}(C)$ (same proof). If $n=2$, then $Q(y)$ is no longer irreducible, as then

$$
Q(y)=\left(x_{1} x_{2}^{\prime}-x_{2} x_{1}^{\prime}\right)^{-2}\left(x_{1}^{2}+x_{2}^{2}\right) A_{+}(y) A_{-}(y)
$$

where

$$
A_{ \pm}(y)=y^{\prime}-\left(x_{1}^{2}+x_{2}^{2}\right)^{-1}\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime} \pm \sqrt{ }(-1)\left(x_{1} x_{2}^{\prime}-x_{2} x_{1}^{\prime}\right)\right) y_{2}
$$

For a zero x of $L_{2}(y)$ such that $Q(x) \neq 0$ the lowest differential polynomial
over \mathfrak{F} is still $Q(y)-Q(x)$, but for an x such that $Q(x)=0$ the lowest differential polynomial over \mathcal{F} is one of the two linear factors $A_{ \pm}(y)$ of $Q(y)$.

References

1. J. Dieudonne, Sur les groupes classiques, Actualités scientifiques et industrielles, no. 1040, Paris, Hermann, 1948.
2. L. Koenigsberger, Lehrbuch der Theorie der Differentialgleichungen mit einer unabhängigen Variabeln, Leipzig, B. G. Teubner, 1889.
3. E. R. Kolchin, Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2), vol. 49 (1948), pp. 1-42.
4. J. F. Ritt, Differential algebra, Amer. Math. Soc. Colloquium Publications, vol. 33, 1950.

Stevens Institute of Technology Hoboken, New Jersey

[^0]: ${ }^{1}$ This proof was conveyed to me by E. R. Kolchin.

