METABELIAN p-GROUPS WITH FIVE GENERATORS AND ORDERS p^{12} AND p^{11}

In commemoration of G. A. Miller

BY
H. R. Brahana

1. Introduction

This paper continues the study of metabelian groups with elements of order p which are generated by five elements, and which are not direct products of abelian groups and metabelian groups with fewer generators. The problem is stated precisely and the method of investigation is explained in an earlier paper. ${ }^{1}$ In that paper the existence and the distinctness of eighty-five such groups of orders from p^{15} to p^{11} were established. This paper will establish the completeness ${ }^{2}$ of the list for these orders.

The considerations will all be geometric; nevertheless this is a paper about groups. The groups motivate the study of the complicated considerations required to determine invariants and to show in each case that a given set of invariants is sufficient to characterize a space. We shall be interested in planes and three-spaces in the finite nine-dimensional projective space S which is determined by the Plücker coordinates of the lines of a projective four-space X over $\operatorname{GF}(p)$. We classify planes and three-spaces of S under collineations of X.

2. Geometric formulation

We state the problem in geometric terms; the reader is referred to the earlier paper for consideration of the bearing of this study, and also for any proofs required for statements in this section.

Denote the five elements which generate G, any one of these groups, by $U_{1}, U_{2}, \cdots, U_{5}$. Designate commutators of pairs of U 's as follows:

$$
\begin{array}{lll}
U_{2}^{-1} U_{1} U_{2}=U_{1} s_{1}, & U_{3}^{-1} U_{2} U_{3}=U_{2} s_{5}, & U_{4}^{-1} U_{3} U_{4}=U_{3} s_{8} \\
U_{3}^{-1} U_{1} U_{3}=U_{1} s_{2}, & U_{4}^{-1} U_{2} U_{4}=U_{2} s_{6}, & U_{5}^{-1} U_{3} U_{5}=U_{3} s_{9} \\
U_{4}^{-1} U_{1} U_{4}=U_{1} s_{3}, & U_{5}^{-1} U_{2} U_{5}=U_{2} s_{7}, & \\
U_{5}^{-1} U_{1} U_{5}=U_{1} s_{4}, & & U_{5}^{-1} U_{4} U_{5}=U_{4} s_{10}
\end{array}
$$

[^0]If the s_{i} 's are all independent, the group is of order p^{15}; all other groups satisfying the given conditions are quotient groups of this with respect to subgroups of the central $C=\left\{s_{1}, s_{2}, \cdots, s_{10}\right\}$.

Any element of G is $c U_{1}^{x_{1}} U_{2}^{x_{2}} \cdots U_{5}^{x_{5}}$, where c is an element of C and $x_{1}, x_{2}, \cdots, x_{5}$ are numbers in $\mathrm{GF}(p)$. To this element we let correspond the point $x_{1}, x_{2}, \cdots, x_{5}$ in a finite projective space X of four dimensions. A second element $c^{\prime} U_{1}^{y_{1}} U_{2}^{y_{2}} \cdots U_{5}^{y_{5}}$ of G determines a second point $y_{1}, y_{2}, \cdots, y_{5}$ of X. The commutator of these two elements is $s_{1}^{a_{1}} s_{2}^{a_{2}} \cdots s_{10}^{a_{10}}$ where $a_{1}, a_{2}, \cdots, a_{10}$ are the Plücker line-coordinates of the line $x y$ in X. These numbers can be used as the coordinates of a point in projective nine-space S over $\operatorname{GF}(p)$. Every point of S determines a cyclic subgroup of C, the central and the commutator subgroup of G of order p^{15}.

The points of S which correspond to commutators, or which correspond to lines of X, are points of the V_{6}^{5} defined by $B_{1}=B_{2}=\cdots=B_{5}=0$, where

$$
\begin{aligned}
& B_{1}=a_{1} a_{8}-a_{2} a_{6}+a_{3} a_{5}, \\
& B_{2}=a_{1} a_{9}-a_{2} a_{7}+a_{4} a_{5}, \\
& B_{3}=a_{1} a_{10}-a_{3} a_{7}+a_{4} a_{6} \\
& B_{4}=a_{2} a_{10}-a_{3} a_{9}+a_{4} a_{8}, \\
& B_{5}=a_{5} a_{10}-a_{6} a_{9}+a_{7} a_{8} .
\end{aligned}
$$

We shall designate this locus by V.
Every group satisfying the given conditions will be obtained by setting certain elements of the commutator subgroup of the biggest group equal to identity. Elements dependent on those set equal to identity will constitute a subgroup of C and will correspond to a linear space in S. Different subgroups of the same order will correspond to subspaces of the same dimension; if these subspaces of S have different relations to V, then the corresponding quotient groups of G will be groups that are not simply isomorphic. We are to see that there are just 22 types of plane and 58 types of three-space in S; points and lines were discussed completely in the earlier paper.

We list some facts that will be needed in all that follows.
(1) The lines of a pencil in X determine the points of a ruling of V.
(2) A point P of S not on V is on a line joining two points of V; a choice of coordinate system in X will put P in the form $1,0,0,0,0,0,0,1,0,0$.
(3) Two points of V on a line with P not on V are images on V of two skew lines in X; these lines determine a three-space R in $X ; R$ depends on P only, and not on the points of V which were used to define it.
(4) The equation of R is $B_{5} x_{1}-B_{4} x_{2}+B_{3} x_{3}-B_{2} x_{4}+B_{1} x_{5}=0$, where the B 's are those for the point P which determines R.
(5) We denote by Σ the five-space in S determined by the lines of a threespace in X; a point P in S is in one and only one Σ unless P is on V. Lines, planes, etc. in a Σ are called Σ-lines, Σ-planes, etc.
(6) A line in S not a Σ-line has one or no points on V; respective canonical forms are $k, 0,0, l, 0,0,0, k, 0,0$ and $k, l, 0,0,0,0, l, k, 0,0$.
(7) The line $k, l, 0,0,0,0, l, k, 0,0$ determines a unique point M on V such that the plane determined by M and the line is tangent to V at M. The six-dimensional space tangent to V at M contains planes, three-spaces, etc., which we shall call τ-planes, τ-three-spaces, etc.
(8) So much use will be made of the close connection between the canonical form $k, l, 0,0,0,0, l, k, 0,0$ in S and the frame of reference in X that we shall describe it briefly here. Let l be a line in S which is not a Σ-line and has no point on V. Let P_{1} and P_{2} be arbitrary points on l; let R_{1} and R_{2} be the corresponding three-spaces in X; let the plane of intersection of R_{1} and R_{2} be σ; let the images on V of the lines of σ be the points of the plane π; and let Σ_{1} and Σ_{2} be the five-spaces in S which contain P_{1} and P_{2} respectively. The polar of P_{1} with respect to the intersection of V and Σ_{1} intersects π in a line l_{1}; likewise P_{2} determines a line l_{2} in π. Lines l_{1} and l_{2} intersect in the point M. A line joining P_{1} to a point Q_{1} on l_{2} and not M intersects V in a second point Q_{1}^{\prime}; a line joining P_{2} to a point Q_{2} on l_{1} and not M intersects V in Q_{2}^{\prime}. The points $M, Q_{1}, Q_{2}, Q_{1}^{\prime}, Q_{2}^{\prime}$ are images on V of lines $m, q_{1}, q_{2}, q_{1}^{\prime}$, q_{2}^{\prime} in X; these lines have the following relations: m, q_{1}, and q_{2} are in the plane σ, and the intersection of q_{1} and q_{2} may be taken to be $A_{1}=1,0,0,0,0 ; m$ and q_{1} intersect at $A_{2}=0,1,0,0,0 ; m$ and q_{2} intersect at $A_{3}=0,0,1,0,0 ; q_{1}^{\prime}$ passes through A_{3} and contains $A_{4}=0,0,0,1,0 ; q_{2}^{\prime}$ passes through A_{2} and contains $A_{5}=0,0,0,0,1$. With this choice of a coordinate system in X and the corresponding determination of the coordinate system in S, the line takes the canonical form above. This rapid description shows the great arbitrariness in choosing a coordinate system to give a line the canonical form. By taking advantage of this arbitrariness we get a start in classifying planes.

3. The planes of S

(i) Σ-planes in S. There are Σ-planes in S; each such plane lies in the Σ determined by the lines of a three-space in X. In dealing with them we may neglect X and consider only the three-space. These planes were all determined in a previous paper. ${ }^{3}$ The Σ-planes are

1. $k, l, 0,0, m, 0,0,0,0,0$, the image of a plane of lines in X.
2. $k, l, m, 0,0,0,0,0,0,0$, the image of a bundle of lines in X.

[^1]3. $k, l, 0,0,0,0,0, m, 0,0$, which intersects V in two lines.
4. $k, l, m, 0,0,0,0, k, 0,0$, which intersects V in one line.
5. $k, l, 0,0,0, m, 0, k, 0,0$, which intersects V in a conic.
6. $k, l, m, 0,0, r l, 0, k, 0,0 \quad(r$ not a square), which intersects V in a point.

The intersection of V and Σ is a four-dimensional hyperquadric. Any plane in Σ then intersects V in a conic or else lies wholly on V. The latter possibilities are 1 and 2 . If the conic is not degenerate, the plane is 5 ; if the conic is degenerate with one vertex, it is 3 if the quadratic polynomial is factorable in $\mathrm{GF}(p)$, otherwise it is 6 ; if the conic has a line of vertices, the plane is 4 . The proofs that planes having the properties listed can be put in the forms given are not attempted here; they are given, however, in the paper cited, and they are not hard to supply.
(ii) A preliminary classification of planes not in any $\boldsymbol{\Sigma}$. A plane ρ which is not in any Σ contains points not on V, for a plane lying on V is determined by three points of V which are images of three lines in X that intersect in pairs, and three such lines either lie in a plane or pass through a point, in either of which events they lie in a three-space. Let ρ contain the point P which is not on V. P determines a five-space Σ, and ρ does not lie in Σ. If ρ contained as many as four points of V no three of which were collinear, then ρ would be a Σ-plane. One of the vertices of the diagonal triangle of the quadrangle determined by the four points would be not on V and so could be taken for P above. The three-space determined in X by P would contain the lines of which the four points of V are images, and so the corresponding Σ would contain ρ. Therefore any plane of S which is not a Σ-plane intersects V in $0,1,2,3$ points, in a line, or in a line and one additional point.

Unless ρ is a Σ-plane, it cannot contain two Σ-lines which intersect in a point not on V. Hence every ρ which is not a Σ-plane contains a line l which is not a Σ-line. If ρ intersects V in a line, then every l has a point on V; if ρ does not contain a line of V, then ρ contains an l which has no point on V. Hence, any plane ρ which is not a Σ-plane contains one or the other of the lines given in (6) of Section 2.
(iii) Some transformations of S which leave a line fixed. The planes ρ of S which contain $0,1,2$, or 3 points of V all contain the line $k, l, 0,0,0,0, l, k, 0,0$ which we shall call $P_{1} P_{2}$ with P_{1} given by $l=0$ and P_{2} by $k=0$. Each such ρ is given by one additional point whose coordinates may be modified by using some of the freedom noted when we discussed the canonical form of $P_{1} P_{2}$. We give here three transformations of S into itself which leave the form of $P_{1} P_{2}$ unchanged. We employ the notation of Section 2.

For the first transformation we move A_{4} along q_{1}^{\prime} and A_{5} along q_{2}^{\prime}, leaving $P_{1}, P_{2}, Q_{1}, Q_{2}, Q_{1}^{\prime}, Q_{2}^{\prime}$ fixed. Denote this transformation by T_{1}. The effect of T_{1} in X is described by the matrix of coefficients

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & a & 1 & 0 \\
0 & b & 0 & 0 & 1
\end{array}\right]
$$

in expressions of the new coordinates in terms of the old. The matrix which follows is the description of T_{1} in S by means of the matrix of coefficients in the expressions of the old coordinates in terms of the new; its elements are the properly ordered two-rowed minors of the inverse of the matrix above.

$$
T_{1}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -a & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-b & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -a & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & b & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -a b & b & 0 & 0 & -a & 1
\end{array}\right] .
$$

The second transformation T_{2} represents the changes in the coordinate systems brought about by moving Q_{1} and Q_{2} along the lines l_{2} and l_{1} respectively, still leaving P_{1} and P_{2} fixed. The points A_{4} and A_{5} are not determined by the Q 's, but a combination of T_{1} and T_{2} will do all that can be done in that respect. The following transformation moves Q_{1} to $\bar{Q}_{1}=Q_{1}+k M$ and Q_{2} to $\bar{Q}_{2}=Q_{2}+l M$.

$$
T_{2}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & -k & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -l & 0 & 0 & 0 & 0 & 0 \\
-k & 0 & 1 & 0 & k^{2} & -l & 0 & k & 0 & 0 \\
0 & l & 0 & 1 & -l^{2} & 0 & -l & 0 & k & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & l & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & k & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -k l & 0 & -k & -l & 0 & 1
\end{array}\right] .
$$

For the third transformation T_{3} we let the point $a P_{1}+P_{2}$ play the role of P_{2} and determine a coordinate system so that P_{1} and the new P_{2} have coordinates in canonical form. There is arbitrariness in the choice of Q_{1} and Q_{2} as well as in the choice of A_{4} and A_{5}. We shall carry out the selections which determine the matrices of T_{3} in X and in S.
$P_{1}=1,0,0,0,0,0,0,1,0,0$.
$R_{1}: \quad x_{5}=0$.

$$
P_{2}=a, 1,0,0,0,0,1, a, 0,0 .
$$

$$
R_{2}: \quad a x_{1}+x_{4}+a^{2} x_{5}=0
$$

$\sigma=\left\{\begin{array}{l}0,1,0,0,0 \\ 0,0,1,0,0 \\ -1,0,0, a, 0 .\end{array}\right.$

$$
\pi=\left\{\begin{array}{l}
0,0,0,0,1,0,0,0,0,0 \\
1,0,0,0,0, a, 0,0,0,0 \\
0,1,0,0,0,0,0, a, 0,0
\end{array}\right.
$$

$l_{1}=\left\{\begin{array}{l}0,0,0,0,1,0,0,0,0,0 \\ a,-1,0,0,0, a^{2}, 0,-a, 0,0 .\end{array}\right.$
$l_{2}=\left\{\begin{array}{l}0,0,0,0,1,0,0,0,0,0 \\ 1,0,0,0,0, a, 0,0,0,0 .\end{array}\right.$
$M=0,0,0,0,1,0,0,0,0,0$.
$Q_{1}=1,0,0,0,0, a, 0,0,0,0$.
$Q_{1}^{\prime}=0,0,0,0,0,-a, 0,1,0,0$.
$Q_{2}=a,-1,0,0,0, a^{2}, 0,-a, 0,0$.
$Q_{2}^{\prime}=-2 a, 0,0,0,0,-a^{2},-1,0,0,0$.
$q_{1}= \begin{cases}0,1,0,0,0, & A_{2} \\ -1,0,0, a, 0, & A_{1}\end{cases}$
$q_{2}=\left\{\begin{array}{l}-1,0,0, a, 0 \\ 0,-a, 1,0,0 .\end{array}\right.$
$q_{1}^{\prime}= \begin{cases}0,-a, 1,0,0, & A_{3} \\ 0,0,0,1,0, & A_{4}\end{cases}$

The A 's at the right just above designate the points selected for the vertices of the new frame of reference in X. The matrix of T_{3} in X is the set of A 's in their proper order. The matrix in S is

$$
T_{3}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & -a & 0 & 0 & 0 & 0 \\
a & 1 & 0 & 0 & 0 & -a^{2} & 0 & -a & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -a^{2} & 1 & 0 & 0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
-2 a & 0 & 0 & 0 & 0 & a^{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a & 0 & 1 & 0 & 0 \\
-2 a^{2} & -2 a & 0 & 0 & 0 & a^{3} & a & a^{2} & 1 & 0 \\
0 & 0 & -2 a & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(iv) Planes with no point on V. Among planes which contain the line $P_{1} P_{2}$ of (iii) are those with no point on V. These planes are
7. $k, l, 0,0,0, m, l, k+r m, m, 0$.
8. $k, l, m, 0,-r m, 0, l, k, 0,0$.
9. $k, l, 0,0, m, 0, l, k, 0, m$.

We proceed to show that if ρ is not a Σ-plane and has no point on V it can be put in one of these forms. The plane is determined by P_{1}, P_{2}, and a third point which may be taken to be

$$
P_{3}=0,0, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}
$$

We consider first the possibility that ρ is a τ-plane. The line $P_{1} P_{2}$ is in the space tangent to V at $M=0,0,0,0,1,0,0,0,0,0$. If P_{3} is in that tangent space, $a_{3}=a_{4}=a_{10}=0$. Any point in ρ is $P=k P_{1}+l P_{2}+m P_{3}$. Conditions that P be on V are

$$
\begin{gathered}
k^{2}+a_{8} k m-a_{6} l m=0, \quad a_{9} k m-l^{2}-a_{7} l m=0 \\
\left(a_{7} a_{8}-a_{6} a_{9}\right) m^{2}+k l+a_{7} k m+a_{8} l m=0
\end{gathered}
$$

Eliminating m between the last two congruences, we get

$$
a_{9} k^{3}-a_{7} k^{2} l+a_{8} k l^{2}-a_{6} l^{3}=0
$$

Since there exist irreducible cubic congruences, it follows that there exist τ-planes with no point on V. We note that the above conditions are independent of a_{5}. Moreover, neither a_{6} nor a_{9} is zero, and so a or b in T_{1} can be selected so that P_{3}^{\prime} has $a_{5}^{\prime}=0$.

Now let ρ be the plane determined by P_{1}, P_{2}, and

$$
P_{3}=0,0,0,0,0, a_{6}, a_{7}, a_{8}, a_{9}, 0
$$

where the cubic $a_{9} \theta^{3}-a_{7} \theta^{2}+a_{8} \theta-a_{6}$ is irreducible. If we apply transformation T_{3} with $a=1$, the point P_{3} goes into
$P_{3}^{\prime}=-2 a_{7}-2 a_{9},-2 a_{9}, 0,0,0, a_{6}+a_{7}+a_{8}+a_{9}, a_{7}+a_{9}, a_{8}+a_{9}, a_{9}, 0$.
The point in ρ whose first two (new) coordinates are zeros has for its nonzero coordinates $a_{6}^{\prime}, a_{7}^{\prime}, a_{8}^{\prime}, a_{9}^{\prime}$ which are the coefficients of the transform of the irreducible cubic by $\theta=\theta^{\prime}-1$. The interchange of P_{1} and P_{2} performs the same transformation on the cubic as does $\theta=1 / \theta^{\prime}$; the transformation in X which leaves the vertices of the frame of reference fixed and changes the unit point to $d, 1, d, 1, d^{2}$ performs the transformation $\theta=d \theta^{\prime}$ on the cubic. These transformations generate the linear fractional group on θ, and under this group all irreducible cubics are conjugate. Hence, in any τ-plane which has no point on V, points can be selected so that P_{1} and P_{2} are in canonical form and $P_{3}=0,0,0,0,0,1,0, r, 1,0$, where $x^{3}+r x-1$ is an arbitrary irreducible polynomial. This is plane 7.

For any other plane on $P_{1} P_{2}$ the tangent space at M cannot contain P_{3}, and hence not all of a_{3}, a_{4}, and a_{10} are zero. We note that transformations T_{1}, T_{2}, and T_{3} all leave a_{4} unchanged, and that T_{1} and T_{2} leave a_{3} and a_{10} unchanged also. We separate the planes into two classes: (1) those determined by P_{3} with $a_{4}=0$, and (2) those determined by P_{3} with $a_{4} \neq 0$.
(1) Suppose $a_{4}=0$ and $a_{10} \neq 0$. We may apply T_{3} with $a_{3}-2 a_{10} a=0$ and obtain $a_{3}^{\prime}=0$. Since ρ contains P_{1} and P_{2}, it contains a point $P_{3}=0,0,0,0, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10} .^{4} \quad$ Application of T_{2} will give $a_{7}=a_{8}=0$, and T_{1} will give $a_{6}=a_{9}=0$. By proper choice of the unit point we obtain
(a) $P_{3}=0,0,0,0,1,0,0,0,0,1$.

[^2]The other planes of set (1) are those for which $a_{10}=0$ and hence $a_{3} \neq 0$. Applying T_{2} with $2 a_{3} k+a_{8}=0$ and $-a_{3} l+a_{6}=0$ gives $a_{6}=0$ and $a_{1}=a_{8}$. Then ρ contains the point $P_{3}=0,0, a_{3}, 0, a_{5}, 0, a_{7}, 0, a_{9}, 0$. When $a_{9} \neq 0$, we may apply T_{1} with $a_{5}+b a_{9}=0$ and $-a_{3} a=a_{7}$ to remove a_{5} and to make $a_{2}=a_{7}$. When $a_{9}=0, T_{1}$ can be applied to make $a_{2}=a_{7}$. In both cases, P_{3} can be changed to a point which has $a_{2}=a_{7}=0$. Thus we have the possibilities:
(b) $P_{3}=0,0, a_{3}, 0,0,0,0,0, a_{9}, 0$,
(c) $P_{3}=0,0, a_{3}, 0, a_{5}, 0,0,0,0,0$.

We note that in the case of (c) the line $P_{1} P_{3}$ is a Σ-line.
(2) Now suppose $a_{4} \neq 0$. Then in consideration of T_{3} we may suppose $a_{10}=0$. We consider first those planes given by P_{3} with $a_{3} \neq 0$. With proper choice of k and l, T_{2} gives $a_{6}=a_{9}=0 . \quad P_{3}$ can be selected in ρ so that $a_{7}=a_{8}=0$. Applying T_{1} with proper choice of a and b will change a_{1} and a_{2} to zero. Hence, we have
(d) $P_{3}=0,0, a_{3}, a_{4}, a_{5}, 0,0,0,0,0$.

Finally, suppose $a_{3}=0 . \quad T_{2}$ and a change of P_{3} will remove a_{2}, a_{7}, a_{8}, and a_{9}, introducing $a_{1} \neq 0$. We then have

$$
P_{3}=a_{1}, 0,0, a_{4}, a_{5}, a_{6}, 0,0,0,0
$$

T_{1} can be used to remove a_{1} and to remove a_{5} if $a_{6} \neq 0$. We have the possibilities:
(e) $P_{3}=0,0,0, a_{4}, 0, a_{6}, 0,0,0,0$,
(f) $\quad P_{3}=0,0,0, a_{4}, a_{5}, 0,0,0,0,0$.

In the case of (f), $P_{2} P_{3}$ is a Σ-line.
We shall now show that the plane determined by (a) contains no Σ-line, so that planes (c) and (f) are different from (a). Denote the plane given by (a) as $k, l, 0,0, m, 0, l, k, 0, m$. A point $P=k, l, m$ in it determines the three-space

$$
R: \quad\left(m^{2}+k l\right) x_{1}-l m x_{2}+k m x_{3}+l^{2} x_{4}+k^{2} x_{5}=0
$$

If P is on the line $m=0$ (i.e., the line $P_{1} P_{2}$), R is $k l x_{1}+l^{2} x_{4}+k^{2} x_{5}=0$. If P is P_{3}, R is $x_{1}=0$. For no k and l can these be the same R, and hence a Σ-line in ρ does not pass through P_{3}. A Σ-line in ρ must therefore intersect $P_{1} P_{3}$ and $P_{2} P_{3}$ in distinct points. If P is on the line $l=0, R$ is $m^{2} x_{1}+k m x_{3}+$ $k^{2} x_{5}=0$; if P is on $k=0$, then R is $m^{2} x_{1}-l m x_{2}+l^{2} x_{4}=0$. These R 's are the same only if the corresponding P 's are the same. Hence, ρ contains no Σ-line.

We next show that the planes determined by (a), (b), (d), and (e) are the same, and those determined by (c) and (f) are the same; they are respectively planes 9 and 8 above.

The transformations used so far to simplify the coordinates of P_{3} have all left the line $P_{1} P_{2}$ fixed; in order to go farther it will be convenient to change to a different $P_{1} P_{2}$. If in (b) wemake the change $P_{1}^{\prime}=P_{1}, P_{2}^{\prime}=P_{3}, P_{3}^{\prime}=P_{2}$, and then change the coordinate system so that P_{1}^{\prime} and P_{2}^{\prime} are in canonical form, ${ }^{5} P_{3}^{\prime}$ becomes $0,0,0,0,1,0,0,0,0,1$. If in (e) we interchange the rôles of P_{1} and P_{3}, we obtain (a) again. In (d) we may take $P_{1}^{\prime}=P_{1}+P_{2}$, $P_{2}^{\prime}=P_{1}-P_{2}, P_{3}^{\prime}=P_{3}$, and this will change (d) into (a). Hence, any plane in S which has no point on V, contains no Σ-line, and is not a τ-plane can be put in the form 8 .

Interchange of P_{1} and P_{2} interchanges (c) and (f). Hence, any plane in S which has no point on V, is not a τ-plane, but which contains a Σ-line, can be put in the form 9 . This concludes the determination of planes that do not intersect V.
(v) Planes with 1, 2, or 3 points on V. The planes with 1, 2, or 3 points on V all contain a line $P_{1} P_{2}$. The transformations in (iv) still pertain; the present planes were excluded by requiring that there be no point on V. By looking more closely at that requirement we determine the planes:
10. $k, l, 0,0, m, 0, l, k, 0,0$.
11. $k, l, 0,0,0, m, l, k, 0,0$.
12. $k, l, m, 0,0,0, l, k, 0,0$.
13. $k, l, 0,0,0, m, l-r m, k, 0,0 \quad(r$ not a square).
14. $k, l, m, r m, 0,0, l, k, 0,0$.
15. $k, l, 0,0,0,0, l, k, 0, m$.
16. $k+m, l, 0,0,0,0, l, k, 0,0$.
17. $k+m, l, m, 0,0,0, l, k, 0,0$.
18. $k+m, l+m, 0,0,0,0, l, k, 0,0$.

When ρ is a τ-plane, it will be determined by $\mathrm{P}_{1} \mathrm{P}_{2}$ and the point $P_{3}=0,0,0,0, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0$. The polynomial $f(\theta)=a_{9} \theta^{3}-a_{7} \theta^{2}+$ $a_{8} \theta-a_{6}$ will now be reducible. The transformations on this polynomial in (iv) show that unless $f(\theta)$ is identically zero we may suppose a_{6} or a_{9} is not zero, and hence a_{5} may be made zero. The one case it may not be made zero gives plane 10 ; this plane is obviously unique, since $P_{1} P_{2}$ determines the unique point $P_{3}=M$. Plane 10 has one point on V and is tangent to V at that point.

The reducible $f(\theta)$ may be a cube as is given by $11 .{ }^{6}$ This plane has one point on V and contains the tangent line $l=0$.

If $f(\theta)$ is the product of a linear and an irreducible quadratic factor, the plane is 13 which has one point on V and no line tangent to V. If $f(\theta)$ is the product of a linear factor by the square of another, the plane is 16 . For this

[^3]the P_{3} in the proper form gives $f(\theta)$ which is reduced to $\theta . \quad f(\theta)=0$ has the root zero and the double root infinity. Plane 16 has two points on V. If $f(\theta)$ has three distinct linear factors, the plane is 18 ; it has three points on $V ; f(\theta)=\theta^{2}-\theta$.

When ρ is not a τ-plane, P_{3} can be made to take one of the forms (a) to (f) of (iv) with the added possibility that some of the a 's are zeros. Case (a) was obtained on the assumption that $a_{10} \neq 0$; if in this case $a_{5}=0$, we have plane 15. This plane has one point on V and no tangent line.

In cases (b) and (c) we have $a_{3} \neq 0$. If in the respective cases $a_{9}=0$ and $a_{5}=0$, we have plane 12 which has one point on V and the line $l=0$ tangent to V. If in (c) $r=-a_{5} / a_{3}$ is not a square, we have plane 8 with no point on V, but if r is a square we have plane 17 , with two points on $V .{ }^{7}$

Both (e) and (f) reduce to $0,0,0,1,0,0,0,0,0,0$ which gives a ρ that is changed into 12 by interchanging P_{1} and P_{2}.

In case (d) we could have $a_{5}=0$, in which case we have plane 14 if $r=$ a_{4} / a_{3} is not a square. This has one point on V and no tangent line. If r is a square, the plane will still have one point on V and no tangent line. The planes for r a square and r not a square are different. To see this, consider the plane

$$
k, l, m, r m, 0,0, l, k, 0,0 .
$$

The three-space in X determined by a point k, l, m is

$$
k l x_{1}-r k m x_{2}-l m x_{3}+l^{2} x_{4}+k^{2} x_{5}=0
$$

By means of this relation every point of X determines a conic in ρ. Now, ρ has a special point, P_{3}, which is on V and is the image of a line p_{3} in X. The points of p_{3} determine the conics of a special pencil in ρ.

$$
P_{3}=0,0,1, r, 0,0,0,0,0,0 \quad \text { and } \quad p_{3}=\left\{\begin{array}{l}
1,0,0,0,0 \\
0,0,0,1, r
\end{array}\right.
$$

and these points on p_{3} give the conics $k l=0$ and $l^{2}+r k^{2}=0$. The special pencil of conics is $r k^{2}+\lambda k l+l^{2}=0$. When r is not a square, every conic of the pencil consists of two distinct lines; when r is a square, there are two conics each of which is a line counted twice. This was the difference between planes 14 and 15 that was explained in the earlier paper. Since we have now found all planes which contain $P_{1} P_{2}$, it should follow that plane 15 and this last one with r a square are the same. ${ }^{8}$ To see that they are the

[^4]same, we notice that in the case of plane 15 the points P_{1} and P_{2} are one each on the two degenerate parabolas. Making this change in the case where a_{4} / a_{3} is a square gives the form 15.
(vi) Planes with a line on V that are not Σ-planes. There are four planes, not Σ-planes, each of which contains a ruling of V :
19. $k, 0,0,0,0,0,0,0, l, m$.
20. $k, 0,0,0, l, 0,0, k, m, 0$.
21. $k, 0,0,0,0,0, l, k, m, 0$.
22. $k, 0,0,0,0,0,0, k, l, m$.

Plane 19 has the line $k=0$ and the point $l=m=0$ on V; any plane with a line and a point on V can be put in the form 19. For the line $P_{2} P_{3}$ determines a pencil of lines in X which may be taken to be in the plane $\sigma=$ $A_{3} A_{4} A_{5}$ with vertex of the pencil at A_{5}. The other point P_{1} in ρ and on V determines a line p_{1} in X. The line p_{1} cannot intersect the plane σ for then P_{1}, P_{2}, and P_{3} would all be in a five-space Σ determined by the lines of a three-space in X and ρ would be a Σ-plane. Hence, A_{1} and A_{2} may be selected on p_{1}, and ρ takes the form 19.

Let ρ be a plane, not a Σ-plane, intersecting V in one line $P_{2} P_{3}$ only, and let P_{1} be a point of ρ not on V. There is no more than one Σ-line in ρ on P_{1}; hence there is no more than one line through P_{1} tangent to V. Therefore, ρ is in no more than one of the spaces tangent to V at points of $P_{2} P_{3}$.

Suppose ρ is tangent to V at the point P_{2}. Then since any tangent is conjugate to any other, we may take $P_{1} P_{2}$ to be

$$
k, 0,0,0, l, 0,0, k, 0,0
$$

The points of the line $P_{2} P_{3}$ image the lines of a pencil in a plane σ in $X . \quad P_{1}$ determines the three-space R_{1} in $X ; R_{1}$ does not contain σ and hence intersects it in the line $p_{2} . \quad p_{3}$ is a line in σ and intersects R_{1} only at its intersection with p_{2}. We wish to show that this intersection can be taken to be
A_{3}. The line p_{2} is $\left\{\begin{array}{l}0,1,0,0,0 \\ 0,0,1,0,0\end{array}\right.$. The point P_{1} is on $Q_{1} Q_{1}^{\prime}$ where

$$
Q_{1}=1,0,0,0,0,0,0,0,0,0 \quad \text { and } \quad Q_{1}^{\prime}=0,0,0,0,0,0,0,1,0,0
$$

If we take a new $q_{1}^{\prime}=\left\{\begin{array}{l}0, a, b, 0,0 \\ 0,0,0,1,0\end{array}\right.$, we have

$$
Q_{1}^{\prime}=0,0,0,0,0, a, 0, b, 0,0 \quad \text { and } Q_{1}=b, 0,0,0,0,-a, 0,0,0,0
$$

Hence, Q_{1}^{\prime} and Q_{1} can be selected so that $P_{1} P_{2}$ is in the above form and so that p_{3} passes through $A_{3}=0,0,1,0,0$, the intersection of p_{2} and q_{1}^{\prime}. Then A_{5} may be taken on p_{3}, not in $R_{1} . \rho$ is then in the form $20 ; \rho$ is tangent to V at P_{2}.

Now suppose ρ intersects V in a line and is not tangent to V at any point
of the line. Let P_{1} be a point of ρ not on V; let $P_{2} P_{3}$ be the ruling of V; let σ and R_{1} be as above. The intersection q of R_{1} and σ does not pass through the vertex of the pencil $p_{2} p_{3}$ for then ρ would be in the space tangent to V at a point of $P_{2} P_{3}$. Hence, q intersects p_{2} and p_{3} at distinct points. The point Q, on V, may or may not be such that $Q P_{1}$ is a tangent to V. If it is not, then $Q P_{1}$ meets V in a point Q^{\prime}. By selecting A_{1} and A_{2} on q^{\prime}, A_{3} on p_{2} and q, A_{4} on p_{3} and q, and A_{5} on p_{2} and p_{3}, we have the canonical form 22 . This plane is not a τ-plane.

If Q above is on the polar of P_{1}, a coordinate system in R_{1} can be selected so that

$$
P_{1}=1,0,0,0,0,0,0,1,0,0 \quad \text { and } \quad Q=0,0,0,0,1,0,0,0,0,0
$$

The line common to σ and R_{1} is $A_{2} A_{3} . A_{5}$ can be taken at the vertex of the pencil $p_{2} p_{3}$, which is not in R_{1}. The plane ρ is then plane 21 which is in the space tangent to V at Q. This completes the determination of the types of plane in S.

4. Some collineations of S leaving certain planes unchanged in form

In the determination of the types of plane in S it was necessary to obtain more information about lines than was required to determine the types of line. Likewise, in the determination of types of three-space it will be necessary to have more information about certain of the types of plane. A threespace with certain relations to V can often readily be seen to contain a plane of a certain type. Knowing that a plane of a given type is present, we know that a coordinate system can be selected to exhibit it in a particular form. Usually that can be done in many ways. That it could be done at all was enough to fix a canonical form for the type, but to determine a canonical form for the three-space that will give the plane the canonical form for its type generally will require a special selection of the frame of reference in the plane. It may thus become necessary to know all possible selections of the coordinate system to present a given plane in canonical form. The collineations that were found necessary in classifying the three-spaces are collected in this section.
(i) The plane $k, l, 0,0,0,0, l, k, 0, m$. This plane intersects V in the point $P_{3}: k=l=0$ only; it is not a τ-plane and contains no Σ-line. We ask how much is the freedom of choice of P_{1} and P_{2} if the form is to remain unchanged.

We note first that the lines $P_{1} P_{3}$ and $P_{2} P_{3}$ are completely determined by the plane's relation to V. Let $P=(k, l, m)$ be any point of the plane. For P we have the following:

$$
B_{1}=k^{2}, \quad B_{2}=-l^{2}, \quad B_{3}=k m, \quad B_{4}=l m, \quad B_{5}=k l
$$

The three-space R in X determined by P is $k l x_{1}-l m x_{2}+k m x_{3}+l^{2} x_{4}+$ $k^{2} x_{5}=0$. If k, l, m are given, this defines R. If $x_{1}, x_{2}, \cdots, x_{5}$ are given,
this defines a conic in the plane. The point P_{3}, being on V, is the image of a line in X, namely, the line $\left\{\begin{array}{l}0,0,0,1,0 \\ 0,0,0,0,1\end{array}\right.$.

This pencil of points in X, which has a special relation to the plane, determines a pencil of conics in the plane, namely, $k^{2}+\lambda l^{2}=0$. The pencil of conics contains the two degenerate parabolas $k^{2}=0$ and $l^{2}=0$, given by $\lambda=0$ and $\lambda=\infty$, respectively. Hence, the lines $k=0$ and $l=0$ are special lines in the plane. If the plane is to have the given form, P_{1} and P_{2} must be selected on these lines.

If P_{1} and P_{2} are left fixed, the coordinate system can be changed, still leaving the coordinates of P_{1} and P_{2} unchanged. Transformations T_{1} and T_{2} do this. Neither T_{1} nor T_{2} leaves P_{3} unchanged. Hence, if we wish the plane to retain the above form, choice of P_{1} and P_{2}, necessarily on the special lines, determines the coordinate system excepting that there is left some freedom in the choice of the unit point.

We give the transformation resulting from the choices $P_{1}^{\prime}=P_{1}+a P_{3}$ and $P_{2}^{\prime}=P_{2}+b P_{3}$.

$$
T_{4}=\left[\begin{array}{cccccccccc}
1 & 0 & -b & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-b & -a & b^{2} & -a^{2} & 1 & 0 & a & b & 0 & -a b \\
0 & 0 & -a & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -a & 0 & 0 & 1 & 0 & 0 & -b \\
0 & 0 & b & 0 & 0 & 0 & 0 & 1 & 0 & -a \\
0 & 0 & 0 & b & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(ii) The plane $k, k, 0,0,0,0, l, m, 0,0$. This is one form of the plane with three points on V. A transformation which leaves every point of the plane fixed is

$$
T_{5}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -a & 0 & 0 & 0 & 0 & 0 \\
0 & -b & 1 & 0 & a b & -a & 0 & -a & 0 & 0 \\
-c & 0 & 0 & 1 & -a c & 0 & -a & 0 & -a & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -b & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & c & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -b c & c & 0 & 0 & -b & 1
\end{array}\right] .
$$

(iii) The plane $k, l, 0,0,0,0, l, m, 0,0$. This is a form of plane 16 ; it is useful in dealing with three-spaces with two points on V. A transformation
which leaves every point of the plane fixed is

$$
T_{6}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -a & 0 & 0 & 0 & 0 & 0 \\
0 & -b & 1 & 0 & a b & -a & 0 & 0 & 0 & 0 \\
-c & a & 0 & 1 & -a^{2} & 0 & -a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -b & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & c & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -b c & c & 0 & -a & -b & 1
\end{array}\right] .
$$

The points P_{1} and P_{3} are obviously special points in the plane, being on V; the line $P_{1} P_{2}$ is special, being tangent to V at P_{1}. A transformation of the plane into itself which keeps the form could only move P_{2} along the line $P_{1} P_{2}$. Such is

$$
T_{7}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & b & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & b & 1 & 0 & 0 & 0 & 0 \\
c & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & c & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & b c & c & 0 & 0 & 0 & 0 & 0 & b & 1
\end{array}\right] .
$$

(iv) The plane $k, l, m, 0,0,0, l, k, 0,0$. The line $P_{1} P_{3}$ is tangent to V at P_{3}. If the form of the plane is to remain unchanged, P_{1} must remain on that line. We note that T_{3} leaves P_{3} unchanged, and hence P_{2} may be moved along the line $P_{1} P_{2}$. Then if we combine T_{3} with a transformation which moves P_{1} along $P_{1} P_{3}$ and leaves P_{2} fixed, we will have a transformation which leaves the plane in canonical form with $P_{1} P_{2}$ any line not on P_{3}, and P_{2} any point, except P_{1}, on that line. Even then we can change the coordinate system by applying T_{1} with $a=0$. The following transformation moves P_{1} to $P_{1}^{\prime}=P_{1}+a P_{3}$ and P_{2} to $P_{2}^{\prime}=P_{2}+b P_{3}$.

$$
T_{8}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & 1 & -b & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -a & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -a & 0 & 0 & 0 & 0 & 1 & -b \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(v) The plane $k, l, 0,0,0,0,0,0,0, m$. This is a plane with a ruling and an additional point on V; it is not tangent to V at any point of the intersection. The line of V represents a pencil of lines in X with vertex at A_{1}; the pencil lies in the plane $A_{1} A_{2} A_{3}$; the other point on V is the image of the line $A_{4} A_{5}$ in X. If the form of the plane is left unchanged, the point A_{1}, the plane $A_{1} A_{2} A_{3}$, and the line $A_{4} A_{5}$ must be left unchanged. The most general transformation in X is

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
a & 1 & b & 0 & 0 \\
c & d & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & e \\
0 & 0 & 0 & f & 1
\end{array}\right] .
$$

The corresponding transformation in S is

$$
T_{9}=\left[\begin{array}{cccccccccc}
1 & b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
d & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & e & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & f & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
a d-c & a-b c & 0 & 0 & 1-b d & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & a e & 0 & 1 & e & b & b e & 0 \\
0 & 0 & a f & a & 0 & f & 1 & b f & b & 0 \\
0 & 0 & c & c e & 0 & d & d e & 1 & e & 0 \\
0 & 0 & c f & c & 0 & d f & d & f & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1-e f
\end{array}\right] .
$$

(vi) The plane $k, l, 0,0,0, m, l, k, 0,0$. The line $P_{1} P_{3}$ is tangent to V at $P_{3} ; P_{2}$ is an arbitrary point not on $P_{1} P_{3}$. Transformations T_{2} and T_{3} leave the form of the plane unchanged, and T_{1} with $a=0$ does also. The following transformation moves P_{1} and P_{2} along the lines $P_{1} P_{3}$ and $P_{2} P_{3}$.

$$
T_{10}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-a & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -b & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & 0 & -b & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -a & 0 & 1 & 0 & 0 \\
-a^{2} & a & 0 & 0 & 0 & a b & -a & -b & 1 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(vii) The plane $k, l, 0,0,0, m, l+m, k, 0,0$. This is a τ-plane with P_{3} on $V ; l+m=0$ is a Σ-line; there is no line tangent to V. The following transformation moves P_{1} along the Σ-line.
$T_{11}=\left[\begin{array}{cccccccccc}d & 0 & 0 & 0 & -a d & 0 & 0 & 0 & 0 & 0 \\ 0 & d & 0 & 0 & 0 & 0 & -a d & 0 & 0 & 0 \\ 0 & 0 & d & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d & 0 & 0 & 0 & 0 & 0 & a d \\ 0 & 0 & 0 & 0 & d^{2} & 0 & 0 & 0 & 0 & 0 \\ a d & 0 & 0 & 0 & 0 & d & 0 & 0 & 0 & 0 \\ -a d & 0 & 0 & 0 & 0 & a^{2} d & d^{2} & 0 & 0 & 0 \\ 0 & a d & 0 & 0 & 0 & 0 & 0 & d & 0 & 0 \\ 0 & -a d & 0 & 0 & 0 & 0 & 0 & a^{2} d & d & 0 \\ 0 & 0 & -a d & -a d & 0 & 0 & 0 & 0 & 0 & d\end{array}\right],\left(d=1+a^{2}\right)$.
We shall have use for another transformation, which leaves P_{1} fixed but moves P_{2} along $P_{2} P_{3}$.

$$
T_{12}=\left[\begin{array}{cccccccccc}
d & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & d & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & d & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -b & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & d & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & d & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -b & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & d & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -b & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad(d=b+1)
$$

(viii) The plane $k, l, m, 0,-r m, 0, l, k, 0,0$. This plane has no point on V; it contains the Σ-line $P_{1} P_{3}$. If the form of the plane is to remain unchanged, P_{1} and P_{3} must remain on the Σ-line. P_{3} is determined by P_{1}, since they are conjugates with respect to the hyperquadric in which Σ intersects V. The transformation T_{3}, which moves P_{2} along the line $P_{1} P_{2}$, leaves P_{1} and P_{3} unchanged; T_{1} with $a=0$ also leaves P_{3} unchanged. We give a transformation which moves P_{1} along $P_{1} P_{3}$ and leaves P_{2} fixed. This with T_{3} will allow us to select any line in the plane, except $P_{1} P_{3}$, for $P_{1} P_{2}$. If $P_{1}^{\prime}=$ $P_{1}+a P_{3}$, then $P_{3}^{\prime}=-a P_{1}+P_{3}$.

$$
T_{13}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & -a & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & a & 0 \\
a & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -a & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -a & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(ix) The plane $k, l, 0,0,0, m, l, k+\alpha m, m, 0$. This is a τ-plane, with no point on V if $x^{3}+\alpha x-1$ is irreducible. In determining the canonical form it was necessary to move P_{2} along $P_{1} P_{2}$, to interchange P_{1} and P_{2}, and to change the unit point; it was not necessary to change the line $P_{1} P_{2}$. This is a τ-plane, and it contains no Σ-line; any line in it can be taken for $P_{1} P_{2}$. The point P_{3} is determined by $P_{1} P_{2}$. There is only one point on a given line that can serve for P_{1} and give the canonical cubic, because the group of transformations of the line into itself is exactly the group of linear fractional transformations of x. In order to show that P_{1} may be taken to be any point in the plane, it is necessary only to show that a change of the line $P_{1} P_{2}$ in the pencil on P_{1}, leaving P_{1} fixed, changes the polynomial in x. For, since every line has a P_{1} and no point is the P_{1} of more than one line, every point must be the P_{1} of some line. The following transformation has $P_{1}^{\prime}=P_{1}$ and $P_{2}^{\prime}=$ $a P_{2}+P_{3}$.

\[

\]

This transforms the point P_{2} into

$$
-a, \alpha+a^{2}, 0,0,0,-a^{3}-(\alpha a-1)^{2}, a^{2}, a-\alpha(\alpha a-1),-1,0
$$

The point P_{3}^{\prime} is

$$
0,0,0,0,0, a^{3}+(\alpha a-1)^{2}, \alpha,-2 a+a(\alpha a-1), 1,0
$$

The corresponding cubic is

$$
x^{3}-\alpha x^{2}+a(\alpha a-3) x-\left[a^{3}+(\alpha a-1)^{2}\right]=0
$$

Since this cannot be transformed into $x^{3}+\alpha x-1=0$ by a change that leaves $P_{1} P_{2}$ and also the point P_{1} fixed, it follows that P_{1} may be taken to be any point in the plane, and then P_{2} and P_{3} may be determined so that the plane has the above canonical form.
(x) The plane $k, l, 0,0,0, m, 0,0,0,0$. This is a Σ-plane in the five-space determined by the lines in $R: x_{5}=0$; it intersects V in the two lines $l=0$ and $m=0$. The two lines on V determine two pencils of lines in R; the planes of the pencils in R intersect in a line which belongs to both pencils. To obtain the above form, A_{1} and A_{2} are selected at the vertices of the two pencils,
A_{3} in the plane of the pencil with vertex at A_{1}, and A_{4} in the plane of the other. A_{3} may be moved about its plane, and likewise A_{4}, and also A_{5} may be selected anywhere outside of R without affecting the form of the plane. These changes are made by

$$
\begin{gathered}
T_{15}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-b & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-d & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
b g+d h-f & -g & -h & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
c & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
-a g-c h+e & 0 & 0 & 0 & -g & -h & 1 & 0 & 0 & 0 \\
a d-b c & c & -a & 0 & d & -b & 0 & 1 & 0 & 0 \\
\delta_{1} & e-c h & a h & -a & f-d h & b h & -b & -h & 1 & 0 \\
\delta_{2} & c g & e-a g & -c & d g & f-b g & -a & g & 0 & 1
\end{array}\right], \\
\delta_{1}=a f-a d h+b c h-b e,
\end{gathered}
$$

(xi) The plane $k, l, m,-m, 0,0, l, k, 0,0$. This plane contains P_{3} on V; it contains no special line; any line not on P_{3} can be taken for $P_{1} P_{2}$. We give a transformation which moves P_{1} and P_{2} along the lines $P_{1} P_{3}$ and $P_{2} P_{3}$ respectively.

$$
T_{16}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & b & -b^{2} & a^{2} & 1 & -b & 0 & 0 & -a & a b \\
0 & 0 & b & 0 & 0 & 1 & 0 & 0 & 0 & -a \\
0 & 0 & 0 & b & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -a & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -a & 0 & 0 & 0 & 0 & 1 & -b \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(xii) The plane $k, l, 0,0, m, 0, l, k, 0, m$. This plane involves the most complex considerations of all because it has no points or lines that are obviously special, and there is no point on V specially related to it as, for example, in the case of a τ-plane. Yet its relation to V does determine a special locus in the plane.

For any point $P=(k, l, m)$ in the plane we have

$$
B_{1}=k^{2}, \quad B_{2}=-l^{2}, \quad B_{3}=k m, \quad B_{4}=l m, \quad B_{5}=m^{2}+k l .
$$

Setting the B 's equal to zero gives five conics in the plane. These conics are linearly independent and determine a unique conic apolar to them. This absolute conic is $C: m^{2}-2 k l=0 . \quad C$ depends only on the plane; it does not depend on the coordinate system, for a change of coordinates would change the conics among conics of the linear set, and C is apolar to all of them. The points P_{1} and P_{2} are on C, and P_{3} is the pole of the line $P_{1} P_{2}$ with respect to
C. We shall show that P_{1} and P_{2} can be taken to be any two points of C, and then if P_{3} is taken to be the pole of $P_{1} P_{2}$, a coordinate system can be selected so that the plane is in the canonical form.

We look for the relations of P_{1}, P_{2}, and P_{3} to V which characterize the canonical form.

$$
\begin{gathered}
P_{1}=1,0,0,0,0,0,0,1,0,0, \quad P_{2}=0,1,0,0,0,0,1,0,0,0 \\
P_{3}=0,0,0,0,1,0,0,0,0,1
\end{gathered}
$$

$P_{1} P_{2}$ is in the space tangent to V at

$$
M=0,0,0,0,1,0,0,0,0,0 .
$$

The point P_{3} is on the line joining M to a second point on V,

$$
Q_{3}^{\prime}=0,0,0,0,0,0,0,0,0,1 .
$$

P_{1} is on the line joining two points of V :

$$
Q_{1}=1,0,0,0,0,0,0,0,0,0 \quad \text { and } Q_{1}^{\prime}=0,0,0,0,0,0,0,1,0,0
$$

P_{2} is on the line joining

$$
Q_{2}=0,1,0,0,0,0,0,0,0,0 \quad \text { and } \quad Q_{2}^{\prime}=0,0,0,0,0,0,1,0,0,0
$$

Corresponding to points $Q_{1}, Q_{1}^{\prime}, Q_{2}, Q_{2}^{\prime}, M, Q_{3}^{\prime}$ on V are lines $q_{1}, q_{1}^{\prime}, q_{2}$ $q_{2}^{\prime}, m, q_{3}^{\prime}$ in X. These lines have incidences which have been described earlier (Section 2) for the first five. The sixth line q_{3}^{\prime} intersects q_{1}^{\prime} and q_{2}^{\prime}. These relations make it possible to select the frame of reference in X to give the canonical form.

We now prove that P_{3} is the only point in the plane, not on $P_{1} P_{2}$, such that the line joining it to M has a second point on V. The points of the line joining M to an arbitrary point of the plane are

$$
k r, l r, 0,0, m r+1,0, l r, k r, 0, m r \quad(r=0,1, \cdots, p-1, \infty)
$$

Conditions that this point be on V are $B_{1}=k^{2} r^{2}=0, \quad B_{2}=l^{2} r^{2}=0$, $B_{3}=k m r^{2}=0, \quad B_{4}=l m r^{2}=0, \quad B_{5}=\left(m^{2}+k l\right) r^{2}+m r=0 . \quad$ If $m=0$, these equations are all quadratic with a double root zero (where they are not identically zero) corresponding to the fact that a line joining M to a point of $P_{1} P_{2}$ is a tangent to V. If $m \neq 0$, the last equation has a term of the first degree in r; hence the others must be identically zero, and hence $k=l=0$. Therefore, there will be a second point of V on the line only if $(k, l, m)=$ ($0,0,1$).

Any line in the plane is $a k+b l-c m=0$. This line is in the space tangent to V at the point ${ }^{9}$
$M^{\prime}=b c^{2}, a c^{2}, b^{2} c,-a^{2} c,\left(2 a b+c^{2}\right) c, b^{3},-a\left(a b+c^{2}\right),-b\left(a b+c^{2}\right), a^{3},-a b c$.

[^5]Conditions on $P=(k, l, m)$ derived from requiring $M^{\prime}+r P$ to be on V for some r give $P=(b, a, c)$. This is a necessary condition on P_{3} and the line $P_{1} P_{2}$ if the plane is to have the canonical form. A further condition is that $P_{1} P_{2}$ must cut C in two points, i.e., $c^{2}-2 a b$ must be a square, not zero.

Conversely, if $c^{2}-2 a b$ is a square, not zero, and P_{1} and P_{2} are intersections of $a k+b l-c m=0$ with $m^{2}-2 k l=0$, then $Q_{1}, Q_{1}^{\prime}, Q_{2}, Q_{2}^{\prime}$ can be determined so that P_{1}, P_{2}, P_{3} have the required coordinates. If P_{3} is moved along the line $P_{1} P_{3}$, which is tangent to C at P_{1}, and P_{2} is moved along C to the polar of the new P_{3}, and if then a coordinate system exists such that P_{1}, P_{2}, P_{3} have the above form, it will follow that P_{3} may be taken to be any point of the plane outside C; the result comes from the fact that P_{1} and P_{2} enter symmetrically in relation to P_{3}, to C, and also in relation to the frame of reference in X.

We give the transformation which leaves P_{1} fixed, moves P_{3} to $P_{1}+c P_{3}$, $c \neq 0$, and moves P_{2} along C.

$$
T_{17}=\left[\begin{array}{cccccccccc}
5 c^{5} & 0 & 6 c^{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 c^{3} & 6 c^{3} & 6 c^{3} & 0 & 2 c^{3} & 4 c^{3} & 0 & 3 c^{3} & 0 & 0 \\
0 & 0 & c^{6} & 0 & 0 & 5 c^{6} & 0 & 0 & 0 & 0 \\
3 c^{2} & 5 c^{2} & 4 c^{2} & 2 c^{2} & 4 c^{2} & 4 c^{2} & 3 c^{2} & 6 c^{2} & 0 & 6 c^{2} \\
2 c^{4} & 0 & c^{4} & 0 & 4 c^{4} & 4 c^{4} & 0 & 5 c^{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 3 c^{7} & 0 & 0 & 0 & 0 \\
2 c^{3} & 0 & c^{3} & 0 & c^{3} & 3 c^{3} & 6 c^{3} & 3 c^{3} & 0 & 3 c^{3} \\
0 & 0 & c^{5} & 0 & 0 & 6 c^{5} & 0 & 5 c^{5} & 0 & 0 \\
6 c & 6 c & 5 c & 2 c & 6 c & 3 c & 5 c & 5 c & 3 c & 2 c \\
0 & 0 & 6 c^{4} & 0 & 0 & 3 c^{4} & 0 & 4 c^{4} & 0 & 4 c^{4}
\end{array}\right] \quad \text { (for } p=7 \text {). }
$$

It may be verified that T_{17} puts

$$
\begin{array}{r}
1,0,0,0,0,0,0,1,0,0 \text { into } 1,0,0,0,0,0,0,1,0,0 \\
1,2 c^{2}, 0,0,2 c, 0,2 c^{2}, 1,0,2 c \text { into } 0,1,0,0,0,0,1,0,0,0 \\
1,0,0,0, c, 0,0,1,0, c \text { into } 0,0,0,0,1,0,0,0,0,1 .
\end{array}
$$

5. Three-spaces which intersect V in at least one point

(i) Introduction. The three-spaces most easily dealt with are those having large intersections with V; one of the two three-spaces with no point on V requires more work than all the others, and for this reason the two are separated from them.

There is one three-space S_{3} which will not be included in our list because it leads to a group that has been excluded. This S_{3} lies wholly on V. Since every pair of points in S_{3} is the image of a pair of intersecting lines in X, all of these lines must pass through a point. If this point is taken to be A_{1}, then $A_{2}, A_{3}, A_{4}, A_{5}$ may be selected arbitrarily, except that all five A 's must be linearly independent, and then S_{3} will be $k, l, m, n, 0,0,0,0,0,0$. The group of order p^{11} defined by this three-space is given by the additional relations:
$s_{1}=s_{2}=s_{3}=s_{4}=1$; it is the direct product of the metabelian group $\left\{U_{2}, U_{3}, U_{4}, U_{5}\right\}$ of order p^{10} and the cyclic group $\left\{U_{1}\right\}$.
(ii) Three-spaces containing a Σ-plane cutting V in a nondegenerate conic.

1. $k, 0, m, 0, n, 0,0, l, 0,0$, the ruled quadric $k l+m n=0$ on V.
2. $k, l, m, 0, n,-l, 0, k, 0,0$, the quadric $k^{2}+l^{2}+m n=0$ on V.
3. $k, l, n, 0,0, l, 0, m, 0,0$, the cone $k m-l^{2}=0$ on V.
4. $n, n, 0,0, k, m, 0,0, m, l$, the conic $k l-m^{2}=0, n=0$ and the line $l=m=0$ on V.
5. $k, l+n, m, 0, n, n, l, k+n, 0,0$, the conic $k^{2}+k n-n^{2}+m n=0$, $l=0$, and the point $1,1,0,-1$ on V.
6. $n, 0,0,0, k, m, 0, n, m, l$, the conic $k l-m^{2}=0, n=0$ on V.

If the intersection of S_{3} and V contains a nondegenerate conic, the plane of the conic will be a Σ-plane. Hence, the spaces in this set all contain Σ planes at least; the first three are actually Σ-three-spaces, in the Σ determined by the lines of the three-space $x_{5}=0$ in X.

If S_{3} lies in a Σ, the intersection of V and Σ cuts it in a quadric; if the quadric is degenerate, it can be at worst a cone with a single vertex, since we insist that some plane of S_{3} intersect V in a nondegenerate conic. Suppose the quadric is not degenerate and that it has rulings. Let P_{1} be an arbitrary point of the quadric; let P_{2} and P_{3} be arbitrary points, one on each of the rulings through P_{1}; and let P_{4} be the intersection of two other rulings, one through P_{2} and the other through P_{3}. Corresponding to these four points of V are four lines $p_{1}, p_{2}, p_{3}, p_{4}$ in $X . \quad p_{1}$ intersects p_{2} and p_{3} and does not intersect $p_{4} . p_{4}$ intersects p_{2} and p_{3}, and p_{2} does not intersect $p_{3} . p_{1}, p_{2}$, and p_{3} determine a three-space, and p_{4} lies in it; this three-space determines in S the Σ in which S_{3} lies. We select a frame of reference in X as follows: A_{1} is on p_{1} and p_{2}; A_{2} is on p_{1} and $p_{3} ; A_{3}$ is on p_{2} and $p_{4} ; A_{4}$ is on p_{3} and $p_{4} ; A_{5}$ is anywhere outside the three-space already determined. Then S_{3} will have the form 1.

Let S_{3} intersect V in a nondegenerate quadric which has no rulings. S_{3} contains a plane which cuts the quadric in a nondegenerate conic; this plane is a Σ-plane. Let P be a point of this plane not on V; a line joining P to a point of the quadric not in the plane cuts V twice or else is a tangent, and hence the line is a Σ-line. The quadric and S_{3} are thus seen to be in a Σ. A coordinate system can be selected so that the plane of the conic is

$$
k, 0, m, 0, n, 0,0, k, 0,0
$$

The three-space in X determined by a point of the plane is $x_{5}=0$. Hence, S_{3} is in the five-space $a_{4}=a_{7}=a_{9}=a_{10}=0$. Any point of S_{3} is

$$
a_{1}, a_{2}, a_{3}, 0, a_{5}, a_{6}, 0, a_{8}, 0,0
$$

S_{3} contains a point $P_{2}^{\prime}=0, a_{2}, 0,0,0, a_{6}, 0, a_{8}, 0,0$. The polar spaces of $P_{3}=0,0,1,0$ and $P_{4}=0,0,0,1$ with respect to V are respectively $a_{5}=$ $a_{7}=a_{9}=0$ and $a_{3}=a_{4}=a_{10}=0$. Both contain P_{1} and $P_{2}^{\prime} . \quad P_{1}$ is not on
V, and hence the line $P_{1} P_{2}^{\prime}$ contains a point P_{2} conjugate to P_{1} with respect to V. For this point we have $a_{1}+a_{8}=0$, and hence

$$
P_{2}=a_{1}, a_{2}, 0,0,0, a_{6}, 0,-a_{1}, 0,0
$$

A change of coordinates:

$$
A_{1}^{\prime}=a_{2} A_{1}+a_{1} A_{4}, \quad A_{4}^{\prime}=a_{2} A_{1}-a_{6} A_{4}, \quad A_{i}^{\prime}=A_{i}, \quad i \neq 1,4
$$

and a proper choice of the unit point gives $P_{2}=0,1,0,0,0, r, 0,0,0,0, r$ not a square. This is space 2.

Let S_{3} intersect V in a cone, and let the vertex of the cone be P_{4}. Every point of S_{3} is in the space tangent to V at P_{4}. Let ρ be a plane which cuts the cone in a conic C. Let P_{1} and P_{2} be points of C, and let P_{3} be the pole of $P_{1} P_{2}$ with respect to C. Then p_{1} and p_{2} are two skew lines in X, and p_{4} intersects both of them. If A_{1} is the intersection of p_{1} and p_{4}, A_{4} the intersection of p_{2} and p_{4}, A_{2} an arbitrary point not A_{1} on p_{1}, and A_{3} an arbitrary point not A_{4} on p_{2}, we have

$$
\begin{gathered}
P_{1}=1,0,0,0,0,0,0,0,0,0, \quad P_{2}=0,0,0,0,0,0,0,1,0,0 \\
P_{4}=0,0,1,0,0,0,0,0,0,0
\end{gathered}
$$

The three-space containing p_{1} and p_{2} is $x_{5}=0$. Consequently,

$$
P_{3}=a_{1}, a_{2}, a_{3}, 0, a_{5}, a_{6}, 0, a_{8}, 0,0
$$

Since P_{3} is in the space tangent to V at $P_{4}, a_{5}=0$. Since $P_{1} P_{3}$ is tangent to V at $P_{1}, a_{8}=0$; and since $P_{2} P_{3}$ is tangent to V at $P_{2}, a_{1}=0$. By rotating the plane of C on $P_{1} P_{2}$ we may move P_{3} to the point $0, a_{2}, 0,0,0, a_{6}, 0,0,0,0$, and then by a choice of the unit point we may make $a_{2}=a_{6}=1$. This gives 3.

Whenever S_{3} lies in a five-space Σ, S_{3} will intersect V in a quadric. We have taken care of all such S_{3} 's except such as contain a plane of V. It has seemed desirable to consider S_{3} 's with planes on V separately. The remaining spaces under the present heading all intersect at least one Σ in a plane. S_{3} cannot contain a second Σ-plane, for the intersection of the two planes would contain points not on V and S_{3} would lie in the Σ determined by such a point.

Suppose S_{3} contains two points on V besides the points of the conic. Neither of the two points can be in the plane of the conic, since no Σ-plane intersects V in a conic and an additional point. Denote the line on the two points by $L . \quad L$ intersects the plane of the conic in a point which must be on the conic, for otherwise S_{3} would be in the Σ determined by that point. L then has three points on V and hence lies wholly on V. If P_{4} is taken to be a point on L not on the conic, P_{2} as the point on L and the conic, P_{3} on the conic, and P_{1} the pole of $P_{2} P_{3}$ with respect to the conic, coordinates can be chosen so that we have 4.

Suppose next that S_{3} contains a conic C and an additional point P_{4} on V, but contains no ruling of V. Coordinates can be selected so that the plane of C is $k, 0, l, 0, m, 0,0, k, 0,0$. The equation of C is $k^{2}+l m=0$. The points of C are $k l, 0, l^{2}, 0,-k^{2}, 0,0, k l, 0,0$. The lines of X imaged on these points are $\left\{\begin{array}{l}l, 0, k, 0,0 \\ 0, k, 0, l, 0\end{array}\right.$. These lines are rulings of one set of the quadric $x_{1} x_{2}-x_{3} x_{4}=0, x_{5}=0$. Any point of the plane of C, not on C, determines the three-space $R: x_{5}=0$, which contains the above quadric. P_{4} is not in R, but it intersects R in a point. The point of intersection cannot be on the quadric, since S_{3} contains no ruling of V. We may take A_{5} to be on p_{4}, and the intersection of p_{4} and R to be $a_{4}, a_{7}, a_{9}, a_{10}, 0$; since this point is not on the quadric, $a_{4} a_{7}-a_{9} a_{10} \neq 0 . P_{4}=0,0,0, a_{4}, 0,0, a_{7}, 0, a_{9}, a_{10}$. We show that S_{3} cannot be in the space tangent to V at any of its points. If $B=b_{1}, b_{2}, \cdots, b_{10}$ is a point of V such that the plane $n=0$ of S_{3} is in the tangent space at B, it is easily seen that $B=b_{1}, b_{2}, 0,0,0, b_{6}, 0,-b_{1}, 0,0$. The requirement that P_{4} be in the tangent space at B gives $a_{4} a_{7}-a_{9} a_{10}=0$, which is not so. We determine a canonical form for S_{3}. Let K be the point in which p_{4} intersects R. Through K take a line t in R which intersects the quadric in two points; these points will lie on two distinct rulings of the quadric which are imaged on V on two points of C; let these two points be P_{2} and P_{3}. Denote the pole of $P_{2} P_{3}$ with respect to C by P_{1}. The polar space of P_{1} with respect to V does not contain the point T, which is the image on V of the line t in X, for otherwise S_{3} would lie in the space tangent to V at T. Hence, the line joining P_{1} to T intersects V again at a point which we denote by Q_{1}^{\prime}. The line q_{1}^{\prime} in X intersects both p_{2} and p_{3}, since P_{1} and T are both in the tangent spaces at P_{2} and P_{3}. The lines $p_{2}, p_{3}, t, q_{1}^{\prime}$, and p_{4} in X are related as follows: t and q_{1}^{\prime} are skew and intersect both p_{2} and $p_{3} ; t$ also intersects p_{4}, which is not in the space of p_{2} and p_{3}. Denote the intersections of t with p_{2} and p_{3} by A_{1} and A_{2} respectively, and the intersections of q_{1}^{\prime} with p_{2} and p_{3} by A_{4} and A_{3}; select the unit point in R so that K is $1,1,0,0,0$, and select A_{5} on p_{4}. Then S_{3} takes the form 5 .

Suppose S_{3} intersects V in the conic C and in no other point. Any point of the plane ρ of the conic, not on V, determines the three-space R and the five-space Σ. Let R be $x_{1}=0$. If P_{1} and P_{2} are chosen on C and P_{3} is the pole of $P_{1} P_{2}$ with respect to C, a frame of reference in X can be chosen with A_{1} arbitrary, not in R, so that ρ is $0,0,0,0, k, m, 0,0, m, l$. There is a point in S_{3}, not on ρ, with coordinates $a_{1}, a_{2}, a_{3}, a_{4}, 0, a_{6}, a_{7}, a_{8}, 0,0$. If A_{1} is replaced by $A_{1}^{\prime}=1, a, b, c, d$ and the other A 's are left unchanged, this point has new coordinates $a_{1}^{\prime}, \cdots, a_{10}^{\prime}$. The numbers a, b, c, d can be selected so that $a_{6}^{\prime}=a_{9}^{\prime}$ and $a_{7}^{\prime}=0 . \quad S_{3}$ contains a point

$$
P_{4}=a_{1}, a_{2}, a_{3}, a_{4}, 0,0,0, a_{8}, 0,0
$$

(dropping the accents). Since P_{4} is not on $V, a_{8} \neq 0$, and not both a_{1} and a_{4} are zero. Any point in S_{3} is

$$
P=a_{1} n, a_{2} n, a_{3} n, a_{4} n, k, m, 0, a_{8} n, m, l .
$$

For P we have

$$
\begin{aligned}
& B_{1}=a_{3} k n-a_{2} m n+a_{1} a_{8} n^{2} \\
& B_{2}=a_{4} k n+a_{1} m n \\
& B_{3}=a_{1} l n+a_{4} m n \\
& B_{4}=a_{2} l n-a_{3} m n+a_{4} a_{8} n^{2} \\
& B_{5}=k l-m^{2}
\end{aligned}
$$

The conditions that P be on V are (1) $n=0, k l-m^{2}=0$, which gives C, or (2) $n \neq 0$,

$$
\begin{aligned}
a_{3} k-a_{2} m+a_{1} a_{8} n & =0 \\
a_{4} k & =0 \\
a_{1} l+a_{4} m & =0 \\
a_{2} l-a_{3} m+a_{4} a_{8} n & =0 .
\end{aligned}
$$

The last three equations have a solution k, l, m, n not all zeros. $n \neq 0$ requires either $a_{1} a_{3}+a_{2} a_{4} \neq 0$ or $a_{4}=0$. Suppose $a_{1} a_{3}+a_{2} a_{4} \neq 0, a_{4}=0$; then $k, l, m, n=a_{1} a_{8}, 0,0,-a_{3}$, and $a_{3} \neq 0$. This is a solution of the four equations, and hence gives a point on V not on C. This is not possible with this S_{3}. Suppose $a_{1} a_{3}+a_{2} a_{4} \neq 0, a_{4} \neq 0$. Then if $a_{1} \neq 0$, the solution of the last three equations is $a_{1}, a_{4}^{2} / a_{1},-a_{4},-\left(a_{1} a_{3}+a_{2} a_{4}\right) / a_{1} a_{8}$ which also satisfies the first equation. If $a_{1}=0$, the solution of the last three has $n \neq 0$ and satisfies the first, and hence is not suitable. Then suppose $a_{1} a_{3}+a_{2} a_{4}=0$, $a_{4}=0$. Since P_{4} is not on $V, a_{1} \neq 0$ and hence $a_{3}=0$. A solution of the last three equations is $k, 0,0,1, k$ arbitrary, and this does not satisfy the first. Hence in this case

$$
P_{4}=a_{1}, a_{2}, 0,0,0,0,0, a_{8}, 0,0, \quad a_{1} a_{8} \neq 0
$$

R_{4} intersects R in the plane $x_{1}=x_{5}=0$. We note also that S_{3} contains a τ-plane $P_{1} P_{3} P_{4}$ tangent to V at the point P_{1} which is on C. If a_{2} is not zero, it may be made so by moving A_{2} to $A_{2}^{\prime}=A_{2}+a_{2} A_{3} / a_{1}$, and A_{5} to $A_{5}^{\prime}=$ $-a_{2} A_{4} / a_{1}+A_{5}$. Then proper choice of the unit point puts S_{3} in the form 6.

There remains the possibility that $a_{1} a_{3}+a_{2} a_{4}=0, a_{4} \neq 0$. We show that this is not different from the space just considered, showing first that it contains a plane tangent to V at a point of C.

The space tangent to V at the point $B=b_{1}, \cdots, b_{10}$ is ${ }^{10}$

$$
\begin{aligned}
& b_{8} x_{1}-b_{6} x_{2}+b_{5} x_{3}+b_{3} x_{5}-b_{2} x_{6}+b_{1} x_{8}=0 \\
& b_{9} x_{1}-b_{7} x_{2}+b_{5} x_{4}+b_{4} x_{5}-b_{2} x_{7}+b_{1} x_{9}=0
\end{aligned}
$$

[^6]\[

$$
\begin{aligned}
& b_{10} x_{1}-b_{7} x_{3}+b_{6} x_{4}+b_{4} x_{6}-b_{3} x_{7}+b_{1} x_{10}=0 \\
& b_{10} x_{2}-b_{9} x_{3}+b_{8} x_{4}+b_{4} x_{8}-b_{3} x_{9}+b_{2} x_{10}=0 \\
& b_{10} x_{5}-b_{9} x_{6}+b_{8} x_{7}+b_{7} x_{8}-b_{6} x_{9}+b_{5} x_{10}=0
\end{aligned}
$$
\]

Its intersection with S_{3} is

$$
\begin{aligned}
b_{3} k \quad-b_{2} m+\left(a_{8} b_{1}+a_{3} b_{5}-a_{2} b_{6}+a_{1} b_{8}\right) n & =0, \\
b_{4} k \quad+b_{1} m+\left(a_{4} b_{5}-a_{2} b_{7}+a_{1} b_{9}\right) n & =0, \\
b_{1} l+b_{4} m+\left(a_{4} b_{6}-a_{3} b_{7}+a_{1} b_{10}\right) n & =0, \\
b_{2} l-b_{3} m+\left(a_{8} b_{4}+a_{4} b_{8}-a_{3} b_{9}+a_{2} b_{10}\right) n & =0, \\
b_{10} k+b_{5} l-\left(b_{6}+b_{9}\right) m+a_{8} b_{7} n & =0 .
\end{aligned}
$$

If this intersection is a plane, the rank of the matrix of coefficients must be 1. This requires that $b_{1}=b_{2}=b_{3}=b_{4}=0$. If the plane is not $n=0$, then the coefficients of n in the first four equations are zero. This gives four linear equations in b_{6}, \cdots, b_{10}. Two obvious solutions are

$$
a_{2}, a_{3}, a_{4}, 0,0,0 \quad \text { and } \quad 0,0, a_{1}, 0, a_{2}, a_{3}
$$

On the line joining them is $-a_{1} a_{2},-a_{1} a_{3}, 0,0, a_{2} a_{4}, a_{3} a_{4}$ which is also a solution. The point is in the plane ρ since $a_{1} a_{3}+a_{2} a_{4}=0$, and is also on C. The τ-plane, which is given by the last equation above, passes through P_{4}, since b_{7} is zero. If now this point of C is selected for P_{1} and coordinates are determined as before, P_{4} will have $a_{3}=a_{4}=0$ since P_{4} is in the tangent space at P_{1}. This completes the consideration of S_{3} 's with a nondegenerate conic on V.
(iii) Three-spaces with a plane on V.
7. $k, l, m, 0, n, 0,0,0,0,0$.
8. $k, l, m, 0,0,0, n, 0,0,0$.
9. $k, l, m, 0, n, 0,0,0,0, n$.
$9^{\prime} . \quad k, l, m, n, n, 0,0,0,0,0 .{ }^{11}$
10. $k, l, 0,0, m, 0,0,0,0, n$.
11. $k, l, 0,0, m, n, 0,0, n, 0$.

The planes of V are of two types: (1) planes whose points represent the lines of a plane in X, and (2) planes whose points represent the lines of a bundle. In the first four spaces above, the plane $n=0$ is of the second type; in the other two the only plane on V is of the first type. Space 7 has two planes on V; space 8 has a plane and a line; spaces 9 and 9^{\prime} intersect V only in a plane. Space 9^{\prime} is in the space tangent to V at each point of $P_{1} P_{2}$; space 9 is not a τ-space. Space 11 is a τ-space, and 10 is not.

[^7]Suppose S_{3} contains a plane ρ of the second type. The points of ρ represent the lines of a bundle in X; these lines lie in a three-space R. The vertex of the bundle may be taken to be A_{1}, and A_{2}, A_{3}, A_{4} may be taken on any three independent lines of the bundle. Then ρ will take the form of $n=0$ in $7,8,9,9^{\prime}$. If S_{3} contained another plane of the second type, their line of intersection would represent the lines of a pencil common to the two bundles, and so the two bundles would have the same vertex and S_{3} would lie on V. This possibility has been dealt with. So a second plane on V must be of the first type. This second plane intersects ρ in a line, and hence its points represent the lines of a plane in X which lies in R and passes through A_{1}. S_{3} is therefore in the Σ determined by R. The plane in R may be taken to be $A_{1} A_{2} A_{3}$. If A_{5} is selected to be any point not in R, S_{3} takes the form 7. This is a Σ-space; the two planes constitute the degenerate quadric in which S_{3} intersects V.

Suppose S_{3} contains ρ and a point P_{4} on V and not on ρ. The line p_{4} is not in R, for if it were, S_{3} would be a Σ-space and would intersect V in a quadric consisting of two planes since it contains ρ and an additional point. Hence, p_{4} intersects R in a point. The point cannot be A_{1}, for then S_{3} would lie wholly on R. The point may be taken to be A_{2}. A_{5} may be taken on p_{4}, and then S_{3} has the form 8. This space intersects V in the plane ρ and the line $l=m=0$.

Any other S_{3} which contains ρ can have no further point on V. Let S_{3} contain ρ and a point P_{4} not on $V . \quad P_{4}$ determines a three-space R_{4} in $X . \quad R_{4}$ and R cannot coincide, for then S_{3} would be a Σ-space intersecting V in a quadric consisting of the plane counted twice, and P_{4} would be in each space tangent to V at a point of ρ. There is no such point not on V. Therefore R_{4} intersects R in a plane σ. If σ does not pass through A_{1}, the plane π on V whose points represent the lines of σ does not intersect ρ. The polar of P_{4} with respect to V intersects π in a line. If Q_{4} is selected in π not on the polar of P_{4}, then the line $P_{4} Q_{4}$ will intersect V in a second point Q_{4}^{\prime}. q_{4} lies in σ, and q_{4}^{\prime}, which lies in R_{4}, intersects $\sigma . \quad A_{2}$ and A_{3} may be taken on q_{4}, A_{4} on q_{4}^{\prime} and σ, and A_{5} on q_{4}^{\prime}. Then S_{3} will take the form 9 .

Next, suppose the plane σ of the last paragraph passes through A_{1}. The planes ρ and π will intersect in a line λ_{1}. The polar of P_{4} intersects π in a line λ_{2}. Suppose λ_{1} and λ_{2} coincide. Then the point P_{4} is in each tangent space to V at a point of λ_{1} which we may take to be $P_{1} P_{2}$. It then follows that $P_{4}=0,0,0, a_{4}, a_{5}, 0,0,0,0,0$. A choice of the unit point puts S_{3} in the form 9^{\prime}. This space is then tangent to V at every point of $P_{1} P_{2}$.

Space 9 is not in the space tangent to V at any point of V; however, to show that 9 and 9^{\prime} are different, we need only to note that in 9 the point P_{4} is not in the space tangent to V at any point of ρ.

There is one further possibility to consider. If the lines λ_{1} and λ_{2} in the plane π do not coincide, they intersect in a point which we may take to be $P_{1} . \quad P_{4}$ would be in the space tangent to V at P_{1}; hence $P_{4}=$
$0,0,0, a_{4}, a_{5}, a_{6}, a_{7}, 0,0,0$. By examining S_{3} for points on V, it is found that unless $a_{7}=0$ there is a point $k, l, m, n=0, a_{4} a_{5}, a_{4} a_{6}, a_{7}$ on V and not on ρ. In that case the space is 8 with an additional line on V; if $a_{7}=0$ and $a_{6} \neq 0, P_{4}$ can be selected so that λ_{1} and λ_{2} coincide, showing S_{3} to be 9^{\prime}.

An S_{3} which contains a plane on V and is not one of the foregoing contains a plane of the first type. A coordinate system can be chosen so that the plane is $n=0$ of 10 and $11, A_{1}, A_{2}$, and A_{3} being arbitrary independent points of the plane σ in X whose lines are imaged on the plane ρ in S_{3}. If P_{4} is a point of S_{3} on V and not in ρ, then the line p_{4} in X may or may not intersect σ. If it intersects σ, we have S_{3} in a five-space Σ given by a three-space in $X ; S_{3}$ then intersects V in two planes, giving 7 , or else lies wholly on V. If p_{4} does not intersect σ, A_{4} and A_{5} may be selected on p_{4} and we have 10.

Finally, suppose S_{3} contains the plane ρ of the last paragraph and no other point of V. Let P_{4} be a point of S_{3} not on ρ. The three-space R_{4} intersects σ in a line, for if σ were in R_{4}, S_{3} would be in the five-space determined by R_{4} and would be 7. This line of intersection of σ and R is imaged on V in a point of ρ which is such that the line joining it to P_{4} is tangent to V, being in a Σ and having no other point on V. If Q_{4} is selected in R_{4} so that q_{4} intersects the above line, then q_{4}^{\prime} will intersect the above line also. These intersections may be taken to be A_{2} and A_{3}, respectively. If then A_{4} is taken on q_{4} and A_{5} on q_{4}^{\prime}, S_{3} will have the form 11.

We have considered all the possibilities for S_{3} with a plane on V.
(iv) Three-spaces containing at least two rulings but no plane of V.
12. $k, l, 0,0,0, m, 0,0,0, n$.
13. $k, l, 0, n, 0, m, n, 0,0,0$.
14. $k, l, 0,0,0, m, 0,0, n, n$.
15. $k, l, 0, n, 0, m, 0, n, 0,0$.
16. $k, l, 0, n, 0, m, n, n, 0,0$.
17. $k, l, 0,0, n, m, 0,0,0, n$.
18. $k, l, 0, n, n, m, 0,0,0,0$.

The first two have three rulings on V; in 13 the rulings pass through a point; in 12 they do not. In each of the rest there are two intersecting rulings; 14 contains one additional point and the others none. 15 and 18 are τ-spaces; 16 and 17 are not. 18 is in the space tangent to V at a point of intersection with $V ; 15$ is in the space tangent to V at a point not in S_{3}. The distinction between 16 and 17 is more difficult; it is shown at the end of this section.

If S_{3} contains rulings of V but no planes or nondegenerate conics, the number of rulings cannot be greater than three since otherwise S_{3} would contain planes with four or more discrete points on V. If S_{3} contains three rulings of V, each ruling must intersect another for otherwise S_{3} would contain planes on one ruling intersecting V in two additional points and no such planes exist.

Suppose S_{3} contains three rulings which do not pass through a point. Denote the rulings by l_{1}, l_{2}, and l_{3}, and let l_{1} and l_{2} intersect. l_{1} and l_{2} are images of two pencils of lines in X whose planes have a line in common. The planes of the pencils lie in a three-space R. An obvious choice of the coordinate system in X gives the plane $l_{1} l_{2}$ the form of the plane $n=0$ in the spaces above. The line l_{3} intersects one of the lines l_{1} and l_{2}; we may assume the intersection to be P_{3}. Any point on l_{3} is in the space tangent to V at P_{3}, and hence its coordinates satisfy $a_{2}=a_{4}=a_{9}=0$; and since it is a point of V,

$$
a_{1} a_{8}+a_{3} a_{5}=0, \quad a_{1} a_{10}-a_{3} a_{7}=0, \quad a_{5} a_{10}+a_{7} a_{8}=0
$$

Hence, $a_{3} / a_{1}=a_{10} / a_{7}=-a_{8} / a_{5}=r$. The line in X which is imaged on this point is $\left\{\begin{array}{l}a_{1}, 0,-a_{5}, 0,-a_{7} \\ 0,1,0, r, 0\end{array}\right.$. The lines p_{1}, p_{2}, p_{3} are

$$
p_{1}=\left\{\begin{array}{l}
1,0,0,0,0 \\
0,1,0,0,0
\end{array}, \quad p_{2}=\left\{\begin{array}{l}
1,0,0,0,0 \\
0,0,1,0,0
\end{array}, \quad p_{3}=\left\{\begin{array}{l}
0,1,0,0,0 \\
0,0,0,1,0
\end{array}\right.\right.\right.
$$

A change of coordinates: $A_{i}^{\prime}=A_{i}, i=1,2,3, \quad A_{4}^{\prime}=(1 / r) A_{2}+A_{4}, \quad A_{5}^{\prime}=$ $a_{1} A_{1}-a_{5} A_{3}-a_{7} A_{5}$ leaves P_{1}, P_{2}, P_{3} unchanged, but makes the point on l_{3} take the form $P_{4}=0,0,0,0,0,0,0,0,0,1 . \quad S_{3}$ has the form 12.

When S_{3} contains three rulings which pass through a point, P_{1}, P_{2}, P_{3} may be taken as above, and the third ruling passes through P_{1}. For any point P_{4} on this ruling, we have $a_{8}=a_{9}=a_{10}=0$, and

$$
a_{2} a_{6}-a_{3} a_{5}=0, \quad a_{2} a_{7}-a_{4} a_{5}=0, \quad a_{3} a_{7}-a_{4} a_{6}=0
$$

From this $a_{5} / a_{2}=a_{6} / a_{3}=a_{7} / a_{4}=r . \quad P_{4}=\left\{\begin{array}{l}1, r, 0,0,0 \\ 0,0, a_{2}, a_{3}, a_{4}\end{array}\right.$. A change of coordinates: $A_{i}^{\prime}=A_{i}, i=1, \cdots, 4, A_{5}^{\prime}=a_{2} A_{3}+a_{3} A_{4}+a_{4} A_{5}$ and a proper selection of the unit point give the form 13.

A three-space S_{3} containing two skew lines l_{1} and l_{2} which are rulings of V has three or more lines which are rulings of V. The lines l_{1} and l_{2} determine two pencils of lines in X lying in two planes σ_{1} and σ_{2}. If the planes intersect in a line, they lie in a three-space, and S_{3} is a Σ-space. S_{3} is of the form 1 and intersects V in a nondegenerate ruled quadric. If σ_{1} and σ_{2} intersect in a point, that point cannot be the vertex of either pencil, for otherwise one line of one pencil would intersect every line of the other and S_{3} would contain a plane and a line of V; it would be 7 or 8 . The remaining possibility allows us to take the pencils in the planes $A_{1} A_{2} A_{4}$ and $A_{1} A_{3} A_{5}$ with vertices at A_{2} and A_{3}. Then S_{3} is $k, l, 0,0,0, m, 0,0, n, 0$ which has three rulings and is 12 .

The remaining S_{3} 's in this section contain two rulings, and the two rulings intersect. The plane of S_{3} containing the rulings is the plane $n=0$ above. We designate this Σ-plane by ρ and the corresponding three-space in X by R.

Let S_{3} contain an additional point P_{4} on V. The line p_{4} intersects R in a point. This point is not in either of the planes determined by the lines of ρ on V, for if p were the line of the pencil through that point, $P P_{4}$ would be a
pencil of points on V representing the pencil of lines $p p_{4}$, and S_{3} would contain a third line of V. A line may be taken through the intersection of p_{4} and R intersecting the planes of the two pencils in points which may be taken for A_{3} and A_{4} without changing the coordinates of P_{1}, P_{2}, or P_{3}. Then A_{5} may be selected on p_{4} not in $R . \quad S_{3}$ becomes 14 .

Any other S_{3} which contains two rulings of V contains the plane $n=0$ above and a point

$$
P_{4}=0,0, a_{3}, a_{4}, a_{5}, 0, a_{7}, a_{8}, a_{9}, a_{10}
$$

To this S_{3} we apply transformation T_{15} (page 658). This transforms ρ into itself, and transforms P_{4} into $P_{4}^{\prime}=a_{1}^{\prime}, \cdots, a_{10}^{\prime}$. There is in S_{3} a point for which $a_{1}^{\prime}=a_{2}^{\prime}=a_{6}^{\prime}=0$, and

$$
\begin{array}{cc}
a_{3}^{\prime}=a_{3}-a_{4} h-a_{8} a+a_{9} a h+a_{10}(e-a f), & a_{4}^{\prime}=a_{4}-a_{9} a-a_{10} c \\
a_{5}^{\prime}=a_{5}-a_{7} g+a_{8} d+a_{9}(f-d h)+a_{10} d g, & a_{7}^{\prime}=a_{7}-a_{9} b-a_{10} a \\
a_{8}^{\prime}=a_{8}-a_{9} h+a_{10} g, \quad a_{9}^{\prime}=a_{9}, & a_{10}^{\prime}=a_{10}
\end{array}
$$

(a) Suppose $a_{9} a_{10} \neq 0$. Then since b appears only in a_{7}^{\prime}, c only in a_{4}^{\prime}, d in a_{5}^{\prime}, and e in a_{3}^{\prime}, we may make $a_{3}^{\prime}=a_{4}^{\prime}=a_{5}^{\prime}=a_{7}^{\prime}=a_{8}^{\prime}=0$ by selecting a, f, g, h, to satisfy $a_{8}-a_{9} h+a_{10} g=0$ and solving for b, c, d, and e. This gives 14 again.
(b) Suppose $a_{9}=0, a_{10} \neq 0 . \quad a$ and g can be selected to make $a_{7}^{\prime}=a_{8}^{\prime}=0$; then if $g \neq 0, d, c, e$ can be selected to make $a_{5}^{\prime}=a_{4}^{\prime}=a_{3}^{\prime}=0$. This is 12 again. If $g=0$, we get $P_{4}=0,0,0,0,1,0,0,0,0,1$, which is 17 .
(c) Suppose $a_{9} \neq 0, a_{10}=0 . \quad b$ and h can be selected to make $a_{7}^{\prime}=a_{8}^{\prime}=0$; then f and a can be selected to make $a_{5}^{\prime}=a_{4}^{\prime}=0 . \quad a_{3}^{\prime}$ is then determined; it cannot be zero since P_{4} is not on V, but a choice of the unit point will make $a_{3}^{\prime}=a_{9}^{\prime}$. We shall postpone the identification of $S_{3}: k, l, n, 0,0, m, 0,0, n, 0$.
(d) Suppose $a_{9}=a_{10}=0$.
(i) $a_{7} a_{8} \neq 0 . \quad a_{3}^{\prime}$ and a_{5}^{\prime} can be made zero. $a_{4}^{\prime}, a_{7}^{\prime}, a_{8}^{\prime}$ cannot be changed. We have the possibilities:

$$
\begin{aligned}
& P_{4}=0,0,0, a_{4}, 0,0, a_{7}, a_{8}, 0,0 . \quad \text { This is space } 16 . \\
& P_{4}=0,0,0,0,0,0, a_{7}, a_{8}, 0,0
\end{aligned}
$$

(ii) $a_{7}=0, a_{8} \neq 0 . d$ and a can be selected to make $a_{5}^{\prime}=a_{3}^{\prime}=0$.

$$
P_{4}=0,0,0,1,0,0,0,1,0,0 .
$$

(iii) $a_{7} \neq 0, a_{8}=0 . g$ can be selected to make $a_{5}^{\prime}=0$. Then if $a_{4} \neq 0, a_{3}^{\prime}$ can be made zero, and P_{4} is on V. Hence $a_{4}=0$ and

$$
P_{4}=0,0,1,0,0,0,1,0,0,0 .
$$

(iv) $a_{7}=a_{8}=0$. Then $a_{4} \neq 0$ since R_{4} is not $R . \quad a_{5} \neq 0$, since P_{4} is not on $V . \quad a_{3}^{\prime}$ can be made zero. $\quad S_{3}$ is 18 .

The transformation T_{15} is the most general collineation of X that leaves the form of ρ unchanged and also leaves A_{1} and A_{2} unchanged. A collineation which interchanges A_{1} and A_{2}, and of course interchanges the pencils with vertices at A_{1} and A_{2}, leaves ρ unchanged. If A_{3} and A_{4} are interchanged as well as A_{1} and A_{2}, the pencils will be interchanged. This transformation puts the space of (c) above into that of (b); it puts the second space of (d, i) into the space of (d, ii), which is 15 ; and it puts the space of (d, iii) into that of (d, iv).

To distinguish between spaces 16 and 17 we note that any point k, l, m, n of 16 determines in X the three-space

$$
n^{2} x_{1}-n^{2} x_{2}+m n x_{3}+\ln x_{4}+(k n-l m) x_{5}=0
$$

any point of 17 determines the three-space

$$
n^{2} x_{1}-\ln x_{2}+k n x_{3}-\operatorname{lm} x_{5}=0
$$

All the spaces in X determined by points of 16 pass through $1,1,0,0,0$, which is a point of the special line, the line in both pencils determined by the intersections of S_{3} and V. All the spaces in X determined by points of 17 pass through $0,0,0,1,0$, which is not on the special line.
(v) Three-spaces containing one ruling of V.
19. $m, 0,0, k, 0,0, l, n, k, l$.
20. $k, l, 0,0,0, n, 0,0, n, m$.
$20^{\prime} . \quad k, l, 0, n, n, 0,0,0,0, m$.
$20^{\prime \prime} . \quad k, l, 0, n, n, n, 0,0,0, m$.
21. $k, l, m, n, 0, r n, m, 0,0,0$.
$21^{\prime} . \quad k, l, m, n, m, n, 0,0,0,0$.
22. $k, l, 0,0,0, n, m, m, r n, 0$.
23. $\quad k, l, m, 0, m, 0, n, n, 0,0$.
24. $k, l, 0,0, n, 0, m, m, 0,-r n$.
25. $\quad k, l, m, 0, n, 0,0,0, m, n$.
26. $k, l, n, 0,0,0, m, m, n, 0$.
27. $k, l, m, n, 0,0, m, n, 0,0$.

Each r above is a not-square.
Space 19 has a ruling and two points on V. Only spaces $20,20^{\prime}$, and $20^{\prime \prime}$ have the ruling and one additional point on V; space 20 contains a line tangent to V at P_{3}; the other two do not have such a tangent; space 20^{\prime} contains the Σ-plane $P_{1} P_{2} P_{4}$; space $20^{\prime \prime}$ contains no Σ-plane. Spaces 21 and 21^{\prime} are in the space tangent to V at $P_{1}, 21^{\prime}$ having a plane tangent to V at $P_{2}, 21$ having no such plane; space 22 is not in a space tangent to V at a point of $P_{1} P_{2}$; it is in the space tangent to V at a point not in it; none of the others is a τ-space. To distinguish among the remaining five we state some geometric facts that are obviously sufficient, and then to show how these facts may be established we carry out in detail the argument for space 23.

In space 23 every plane on P_{1} is a τ-plane, and every line in $P_{1} P_{2} P_{3}$ is tangent to V at its intersection with $P_{1} P_{2}$. The space 24 contains a τ-plane $n=0$, which is in the space tangent to V at $0,0,0,0,1,0,0,0,0,0$; it contains a pencil of τ-planes on $P_{3} P_{4} ; P_{3} P_{4}$ is a Σ-line which does not intersect the ruling. All the τ-planes pass through P_{3}, but not every plane on P_{3} is a τ-plane. Space 25 contains a pencil of τ-planes on $P_{2} P_{3}$ and no others. Space 26 contains a pencil of τ-planes on $P_{1} P_{2}$; the plane $m=0$ is tangent to V at P_{2}; there is no plane tangent at any other point of $P_{1} P_{2}$. Space 27 contains a pencil of τ-planes on $P_{1} P_{2} ; m=0$ is tangent to V at P_{2}, and $n=0$ at P_{1}.

We now establish the facts stated for space 23. Let $B=b_{1}, b_{2}, \cdots, b_{10}$ be a point of V. The space tangent to V at B is given on page 664. Substituting in these equations the coordinates of a point in space 23, we get five linear equations in k, l, m, n with the following matrix of coefficients:

$$
M=\left[\begin{array}{cccc}
b_{8} & -b_{6} & b_{3}+b_{5} & b_{1} \\
b_{9} & -b_{7} & b_{4} & -b_{2} \\
b_{10} & 0 & -b_{7} & -b_{3} \\
0 & b_{10} & -b_{9} & b_{4} \\
0 & 0 & b_{10} & b_{7}+b_{8}
\end{array}\right]
$$

If S_{3} were a τ-space, it would be possible to select B so that the rank of M would be zero; this would require all the b_{i} 's to be zero. Hence, S_{3} is not a τ-space. If the rank of M is one, the space tangent to V at the point B will intersect S_{3} in a plane. This requires $b_{4}=b_{7}=b_{8}=b_{9}=b_{10}=0$; hence all the τ-planes pass through P_{1}. In addition, we should have either (a) $b_{6}=0$ and $b_{3}+b_{5}=0$, or (b) $b_{2}=b_{3}=0$. In case (a) the τ-plane is $n=0$; it is a Σ-plane. In case (b) the τ-plane is $-b_{6} l+b_{5} m+b_{1} n=0$. Since b_{1}, b_{5}, b_{6} are arbitrary, every plane on P_{1} is a τ-plane.

We now show that the above are the only three-spaces meeting V only in one ruling and possibly some isolated points. S_{3} can have no more than two isolated points on V, for if it had three, the plane on them would intersect the ruling or contain it, and no such plane exists. If S_{3} contains two points of V besides the ruling, the line joining the two points must be skew to the ruling.

Let S_{3} contain the ruling $P_{1} P_{2}$ and the two points P_{3} and P_{4} on V. Then in X the lines p_{3} and p_{4} are skew to each other, and both are skew to the plane of the pencil $p_{1} p_{2}$. The lines p_{3} and p_{4} determine a three-space R which intersects the plane $p_{1} p_{2}$ in a line λ. The line λ may belong to the pencil $p_{1} p_{2}$, or it may not. If λ does not belong to the pencil, it intersects the two lines p_{1} and p_{2} in two distinct points, O_{1} and O_{2} respectively. The plane $p_{3} O_{1}$ intersects p_{4} in a point we take to be A_{3}, and $A_{3} O_{1}$ intersects p_{3} in a point we take to be A_{1}. By means of O_{2} we determine A_{4} on p_{4} and A_{2} on p_{3}. O_{1} may be taken to be $A_{1}+A_{3}$, and O_{2} to be $A_{2}+A_{4} . A_{5}$ may be taken to be the vertex of the pencil $p_{1} p_{2}$. Then S_{3} will be 19 .

If λ belongs to the pencil $p_{1} p_{2}$, we may suppose that it coincides with p_{1}. We may take O_{1} to be the vertex of the pencil and O_{2} any other point on p_{1}.

We may proceed as above and finally take A_{5} to be a point of p_{2}. Then S_{3} will have the form

$$
k+m, 0, k, l,-k, 0,0, k+n, l, 0 .
$$

It is easy to verify that this S_{3} has a conic and a line on V and hence is space 4.
We consider an S_{3} which intersects V only in the line $P_{1} P_{2}$ and the additional point P_{3}. In X the plane of the pencil $p_{1} p_{2}$ is skew to the line p_{3}. The plane of the pencil may be taken as $A_{1} A_{2} A_{3}$, with A_{1} the vertex of the pencil, and A_{4} and A_{5} may be taken on p_{3}. The plane $P_{1} P_{2} P_{3}$ will then have the form $k, l, 0,0,0,0,0,0,0, m$. In S_{3} there is the point

$$
P_{4}=0,0, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0
$$

The space tangent to V at P_{3} does not intersect the line $P_{1} P_{2}$, so its intersection with S_{3} will be the line $P_{3} P_{4}$ if $a_{5}=0$, or will be P_{3} alone if $a_{5} \neq 0$. The space tangent to V at a point of $P_{1} P_{2}$ does not contain P_{3}, and hence its intersection with S_{3} will be at most the plane $P_{1} P_{2} P_{4}$, but may be only the line $P_{1} P_{2}$.

Now suppose $a_{5}=0$, so that $P_{3} P_{4}$ is a tangent. Conditions that $P_{1} P_{2} P_{4}$ be tangent to V at the point $a P_{1}+b P_{2}$ are

$$
a_{8} a-a_{8} b=0, \quad a_{9} a-a_{7} b=0
$$

If a and b exist so that these equations are satisfied we must have $a_{6} a_{9}$ $a_{7} a_{8}=0$. In that case S_{3} has an additional point ${ }^{12}$ on V. So an S_{3} with only a line and a point on V, with a line tangent to V at P_{3}, has P_{4} with $a_{6} a_{9}-$ $a_{7} a_{8} \neq 0$. The three-space R_{4}, determined by P_{4}, does not contain A_{1}. Hence the intersection of R_{4} and $p_{1} p_{2}$, which is a line, may be taken to be $A_{2} A_{3}$; we denote the line by q_{4}. The corresponding point Q_{4} on V is such that $P_{4} Q_{4}$ intersects V in a second point unless it is a tangent. Suppose $P_{4} Q_{4}$ is a tangent. Then since $Q_{4}=0,0,0,0,1,0,0,0,0,0, P_{4}$ must have $a_{3}=a_{4}=a_{10}=0$. Since $a_{6} a_{9}-a_{7} a_{8} \neq 0$, we may select

$$
A_{4}^{\prime}=a_{6} A_{4}+a_{7} A_{5} \quad \text { and } \quad A_{5}^{\prime}=a_{8} A_{4}+a_{9} A_{5}
$$

Then P_{4} becomes $0,0,0,0,0,1,0,0,1,0$, and S_{3} is the space 20 .
The final supposition, that led to space 20 , was that $P_{4} Q_{4}$ is tangent to V. If this were not so, there would exist a t such that $Q_{4}+t P_{4}$ would be on V. The B_{5} for this point is $\left(a_{6} a_{9}-a_{7} a_{8}\right) t^{2}$, which requires $t=0$. We have thus shown that the only S_{3} with a line and a point on V and with a line tangent to V at the isolated point is 20 ; and space 20 has no plane tangent to V at a point of the line on V.

[^8]We now consider S_{3} with a point and a line on V which contains a plane tangent to V at every point of the line; such a plane is a Σ-plane in the fivespace Σ determined by any point in the plane not on V. For the point P_{4}, which is in the Σ-plane, has $a_{6}=a_{7}=a_{8}=a_{9}=0 . \quad S_{3}$ contains no tangent line at P_{3}, so $a_{5} \neq 0 . \quad P_{4}=0,0, a_{3}, a_{4}, a_{5}, 0,0,0,0,0 . A_{5}$ can be moved along p_{3} so that S_{3} becomes 20^{\prime}.

Suppose S_{3} contains a plane tangent to V at one and only one point of $P_{1} P_{2}$. The point may be taken to be P_{1}. Then P_{4} has $a_{8}=a_{9}=0, a_{5} \neq 0 . \quad P_{4}=$ $0,0, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, 0,0,0 . R_{4}$ intersects p_{3} at $0,0,0, a_{3}, a_{4}$; using this point for A_{5} we reduce a_{3} to zero. We can now move A_{4} to $0,0,0, a_{6}, a_{7}$ and remove a_{7}, if $a_{6} \neq 0$. In that case S_{3} is $20^{\prime \prime}$.

If $a_{6}=0$ just above, S_{3} intersects V in another point, namely,

$$
0, a_{4} a_{5} / a_{7}, 0, a_{4}, a_{5}, 0, a_{7}, 0,0,0
$$

We will now show that this list of S_{3} 's containing a point and a line on V, and no other point on V, is complete by showing that such an S_{3} having no plane tangent to V at a point of the line is 20 . As shown above, the fact that S_{3} contains no plane tangent to V at a point of $P_{1} P_{2}$ requires P_{4} to be such that $a_{6} a_{9}-a_{7} a_{8} \neq 0$. Now, making use of T_{9}, the point $P_{4}=$ $0,0, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0$ is changed to $P_{4}^{\prime}=a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{10}^{\prime}$,

$$
\begin{array}{lr}
a_{1}^{\prime}=a_{5}(a d-c), & a_{2}^{\prime}=a_{5}(a-b c), \\
a_{3}^{\prime}=a_{3}+a_{4} f+a_{6} a+a_{7} a f+a_{8} c+a_{9} c f, \\
a_{4}^{\prime}=a_{3} e+a_{4}+a_{6} a e+a_{7} a+a_{8} c e+a_{9} c, \\
a_{5}^{\prime}=a_{5}(1-b d), & a_{6}^{\prime}=a_{6}+a_{7} f+a_{8} d+a_{9} d f, \\
a_{7}^{\prime}=a_{6} e+a_{7}+a_{8} d e+a_{9} d, & a_{8}^{\prime}=a_{6} b+a_{7} b f+a_{8}+a_{9} f, \\
a_{9}^{\prime}=a_{6} b e+a_{7} b+a_{8} e+a_{9}, & a_{10}^{\prime}=0 .
\end{array}
$$

Since $a_{6} a_{9}-a_{7} a_{8} \neq 0, a$ and c in T_{9} can be found to make $a_{3}^{\prime}=a_{4}^{\prime}=0$. Then the change of A_{4} and A_{5} on p_{3} that gave 20 , and if necessary a change of P_{4}^{\prime} in the plane $P_{1} P_{2} P_{4}^{\prime}$ to make $a_{1}^{\prime}=a_{2}^{\prime}=0$, will give $P_{4}=0,0,0,0, a_{5}, 1,0,0,1,0$. Examining S_{3} for points on V, we find the additional point $k=l=a_{5} m-n=$ 0 , which is one too many points unless $a_{5}=0$.

We consider a space S_{3} which contains the ruling $P_{1} P_{2}$ and no other point of V, and which lies in the space tangent to V at P_{1}; no S_{3} with only one line on V could lie in more than one such tangent space. Let P_{3} and P_{4} be two points of S_{3} which are on a line skew to $P_{1} P_{2}$. The plane $P_{1} P_{3} P_{4}$ is tangent to V since every line in it through P_{1} is a tangent. P_{3} and P_{4} determine two threespaces R_{3} and R_{4} in $X . \quad R_{3}$ and R_{4} may or may not be distinct, but both certainly contain the line p_{1}. If R_{3} and R_{4} coincide, then $P_{1} P_{3} P_{4}$ is a plane in a five-space Σ, and it has one point on V. This is plane 6 of the list of planes. Coordinates can be selected so that the plane is $k, 0, m, n, 0, r n, m, 0,0,0, r$ not a square. The space $R_{3}=R_{4}$ is $x_{5}=0$.

The line p_{1} is in R_{3}, and consequently the vertex of the pencil $p_{1} p_{2}$ is in R_{3}. We now show that coordinates can be selected so that P_{1}, P_{3}, and P_{4} have the above form and at the same time A_{1} is at the vertex of the pencil $p_{1} p_{2}$. Let σ be an arbitrary plane in R_{3} on the line p_{1}, and let π be the image on V of σ. The polar spaces of P_{3} and P_{4} with respect to V cut π in two distinct lines which intersect at P_{1}; let the lines be respectively λ_{3} and λ_{4}. Q_{3} and Q_{4} may be selected respectively on λ_{4} and λ_{3} to give the above form of the coordinates of P_{1}, P_{3}, and P_{4}. The point A_{1} is the intersection of p_{1}, q_{3}, and $q_{4}^{\prime} ; A_{2}$ is the intersection of p_{1}, q_{3}^{\prime}, and q_{4}. Since A_{1} and A_{2} enter symmetrically, if either is the vertex of the pencil $p_{1} p_{2}$, we may take it to be A_{1}. If neither is the vertex of the pencil, we may move P_{3} along $P_{3} P_{4}$. The line λ_{3} then swings in π about P_{1}, and the intersection of q_{3} and p_{1} moves along p_{1}. Thus we may move A_{1} to the vertex of the pencil $p_{1} p_{2}$.

Now, the plane of the pencil $p_{1} p_{2}$ is not in R_{3}, for otherwise S_{3} would be in the space tangent to V at each point of $P_{1} P_{2}$. Therefore the line p_{2} intersects R_{3} only at A_{1}, and any other point on it may be taken for $A_{3} . \quad S_{3}$ is thus seen to be 21.

If there were any other S_{3} intersecting V only in a ruling and tangent to V at a point of it, then for no selection of P_{3} and P_{4} would R_{3} and R_{4} coincide. For any selection of P_{3} and P_{4} the line p_{1} would be in both R_{3} and R_{4}. Coordinates can be selected so that

$$
\begin{gathered}
P_{1}=0,0,0,0,1,0,0,0,0,0, \quad P_{3}=1,0,0,0,0,0,0,1,0,0 \\
P_{4}=0,1,0,0,0,0,1,0,0,0
\end{gathered}
$$

P_{2} is in the space tangent to V at P_{1} and hence has $a_{3}=a_{4}=a_{10}=0$. We may suppose that the vertex of the pencil $p_{1} p_{2}$ is at A_{2} (see, for example, the change in A_{3} in deriving T_{3}). p_{2} will be a line joining A_{2} to a point of $A_{1} A_{3} A_{4} A_{5}$. Hence,

$$
P_{2}=a_{1}, 0,0,0, a_{5}, a_{6}, a_{7}, 0,0,0
$$

We may move P_{2} along the line $P_{1} P_{2}$, and so we may assume $a_{5}=0$. Then any point in S_{3} is

$$
P=m+a_{1} l, n, 0,0, k, a_{6} l, n+a_{7} l, m, 0,0
$$

For this point we have

$$
\begin{aligned}
& B_{1}=m^{2}+a_{1} l m-a_{6} l n \\
& B_{2}=-n\left(n+a_{7} l\right), \\
& B_{3}=0 \\
& B_{4}=0 \\
& B_{5}=m\left(n+a_{7} l\right) .
\end{aligned}
$$

$n+a_{7} l=0$ gives a plane every point of which determines the three-space $x_{5}=0$, which is R_{3}. Thus $P P_{3}$ is a Σ-line which does not intersect $P_{1} P_{2}$ for
arbitrary m unless $a_{7}=0$. If $a_{7}=0, a_{1} \neq 0, S_{3}$ has another point on V, and hence is no new space. If $a_{1}=a_{7}=0$, an obvious change of coordinates puts S_{3} in the form 21^{\prime}.

We now consider an S_{3} which intersects V only in the line $P_{1} P_{2}$, which is in the space tangent to V at a point but not in the space tangent to V at a point of $P_{1} P_{2}$. We may select points P_{3} and P_{4} in S_{3} so that $P_{3} P_{4}$ is skew to $P_{1} P_{2}$ and such that R_{3} and R_{4} are distinct. This follows from the fact that since S_{3} is not in the tangent space at P_{1}, it can contain at most a plane which is in that tangent space, and the plane contains $P_{2} . \quad P_{3}$ can be selected so that $P_{1} P_{3}$ is not a tangent, and then P_{1} will not be in the five-space Σ_{3} determined by P_{3}. So if P_{3} and P_{4} determine the same three-spaces in X, then $P_{1}+P_{3}$ and P_{4} will determine distinct three-spaces.

The line $P_{3} P_{4}$ determines a point M on V such that $M P_{3} P_{4}$ is tangent to V at $M ; P_{1} P_{2}$ is in the space tangent to V at $M . \quad P_{1} P_{2}$ does not pass through M, since S_{3} is not in the space tangent to V at a point of $P_{1} P_{2}$. The plane $P_{1} P_{2} M$ lies wholly on V. Two possibilities arise: (a) the lines p_{1}, p_{2}, and m lie in a plane; or (b) the vertex of the pencil $p_{1} p_{2}$ is on m.

In case (a) the plane of intersection of R_{3} and R_{4} and the plane of the pencil $p_{1} p_{2}$ intersect in the line m. We may take the vertex of the pencil to be A_{1}, and we may take A_{2} and A_{3} to be respectively the intersections of m with p_{1} and p_{2}. Then P_{3} and P_{4} will be in the space tangent to V at $M=$ $0,0,0,0,1,0,0,0,0,0$; hence, for each we have $a_{3}=a_{4}=a_{10}=0$. Now, we may determine two other points for P_{3} and P_{4}, each of the form $0,0,0,0, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0$. The new line $P_{3} P_{4}$ is a Σ-line; the corresponding three-space in X is $x_{1}=0$. Since coordinates of P_{3} and P_{4} can be put in canonical form by transformations in the space $x_{1}=0$, and since P_{1} and P_{2} are arbitrary points of $P_{1} P_{2}, S_{3}$ becomes 22 .

In case (b) the vertex of the pencil $p_{1} p_{2}$ is on m. We may take the vertex to be A_{1}, the plane of the pencil to be $A_{1} A_{2} A_{3}$, and the line m to be $A_{1} A_{4}$. Then P_{3} and P_{4}, being in the space tangent to V at M, will each have $a_{5}=$ $a_{7}=a_{9}=0$; moreover, for each we may take $a_{1}=a_{2}=0$, since each may be moved in the plane determined by it and the line $P_{1} P_{2}$ without affecting the relations in consideration. Then on the line joining P_{3} and P_{4} there will be a point $0,0, a_{3}, 0,0, a_{6}, 0, a_{8}, 0, a_{10}$ which is on V. Hence, case (b) gives no S_{3} with the required properties.

None of the remaining S_{3} 's with a ruling on V is in the space tangent to V at a point; the largest intersection of S_{3} with a tangent space would be a τ plane. $\quad S_{3}$ may have several such planes.

We consider first the possibility that S_{3} contains a τ-plane $P_{1} P_{2} P_{3}$, where $P_{1} P_{2}$ is a ruling of V and the plane is tangent to V at every point of $P_{1} P_{2}$; the plane is a Σ-plane. The line joining P_{3} to any point of $P_{1} P_{2}$ is tangent to V, and hence the three-space R_{3} contains the plane of the pencil $p_{1} p_{2}$. If P_{4} is any point of S_{3} not in $P_{1} P_{2} P_{3}, R_{4}$ cannot be R_{3}, for otherwise $P_{1} P_{4}$ would be a tangent and S_{3} would be in the space tangent to V at P_{1}. Coordinates
can be selected so that

$$
P_{3}=0,0,1,0,1,0,0,0,0,0, \quad P_{4}=0,0,0,0,0,0,1,1,0,0 .
$$

The line $P_{3} P_{4}$ is in the space tangent to V at $M=0,0,0,0,0,1,0,0,0,0$. The tangent space at M is $a_{2}=a_{4}=a_{9}=0$; the five-space Σ determined by P_{3} is $a_{4}=a_{7}=a_{9}=a_{10}=0$. Since S_{3} is not in the tangent space at M, not both P_{1} and P_{2} can have $a_{2}=0$; one point of $P_{1} P_{2}$ does have $a_{2}=0$, and we may take it to be P_{1}. Hence, S_{3} contains a τ-plane $P_{1} P_{3} P_{4}$, which is not tangent at P_{1} but is in the space tangent to V at M. Therefore, p_{1} intersects m; p_{2} does not intersect m, for otherwise S_{3} would be in the space tangent to V at M. The plane σ of intersection of R_{3} and R_{4} contains m. The point P_{4} can be selected on $P_{3} P_{4}$ so that q_{3} passes through the intersection of p_{1} and m. The plane $p_{1} p_{2}$ is not σ since p_{2} is not in R_{4}. The line $P_{1} P_{3}$ is a tangent; p_{1} intersects q_{3} and hence must intersect q_{3}^{\prime}. q_{3}^{\prime} may be moved in the pencil $q_{3}^{\prime} m$ until it passes through the vertex of the pencil $p_{1} p_{2}$; then A_{1} may be moved along q_{3}^{\prime} to this point. P_{1} then becomes $1,0,0,0,0,0,0,0,0,0$. P_{3} is in the space tangent to V at $P_{2} . \quad p_{2}$ intersects q_{3}^{\prime} and hence must also intersect q_{3}. Therefore, the intersection of $p_{1} p_{2}$ and σ is q_{3}, and $P_{2}=$ $0,1,0,0,0,0,0,0,0,0$. So an S_{3} containing only a ruling on V, containing a τ-plane tangent at every point of the ruling, and not in the space tangent to V at any point, is 23 .

A Σ-plane intersects V in at least one point; any line in the plane which passes through the point on V is tangent to V at the point. Hence if S_{3} intersects V in a ruling $P_{1} P_{2}$ and no other point, and if S_{3} contains a Σ-plane, the Σ-plane contains $P_{1} P_{2}$, or else S_{3} is in the tangent space to V at the point where $P_{1} P_{2}$ intersects the Σ-plane. Therefore, no other S_{3} than those already considered contains a ruling and a Σ-plane.

Let us suppose that S_{3} contains two τ-planes which intersect in a line skew to $P_{1} P_{2}$. The line of intersection may be taken to be $P_{3} P_{4}$. The line is a Σ-line, since otherwise it could not be in the spaces tangent to V at two points. The two τ-planes intersect $P_{1} P_{2}$ and may be taken to be $P_{1} P_{3} P_{4}$ and $P_{2} P_{3} P_{4}$. Neither p_{1} nor p_{2} can be in either of the three-spaces R_{3} or R_{4}, for then P_{1}, P_{2}, P_{3}, and P_{4} would be in the space tangent to V at P_{1} (or P_{2}). The plane of the pencil $p_{1} p_{2}$ intersects R_{3} in a line which is not a line of the pencil. This line may be taken to be q_{3}; then q_{3}^{\prime} is determined, and q_{4} and q_{4}^{\prime} may be selected so that P_{3} and P_{4} are in canonical form (for a Σ-line which does not intersect V). The vertex of the pencil $p_{1} p_{2}$ is outside R_{3} and may be taken to be A_{1}. Then S_{3} has the form 24 .

To help with the remaining cases we prove:
Every S_{3} which contains a ruling and no other point of V contains at least $p+1$ τ-planes.

Unless S_{3} contains a pencil of τ-planes on the ruling $P_{2} P_{3}$, it will contain a plane on $P_{2} P_{3}$ which has no other point on V and which is not a τ-plane.

Coordinates may be selected so that this plane is $k, 0,0,0,0,0,0, k, l, m$. (This is number 22 of the list of planes.) Then in S_{3} we may select the point $P_{4}=a_{1}, a_{2}, \cdots, a_{7}, 0,0,0$. Any point of S_{3} is

$$
P=k+a_{1} n, a_{2} n, a_{3} n, \cdots, a_{7} n, k, l, m
$$

The conditions that $B=b_{1}, b_{2}, \cdots, b_{10}$ be a point of V such that the space tangent to V at B intersect S_{3} in a plane give a set of five linear congruences in k, l, m, n which has for a matrix of coefficients

$$
\left[\begin{array}{cccc}
b_{1}+b_{8} & 0 & 0 & a_{1} b_{8}-a_{2} b_{6}+a_{3} b_{5}+a_{5} b_{3}-a_{6} b_{2} \\
b_{9} & b_{1} & 0 & a_{1} b_{9}-a_{2} b_{7}+a_{4} b_{5}+a_{5} b_{4}-a_{7} b_{2} \\
b_{10} & 0 & b_{1} & a_{1} b_{10}-a_{3} b_{7}+a_{4} b_{6}+a_{6} b_{4}-a_{7} b_{3} \\
b_{4} & -b_{3} & b_{2} & a_{2} b_{10}-a_{3} b_{9}+a_{4} b_{8} \\
b_{7} & -b_{6} & b_{5} & a_{5} b_{10}-a_{6} b_{9}+a_{7} b_{8}
\end{array}\right]
$$

and it must be possible to select B so that the rank of the matrix is 1 . If the matrix has rank $1, b_{1}=0$; then since B is on V,

$$
b_{2} b_{6}-b_{3} b_{5}=0, \quad b_{2} b_{7}-b_{4} b_{5}=0, \quad b_{3} b_{7}-b_{4} b_{6}=0
$$

Unless $b_{2}=b_{3}=b_{4}=0$, we have $b_{5}=r b_{2}, b_{6}=r b_{3}, b_{7}=r b_{4}$. Under these conditions the rank of the matrix is 1 if the first three elements in the fourth column are zeros. These give

$$
\begin{aligned}
& \left(a_{3} r-a_{6}\right) b_{2}+\left(a_{5}-a_{2} r\right) b_{3} \quad=0, \\
& \left(a_{4} r-a_{7}\right) b_{2} \quad+\left(a_{5}-a_{2} r\right) b_{4}=0, \\
& \left(a_{4} r-a_{7}\right) b_{3}+\left(a_{6}-a_{3} r\right) b_{4}=0 .
\end{aligned}
$$

The determinant of the matrix of coefficients of the b_{i} 's is zero. Hence, for any set of a 's there is a τ-plane $b_{4} k-b_{3} l+b_{2} m=0$, where

$$
b_{2}: b_{3}: b_{4}=a_{2} r-a_{5}: a_{3} r-a_{6}: a_{4} r-a_{7}
$$

These are not all zero since P_{4} is not on V. There is one for every r, and hence there are $p+1$ of them. The τ-planes all pass through the intersection of the planes

$$
a_{4} k-a_{3} l+a_{2} m=0 \quad \text { and } \quad a_{7} k-a_{6} l+a_{5} m=0
$$

and hence constitute a pencil. A necessary and sufficient condition that this line of intersection have a point in common with $P_{2} P_{3}$, the ruling of V, is that $a_{2} a_{6}-a_{3} a_{5}=0$. When the condition is satisfied, the point of intersection of the axis of the pencil of τ-planes and the ruling is $k, l, m, n=0, a_{2}, a_{3}, 0$. The line in X corresponding to this point is $\left\{\begin{array}{l}0,0, a_{2}, a_{3}, 0 \\ 0,0,0,0,1\end{array}\right.$. The three-space R_{4} in X, determined by P_{4}, is

$$
\left(-a_{3} a_{7}+a_{4} a_{6}\right) x_{3}-\left(-a_{2} a_{7}+a_{4} a_{5}\right) x_{4}=0
$$

Hence the line in X is in R_{4}, and the axis of the pencil of τ-planes is a Σ-line with a point on V and is therefore a tangent to V at that point. The axis of
the pencil of τ-planes and the ruling lie in a plane tangent to V at their intersection.

Any other S_{3} which intersects V in a ruling only will consequently contain a pencil of τ-planes whose axis is either a Σ-line intersecting the ruling or the ruling itself. We consider the first possibility.

Let S_{3} contain the ruling $P_{3} P_{4}$ and a pencil of τ-planes on $P_{1} P_{3}, P_{1}$ not on $P_{3} P_{4} . \quad P_{1} P_{3}$ is a Σ-line; $P_{1} P_{3} P_{4}$ is a τ-plane tangent to V at $P_{3} . \quad P_{1} P_{4}$ is not tangent, for otherwise p_{4} would be in R_{1} and $P_{1} P_{3} P_{4}$ would be a Σ-plane. Let P_{2} be any point of S_{3} not in $P_{1} P_{3} P_{4} . \quad P_{2}$ is not in the tangent space at P_{3}, for in that case S_{3} would be a τ-space and of a type already considered. Since $P_{2} P_{3}$ is not a tangent, the line p_{3} is not in R_{2}. Hence R_{1} and R_{2} are distinct. Therefore the plane $P_{1} P_{2} P_{3}$ is a τ-plane, since it contains $P_{1} P_{3}$, with the line $P_{1} P_{3}$ tangent to V at P_{3}. This is number 11 of the list of planes. Coordinates can be selected so that $P_{1} P_{2} P_{3}$ is $k, l, 0,0,0, m, l, k, 0,0$. The point P_{4} is on V and is such that p_{3} and p_{4} intersect. The line p_{3} is $A_{2} A_{4}$. The vertex of the pencil $p_{1} p_{2}$ is not A_{2}, for then S_{3} would be in the space tangent to V at $M=0,0,0,0,1,0,0,0,0,0$. The vertex may be made A_{4} by proper choice of Q_{1} on the line $Q_{1} M$. Hence we have

$$
p_{4}=\left\{\begin{array}{l}
a_{3}, a_{6}, a_{8}, 0,-a_{10} \quad \text { and } \quad P_{4}=0,0, a_{3}, 0,0, a_{6}, 0, a_{8}, 0, a_{10} \\
0,0,0,1,0,
\end{array}\right.
$$

By moving P_{4} along $P_{3} P_{4}, a_{6}$ may be made to take any value. Now by applying transformation T_{3} (page 646), which moves P_{2} along $P_{1} P_{2}$, we may keep the plane $P_{1} P_{2} P_{3}$ unchanged and obtain

$$
P_{4}=0,0, a_{3}-2 a_{10} a, 0,0, a_{6}+a_{8} a, 0, a_{8}, 0, a_{10}
$$

Selecting a to satisfy $a_{3}-2 a_{10} a=0$, and then selecting a_{6} so that $a_{6}+a_{8} a=$ 0 , we have $P_{4}=0,0,0,0,0,0,0, a_{8}, 0, a_{10}$. Applying T_{2} with $k=0, a_{8}-a_{10} l=0$, we get $P_{4}=0,0,0,0,0,0,0,0,0,1$. Changing coordinates will put S_{3} in the form 25 .

Every other S_{3} which intersects V only in the ruling $P_{1} P_{2}$ contains a pencil of τ-planes on $P_{1} P_{2}$. We observe first that S_{3} contains a line $P_{3} P_{4}$ skew to $P_{1} P_{2}$ and not a Σ-line. Suppose $P_{3}^{\prime} P_{4}$ to be a Σ-line skew to $P_{1} P_{2}$; then no point, say P_{1}, of $P_{1} P_{2}$ can be in the five-space Σ_{4}, for otherwise $P_{1} P_{3}^{\prime} P_{4}$ would be a Σ-plane, $P_{1} P_{3}^{\prime}$ and $P_{1} P_{4}$ would be tangents, and S_{3} would be in the space tangent to V at P_{1}. Now since $P_{1} P_{3}^{\prime}$ is not a Σ-line, $P_{3}=P_{1}+P_{3}^{\prime}$ determines in X an R_{3} which is different from R_{4}, and $P_{3} P_{4}$ is skew to $P_{1} P_{2}$.

Two τ-planes on $P_{1} P_{2}$ intersect $P_{3} P_{4}$ in two points which may be taken to be P_{3} and P_{4}. Let ρ be the plane of the pencil $p_{1} p_{2}$; let σ be the plane of intersection of R_{3} and R_{4}; let π be the plane on V whose points represent the lines of σ. The plane π contains a point M such that $M P_{3} P_{4}$ is tangent to V at M. Planes ρ and σ may coincide, may intersect in a line, or may intersect in a point. If ρ and σ coincide, then $P_{1} P_{2}$ is in π, and S_{3} is in the space
tangent to V at M; S_{3} is then either 21 or 22 according as M is on or is not on $P_{1} P_{2}$.

Now suppose ρ and σ do not coincide but intersect in a line l. Let L be the point of π which represents l; every point of $P_{1} P_{2}$ is in the space tangent to V at L. Hence if L coincides with M, S_{3} is again a τ-space. So we suppose l and m distinct but intersecting in the point D. If D is the vertex of the pencil $p_{1} p_{2}$, every line of the pencil intersects m, and S_{3} is in the space tangent to V at M. We therefore suppose D is not the vertex of the pencil; D then determines a line of the pencil which we may take to be $p_{1} . \quad S_{3}$ contains the τ-plane $P_{1} P_{3} P_{4}$ which has one point on V. This τ-plane must be one of planes 10,11 , and 13 of the preceding list.

Plane 10 is tangent to V at its intersection with V, P_{2} is in the space tangent to V at P_{1}, and hence if $P_{1} P_{3} P_{4}$ were plane $10, S_{3}$ would be a τ-space. We then consider $P_{1} P_{3} P_{4}$ to be plane 11, which contains one line tangent to V at P_{1}. For the rest of this argument we interchange the roles of $P_{1} P_{2}$ and $P_{3} P_{4}$ so we may use the plane 11 in the given form. Plane 11 is $P_{1} P_{2} P_{3}$

$$
k, l, 0,0,0, m, l, k, 0,0
$$

it intersects V at P_{3}, and contains the tangent line $P_{1} P_{3}$. Now the point P_{4} is on V and is in the space tangent to V at P_{3}; hence for $P_{4}, a_{2}=a_{4}=$ $a_{9}=0$, and

$$
a_{1} a_{8}+a_{3} a_{5}=0, \quad a_{1} a_{10}-a_{3} a_{7}=0, \quad a_{5} a_{10}+a_{7} a_{8}=0
$$

Also, since P_{4} may be any point on $P_{3} P_{4}$, we may suppose $a_{6}=0$. Unless $a_{1}=a_{5}=a_{7}=0$, the above conditions give $a_{3} / a_{1}=-a_{8} / a_{5}=a_{10} / a_{7}=r$. The conditions that $P_{2} P_{3} P_{4}$ be a τ-plane are the conditions that there exist a $B=b_{1}, b_{2}, \cdots, b_{10}$ on V with the plane $P_{2} P_{3} P_{4}$ in the tangent space at B. The requirement leads to the result that all the b 's are zero except b_{1} and b_{5} which satisfy $a_{8} b_{1}+a_{3} b_{5}=a_{10} b_{1}=a_{10} b_{5}=0$. Hence $a_{10}=0$. Then (1) $r=0$, or (2) $a_{7}=0$. In case (2), the plane $P_{1} P_{3} P_{4}$ is a Σ-plane, and S_{3} is space 23. In case (1), $P_{4}=a_{1}, 0,0,0, a_{5}, 0, a_{7}, 0,0,0$. Then S_{3} intersects V in the line $P_{3} P_{4}$ and also in the conic: $l+a_{7} n=0, k^{2}+a_{1} k n+a_{7} m n=0$. If the only intersection is $P_{3} P_{4}$, we must have $a_{1}=a_{7}=0$, and S_{3} is 21 ; it is in the space tangent to V at P_{4}. This disposes of plane 11.

Next suppose the plane $P_{1} P_{3} P_{4}$ above is plane 13, and take it in the form $P_{1} P_{2} P_{3}=k, l, 0,0,0, m, l+m, k, 0,0 . \quad P_{4}$ is on V and is in the space tangent to V at P_{3}. Hence for $P_{4}, a_{2}=a_{3}-a_{4}=a_{8}-a_{9}=0$. Also, either (1) $a_{1}=a_{5}=a_{7}=0$, or (2) $a_{3} / a_{1}=-a_{8} / a_{5}=a_{10} / a_{i}=r$. The requirement that $P_{2} P_{3} P_{4}$ be a τ-plane leads again to the requirement that $a_{10}=0$, and hence that $r a_{7}=0$. So we have the possibilities:

$$
\begin{aligned}
& P_{4}^{\prime}=a_{1}, 0,0,0, a_{5}, 0, a_{7}, 0,0,0 \\
& P_{4}^{\prime \prime}=a_{1}, 0, r a_{1}, r a_{1}, a_{5}, 0,0,-r a_{5},-r a_{5}, 0
\end{aligned}
$$

P_{4}^{\prime} gives an S_{3} with additional points on V, unless $a_{1}=a_{7}=0$, in which case S_{3} is in the space tangent to V at P_{4}^{\prime}. If $r=0, P_{4}^{\prime \prime}$ is P_{4}^{\prime}; if $r \neq 0, P_{4}^{\prime \prime}$ gives an S_{3} whose τ-planes all pass through $P_{2} P_{3}$ and hence is 25 . This completes consideration of plane 13 ; it also proves that no new S_{3} is obtained by supposing that ρ and σ intersect in a line.

We therefore suppose that ρ and σ intersect in a point D. The pencil of lines in σ on D maps into a line d in π. If M is on d, then at least one of the points of the ruling $P_{1} P_{2}$, say P_{1}, is in the space tangent to V at M, and $P_{1} P_{3} P_{4}$ is plane 10,11 , or 13 . The argument just completed still holds. Hence for a new S_{3}, M is not on d. Two new spaces, 26 and 27, are obtained according as D is or is not the vertex of the pencil $p_{1} p_{2}$.

Since d does not pass through M it intersects the polars of P_{3} and P_{4} in two distinct points which may be taken to be Q_{4} and Q_{3} respectively. The point D is the intersection of q_{3} and q_{4}. Coordinates may be selected so that D is $A_{1}=1,0,0,0,0$, and

$$
P_{3}=1,0,0,0,0,0,0,1,0,0, \quad P_{4}=0,1,0,0,0,0,1,0,0,0
$$

If D is the vertex of the pencil $p_{1} p_{2}$, the line of intersection of ρ with each of R_{3} and R_{4} is a line of the pencil since it contains D. These lines can be taken to be p_{1} and p_{2} respectively. p_{1} then passes through A_{1} and a point of $A_{2} A_{3} A_{4}$, which cannot be on $A_{2} A_{3}$ since p_{1} is not in R_{4}. By moving A_{4} on the line $A_{3} A_{4}$ (which can be done without changing the form of P_{3} or P_{4}), the line p_{1} may be made to intersect $A_{2} A_{4}$. Hence,

$$
P_{2}=a, 0,1,0,0,0,0,0,0,0
$$

But since p_{1} is in $R_{3}, P_{1} P_{3}$ is tangent to V at P_{1}. Hence, $a=0$. By the same considerations we may select A_{5} on p_{2}, and have

$$
P_{2}=0,0,0,1,0,0,0,0,0,0
$$

An interchange of names of vertices of the frame of reference in X changes this into space 27.

If D is not the vertex of the pencil $p_{1} p_{2}$, the plane ρ meets R_{3} in a line of the pencil, say p_{1}, but meets R_{4} in a line not of the pencil. Coordinates can be chosen so that P_{1}, P_{3}, and P_{4} are as above and the vertex of the pencil is A_{4}. The intersection of ρ with R_{4} is a line joining A_{1} to a point of $A_{2} A_{3} A_{5}$ which cannot be on $A_{2} A_{3}$ and hence can be taken to be on $A_{3} A_{5}$. Thus $P_{2}=0,0,0,0,0,0,0, a, 0,1$. In order for $P_{1} P_{2} P_{4}$ to be a τ-plane, it is required that $a=0$. This is space 26. We have completed the determination of all the spaces which contain one and only one ruling of V.
(vi) Three-spaces with at least three points but no plane curve on V.

$$
\begin{aligned}
& 28 . \\
& 29+n, k, 0,0,0, n, l, m, n, 0 . \\
& \text { 29. } k, k, n,-n,-n, 0, l, m, 0, n . \\
& 30 . k, n,-n, 0,0, l, m, 0, n .
\end{aligned}
$$

31. $k, k, n, n, 0,0, l, m+n, n, n$.
32. $k, k, n,-n, n, 0, l, m, 0, n$.
33. $k, k, 0, n, n, 0, l, m, 0, n$.
34. $k, k, 0, n, 0, n, l, m, 0,0$.
35. $k, k, n, n, n, n, l, m, 0, n$.

Spaces 28 and 29 intersect V respectively in a twisted cubic curve and in five points; spaces 30 and 31 have four points on V, the first with a line tangent to V at one of the points and the second with no such line; the others intersect V in three points. In all the spaces the plane $n=0$ contains Σ-lines joining pairs of P_{1}, P_{2}, P_{3}; space 35 contains no other Σ-line, space 34 contains one other which is tangent to V, and space 32 contains one other which does not intersect V.

Suppose S_{3} contains three points of V and does not intersect V in a line or a conic. The three points can be taken to be P_{1}, P_{2}, and P_{3}, and coordinates can be selected so that $P_{1} P_{2} P_{3}$ is

$$
k, k, 0,0,0,0, l, m, 0,0
$$

If S_{3} contains two more points of V, the line joining them cannot intersect any of the lines $P_{1} P_{2}, P_{1} P_{3}$, or $P_{2} P_{3}$, for otherwise S_{3} would contain a plane with four points on V and hence would intersect V in a line or a conic. This line intersects the plane of $P_{1} P_{2} P_{3}$ in a point P which can be taken to be the unit point in the plane; furthermore the line is a Σ-line and contains a point uniquely defined as the conjugate of P with respect to V. Let this conjugate of P be $P_{4}=a_{1}, a_{2}, \cdots, a_{10}$. The fact that P_{4} is conjugate to

$$
P=1,1,0,0,0,0,1,1,0,0
$$

gives

$$
\begin{aligned}
& \quad a_{1}-a_{6}+a_{8}=0, \quad a_{2}+a_{7}-a_{9}=0 \\
& -a_{3}+a_{10}=0, \quad a_{4}+a_{10}=0, \quad a_{7}+a_{8}=0
\end{aligned}
$$

These relations hold not only when S_{3} has five points on V, but also whenever S_{3} has three points on V and the line $P P_{4}$ is a Σ-line. We note that all or none of a_{3}, a_{4}, a_{10} are zero.

The transformation T_{5} (page 653) leaves each of the points P_{1}, P_{2}, P_{3}, P unchanged, but changes P_{4} to P_{4}^{\prime} with

$$
\begin{array}{rlrl}
a_{1}^{\prime} & =a_{1}-a_{4} c, & & a_{6}^{\prime}=-a_{3} a+a_{6}+a_{10} c, \\
a_{2}^{\prime}= & a_{2}-a_{3} b, & & a_{7}^{\prime}=-a_{4} a+a_{7}, \\
a_{3}^{\prime} & =a_{3}, & & a_{8}^{\prime}=-a_{3} a+a_{8}, \\
a_{4}^{\prime} & =a_{4}, & a_{9}^{\prime}=-a_{4} a+a_{9}-a_{10} b, \\
a_{5}^{\prime} & =a_{1} a-a_{2} b+a_{3} a b-a_{4} a c & a_{10}^{\prime}=a_{10} \\
& +a_{5}-a_{6} b+a_{9} c-a_{10} b c, &
\end{array}
$$

In the case where $a_{3}=a_{4}=a_{10}=0, a, b$, and c can be selected to make $a_{5}^{\prime}=0$. We then have $P_{4}^{\prime}=a_{1}^{\prime}, a_{2}^{\prime}, 0,0,0, a_{6}^{\prime}, a_{7}^{\prime}, a_{8}^{\prime}, a_{9}^{\prime}, 0 . \quad S_{3}$ contains the point $P_{4}^{\prime \prime}=a_{1}^{\prime \prime}, 0,0,0,0, a_{6}^{\prime \prime}, 0,0, a_{9}^{\prime \prime}, 0$. It may be verified that if $a_{1}^{\prime \prime} a_{6}^{\prime \prime} a_{9}^{\prime \prime}=0, S_{3}$ intersects V in a line or a conic. An obvious change of the unit point in X changes the a 's to 1's. The space is thus shown to be 28. It will be useful to consider this space more closely.

The B 's for a point in S_{3} are

$$
\begin{aligned}
& B_{1}=k m+m n-k n, \\
& B_{2}=k n+n^{2}-k l, \\
& B_{3}=0, \\
& B_{4}=0, \\
& B_{5}=l m-n^{2} .
\end{aligned}
$$

Setting the B 's equal to zero we get three cones with vertices at P_{1}, P_{2}, and P_{3}. Each pair of the cones has a common ruling, and the remainder of the intersection is a cubic curve; the ruling is not on the third cone, but the cubic curve is. $\quad S_{3}$ thus intersects V in the cubic curve; of course S_{3} contains a line tangent to the curve at each of its points.

In the case where $a_{3} a_{4} a_{10} \neq 0$ we may select a, b, and c in T_{5} so that $a_{1}^{\prime}=$ $a_{2}^{\prime}=a_{7}^{\prime}=0$. Taking account of the fact that P_{4}^{\prime} is conjugate to P and making the proper selection of the unit point in X, we obtain

$$
P_{4}^{\prime}=0,0,1,-1,-r, 0,0,0,0,1 .
$$

Changing the unit point in X to $1, d, d, 1,1$ changes r in P_{4}^{\prime} to $r d^{2}$. Hence the possibilities are: r is 0,1 , or a particular not-square. If $r=1, S_{3}$ has five points on V and is 29 . Conversely, if S_{3} has five points on $V, r=1$.

If $r=0$, then P_{4}^{\prime} is on $V, P P_{4}^{\prime}$ is tangent to V, and S_{3} is 30 . Conversely, if S_{3} has just four points on V and contains a line tangent to V at one of them, the above argument holds, and we obtain P_{4}^{\prime} with $r=0$.

If r is a not-square, then S_{3} has only three points on V. The line $P P_{4}^{\prime}$ is a Σ-line not in the plane $P_{1} P_{2} P_{3}$ and with no point on V. This is space 32 and is defined by these properties.

There is no other S_{3} intersecting V in a curve or in five points. If there is an S_{3} other than 30 with just four points on V, it can have no line tangent to V at any of the four points. Let the four points on V be $P_{1}, P_{2}, P_{3}, P_{4}$ where $P_{1} P_{2} P_{3}$ is as above and P_{4} is $a_{1}, a_{2}, \cdots, a_{10}$. Any point in S_{3} is

$$
k+a_{1} n, k+a_{2} n, a_{3} n, \cdots, l+a_{7} n, m+a_{8} n, a_{9} n, a_{10} n
$$

If $a_{3}=0$, the space tangent to V at P_{2} intersects V in the line $k+a_{2} n=$ $m+a_{8} n=0$; likewise if $a_{4}=0$, the space tangent to V at P_{3} intersects S_{3} in a line. We may therefore suppose that $a_{3} a_{4} \neq 0$. Then a, b, c in T_{5} may be selected so that $P_{4}=0,0, a_{3}, a_{4}, a_{5}, a_{6}, 0, a_{8}, a_{9}, a_{10}$. Since P_{4} is on V,
we have $a_{3} a_{5}=a_{4} a_{5}=a_{4} a_{6}=-a_{3} a_{9}+a_{4} a_{8}=a_{5} a_{10}-a_{6} a_{9}=0$. Thus, $a_{5}=a_{6}=0, a_{4}=r a_{3}, a_{9}=r a_{8}$. It may be verified that if $a_{10}=0, S_{3}$ has a line tangent to V at P_{1}, and if $a_{8}=0$ it contains a line tangent at P_{4}. The unit point in X can be selected to make $r=a_{3}=a_{8}=a_{10}=1$. The space is 31 .

Any other space of this set will have just three points on V; if it has a Σ-line not in the plane of the three points, one of the three points may be on it; it does not intersect the triangle $P_{1} P_{2} P_{3}$ elsewhere since no Σ-plane intersects V in two points. We suppose that S_{3} has a Σ-line tangent to V at P_{2}; we take $P_{1} P_{2} P_{3}$ as above and P_{4} an arbitrary point, not P_{2}, on the Σ-line. Then $P_{4}=a_{1}, 0,0, a_{4}, a_{5}, a_{6}, 0,0, a_{9}, a_{10}$. We have the following possibilities:
(1) $\quad a_{4}=a_{10}=0 . \quad P_{4}$ is not on V and hence $a_{9} \neq 0$. We may determine c in T_{5} to make $a_{5}^{\prime}=0$. The unit point in X may be selected to make $a_{1}=$ $a_{6}=a_{9} . \quad$ This S_{3} is 28.
(2) $a_{4} a_{10} \neq 0$. Then c in T_{5} can be selected to make $a_{1}^{\prime}=0$. If $a_{1} a_{10}+a_{4} a_{6}=0$, then a_{6}^{\prime} is also zero. a and b can be selected to make $a_{5}^{\prime}=0$. Proper choice of the unit point gives 33. If $a_{1} a_{10}+a_{4} a_{6} \neq 0$, selection of c to make $a_{1}^{\prime}=0$ makes $a_{6}^{\prime} \neq 0$. Then b can be selected to make $a_{5}^{\prime}=0$ and a to make $a_{9}^{\prime}=0$. In this case S_{3} has a fourth point on V, namely,

$$
k, l, m, n=-a_{4} a_{6}, 0, a_{6} a_{10}, a_{10}
$$

(3) $\quad a_{4}=0, a_{10} \neq 0 . \quad c$ and b in T_{5} can be selected to make $a_{6}^{\prime}=a_{9}^{\prime}=0$. If $a_{1}=0$, the plane $k=0$ intersects V in a conic; if $a_{1} \neq 0, a$ can be selected to make $a_{5}^{\prime}=0$. Hence we need consider here only

$$
k+n, k, 0,0,0,0, l, m, 0, n .
$$

(4) $\quad a_{4} \neq 0, a_{10}=0 . \quad T_{5}$ can be selected to make $a_{1}^{\prime}=a_{9}^{\prime}=0$, and if $a_{6} \neq 0$ to make $a_{5}^{\prime}=0$ also. If $a_{6}=0$, the plane $m=0$ intersects V in a conic. Hence we have $k, k, 0, n, 0, n, l, m, 0,0$.

Each of (2), (3), (4) gives an S_{3} with three points on V and a line tangent to V at P_{2}. We examine their intersections with the spaces tangent to V at P_{1} and P_{3} also. In the respective cases, the tangent spaces are

| Case (2) at $P_{3}: k=l=n=0$, | at $P_{1}: l=m=n=0$, |
| :--- | :--- | :--- |
| Case (3) at $P_{3}: k+n=l=0$, | at $P_{1}: l=m=n=0$, |
| Case (4) at $P_{3}: k=l=n=0$, | at $P_{1}: m-n=l=0$. |

Hence S_{3} in case (2) differs from the other two which are alike, as may be shown by interchanging the roles of P_{1} and P_{3}. Case (4) is 34 .

Finally, any other S_{3} with just three points on V contains no line tangent to V at any of the points. In P_{4} none of a_{3}, a_{4}, a_{10} is zero. T_{5} can be selected to make $a_{1}^{\prime}=a_{2}^{\prime}=a_{4}^{\prime}=0$. Then P_{4}^{\prime} can be changed in S_{3} to make $a_{7}^{\prime}=a_{8}^{\prime}=0$. If either of a_{5}^{\prime} or a_{6}^{\prime} is zero. there is a fourth point on V. This S_{3} is 35 .
(vii) Three-spaces with two points on V.
36. $k+n, l, n, 0,0, m, l, k+r m, m, 0, x^{3}+r x-1$ irreducible.
37. $k, l, 0,-n, n, 0, l, m, 0, n$.
38. $k, l, 0,0, n, 0, l, m, 0, n$.
39. $k, l, 0, n, r n, 0, l, m, 0,0$.
40. $k, l, 0, n, 0, n, l, m, n, 0$.
41. $k, l, 0, n, 0, n, l, m, 0,0$.
42. $k, l, n, n, n, 0, l, m, 0,0$.

The τ-plane $n=0$ in 36 has no point on V; every τ-plane in each of the others has at least one point on V. Spaces 37 and 38 have three τ-planes; in 37 one of the τ-planes contains both points of V; in 38 two of the τ-planes contain both points of V. All of the planes on P_{3} in 39 are τ-planes, and so also is $P_{1} P_{2} P_{4}$. Space 40 contains two τ-planes. Spaces 41 and 42 have pencils of τ-planes on the two points of V, and in each the plane $m=0$ is a τ-plane; the difference between them is harder to describe and will be left to the end of this section.

We consider a three-space S_{3} with two points, O_{1} and O_{2}, on V. The line $O_{1} O_{2}$ is obviously a Σ-line. S_{3} contains planes with no points on V; such planes are of three types: 7,8 , and 9 of the preceding list. We shall show first that there is just one type of S_{3} which contains a τ-plane with no point on V; then we shall show that every other S_{3} on O_{1} and O_{2} contains a τ-plane on $O_{1} O_{2}$.

Let S_{3} contain the τ-plane which has no point on V :

$$
k, l, 0,0,0, m, l, k+r m, m, 0
$$

In considering transformation T_{14} it was shown that P_{1} could be chosen arbitrarily and then P_{2} and P_{3} determined so that the plane has this form. Hence we may assume that $O_{1} O_{2}$ passes through P_{1} and that O_{1} is

$$
P_{4}=a_{1}, a_{2}, a_{3}, 0, a_{5}, a_{6}, 0, a_{8}, 0,0
$$

where $a_{1} a_{8}-a_{2} a_{6}+a_{3} a_{5}=0$, and since $P_{1} P_{4}$ intersects V in two points $a_{1}+a_{8} \neq 0$. Transformation T_{2} leaves P_{1} and P_{2} unchanged; it changes P_{3} and P_{4} to
$P_{3}^{\prime}=0,0,0,0, r k, 1,0, r, 1,0$,
$P_{4}^{\prime}=a_{1}-a_{3} k, a_{2}, a_{3}, 0,-a_{1} k-a_{2} l+a_{3} k^{2}+a_{5}+a_{8} k,-a_{3} l+a_{6}, 0$,

$$
a_{3} k+a_{8}, 0,0 .^{13}
$$

Transformation T_{1} then changes P_{3}^{\prime} and P_{4}^{\prime} to

$$
P_{3}^{\prime \prime}=0,0,0,0, r k-a+b, 1,0, r, 1,0, \quad P_{4}^{\prime \prime}=a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \cdots, a_{10}^{\prime \prime}
$$

[^9]where

$a_{1}^{\prime \prime}=a_{1}-a_{3} k$,	$a_{6}^{\prime \prime}=-a_{3} l+a_{6}$,
$a_{2}^{\prime \prime}=a_{2}-a_{3} a$,	$a_{7}^{\prime \prime}=0$,
$a_{3}^{\prime \prime}=a_{3}$,	$a_{8}^{\prime \prime}=a_{3} k+a_{8}$,
$a_{4}^{\prime \prime}=0$,	$a_{9}^{\prime \prime}=0$,
$a_{5}^{\prime \prime}=-a_{1} k-a_{2} l+a_{3} k^{2}+a_{5}+a_{8} k-\left(-a_{3} l+a_{6}\right) a$,	$a_{10}^{\prime \prime}=0$.

We select a, b, k, and l to satisfy

$$
a_{3} k+a_{8}=0, \quad-a_{3} l+a_{6}=0, \quad a_{2}-a_{3} a=0, \quad r k-a+b=0
$$

Then

$$
P_{3}^{\prime \prime}=0,0,0,0,0,1,0, r, 1,0, \quad P_{4}^{\prime \prime}=a_{1}^{\prime \prime}, 0, a_{3}^{\prime \prime}, 0, a_{5}^{\prime \prime}, 0,0,0,0,0
$$

Since $P_{4}^{\prime \prime}$ is on $V, a_{3}^{\prime \prime} a_{5}^{\prime \prime}=0$. If $a_{3}^{\prime \prime}=0, S_{3}$ would be in the space tangent to V at $0,0,0,0,1,0,0,0,0,0$, and in particular S_{3} would contain a τ-plane on $O_{1} O_{2}$. If $a_{1}^{\prime \prime}=0, P_{1} P_{4}^{\prime \prime}$ has only one point on V. An obvious choice of the unit point in X changes $P_{4}^{\prime \prime}$ to $1,0,1,0,0,0,0,0,0,0 . \quad S_{3}$ is space 36 . We have thus shown that an S_{3} with two points on V and a τ-plane which does not intersect V either is 36 or else contains a τ-plane which has two points on V. ${ }^{14}$

Suppose S_{3} contains plane 8 , which has no point on V but has a Σ-line. The plane is $k, l, m, 0,-r m, 0, l, k, 0,0, \quad r$ not a square. $P_{1} P_{3}$ is the Σ-line; $P_{1} P_{2}$ is any line in the plane except the Σ-line. The line $O_{1} O_{2}$ intersects this plane in a point which cannot be on $P_{1} P_{3}$, for then the plane $O_{1} P_{1} P_{3}$ would be a Σ-plane and would intersect V in more than two points. The intersection can be taken to be $P_{2} . \quad R_{2}$ is $x_{4}=0$. Hence O_{1} is
$P_{4}=a_{1}, a_{2}, 0, a_{4}, a_{5}, 0, a_{7}, 0, a_{9}, 0, \quad a_{1} a_{9}-a_{2} a_{7}+a_{4} a_{5}=0, \quad a_{2}+a_{7} \neq 0$.
Transformation T_{13} puts P_{4} into

$$
P_{4}^{\prime}=a_{1}+a_{5} a, a_{2}, 0, a_{4}-a_{9} a, a_{5}-a_{1} a, 0, a_{7}, 0, a_{4} a+a_{9}, 0
$$

If $a_{9}=0$, the plane $k=0$ is a τ-plane on $P_{2} P_{4}$; if $a_{4}=0, m=0$ is a τ-plane on $P_{2} P_{4}$; if $a_{9} \neq 0$, then T_{13} may be selected to make $a_{4}^{\prime}=0$. Hence in any case S_{3} contains a τ-plane on $O_{1} O_{2}$.

Any other S_{3} contains a plane with no point on V which is not a τ-plane and which contains no Σ-line. This plane is 9 :

$$
k, l, 0,0, m, 0, l, k, 0, m
$$

The line $O_{1} O_{2}$ intersects this plane; we examine S_{3} according to the location of the intersection with respect to the conic $C: m^{2}-2 k l=0$. If the intersection

[^10]is on C it may be taken to be P_{1}; if outside C, let it be P_{3}; if inside C, then let it be $P_{1}+P_{2}=1,1,0,0,0,0,1,1,0,0 .^{15}$
(a) The intersection is P_{1}. We may take O_{1} to be
$$
P_{4}=a_{1}, a_{2}, a_{3}, 0, a_{5}, a_{6}, 0, a_{8}, 0,0
$$
where $a_{1} a_{8}-a_{2} a_{6}+a_{3} a_{5}=0, a_{1}+a_{8} \neq 0$. The plane $l+a_{2} n=0$ is in the space tangent to V at the point $0,0,0,0,0,1,0,0,0,0$. If $a_{2}=0$, this τ-plane contains both O_{1} and O_{2}; if $a_{2} \neq 0$, the τ-plane contains neither. So S_{3} either is 36 or else contains a τ-plane on $O_{1} O_{2}$.
(b) The intersection is P_{3}. The three-space R_{3} in X is $x_{1}=0$. Let O_{1} be
$$
P_{4}=0,0,0,0, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}
$$
where $a_{5} a_{10}-a_{6} a_{9}+a_{7} a_{8}=0, a_{5}+a_{10} \neq 0$. A τ-plane intersects $P_{1} P_{2} P_{3}$ in a line and hence is in the space tangent to V at the point
$$
b c^{2}, a c^{2}, b^{2} c,-a^{2} c,\left(2 a b-c^{2}\right) c, b^{3},-a\left(a b+c^{2}\right),-b\left(a b+c^{2}\right), a^{3},-a b c
$$
a, b, c must be such that the matrix
\[

\left[$$
\begin{array}{cc}
b^{2} & a_{8} b c^{2}-a_{6} a c^{2}+a_{5} b^{2} c \\
-a^{2} & a_{9} b c^{2}-a_{7} a c^{2}-a_{5} a^{2} c \\
b c & a_{10} b c^{2}-a_{7} b^{2} c-a_{6} a^{2} c \\
a c & a_{10} a c^{2}-a_{9} b^{2} c-a_{8} a^{2} c \\
a b+c^{2} & a_{10}\left(2 a b+c^{2}\right) c-a_{9} b^{3}-a_{8} a\left(a b+c^{2}\right)-a_{7} b\left(a b+c^{2}\right)-a_{6} a^{3}-a_{5} a b c
\end{array}
$$\right]
\]

has rank 1. The space tangent to V at the above point meets $P_{1} P_{2} P_{3}$ in the line $a k+b l-c m=0$. If $c=0$, the rank of the matrix is 1 for a and b satisfying $a_{6} a^{3}+a_{8} a^{2} b+a_{7} a b^{2}+a_{9} b^{3}=0$. If this polynomial is reducible, S_{3} has a τ-plane on $P_{3} P_{4}$. So at this time we need consider only the case where the polynomial is irreducible. Then a τ-plane would be given only by $a=b=0$. The τ-plane would be $m+a_{10} n=0$. It would pass through $O_{1}=P_{4}$ only if $a_{10}=0$, in which case $a_{6} a_{9}-a_{7} a_{8}=0$ and the polynomial is reducible. The τ-plane exists and either it contains O_{1} and O_{2}, or S_{3} is 36 .
(c) The intersection is $P_{1}+P_{2} . \quad O_{1}$ and O_{2} represent lines in the threespace R determined by $1,1,0,0,0,0,1,1,0,0$. We take O_{1} to be

$$
P_{4}=a_{1}, a_{2}, a_{3},-a_{3}, a_{5}, a_{6}, a_{1}-a_{6}, a_{8}, a_{2}-a_{8}, a_{3}
$$

with $a_{1} a_{8}-a_{2} a_{6}+a_{3} a_{5}=0$. An argument about τ-planes similar to that in (b), with $a=b$ and $c=0$, shows that $k+l+\left(a_{1}+a_{2}\right) n=0$ is a τ-plane. If neither O_{1} nor O_{2} is in this plane, then S_{3} is 36 . If one of O_{1} and O_{2} is in the plane, we may suppose the one is O_{1}, and then $a_{1}+a_{2}=0$. If $a_{1}+a_{2}=0$, then $a=a_{3}, b=-a_{3}, c=-a_{1}$ gives the τ-plane $a_{3} k-a_{3} l+$ $a_{1} m=0$ which contains both O_{1} and O_{2}. This settles the question unless $a_{1}=a_{2}=a_{3}=0$, and in this case $m=0$ is a τ-plane which contains both

[^11]O_{1} and O_{2}. This completes the proof that S_{3} with just two points on V either is 36 or else contains a τ-plane on O_{1} and O_{2}.

We now investigate S 's containing a τ-plane on two points of V, and we take the plane in the form

$$
k, l, 0,0,0,0, l, m, 0,0
$$

S_{3} will contain the point $P_{4}=0,0, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, 0, a_{9}, a_{10}$. Transformation T_{6} leaves P_{1}, P_{2}, P_{3} unchanged and puts P_{4} into P_{4}^{\prime} where
$a_{1}^{\prime}=-a_{4} c$,
$a_{2}^{\prime}=-a_{3} b+a_{4} a$,
$a_{3}^{\prime}=a_{3}$,
$a_{4}^{\prime}=a_{4}$,
$a_{5}^{\prime}=a_{3} a b-a_{4} a+a_{5}-a_{6} b+a_{7} a+a_{9} c-a_{10} b c$,

$$
\begin{aligned}
& a_{6}^{\prime}=-a_{3} a+a_{6}+a_{10} c \\
& a_{7}^{\prime}=-a_{4} a+a_{7} \\
& a_{8}^{\prime}=-a_{10} a \\
& a_{9}^{\prime}=a_{9}-a_{10} b \\
& a_{10}^{\prime}=a_{10}
\end{aligned}
$$

We shall sort the S_{3} 's according to the zeros among a_{3}, a_{4}, and a_{10}.
(1) Suppose $a_{3} a_{4} a_{10} \neq 0$. Then b in T_{6} can be selected to make $a_{9}^{\prime}=0$, a to satisfy $a_{3} b-2 a_{4} a+a_{7}=0$ making $a_{2}^{\prime}=a_{7}^{\prime}$, then c to make $a_{6}^{\prime}=0$. In S_{3} there is the point $P_{4}^{\prime \prime}=0,0, a_{3}, a_{4}, a_{5}^{\prime}, 0,0,0,0, a_{10}$. Transformation T_{7}, which leaves P_{1} and P_{3} fixed and moves P_{2} along the Σ-line $P_{1} P_{2}$, can be applied with $b=0$ and $a_{3}+a_{10} c=0$; this changes $P_{4}^{\prime \prime}$ to

$$
0,0,0, a_{4}, a_{5}, 0,0,0,0, a_{10}
$$

A change of the unit point ${ }^{16}$ gives $P_{4}^{\prime \prime}=0,0,0,-1,1,0,0,0,0,1$, and S_{3} is 37 .

We have shown that a coordinate system can be selected so that the particular S_{3} we have been studying takes the form 37 . We seek information about it that is independent of the coordinate system to help distinguish among S_{3} 's given in different coordinate systems. We examine 37 for τ-planes. The space tangent to V at $B=b_{1}, b_{2}, \cdots, b_{10}$ intersects S_{3} in a plane if the matrix

$$
\left[\begin{array}{cccc}
b_{8} & -b_{6} & b_{1} & b_{3} \\
b_{9} & -\left(b_{2}+b_{7}\right) & 0 & b_{4}-b_{5} \\
b_{10} & -b_{3} & 0 & b_{1}-b_{6} \\
0 & b_{10} & b_{4} & b_{2}-b_{8} \\
0 & b_{8} & b_{7} & b_{5}+b_{10}
\end{array}\right]
$$

[^12]has rank 1. The only such points B and the corresponding τ-planes are
\[

$$
\begin{aligned}
& 0,0,0,0,0,0,0,0,1,0, \quad \text { with plane } k=0 \\
& 1,0,0,0,0,1,0,0,0,0, \quad \text { with plane } l-m=0 \\
& 0,0,0,0,1,0,0,0,0,0, \quad \text { with plane } n=0
\end{aligned}
$$
\]

Thus S_{3} contains just three τ-planes, and only one of them, $n=0$, is on both O_{1} and O_{2}.
(2) Suppose $a_{3}=a_{4}=a_{10}=0$. Then S_{3} contains the point

$$
P_{4}=0,0,0,0, a_{5}, a_{6}, a_{7}, 0, a_{9}, 0
$$

Since P_{4} is not on $V, a_{6} a_{9} \neq 0$. Then T_{6} can be selected so that $a_{5}^{\prime}=0$, and the unit point can be selected so that $P_{4}^{\prime}=0,0,0,0,0,1, r, 0,1,0$. If $r \neq 0$, the line $k=l=0$ has two points on V, and hence S_{3} has at least three; if $r=0, S_{3}$ intersects V in a cubic curve.
(3) Suppose $a_{3}=a_{4}=0, a_{10} \neq 0$. In T_{6} we may select b to make $a_{9}^{\prime}=0$, c to make $a_{6}^{\prime}=0$. Then $a_{5}^{\prime}=a_{5}-a_{6} b+a_{7} a$. Hence if $a_{7} \neq 0$, we may select a to make $a_{5}^{\prime}=0$, but in that case P_{4}^{\prime} is on V. Hence with proper choice of the unit point we have $P_{4}^{\prime}=0,0,0,0,1,0,0,0,0,1$, and S_{3} is 38 . It is readily verified that S_{3} contains the three τ-planes: $k=0 ; l=0 ; n=0$. Each of the last two is on $O_{1} O_{2}$, and therefore 37 and 38 are different.
(4) Suppose $a_{3}=a_{10}=0, a_{4} \neq 0$. In T_{6} we may select a to make $a_{2}^{\prime}=a_{7}^{\prime}$, then $a_{5}^{\prime}=-a_{4} a+a_{5}-a_{6} b+a_{7} a+a_{9} c$. We can select b and c to make $a_{5}^{\prime}=0$ unless $a_{6}=a_{9}=0$.

If $a_{6}=a_{9}=0, S_{3}$ is 39 . The points of V whose tangent spaces intersect S_{3} in planes, and the planes, are:

$$
\begin{aligned}
& 1,0,0,0,0,0,0,0,0,0, \quad \text { with } m=0 \\
& 0, b_{2}, 0,0, b_{5}, 0,0,0, b_{9}, 0, \quad \text { with } b_{9} k-b_{2} l+b_{5} n=0
\end{aligned}
$$

Thus every plane on P_{3} is a τ-plane.
Suppose now that not both a_{6} and a_{9} are zero. Then

$$
P_{4}=0,0,0, a_{4}, 0, a_{6}, 0,0, a_{9}, 0
$$

Since P_{4} is not on $V, a_{6} \neq 0$. If $a_{9} \neq 0, S_{3}$ is space 40 ; it contains only two τ-planes: $m=0$, and $n=0$. The plane $m=0$ does not pass through O_{2}.

If $a_{9}=0$, then S_{3} is $41 . S_{3}$ contains the τ-plane $m=0$ tangent to V at O_{1}, and the pencil of τ-planes $b_{6} l+b_{2} n=0$ each in the space tangent to V at $0, b_{2}, b_{3}, 0, b_{5}, b_{6}, 0,0,0,0$, where the b 's satisfy $b_{2} b_{6}-b_{3} b_{5}=0, b_{2}^{2}+b_{5} b_{6}=0$.
(5) Suppose $a_{4}=a_{10}=0, a_{3} \neq 0$. In T_{6}, b can be selected to make $a_{2}^{\prime}=a_{7}^{\prime}$, and a to make $a_{6}^{\prime}=0$. Then $a_{5}^{\prime}=a_{3} a b+a_{5}-a_{6} b+a_{7} a+a_{9} c$ which can be made zero if $a_{9} \neq 0$. If $a_{9}=0, S_{3}$ intersects V in a conic. Thus we have only to consider $S_{3}=k, l, n, 0,0,0, l, m, n, 0$. It has three τ-planes, two on $O_{1} O_{2}$; it is the same as 38 with the two τ-planes on $O_{1} O_{2}$ interchanged.
(6) Suppose $a_{3}=0, a_{4} a_{10} \neq 0$. In T_{6}, b can be selected to make $a_{9}^{\prime}=0$, a to make $a_{2}^{\prime}=a_{7}^{\prime}$, and c to make $a_{6}^{\prime}=0$. If $a_{5}^{\prime} \neq 0$, this is 37 ; if $a_{5}^{\prime}=0$, P_{4}^{\prime} is on V.
(7) Suppose $a_{4}=0, a_{3} a_{10} \neq 0$. In T_{6}, b can be selected to make $a_{9}^{\prime}=0$, c to make $a_{6}^{\prime}=0$, and a to make $a_{2}^{\prime}=a_{7}^{\prime} . \quad a_{5}^{\prime}$ cannot be zero since P_{4}^{\prime} is not on V. This S_{3} has three τ-planes, two on $O_{1} O_{2}$. Transformation T_{7} can be used to change it into 38 .
(8) Suppose $a_{10}=0, a_{3} a_{4} \neq 0$. In T_{6}, a can be selected to make $a_{6}^{\prime}=0$, b to make $a_{2}^{\prime}=a_{7}^{\prime}$, and then if $a_{9} \neq 0, c$ can be selected to make $a_{5}^{\prime}=0$. This S_{3} has a third point on V. Hence $a_{9}=0$ and S_{3} is 42 . It contains the τ-plane $m=0$ tangent to V at P_{1}; it contains also the pencil of τ-planes $b_{3} l-b_{2} n=0$ each in the space tangent to V at $0, b_{2}, b_{3}, 0, b_{5}, b_{6}, 0,0,0,0$, where $b_{2} b_{6}-b_{3} b_{5}=0, b_{3}^{2}-b_{6}^{2}+b_{3} b_{5}=0$.

We have shown that any S_{3} with just two points on V is one of spaces 36 to 42. We have still to show that 41 and 42 differ other than by a choice of coordinate system. In either space any plane on $O_{1} O_{2}$ could be taken for $P_{1} P_{2} P_{3}$, and it is necessary to show that no such choice could turn one into the other.

We examine further the space

$$
k, l, n, n, n, 0, l, m, 0,0
$$

For any point P the B 's are

$$
\begin{aligned}
& B_{1}=k m+n^{2} \\
& B_{2}=-l^{2}+n^{2} \\
& B_{3}=-l n \\
& B_{4}=m n \\
& B_{5}=l m
\end{aligned}
$$

The three-space R in X determined by P is

$$
\operatorname{lm} x_{1}-m n x_{2}-\ln x_{3}+\left(l^{2}-n^{2}\right) x_{4}+\left(k m+n^{2}\right) x_{5}=0
$$

If we suppose a set $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ given, the above relation defines a quadric surface in S_{3}. Every point P, excepting P_{1} and P_{3}, determines a three-space in X; on the other hand, every point A in X, without exception, determines a quadric Q in S_{3}. If A is in the space R determined by P, then P is on the quadric Q determined by A. The points of S_{3} which are on V do not determine R 's, but these points are on every Q determined by a point of X. These relations do not depend on any particular choice of the coordinate system. A change of coordinate system changes the B 's but does not change the fourparameter system of quadrics in S_{3}.

Now S_{3} has two points, P_{1} and P_{3}, on V. Each of these points is the image of a line in X. The points of a line in X determine the quadrics of a
pencil in S_{3}. Consequently, the set of quadrics in S_{3} determined by the points of X contains two pencils uniquely defined by the relation of S_{3} to V. The pencil determined by p_{1} is $l m x_{1}-m n x_{2}=0$; the pencil determined by P_{3} is $\ln x_{3}-\left(l^{2}-n^{2}\right) x_{4}=0$. Every quadric of the first pencil consists of a pair of planes one of which is $m=0$; likewise, every quadric of the second pencil is a pair of planes also, since $x_{3}^{2}+4 x_{4}^{2}$ is irreducible.

For S_{3} of type 42 the corresponding system of quadrics is

$$
l m x_{1}-m n x_{2}+n^{2} x_{3}+l^{2} x_{4}+(k m-l n) x_{5}=0
$$

The special pencils are

$$
\begin{aligned}
& l m x_{1}-m n x_{2}=0, \\
& n^{2} x_{3}+l^{2} x_{4}=0, \\
& \text { given by } P_{1}
\end{aligned}
$$

The latter pencil contains the two quadrics $l^{2}=0$ and $n^{2}=0$, each consisting of two coincident planes. Thus by no change of coordinate system can 41 be changed into 42.
(viii) Three-spaces with one point on V.
43. $k, l, 0,0, n, m, l, k+r m, m, 0, x^{3}+r x-1$ irreducible.
44. $k, l, 0, n, m, n, l, k, 0,0$.
45. $k, l, n, 0, n, m, l, k, 0,0$.
46. $k, l, 0,-n, n, m, l, k, 0,0$.
47. $k, l, n, 0,0, m, l, k, n, 0$.
48. $k+n, l, m, 0,0, r n, l, k, n, 0, x^{3}+x^{2}-r^{2}$ irreducible.
49. $k, l, n, 0,0, m, l+m, k, n, 0$.
50. $k, l, 0,-n, n, m, l+m, k, 0,0$.
51. $k, l, n,-n, n, 0, l, k, 0, m$.
52. $k, l, n, n,-n, 2 n, l, k, 0, m$.

Space 43 is tangent to V at P_{4} which is on V; none of the others has this property. Spaces 44 and 45 contain one plane each tangent to V at O, the point of S_{3} on V; in 45 this tangent plane is a Σ-plane; in 44 it is not. Spaces 46, 47, 48 intersect the space tangent to V at O in a line; 46 contains two τ-planes; 47 and 48 each contains only one; in 47 the τ-plane passes through O; in 48 it does not. The space tangent to V at O intersects none of the other spaces anywhere except at O; space 49 contains a single τ-plane; space 50 contains two. Spaces 51 and 52 contain no τ-planes; space 51 contains three special lines which will be described later; space 52 contains only one special line.

In examining the three-spaces with one point O on V we shall make what use we can of the point O and the space tangent to V at O.

There is one obvious S_{3} lying in the space tangent to V at O. Any plane in it not on O is a τ-plane with no point on V, and hence is $k, l, 0,0,0, m, l, k+r m, m, 0$; it is in the space tangent to V at
$0,0,0,0,1,0,0,0,0,0$. The space determined by the plane and the point is 43 ; it may be readily verified that there is no other point on V.

There is no S_{3} with just one point on V which is the space tangent to V at a point not in S_{3}. Such an S_{3} would contain $P_{1} P_{2} P_{3}$ above and the point $O=P_{4}$ for which $a_{3}=a_{4}=a_{10}=0$, and

$$
a_{1} a_{8}-a_{2} a_{6}=0, \quad a_{1} a_{9}-a_{2} a_{7}=0, \quad a_{5} a_{10}-a_{6} a_{9}=0
$$

The point k, l, m, n whose coordinates satisfy $k+a_{1} n=l+a_{7} n=m+a_{6} n=$ 0 is also a point of V. This point is different from O unless $a_{1}=a_{6}=a_{7}=0$. If they are zero, then $l=m+a_{9} n=k+r m+a_{8} n=0$ is on V and is different from O unless $a_{8}=a_{9}=0$ also. The only nonzero coordinate of P_{4} is thus seen to be a_{5}, and the space is 43 .

We consider next S_{3} 's which contain O and a plane tangent to V at O. This plane is $k, l, 0,0, m, 0, l, k, 0,0$. It contains no Σ-line except the lines through $O . \quad P_{1}$ and P_{2} can be selected arbitrarily in the plane except that $P_{1} P_{2}$ does not pass through $P_{3} . S_{3}$ will contain the point $P_{4}=$ $a_{1}, a_{2}, a_{3}, a_{4}, 0, a_{6}, 0,0, a_{9}, a_{10}$. Not all of a_{3}, a_{4}, a_{10} are zero. We consider first those S_{3} 's for which $a_{4} \neq 0 . \quad T_{3}$ can be applied to make $a_{10}^{\prime}=0$; T_{2} can be applied to make $a_{2}^{\prime}=a_{7}^{\prime}, a_{9}^{\prime}=0$; and then T_{1} can be applied to make $a_{1}^{\prime}=a_{2}^{\prime}=0$. We then have

$$
P_{4}=0,0, r, 1,0,1,0,0,0,0
$$

The point $k, l, m, n=0, r, 1, r^{2}$ is on V. Hence S_{3} has more than one point on V unless $r=0$. If $r=0, S_{3}$ is 44 . The τ-planes in S_{3} are $b_{1} k-b_{2} n=0$, each in the space tangent to V at $b_{1}, b_{2}, 0,0, b_{5}, 0, b_{7}, 0, b_{9}, 0$ which must be on V; they constitute a pencil on $P_{2} P_{3}$.

Those S_{3} 's which contain $P_{1} P_{2} P_{3}$ above and a P_{4} which has $a_{4}=0$ give nothing new. The interchange of P_{1} and P_{2} interchanges a_{3} and a_{4} in P_{4}, and hence it changes S_{3} into one we have just considered unless $a_{3}=a_{4}=0$, and in that case S_{3} has at least two points on V.

In any other S_{3} with just one point on V and a τ-plane tangent to V at O, the τ-plane must be a Σ-plane. Any other plane on O contains a Σ-line necessarily tangent to V at O. If such other plane is a τ-plane, it can be taken to be

$$
k, l, 0,0,0, m, l, k, 0,0
$$

The line $P_{1} P_{3}$ is the tangent line; P_{2} is any point in the plane not on $P_{1} P_{3}$. P_{4} can be selected in the Σ-plane $P_{1} P_{3} P_{4} . \quad R_{4}$ is then R_{1} which is $x_{5}=0$. Therefore $P_{4}=a_{1}, a_{2}, a_{3}, 0, a_{5}, a_{6}, 0, a_{8}, 0,0$. Since P_{4} is in the space tangent to V at $P_{3}, a_{2}=0$; also, P_{4} can be moved along the line $P_{1} P_{4}$ to make $a_{8}=0$ and along the line $P_{3} P_{4}$ to make $a_{6}=0$. Hence S_{3} contains the point $P_{4}^{\prime}=a_{1}, 0, a_{3}, 0, a_{5}, 0,0,0,0,0$. If $a_{1} \neq 0, T_{2}$ can be applied to change it to zero. Then S_{3} is 45 . It contains the τ-planes $b_{1} k-b_{6} l+b_{5} n=0$, each in the space tangent to V at $b_{1}, 0,0,0, b_{5}, b_{6}, 0,0,0,0$.

Any other S_{3} which contains a Σ-plane on O can contain no τ-plane on O
except that one. Hence any other plane on O is not a τ-plane but contains a line tangent to V at O; it is $k, l, m, 0,0,0, l, k, 0,0$. The tangent line is $l=0$; it contains P_{1} and is in the Σ-plane. If P_{4} is selected in the Σ-plane, then $R_{4}=R_{1}$, and P_{4} has $a_{4}=a_{7}=a_{9}=a_{10}=0$. Since $P_{3} P_{4}$ is tangent to $V, a_{5}=0$. It is easy to verify that S_{3} contains a second point on V : viz., $k=m=l+a_{2} n=0$, if $a_{2} \neq 0$, or another point on $P_{1} P_{4}$ if $a_{2}=0$.

For all other S_{3} 's with just one point on V the space tangent to V at O can intersect S_{3} in at most a line. We consider now the possibility that S_{3} contains a line tangent to V at O and contains a τ-plane on that line. The τ-plane can be taken to be $k, l, 0,0,0, m, l, k, 0,0$. If S_{3} contains any other Σ-line, the Σ-line does not cut $P_{1} P_{3}$, for then S_{3} would contain a Σ-plane. Since P_{2} is arbitrary in $P_{1} P_{2} P_{3}$, we may assume the Σ-line is $P_{2} P_{4}$ where $P_{4}=a_{1}, a_{2}, 0, a_{4}, a_{5}, 0,0,0, a_{9}, 0$. If $a_{4}=0$, the line $P_{1} P_{4}$ contains a point of V. Since $a_{4} \neq 0, T_{2}$ can be applied to remove a_{2} and a_{9}, and then T_{1} to remove $a_{1} . \quad S_{3}$ is 46 ; it contains only the two τ-planes $k=0$ and $n=0$.

We now consider an S_{3} with a line tangent to V at O, with a τ-plane on that tangent line, but with no Σ-line except the tangent line. The τ-plane is $k, l, 0,0,0, m, l, k, 0,0$. The line tangent to V at $O=P_{3}$ is $l=0 . \quad S_{3}$ contains the point $P_{4}=a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, 0,0,0, a_{9}, a_{10}$. Not all of a_{3}, a_{4}, a_{10} are zero, for otherwise S_{3} would be 43 .
(a) Suppose $a_{4} \neq 0 . \quad T_{3}$ can be used to remove $a_{10} ; T_{2}$ can be used to make $a_{2}=a_{9}=0 ; T_{1}$ can be used to remove $a_{1} ; T_{10}$ can be used to remove a_{3}. S_{3} is 46 .
(b) Suppose $a_{4}=0, a_{10} \neq 0 . \quad T_{3}$ will make $a_{3}=0$, and T_{2} will make $a_{1}=$ $a_{2}=0$. Then $P_{4}^{\prime}=0,0,0,0, a_{5}, 0,0,0, a_{9}, a_{10}$. If $a_{9} \neq 0$, the line $P_{3} P_{4}^{\prime}$ contains two points of V. If $a_{9}=0, S_{3}$ is readily seen to contain a pencil of τ-planes and to be 44.
(c) Suppose $a_{4}=a_{10}=0$. Then $P_{4}=a_{1}, a_{2}, a_{3}, 0, a_{5}, 0,0,0, a_{9}, 0$. $a_{9} \neq 0$, for otherwise $P_{1} P_{4}$ would be a Σ-line. T_{10} can be selected to make $a_{1}^{\prime}=a_{8}^{\prime}, a_{2}^{\prime}=a_{7}^{\prime}$. Hence S_{3} contains $P_{4}^{\prime}=0,0, a_{3}, 0, a_{5}, 0,0,0, a_{9}, 0$. Then T_{1} with $a=0$ can be selected to make $a_{5}=0 . \quad S_{3}$ is 47 ; it contains only one τ-plane.

We have so far determined all the S_{3} 's with one point O on V which contain a line tangent to V at O and a τ-plane on the tangent line. Any other S_{3} with a line tangent to V at O will contain the plane

$$
k, l, m, 0,0,0, l, k, 0,0
$$

which is not a τ-plane, but which contains the tangent line $l=0 . \quad S_{3}$ contains the point $P_{4}=a_{1}, a_{2}, 0, a_{4}, a_{5}, a_{6}, 0,0, a_{9}, a_{10}$. We now apply transformation T_{8}, which leaves P_{1}, P_{2}, and P_{3} unchanged.
(a) If $a_{9} \neq 0, T_{8}$ will remove a_{4} and a_{10}. In this case $m=0$ is a τ-plane not on O; such an S_{3} is different from any we have obtained previously.
(b) If $a_{9}=0, a_{5} \neq 0, T_{8}$ will remove a_{1} and $a_{6} . P_{4}=$ $0, a_{2}, 0, a_{4}, a_{5}, 0,0,0,0, a_{10}$.
(c) If $a_{5}=a_{9}=0$, then $P_{4}=a_{1}, a_{2}, 0, a_{4}, 0, a_{6}, 0,0,0, a_{10}$. Here the plane $l=0$ is tangent to V at P_{3}. Hence, we need consider cases (a) and (b) only.

Case (a). T_{3} will remove a_{2}, and T_{1} will remove a_{5}. Then, $P_{4}^{\prime}=$ $a_{1}, 0,0,0,0, a_{6}, 0,0, a_{9}, 0$. The unit point in X can be chosen to make $a_{1}=a_{9}$, if $a_{1} \neq 0$, but a_{6} cannot at the same time be made equal to a_{9} unless $a_{1}^{3}=a_{6}^{2} a_{9}$. If $a_{1}=a_{6}=a_{9}$, or if $a_{1}=0, S_{3}$ has a second point on V. If $a_{6}=0, S_{3}$ contains the Σ-line $P_{2} P_{4}$. Hence, S_{3} is

$$
k+n, l, m, 0,0, r n, l, k, n, 0, \quad x^{3}+x^{2}-r^{2} \text { irreducible. }
$$

This is 48; it contains the τ-plane $m=0$. The irreducibility of $x^{3}+x^{2}-r^{2}$ is required for there to be no second point on V.

Case (b). $\quad a_{10} \neq 0$, for otherwise $P_{2} P_{4}$ would be a Σ-line. If $a_{4} \neq 0, T_{3}$ would make $a_{10}=0$. Hence, $a_{4}=0$. The unit point can be chosen to give P_{4} one of the forms

$$
\text { (1) } 0,1,0,0,1,0,0,0,0,1, \quad \text { (2) } 0,1,0,0,0,0,0,0,0,1 \text {, }
$$

$$
\text { (3) } 0,0,0,0,1,0,0,0,0,1,
$$

depending on the zeros of a_{2} and a_{5}. In cases (1) and (2), S_{3} has two points on V; in case (3), the plane $l=0$ is a τ-plane on the tangent line, and S_{3} is 47 .

The remaining S_{3} 's with one point on V will contain no line tangent to V at O. Such an S_{3} contains the plane $k, l, 0,0,0, m, l+m, k, 0,0$ and a point $P_{4}=a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, 0,0,0, a_{9}, a_{10}$. Not all of a_{3}, a_{4}, and a_{10} are zero, for otherwise S_{3} would lie in the space tangent to V at $0,0,0,0,1,0,0,0,0,0$.
(a) Suppose $a_{4}=a_{10}=0$. If $a_{9}=0$, the line $P_{1} P_{4}$ is a Σ-line, and since P_{1} is on the Σ-line $l+m=n=0, S_{3}$ contains a Σ-plane not on P_{3} and hence contains another point of V. Since $a_{9} \neq 0, T_{11}$ with $a_{2}-a_{9} a=0$ removes $a_{2} ; T_{2}$ will remove a_{1}; and T_{1} will remove a_{5}. The unit point can be chosen so that $P_{4}=0,0,1,0,0,0,0,0,1,0 . \quad S_{3}$ is space 49 ; it contains a single τ-plane and has no line tangent to V.
(b) Suppose $a_{4} \neq 0$. If not both a_{4} and a_{10} are zero, we may suppose $a_{4} \neq$ 0. T_{11} can be used to make $a_{10}=0 ; T_{2}$ will remove a_{9}; and T_{1} will remove a_{1}. Hence, $P_{4}=0, a_{2}, a_{3}, a_{4}, a_{5}, 0,0,0,0,0 . S_{3}$ contains two τ-planes: $n=0$ and $k=0$. If $a_{3} \neq a_{4}, S_{3}$ contains no line tangent to V, and hence is different from 46. We may apply T_{12} to remove a_{3}, and then choose the unit point so that $P_{4}=0, r, 0,-1,1,0,0,0,0,0$. If $r=0, S_{3}$ is 50 which is different from any S_{3} previously obtained. If $r \neq 0$ and S_{3} has no point except P_{3} on V, it contains two τ-planes on P_{3}, and an interchange of the τ-planes will put S_{3} into 50 . We shall not carry out this change, but will point out the relations that must be considered in doing it.

The space $k, l, 0,-n, n, m, l+m, k, 0,0$ contains two τ-planes: $k=0$ and $n=0$. The line $l+m=n=0$ is the Σ-line in one of them; the line
$P_{2} P_{4}$ is the Σ-line in the other. The line $P_{2} P_{3}$ is special, the intersection of the two τ-planes. The two Σ-lines in the τ-planes determine two special points on the line $P_{2} P_{3}$, their intersections with $P_{2} P_{3}$. The point P_{2} is therefore uniquely determined as the intersection of the line in both τ-planes with the Σ-line in one of them. Every point of a Σ-line determines another point of it, the point conjugate to it with respect to its "imaginary" intersections with $V . \dot{P}_{2}$ and P_{4} are conjugate points of the Σ-line in $k=0$; P_{1} and $(0,1,-1,0)$ are conjugate points of the Σ-line in $n=0$, the second point being the intersection of the Σ-line with $P_{2} P_{3}$. Thus the coordinate system in S_{3} is determined as soon as we decide in which of the τ-planes to take P_{1}. In the case above with $r \neq 0$, a change of coordinates required by selecting P_{1} in the plane $k=0$ puts S_{3} into 50 .

Any S_{3} with one point O on V, other than those so far obtained, will have no τ-plane. Any plane on O will be one or the other of types 14 and 15 of the list of planes. We shall show first that S_{3} always contains a plane of type 15.

Suppose S_{3} contains a plane of type $14: k, l, m,-m, 0,0, l, k, 0,0$. Then S_{3} contains the point $P_{4}=0,0,0, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}$. Any point in S_{3} is

$$
k, l, m,-m+a_{4} n, a_{5} n, a_{6} n, l+a_{7} n, k+a_{8} n, a_{9} n, a_{10} n
$$

The points of intersection of S_{3} with the space tangent to V at P_{3} satisfy $a_{5} n=k+\left(a_{8}+a_{9}\right) n=l+\left(a_{6}+a_{7}\right) n=0 . \quad S_{3}$ has no line tangent to V at P_{3} and hence $a_{5} \neq 0$. Then a and b in T_{16} can be selected to make $a_{1}^{\prime}=a_{8}^{\prime}$, $a_{2}^{\prime}=a_{7}^{\prime}$, and consequently S_{3} contains $P_{1} P_{2} P_{3}$ and

$$
P_{4}=0,0,0, a_{4}, a_{5}, a_{6}, 0,0, a_{9}, a_{10}
$$

For a point P in S_{3} we have

$$
\begin{aligned}
& B_{1}=k^{2}-a_{6} l n+a_{5} m n \\
& B_{2}=a_{9} k n-l^{2}-a_{5} m n+a_{4} a_{5} n^{2} \\
& B_{3}=a_{10} k n-l m-a_{6} m n+a_{4} a_{6} n^{2} \\
& B_{4}=a_{10} l n-k m+a_{4} k n-a_{9} m n \\
& B_{5}=k l+\left(a_{5} a_{10}-a_{6} a_{9}\right) n^{2}
\end{aligned}
$$

Using the relation $B_{5} x_{1}-B_{4} x_{2}+B_{3} x_{3}-B_{2} x_{4}+B_{1} x_{5}=0$, a point in X determines a quadric Q in S_{3}. The point P_{3}, being on V, determines a line p_{3} in X; the points of p_{3} determine the quadrics of a special pencil in S_{3}. The line p_{3} is $\left\{\begin{array}{l}1,0,0,0,0 \\ 0,0,0,1,-1\end{array}\right.$. The corresponding pencil of quadrics is determined by

$$
k l+\left(a_{5} a_{10}-a_{6} a_{9}\right) n^{2}=0, \quad k^{2}+a_{9} k n-l^{2}-a_{6} l n+a_{4} a_{5} n^{2}=0
$$

The first of these two quadrics intersects each of the planes $k=0$ and $l=0$ in a line through P_{3}. Hence, both planes are of type 15.

We have thus shown that S_{3} contains the plane

$$
k, l, 0,0,0,0, l, k, 0, m
$$

S_{3} contains the point $P_{4}=0,0, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0$. Not both a_{3} and a_{4} are zero, for then S_{3} would contain a τ-plane; $a_{5} \neq 0$, for otherwise the line $P_{3} P_{4}$ would be tangent to V at $P_{3} . \quad T_{4}$ can be used to make $a_{1}^{\prime}=a_{8}^{\prime}$ and $a_{2}^{\prime}=a_{7}^{\prime}$. Hence we may assume $P_{4}=0,0, a_{3}, a_{4}, a_{5}, a_{6}, 0,0, a_{9}, 0$. This is as far as we can go in reducing P_{4} without changing the plane $P_{1} P_{2} P_{3}$. We shall now find a special line in S_{3} and making use of it determine a canonical form.

We examine the special pencil of quadrics in S_{3} determined by the line p_{3} in X. For a point P in S_{3} we have

$$
\begin{aligned}
B_{1} & =k^{2}-a_{6} l n+a_{3} a_{5} n^{2} \\
B_{2} & =a_{9} k n-l^{2}+a_{4} a_{5} n^{2} \\
B_{3} & =k m-a_{3} l n+a_{4} a_{6} n^{2} \\
B_{4} & =l m+a_{4} k n-a_{3} a_{9} n^{2} \\
B_{5} & =k l+a_{5} m n-a_{6} a_{9} n^{2}
\end{aligned}
$$

The line p_{3} is $\left\{\begin{array}{l}0,0,0,1,0 \\ 0,0,0,0,1\end{array}\right.$. The quadrics of the pencil are

$$
k^{2}+a_{9} \lambda k n-\lambda l^{2}-a_{6} l n+a_{5}\left(a_{3}+a_{4} \lambda\right) n^{2}=0
$$

These quadrics are all cones with vertex at P_{3}. The condition that the quadric given by λ be a pair of planes is that

$$
\begin{equation*}
a_{9}^{2} \lambda^{3}+3 a_{4} a_{5} \lambda^{2}+3 a_{3} a_{5} \lambda-a_{6}^{2}=0 \tag{A}
\end{equation*}
$$

have a root in $\mathrm{GF}(p)$. We shall show that this root exists.
So far we have not used to the full the fact that S_{3} intersects V only at P_{3}. The conditions that P be on V are that $B_{i}=0, i=1, \cdots, 5$. From each of the pairs $B_{1}=B_{2}=0$ and $B_{3}=B_{4}=0$ it follows that $a_{4} k^{2}+a_{3} l^{2}-$ $a_{3} a_{9} k n-a_{4} a_{6} l n=0$. Hence if we solve $B_{2}=0$ for k in terms of l and n, use that value of k in $B_{1}=0$, and solve $B_{4}=0$ for m, we will have a set of values of k, l, m, n which satisfy the first four equations. The equation obtained from $B_{1}=0$ is

$$
\begin{equation*}
l^{4}-2 a_{4} a_{5} l^{2} n^{2}-a_{6} a_{9}^{2} l n^{3}+\left(a_{4}^{2} a_{5}^{2}+a_{3} a_{5} a_{9}^{2}\right) n^{4}=0 \tag{B}
\end{equation*}
$$

This is also the condition that k, l, m, n satisfy $B_{5}=0$. The condition that S_{3} intersect V only at P_{3} is that (B) have no solution in GF(p). Thus (B) must be either an irreducible quartic, or else the product of two irreducible
quadratics. In either case the resolvent cubic
(C) $t^{3}+2 a_{4} a_{5} t^{2}-4\left(a_{4}^{2} a_{5}^{2}+a_{3} a_{5} a_{9}^{2}\right) t-\left(a_{4}^{3} a_{5}^{3}+a_{3} a_{4} a_{5}^{2} a_{9}^{2}+a_{6}^{2} a_{9}^{4}\right)=0$
of (B) has a root in $\operatorname{GF}(p){ }^{17}$
There exists a transformation $t=(a \lambda+b) /(c \lambda+d), a, b, c, d$ in $\operatorname{GF}(p)$, which changes (C) into (A). ${ }^{18}$ Hence if (B) has no root in GF p), (A) has a root in $\operatorname{GF}(p)$.

The pencil of cones in S_{3} determined by the line p_{3} therefore contains one member which consists of a pair of planes. The line of vertices of this quadric is the special line we sought. We take P_{1} on this line of vertices. Any plane on $P_{1} P_{3}$ which is not a plane of the quadric determined by the root of (A) in question is cut by the pencil of cones determined by p_{3} in a pencil of conics one of which is the line $P_{1} P_{3}$ counted twice. Hence, any such plane is of the type of 15 of the list of planes and may therefore be taken to be $P_{1} P_{2} P_{3}$ above. The cone $B_{2}=0$ intersects the plane $n=0$ in the parabola $l^{2}=0$ which is the line $P_{1} P_{3}$ counted twice. The cone $B_{2}=0$ intersects the plane $l=0$ in the conic $a_{9} k n+a_{4} a_{5} n^{2}=0$; since this is the parabola $n^{2}=0$, it follows that $a_{9}=0$. With this choice of coordinate system the equation (B) above becomes $\left(l^{2}-a_{4} a_{5} n^{2}\right)^{2}=0$. Since (B) has no linear factor in $\operatorname{GF}(p)$, it follows that $a_{4} a_{5}$ is not a square. Moreover, the quadric $B_{2}=0$ is $l^{2}-a_{4} a_{5} n^{2}=0$ and consists of two "imaginary" planes; the only points on it are the vertices. Any plane on $P_{1} P_{3}$ will therefore serve for $P_{1} P_{2} P_{3}$ above, but when the plane is chosen, the locations of P_{1}, P_{2}, and P_{4} are determined.

The cones of the special pencil determined by p_{3} are

$$
k^{2}-a_{6} l n+\lambda l^{2}+a_{5}\left(a_{3}-a_{4} \lambda\right) n^{2}=0
$$

The matrix of the conic intersection of the cone with $P_{1} P_{2} P_{4}$ is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \lambda & 3 a_{6} \\
0 & 3 a_{6} & a_{5}\left(a_{3}-a_{4} \lambda\right)
\end{array}\right]
$$

Setting the determinant of this matrix equal to zero and solving for λ we obtain the λ 's which give quadrics consisting of one or two planes. The rank of the matrix is at least two unless $a_{3}=a_{6}=0$, in which case the plane $k=0$ is a τ-plane. Therefore a_{3} and a_{6} are not both zero. One of the degenerate

[^13]cones is given by $\lambda=\infty$; the others are given by λ 's which satisfy
$$
a_{4} a_{5} \lambda^{2}-a_{3} a_{5} \lambda+2 a_{6}^{2}=0
$$

The discriminant of this quadratic, $a_{3}^{2} a_{5}^{2}-a_{4} a_{5} a_{6}^{2}$, cannot be zero since it is the sum of two squares not both zero. ${ }^{19}$ Hence, the quadratic has two distinct roots, both or neither in $\operatorname{GF}(p)$. There are two new S_{3} 's corresponding to these two possibilities.

We consider first the case where the special pencil of cones contains three degenerate members. Two of them must each consist of a pair of imaginary planes, for otherwise S_{3} would have points on V besides P_{3}. We may take P_{2} to be on the line of vertices of the second degenerate cone. Then the cone $k^{2}-a_{6} l n+a_{3} a_{5} n^{2}=0$ cuts the plane $k=0$ in a parabola, and hence $a_{6}=0$. A choice of the unit point puts S_{3} in the form 51.

When the special pencil of cones contains only one degenerate member, the one given by $\lambda=\infty$, the number $a_{3}^{2} a_{5}^{2}-a_{4} a_{5} a_{6}^{2}$ must be a not-square, and hence neither a_{3} nor a_{6} is zero. A proper selection of the unit point will put P_{4} into one of

$$
0,0,1,1,-1, r, 0,0,0,0, \quad 0,0,1,-1,1, r, 0,0,0,0
$$

depending on whether $a_{3} a_{5}$ is not or is a square; in either case $1+r^{2}$ is not a square. There are $(p+1) / 2$ possibilities for r, and hence there are $p+1$ possibilities for P_{4}. We recall that the plane $P_{1} P_{2} P_{3}$ is arbitrary on the line $P_{1} P_{3}$. There are $p+1$ planes in S_{3} on $P_{1} P_{3}$. For a given S_{3}, the plane $P_{1} P_{2} P_{3}$ can be selected ${ }^{20}$ to give P_{4} any one of the $p+1$ forms listed above. Hence 52 is a canonical form for S_{3}.

6. Three-spaces with no point on V

53. $k, l, m, 0, m, n, l, k+n, n, 0$.
54. $k, l, 0,2 n, m+3 n, n, l, k, 0, m$.

Space 53 contains the τ-plane $m=0$ and the Σ-line $P_{1} P_{3}$; space 54 contains no τ-plane and no Σ-line.

We shall prove first that an S_{3} with no point on V contains a τ-plane and a Σ-line, or it contains neither. In an S_{3} with no point on V every plane is of one of the types $7,8,9$ of the list of planes. If S_{3} contains more than one τ-plane, the intersection of two of them is a Σ-line; hence the theorem is true, or else S_{3} contains not more than one τ-plane. Likewise, if S_{3} contains more than one $\boldsymbol{\Sigma}$-line, it contains a τ-plane. To prove this, let $k, l, m, 0, m, 0, l, k, 0,0$

[^14]be a plane on one Σ-line. For this canonical form P_{2} can be any point in the plane not on the Σ-line $P_{1} P_{3}$. Hence if S_{3} contains a second Σ-line, it may be taken to pass through $P_{2} . P_{4}$ may be selected on the second Σ-line, and hence $P_{4}=a_{1}, a_{2}, 0, a_{4}, a_{5}, 0, a_{7}, 0, a_{9}, 0$. If $a_{9}=0$, then $k=0$ is a τ-plane. If $a_{9} \neq 0$, transformation T_{13} can be used to remove a_{4}. Then $m+a_{3}^{\prime} n=$ 0 is a τ-plane. Hence, S_{3} contains not more than one τ-plane and not more than one Σ-line, or else it contains both a τ-plane and a Σ-line.

We now show that if S_{3} contains a Σ-line it contains a τ-plane. S_{3} contains a plane which is not a τ-plane and is not on the Σ-line; it may be taken to be $k, l, 0,0, m, 0, l, k, 0, m$. This plane contains the uniquely defined conic C : $m^{2}-2 k l=0$. The Σ-line intersects this plane (a) on C, (b) outside C, or (c) inside C.
(a) The Σ-line passes through P_{1}. Then P_{4} on the Σ-line is

$$
a_{1}, a_{2}, a_{3}, 0, a_{5}, a_{6}, 0, a_{8}, 0,0
$$

Then $l+a_{2} n=0$ is a τ-plane.
(b) The Σ-line passes through $P_{3} . \quad P_{4}$ has $a_{1}=a_{2}=a_{3}=a_{4}=0$, and $m+a_{10} n=0$ is a τ-plane.
(c) The Σ-line passes through $1,1,0,0,0,0,1,1,0,0$, which is inside C. Then $P_{4}=a_{1}, a_{2}, a_{3},-a_{3}, a_{5}, a_{6}, a_{1}-a_{6}, a_{8}, a_{2}-a_{8}, a_{3}$. This is exactly the situation that was discussed in determining the space 36 ; it was shown there that $k+l+\left(a_{1}+a_{2}\right) n=0$ is a τ-plane. Hence, if S_{3} has no point on V and contains a Σ-line, it contains a τ-plane.

Now assume that S_{3} contains a τ-plane. S_{3} contains the plane $k, l, 0,0, m, 0, l, k, 0, m$. The τ-plane intersects this plane in a line which is (a) a secant of C, (b) a tangent to C, or (c) a line through P_{3} not intersecting C.
(a) Let the τ-plane contain $P_{1} P_{2}$, and select P_{4} on it. Then $P_{4}=$ $a_{1}, a_{2}, 0,0, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0$. The line $k+a_{1} n=l+a_{2} n=0$ is a Σ-line.
(b) Let the τ-plane contain $P_{1} P_{3}$ and select P_{4} on it.

$$
P_{4}=a_{1}, 0, a_{3}, 0, a_{5}, a_{6}, a_{7}, a_{8}, 0, a_{10}
$$

The Σ-line is $l+a_{7} n=m+a_{10} n=0$.
(c) Let the τ-plane contain P_{3} and $1,-1,0,0,0,0,-1,1,0,0$. The τ-plane is in the space tangent to V at $0,0,0,0,0,1,-1,-1,1,0$. It contains $P_{4}=0,0, a_{3},-a_{3}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0, a_{6}+a_{7}+a_{8}+a_{9}=0$. For any point P in the τ-plane

$$
\begin{aligned}
& B_{1}=k^{2}+\left(a_{6}+a_{8}\right) k n+a_{3} m n+a_{3} a_{5} n^{2} \\
& B_{2}=a_{9} k n-k^{2}+a_{7} k n-a_{3} m n-a_{3} a_{5} n^{2}, \\
& B_{3}=k m+a_{3} k n-\left(a_{3} a_{6}+a_{3} a_{7}\right) n^{2}, \\
& B_{4}=-k m-a_{3} k n-\left(a_{3} a_{8}+a_{3} a_{9}\right) n^{2}, \\
& B_{5}=m^{2}+a_{5} m n-k^{2}+a_{7} k n-a_{8} k n+\left(a_{7} a_{8}-a_{6} a_{9}\right) n^{2} .
\end{aligned}
$$

The three-space in X determined by P is $B_{5} x_{1}-B_{4} x_{2}+B_{3} x_{3}-B_{2} x_{4}+B_{1} x_{5}=0$. For any $k, m, n, \quad B_{1}+B_{2}=0$ and $B_{3}+B_{4}=0$. If k, m, n are selected so that $B_{3}=0$ and $B_{1}=B_{5}$, then the three-space will be $x_{1}+x_{4}+x_{5}=0$, which is the three-space determined by $1,1,0,0,0,0,1,1,0,0$. The solution is $k=a_{6}+a_{7}, m=2 a_{3}, n=2$. This completes the proof that if S_{3} with no point on V contains a τ-plane, it contains a Σ-line. Also it completes the proof of the theorem in italics above.

We now determine a canonical form for S_{3} which has a τ-plane and a Σ-line but has no point on V. Any plane on the Σ-line is $k, l, m, 0, m, 0, l, k, 0,0$, where P_{1} is the intersection of the τ-plane and the Σ-line and P_{2} is also in the τ-plane. The τ-plane is in the space tangent to V at $0,0,0,0,1,0,0,0,0,0$. If P_{4} is in the τ-plane, then $a_{3}=a_{4}=a_{10}=0$. Since P_{1} and P_{2} are in the τ-plane also, we may take

$$
P_{4}=0,0,0,0, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0
$$

The condition that S_{3} have no point on V is that the polynomial $f(x)=$ $a_{9} x^{3}-a_{7} x^{2}+a_{8} x-a_{6}$ be irreducible. Every suitable S_{3} determines such an irreducible cubic, and every irreducible cubic determines a suitable S_{3}. We note that $a_{9} \neq 0$, and hence T_{1} can be used to remove a_{5}.

By changing the unit point we may transform $f(x)$ as it is transformed by $x=d x^{\prime}$; by interchanging P_{1} and P_{2} we may transform $f(x)$ as it is transformed by $x=1 / x^{\prime}$; by means of T_{3}, which leaves P_{3} unchanged, we may transform $f(x)$ as it is transformed by $x=x^{\prime}+a$. Therefore any S_{3} with a Σ-line but no point on V is space 53 .

The three-space

$$
k, l, 0,2 n, m+3 n, n, l, k, 0, m
$$

has no point on V and has no Σ-line. To prove this directly is rather difficult. The following proof is instructive. For a point P of S_{3} we have

$$
\begin{aligned}
& B_{1}=k^{2}-l n \\
& B_{2}=-l^{2}+2 m n-n^{2} \\
& B_{3}=k m+2 n^{2} \\
& B_{4}=l m+2 k n \\
& B_{5}=m^{2}+k l+3 m n
\end{aligned}
$$

The condition that there be a point on V is that there exist k, l, m, n which make the B 's zero. If we solve $B_{1}=0$ for l in terms of k and $n, B_{3}=0$ for m in terms of k and n, and use these values in $B_{5}=0$, we obtain the relation $k^{5}+k n^{4}+4 n^{5}=0$. The polynomial $f(x)=x^{5}+x+4$ is irreducible. ${ }^{21}$

[^15]Hence S_{3} has no point on V. If $f(x)$ were reducible, S_{3} might still have no point on V, but then $f(x)$ would be the product of an irreducible quadratic and an irreducible cubic. We have seen irreducible cubics before in this discussion, in connection with τ-planes with no point on V. If $f(x)$ were factorable but had no linear factor in $\mathrm{GF}(p)$, it is clear that S_{3} would be space 53. For if X, S, V, and S_{3} were immersed in spaces $\bar{X}, \bar{S}, \bar{V}$, and \bar{S}_{3} over $\operatorname{GF}\left(p^{3}\right)$, then \bar{S}_{3} would have three points on \bar{V}. When $f(x)$ is irreducible, then \bar{S}_{3} has no points on \bar{V}, and hence S_{3} has no τ-plane.

We propose to show that any S_{3} which has no point on V and no Σ-line, or, which is the same thing, any S_{3} whose quintic polynomial $f(x)$ is irreducible, can be put in the form 54 . We cannot distinguish among the points of S_{3}, among the lines, or among the planes; we cannot distinguish among the points of a line, but we can distinguish among the points of a plane by means of the absolute conic C. In seeking something similar to C which may aid in characterizing S_{3} we shall examine some complicated relations between S_{3} and X.

For this S_{3} the equation $B_{5} x_{1}-B_{4} x_{2}+B_{3} x_{3}-B_{2} x_{4}+B_{1} x_{5}=0$ is

$$
\begin{aligned}
& \left(m^{2}+k l+3 m n\right) x_{1}-(l m+2 k n) x_{2}+\left(k m+2 n^{2}\right) x_{3} \\
& +\left(l^{2}-2 m n+n^{2}\right) x_{4}+\left(k^{2}-l n\right) x_{5}=0 .
\end{aligned}
$$

When k, l, m, n are given, this is the three-space R in X determined by P; when an arbitrary point $A=x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ in X is given, it is a quadric surface Q in S_{3}. The points of Q are the points of S_{3} whose three-spaces R in X contain A. No two R 's given by different P 's are the same, since S_{3} contains no Σ-line. The B 's are linearly independent polynomials in k, l, m, n. There is thus determined a four-parameter system W of quadrics in S_{3}. Some of the quadrics of W are degenerate, and thereby a distinction can be made among the points of X. The locus of points in X which give cones in S_{3} is

$$
J:\left|\begin{array}{cccc}
x_{5} & 4 x_{1} & 4 x_{3} & 6 x_{2} \\
4 x_{1} & x_{4} & 3 x_{2} & 3 x_{5} \\
4 x_{3} & 3 x_{2} & x_{i} & 5 x_{1}-x_{4} \\
6 x_{2} & 3 x_{5} & 5 x_{1}-x_{4} & 2 x_{3}+x_{4}
\end{array}\right|=0
$$

J is a manifold of dimension three and order four in X. A point on J determines a cone in S_{3}, and the cone has a vertex. It is easy to see that no cone of the set W has more than one vertex, and to see that every point of S_{3} is the vertex of one and only one cone of the set W.

We prove the first statement by showing that if W contains a quadric with a line of vertices, S_{3} contains a Σ-line. Let W contain a quadric Q with a line of vertices. Any plane in S_{3}, in particular a plane on the line of vertices of Q, may be taken to be $k, l, 0,0, m, 0, l, k, 0, m . \quad S_{3}$ contains the point $P_{4}=$
$0,0, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0$. The B 's for a point P in S_{3} are

$$
\begin{aligned}
& B_{1}=k^{2}+a_{8} k n-a_{6} l n+a_{3} m n+a_{3} a_{5} n^{2} \\
& B_{2}=a_{9} k n-l^{2}-a_{7} l n+a_{4} m n+a_{4} a_{5} n^{2} \\
& B_{3}=k m-a_{3} l n+\left(a_{4} a_{6}-a_{3} a_{7}\right) n^{2} \\
& B_{4}=l m+a_{4} k n+\left(a_{4} a_{8}-a_{3} a_{9}\right) n^{2} \\
& B_{5}=m^{2}+k l+a_{7} k n+a_{8} l n+a_{5} m n+\left(a_{7} a_{8}-a_{6} a_{9}\right) n^{2}
\end{aligned}
$$

The matrix of any quadric of the set W has for the first three columns
$\left[\begin{array}{ccc}x_{5} & 4 x_{1} & 4 x_{3} \\ 4 x_{1} & x_{4} & 3 x_{2} \\ 4 x_{3} & 3 x_{2} & x_{1} \\ 4\left(a_{7} x_{1}-a_{4} x_{2}-a_{9} x_{4}+a_{8} x_{5}\right) & 4\left(a_{8} x_{1}-a_{3} x_{3}+a_{7} x_{4}-a_{6} x_{5}\right) & 4\left(a_{5} x_{1}-a_{4} x_{4}+a_{3} x_{5}\right)\end{array}\right]$

Now the line of vertices of Q in the plane $n=0$ has one of three positions: (1) it is tangent to C and may be taken to be $P_{1} P_{3}$; (2) it intersects C in two points and may be taken to be $P_{1} P_{2}$; or (3) it passes through P_{3} and does not intersect C; it may be taken to be $\left\{\begin{array}{l}1,-1,0,0 \\ 0,0,1,0\end{array}\right.$. In case (1) the quadric is given by the point $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}=0,0,0,1,0$. Its equation is $B_{2}=0$, and since it consists of two planes we have $a_{4}=a_{9}=0$. If this is so, the line $l+a_{7} n=0, m=0$ is a Σ-line. Cases (2) and (3) would require $x_{1}=\cdots=$ $x_{5}=0$. Hence W contains no quadric with more than one vertex.

That an arbitrary point $P=k, l, m, n$ of S_{3} be the vertex of some cone of the set W requires that it be possible to select x_{1}, \cdots, x_{5} so that k, l, m, n are the constants of dependence of the columns of the matrix of which three columns are given just above. This gives four linear equations in the x 's with coefficients linear in k, l, m, and n. Properly signed four-rowed determinants of the matrix of coefficients constitute a solution for the x 's, if they are not all zeros. There is at least one solution for every k, l, m, n; there would be more than one if the rank of the matrix of coefficients were less than four. There is not more than one solution, as we shall now prove. Let P be any point in S_{3}. Any plane on P can be taken to be $k, l, 0,0, m, 0, l, k, 0, m . \quad P$ may be (1) on the conic $C, \quad P=P_{1}=1,0,0,0$; (2) outside $C, \quad P=P_{3}$; (3) inside $C, \quad P=1,1,0,0$. If any one of these sets of k, l, m, n is used for constants of dependence of the three columns above, a set of four independent equations in the x 's is obtained. Hence, in every case the solution is unique.

Let P_{1} and P_{2} be arbitrary points on the line l in S_{3}, and let the three-spaces in X determined by them be R_{1} and R_{2} respectively. R_{1} and R_{2} intersect in a plane σ. Every point in σ determines a quadric in S_{3} which passes through both P_{1} and P_{2}. There is thus determined in W a net of quadrics on P_{1} and
P_{2}. The line l determines a point M on V, the point such that $M P_{1} P_{2}$ is tangent to V at $M . \quad M$ is the image on V of a line m in σ. Every point on l determines a three-space in X which contains m, and consequently the quadric in S_{3} determined by a point of m has the line l for a ruling. Thus the points P_{1} and P_{2} determine a net of quadrics in S_{3}, and in that net is a pencil of quadrics each of which has l for a ruling. If A is a point of m, the quadric Q has l for a ruling and hence is a ruled quadric; it is a cone if A is on J.

Now let us consider two lines l_{1} and l_{2} in S_{3}. They determine two lines m_{1} and m_{2} in X. If m_{1} and m_{2} intersect in a point A, the quadric Q determined by A has both l_{1} and l_{2} for rulings. If m_{1} and m_{2} do not intersect, there will be no quadric of the set W which has both l_{1} and l_{2} for rulings. If m_{1} and m_{2} intersect, the quadric Q will not be degenerate if l_{1} and l_{2} do not intersect. If m_{1} and m_{2} intersect and l_{1} and l_{2} intersect also, Q will be a cone if A is on J; otherwise it will be nondegenerate, and l_{1} and l_{2} will belong to different reguli on Q.

To study further the relations of lines and quadrics of S_{3} to lines and planes of X, we consider the six-spaces tangent to V along a ruling of V. For this purpose we may take the points of a ruling and the tangent spaces to be

$$
\begin{array}{lll}
M_{0}=1,0,0,0,0,0,0,0,0,0, & T_{0}: & x_{8}=x_{9}=x_{10}=0 \\
M_{\infty}=0,1,0,0,0,0,0,0,0,0, & T_{\infty}: & x_{6}=x_{7}=x_{10}=0 \\
M_{\lambda}=1, \lambda, 0,0,0,0,0,0,0,0, & T_{\lambda}: & \left\{\begin{array}{l}
-\lambda x_{6}+x_{8}=0 \\
-\lambda x_{7}+x_{9}=0,
\end{array} x_{10}=0\right.
\end{array}
$$

The six-spaces T_{λ} are all in the eight-space $S_{8}: x_{10}=0$; the intersection of two of them is the four-space $S_{4}: x_{6}=x_{7}=x_{8}=x_{9}=x_{10}=0$. Any point in S_{8} on the hyperquadric $Q_{7}: x_{6} x_{9}-x_{7} x_{8}=0, x_{10}=0$ is in some T_{λ}. Any point in two T_{λ} 's is in S_{4}. Any line in S_{4} contains a point on V.

Now let S_{3} be a three-space in S with no point on V and no Σ-line. Either S_{3} lies wholly in S_{8} or intersects it in a plane. The points of Q_{7} lie in the hyperquadric in S determined by $a_{5} a_{10}-a_{6} a_{9}+a_{7} a_{8}=0$, and hence its intersection with S_{3} is one of the quadrics of the set W. The intersection of S_{3} and S_{8} therefore cannot be a plane. S_{3} can have no more than one point in S_{4}, since S_{3} has no point on $V . Q_{7}$ intersects S_{3} in a quadric Q. If one T_{λ} intersects Q in a line, then every T_{λ} intersects it in a line. If two lines in distinct T_{λ} 's intersect, the intersection is in S_{4} and hence is on each of the rulings of Q, and Q is a cone. If Q has no point in S_{4}, then the rulings of Q cut out by the T_{λ} 's do not intersect, and Q is not degenerate.

Now let us consider the cone Q_{1} in S_{3} with vertex at an arbitrary point P_{1}. The rulings of Q_{1} are in the tangent spaces at points of a ruling of V, and these points on V represent the lines of a pencil in X. Thus a point P_{1} in S_{3} determines a plane σ in X. Every point in σ determines a quadric on P_{1} in S_{3}; the vertex A_{1} of the pencil determines Q_{1}, and A_{1} is on J. Any other point A_{2} in
σ determines a quadric in S_{3} which has a ruling in common with Q_{1}. All the quadrics of the set W which contain a particular ruling of Q_{1} have been shown to belong to a pencil and hence are given by a particular line in σ on A_{1}. Consequently all the quadrics of the set W that intersect Q_{1} in a ruling belong to the net determined by the points of σ.

Let A_{2} be a second point on the intersection of σ and J. Then A_{2} determines a cone Q_{2} in S_{3}; let the vertex of Q_{2} be P_{2}. The cone Q_{2} determines a plane σ^{\prime} in X. The line $P_{1} P_{2}$ is a ruling of both Q_{1} and Q_{2}; it determines the line $A_{1} A_{2}$ in X, and hence $A_{1} A_{2}$ is in both σ and σ^{\prime}. We shall show that the two planes coincide. Consider a plane ρ on $P_{1} P_{2}$ and not tangent to Q_{1} or Q_{2}. This plane cuts out rulings l_{1} and l_{2}, not $P_{1} P_{2}$, on Q_{1} and Q_{2} respectively; let the intersection of l_{1} and l_{2} be $P . \quad P, P_{1}$, and P_{2} determine the three-spaces R, R_{1}, and R_{2} in X. The intersection of R and R_{1} is the plane whose points give all the quadrics of the set W which pass through P and P_{1}. It contains the line $A A_{1}$, which is a line of σ corresponding to the ruling $P P_{1}$ of Q_{1}, and, since P is on Q_{2}, the point A_{2}. The plane of intersection of R and R_{1} is therefore σ which is not dependent on the choice of ρ and hence not dependent on R. From this it follows that σ and σ^{\prime} are the same, and that σ is the intersection of R_{1} and R_{2}.

The plane σ was determined as the plane of the pencil of lines in X determined by the rulings of the cone $Q_{1} ; \sigma$ has been shown to have the same relation to Q_{2}. There are thus determined two pencils of lines in σ with vertices at A_{1} and A_{2} respectively. The plane ρ in S_{3} on P_{1} and P_{2} contains a ruling of Q_{1} and a ruling of Q_{2}, and hence determines lines in σ on A_{1} and A_{2} respectively. The pencil of planes on P_{1} and P_{2} thus sets up a projectivity between the two pencils of lines in σ. The line $A_{1} A_{2}$, which is in both pencils, is not self-corresponding in the projectivity unless the cones Q_{1} and Q_{2} have a common tangent plane. Corresponding lines of the two projective pencils in σ intersect in a conic if Q_{1} and Q_{2} do not have a common tangent plane; otherwise they intersect in a line.

Let the intersection of two corresponding lines of the pencils on A_{1} and A_{2} be A. A determines a quadric Q in S_{3}. Q has each of the lines l_{1} and l_{2} in ρ as a ruling; these rulings intersect, and therefore Q is a cone with vertex at P. Hence, if Q_{1} and Q_{2} do not have a common tangent plane, the points of σ which are on J are points of a conic, and the corresponding cones in S_{3} have vertices on the cubic curve of intersection of Q_{1} and Q_{2}. The quadrics determined by the points of σ all contain this cubic curve.

Any line in σ is imaged in S_{3} on a point of V which is such that the space tangent to V there intersects S_{3} in a line. If A^{\prime} is any point of such a line and Q^{\prime} is the corresponding quadric, the rulings of Q^{\prime} in common with Q_{1} and Q_{2} respectively belong to the same regulus of Q^{\prime}, the rulings of this regulus determine the lines in σ on A^{\prime}, and one of those lines is the one in question.

If the projective pencils of lines on A_{1} and A_{2} in σ were perspective, then σ would contain a line each of whose points would determine a cone in S_{3}, and
the vertices of the cones would lie on a line $l \operatorname{not} P_{1} P_{2}$. Then the cone Q_{1} would contain the plane $P_{1} l$. This is not possible since W contains no quadric with a plane on it.

Also, there is no cone Q_{1} of the set W whose plane σ contains no second point of J. Let A be a point of σ; then A determines a quadric Q with a ruling in common with Q_{1}. Let ρ be a plane in S_{3} on the common ruling of Q_{1} and Q, and let ρ cut Q_{1} in a second ruling, which intersects Q at a point P. Through P there is a ruling of Q of the regulus to which the common ruling of Q_{1} and Q belongs. The two rulings, one of Q_{1} and one of Q, determine two lines on A_{1} and A respectively. The intersection of these two lines determines a quadric with two rulings of the same regulus which intersect; this quadric is therefore a cone, and it is distinct from Q_{1}.

Hence, we have shown
If σ is a plane in X determined by a cone of the set W, it intersects J in a conic which is not degenerate.

If Q_{1} and Q_{2} are two cones of the set W and if they have a common ruling, they determine in S_{3} a net of quadrics each of which has one and only one ruling in common with each other; the cones of the net are $p+1$ in number and have vertices on the cubic curve of intersection of Q_{1} and Q_{2}.
We have also shown the following theorem about J :
Every point of J determines a unique plane in X which intersects J in a nondegenerate conic.

These planes are the double tangent planes of J. Each of them contains $p+1$ points of J, and no two have a point of J in common. Their number is thus shown to be $p^{2}+1$. Since two planes of X intersect in at least one point, two double tangent planes of J intersect in a point A which is not on J, and the quadric Q determined by A is a nondegenerate quadric with rulings. The second set of rulings on Q determines a plane σ in X which contains A. Incidentally, we cannot distinguish one point of J from another.

We note that the points of S_{3} lie on $p^{2}+1$ cubic curves each of which is the intersection of a net of quadrics of the set W, and no two of the cubics intersect.

We note also that not every point of X is on a double tangent plane. A point not on such a plane determines a quadric Q which has no rulings. Such a point is $0,0,0,1,1 ; Q$ is $k^{2}-l n+l^{2}-2 m n+n^{2}=0 . \quad Q$ contains the point $k, l, m, n=0,0,1,0$; the plane tangent to Q at that point is $n=0$. Points of intersection of the plane and Q satisfy $k^{2}+l^{2}=0$, and hence the only point is the point of tangency.

Every cone of the set W has on it a single one K of the cubic curves. Every nondegenerate ruled quadric of the set W has on it two of the cubic curves, K and K^{\prime}. It is clear that if Q is a cone with the vertex P determined by the
point A in X, each ruling of Q intersects K in P and one other point, excepting the ruling determined by the tangent to the conic intersection of J and the double tangent plane in which A lies. This ruling is the line tangent to K at the point P. If Q is a nondegenerate quadric determined by a point A outside the conic of intersection C of σ and J, then a line of the pencil in σ on A intersects C in one, two, or no points; thus the rulings of Q of the set corresponding to lines on A in σ meet K in one, two, or no points. If A is inside C, then each of these rulings meets K in two or no points. The same situation holds with respect to the other set of rulings of Q and the cubic K^{\prime}. The situation is different, however, with respect to the rulings of Q determined by the pencil of lines on A in σ and the points of the cubic K^{\prime}. The curve K^{\prime} is on Q, it has $p+1$ points, and no two points of K^{\prime} are on the same ruling of the set determined by the lines in σ. Hence there is one point of K^{\prime} on each of these rulings.

We now investigate the space 54 in the light of these relations. ${ }^{22}$ The vertices of the frame of reference in the space 54 lie on the quadric $Q_{2}: l m+$ $2 k n=0$, which is given by the point $A_{2}=0,1,0,0,0$ in X; the edges $P_{1} P_{2}$ and $P_{3} P_{4}$ are rulings of one regulus on Q_{2}, and $P_{1} P_{3}$ and $P_{2} P_{4}$ are rulings of the other. The planes in X determined by these reguli are respectively $\sigma_{2}=$ $A_{2} A_{3} A_{5}$ and $\sigma_{1}=A_{1} A_{2} A_{4}$. The plane σ_{2} intersects J in the conic $C_{2}: x_{2}^{2}+$ $3 x_{3} x_{5}=0 ; A_{3}$ and A_{5} are on C_{2}, and A_{2} is the pole with respect to C_{2} of the line joining them. The plane σ_{1} intersects J in the conic $C_{1}: x_{1}^{2}+4 x_{2}^{2}+3 x_{1} x_{4}=0$; A_{4} is on C_{1}; the tangent to C_{1} at A_{4} passes through $A_{2} . \quad A_{1}$ is on the polar of A_{2} with respect to C_{1}; the other intersection of this polar with C_{1} is $1,0,0,2,0$.

The vertices of the cones in S_{3} determined by the points of C_{2} lie on the cubic curve K_{2} through P_{2} and P_{3}, the vertices of the cones determined respectively by A_{3} and A_{5}. The vertices of the cones in S_{3} determined by the points of C_{1} lie on the cubic K_{1} through $P_{1} ; K_{1}$ intersects the line $P_{3} P_{4}$ at $0,0,1,2$. This point determines the space $x_{3}=0$ in X.

Let us designate the point $0,0,1,2$ by P_{4}^{\prime}.

$$
P_{4}^{\prime}=0,0,0,4,0,2,0,0,0,1
$$

It is on the line joining the two points of $V: 0,0,0,4,0,0,0,0,0,1$ and $0,0,0,0,0,2,0,0,0,0$. These points represent respectively the lines $\left\{\begin{array}{l}1,0,0,2,0 \\ 0,0,0,0,4\end{array}\right.$ and $\left\{\begin{array}{l}0,1,0,0,0 \\ 0,0,0,2,0\end{array}\right.$ in X. The points $1,0,0,2,0$ and $0,0,0,1,0$ are the points of C_{1} to which tangents to C_{1} can be drawn from $A_{2} . A_{1} A_{2}$ determines the ruling $P_{2} P_{4}$ of Q_{2}. The line $\left\{\begin{array}{l}1,0,0,2,0 \\ 0,1,0,0,0\end{array}\right.$ determines the ruling of the same set which passes through P_{4}^{\prime}.

[^16]We note that the relations described so far are completely determined by the choice of A_{2}. For any A_{2} planes σ_{1} and σ_{2} are uniquely determined, as well as conics C_{1} and C_{2}, and the polars of A_{2} with respect to C_{1} and C_{2}. A_{2} must be outside both C_{1} and C_{2}. The ruling $P_{2} P_{4}$ is determined by P_{2}, and the point P_{4}^{\prime} by the tangent to C_{1} through A_{2}.

We may look upon A_{2} as being determined by the quadric $l m+2 k n=0$ of the set W. Any nondegenerate ruled quadric of W in any S_{3} which has no point on V and no Σ-line determines a point A in X, two planes σ_{1} and σ_{2}, containing conics C_{1} and C_{2} and intersecting in A. If A is outside both C_{1} and C_{2}, then the polars of A with respect to C_{1} and C_{2} respectively intersect C_{1} and C_{2} in two points each. Each of these four points, on C_{1} and C_{2}, determines a cone with vertex on Q. If P is the vertex of one of these cones, the two rulings of Q through P determine two lines in X, both through A, one in σ_{1} and one in σ_{2}. There are thus distinguished four lines on A in each of the planes σ_{1} and σ_{2}. Now, for the space $k, l, 0,2 n, m+3 n, n, l, k, 0, m$ and the quadric $l m+2 k n=0$ given by A_{2} above, these two sets of four lines reduce in one plane to two and in the other to three. The vertices of the cones determined by $1,0,0,2,0$ and $0,0,0,1,0$ lie on the rulings determined by $A_{2} A_{3}$ and $A_{2} A_{5}$, and the vertices of the cones determined by A_{3} and A_{5} lie on rulings of Q determined by $A_{2} A_{4}$ and $A_{1} A_{2}$, the latter having no point on $C_{1}: x_{1}^{2}+4 x_{2}^{2}+3 x_{1} x_{4}=0$.

The configuration in X just described characterizes

$$
k, l, 0,2 n, m+3 n, n, l, k, 0, m
$$

in the sense that any S_{3}, with no point on V and no Σ-line, whose set W contains a quadric Q which provides the above configuration, is conjugate to $k, l, 0,2 n, m+3 n, n, l, k, 0, m$ under a collineation of X. A proof will be given by showing how to select a coordinate system in X so that S_{3} takes the given form; this will be done by going backwards from the configuration through the steps by which it was determined. We shall use primed letters $P_{1}^{\prime}, Q_{1}^{\prime}, A_{1}^{\prime}$, etc. until we can see that the accents may be dropped and the letters have the same significance as abọve.

Denote by $\sigma_{2}{ }^{\prime}$ the plane in which the four lines combine into two, and by $\sigma_{1}{ }^{\prime}$ the other. Denote by A_{2}^{\prime} the intersection of $\sigma_{1}{ }^{\prime}$ and $\sigma_{2}{ }^{\prime}$; denote by C_{i}^{\prime} the intersection of J with $\sigma_{i}{ }^{\prime}$. Denote by A_{3}^{\prime} and A_{5}^{\prime} the intersection of C_{2}^{\prime} and the polar of A_{2}^{\prime} with respect to C_{2}^{\prime}, with A_{3}^{\prime} the one whose cone in S_{3} has vertex P_{2}^{\prime} on the ruling of Q_{2}^{\prime} determined by the line on A_{2}^{\prime} in $\sigma_{1}{ }^{\prime}$ which does not intersect C_{1}^{\prime}. Denote by A_{4}^{\prime} the point of C_{1}^{\prime} which gives in S_{3} the cone with vertex on the ruling of Q_{2}^{\prime} given by $A_{2}^{\prime} A_{5}^{\prime}$, and denote by A_{1}^{\prime} the intersection of the polar of A_{2}^{\prime} with the third line in $\sigma_{1}{ }^{\prime}$, which is not tangent to $C_{1}{ }^{\prime}$. Denote by P_{1}^{\prime} the vertex of the cone determined by A_{4}^{\prime}, and by P_{3}^{\prime} the vertex of the cone determined by A_{5}^{\prime}.

The plane $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$ is completely determined by the configuration. The plane is of type 9 of the list of planes, and we shall now show that $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$
will serve as P_{1}, P_{2}, P_{3} of that canonical form. The points P_{2}^{\prime} and P_{3}^{\prime} are on the cubic curve K_{2}^{\prime} determined by the vertices of the cones given by points of C_{2}^{\prime}. The cubic K_{2}^{\prime} lies on the cone with vertex at $P_{3}^{\prime} . \quad P_{1}^{\prime} P_{2}^{\prime}$ is a ruling of Q_{2}^{\prime} determined by the line $A_{2}^{\prime} A_{3}^{\prime}$, which is tangent to C_{2}^{\prime}. Hence, $P_{1}^{\prime} P_{2}^{\prime}$ is tangent to K_{2}^{\prime} at P_{2}^{\prime}, and hence $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$ is tangent to the cone with vertex at P_{3}^{\prime} and therefore intersects the cone in a single line. The absolute conic of the plane $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$ is therefore tangent to the line $P_{2}^{\prime} P_{3}^{\prime}$ at P_{2}^{\prime}. The cone with vertex at P_{1}^{\prime} is also tangent to the plane $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$, which we proceed to show. The cone with vertex at P_{1}^{\prime}, given by A_{4}^{\prime}, has its vertex on the cubic K_{1}^{\prime}. K_{1}^{\prime} has one point besides P_{1}^{\prime} on each of the rulings of the cone with vertex at P_{1}^{\prime} except the ruling $P_{1}^{\prime} P_{3}^{\prime}$ which is determined by the tangent to C_{1}^{\prime} at A_{4}^{\prime}. Every point of K_{1}^{\prime} is on Q_{2}^{\prime}. The points common to Q_{2}^{\prime} and $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$ are the points of $P_{1}^{\prime} P_{2}^{\prime}$ and $P_{1}^{\prime} P_{3}^{\prime}$. We have just noted that $P_{1}^{\prime} P_{3}^{\prime}$ has no second point on $K_{1}^{\prime} ; P_{1}^{\prime} P_{2}^{\prime}$ is a ruling of Q_{2}^{\prime} determined by a line in σ_{2}^{\prime} and has no point except P_{1}^{\prime} on K_{1}^{\prime}. Hence, the plane $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$ is tangent to the cone with vertex at P_{1}^{\prime}, and the absolute conic in it is tangent to $P_{1}^{\prime} P_{3}^{\prime}$ at $P_{1}^{\prime} . \quad P_{3}^{\prime}$ is therefore the pole of $P_{1}^{\prime} P_{2}^{\prime}$ with respect to the absolute conic, and P_{1}^{\prime} and P_{2}^{\prime} are on the conic. The vertices of the frame of reference in X can be selected, and in only one way when P_{1}, P_{2}, P_{3} are given, so that $P_{1}^{\prime} P_{2}^{\prime} P_{3}^{\prime}$ is in canonical form. Then for this S_{3} the A_{i}^{\prime} 's have the coordinates of the A_{i} 's for the space 54 .

The points $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ are now P_{1}, P_{2}, P_{3} with the proper coordinates. To complete the canonical form it is necessary to determine the coordinates of $P_{4} . \quad P_{4}$ is determined as the intersection of two rulings of Q_{2}. One ruling is determined by $A_{1} A_{2}$, and the other by $A_{2} A_{5}$. The corresponding points on V are

$$
A_{1} A_{2} \rightarrow 1,0,0,0,0,0,0,0,0,0, \quad A_{2} A_{5} \rightarrow 0,0,0,0,0,0,1,0,0,0
$$

The respective spaces tangent to V are $a_{8}=a_{9}=a_{10}=0$ and $a_{2}=a_{3}=a_{8}=0$. Hence, $P_{4}=a_{1}, 0,0, a_{4}, a_{5}, a_{6}, a_{7}, 0,0,0$. There are further conditions that the a 's must satisfy. So far we have required of C_{2} only that it pass through A_{3} and A_{5} and that A_{2} and $A_{3} A_{5}$ be pole and polar with respect to it; also it has been required of C_{1} only that it pass through A_{4} and that A_{2} and $A_{1} A_{4}$ be pole and polar.

Any point of S_{3} is

$$
k+a_{1} n, l, 0, a_{4} n, m+a_{5} n, a_{6} n, l+a_{7} n, k, 0, m
$$

For this point

$$
\begin{aligned}
& B_{1}=k^{2}+a_{1} k n-a_{6} l n \\
& B_{2}=-l^{2}-a_{7} l n+a_{4} m n+a_{4} a_{5} n^{2} \\
& B_{3}=k m+a_{1} m n+a_{4} a_{6} n^{2} \\
& B_{4}=l m+a_{4} k n \\
& B_{5}=m^{2}+k l+a_{7} k n+a_{5} m n
\end{aligned}
$$

If we take the point of intersection of C_{1} and $A_{1} A_{4}$ to be $1,0,0,2,0$, this requires Q^{\prime}, the quadric determined by it, to be a cone. The result is that $a_{5}+2 a_{4}=0 . \quad a_{4}$ cannot be zero since S_{3} contains no τ-plane. Hence, we may take $a_{4}=2$ and $a_{5}=3$. If we take $1,1,0,3,0$ to be on C_{1}, this will give $a_{7}=0$. The cone with vertex at P_{2} is tangent to $P_{3} P_{4}$ at P_{3}; this requires $a_{1}=0$. It requires one more point to fix C_{2}; let it be $0,1,1,0,2$; then $a_{6}=1$. Hence, the point P_{4} is $0,0,0,2,3,1,0,0,0,0$, and the space S_{3} is space 54 .

This configuration in X which has just been shown to characterize the space 54 can be described by elements in S_{3}. We give a representation of the

quadric $Q_{2}: l m+2 k n=0$ in Diagram 1. This is a diagram of points and lines on Q_{2}. The horizontal lines are the rulings of Q_{2} determined by the pencil of lines on A_{2} in σ_{2}; the vertical lines are rulings of the other set and are determined by the pencil on A_{2} in σ_{1}. The cubic K_{2} passes through the points marked with a cross (\times); the cubic K_{1} passes through the points marked with a circle (O). Each horizontal line contains one circle, and may contain two, one, or no crosses. The line $P_{2} P_{4}$ contains no circle and so is determined by a line in σ_{1} which does not intersect C_{1}; it is not a ruling of any cone with vertex on K_{1}. The two vertical lines each containing just one circle are determined by the two tangents to C_{1} from A_{2}; likewise the two horizontal lines each containing one cross are determined by the two tangents to C_{2} from A_{2}. The horizontal line through P_{2}, since it has no other cross on
it, is determined by the tangent to C_{2} at the point which determines the cone with vertex at P_{2}; it is the ruling of the cone which is tangent to K_{2} at P_{2}. This line contains P_{1} which is on K_{1}. The vertical line through P_{1} has no other circle on it; it is a ruling of Q_{2} and of the cone with vertex at P_{1}; it is tangent to K_{1} at $P_{1} . \quad P_{3}$ is on this line. The horizontal line through P_{3} contains no other cross; it is a ruling of the cone with vertex at P_{3} and hence is tangent to K_{2} at P_{3}. Whenever for a given S_{3} the set W contains a quadric on which the two cubic curves have the above relations, then the configuration in X of the preceding pages exists, and the S_{3} is conjugate to 54 under a collineation of X.

In the diagram above each point of Q_{2} is given by its coordinates k, l, m, n, and each, excepting the points of K_{1} and K_{2}, has a number written underneath it. Each of these numbers $3,4, \cdots, 50$ is the number of the cubic on which the point lies. The numbers were assigned arbitrarily to the cubics; they are included here for future reference.

We have seen that every nondegenerate ruled quadric of the set W has on it two cubics. No other cubic can have more than one point on Q, since two points P_{a} and P_{β} would determine two three-spaces R_{a} and R_{β} in X, and their plane of intersection would determine a third set of rulings of Q. The number of points of Q is $(p+1)^{2}$; there are $p+1$ points on each of K_{1} and K_{2}; there remain $p^{2}-1$ points of Q, which is the number of cubics besides K_{1} and K_{2}. Thus the diagram accounts for all the cubics in S_{3}.

We have given two equivalent, and closely related, ways of characterizing the space 54 in geometric terms which are independent of any coordinate system. An attempt to apply these criteria to an arbitrary S_{3} with no point on V and no Σ-line leads to a long series of computations. The goal is to show that any such S_{3} is the one we have been studying, and hence that any S_{3} whose quintic polynomial $f(x)$ is irreducible is conjugate to 54 . The application of this last criterion, namely, the irreducibility of $f(x)$, is relatively a simple matter; the application of the former is likely to require months of work. Although it will be possible to show that the necessary condition, the irreducibility of $f(x)$, is sufficient to ensure that S_{3} is 54 , the determination of the transformation which puts one such S_{3} into another will require essentially determination of the above configuration in X.

It is clear that one is dealing with pairs of cubics when one undertakes to determine the configuration in X for a given S_{3}. The number of pairs of cubics is large; one finds immediately that not every pair is a canonical pair, and then right away that not every cubic can be one of a canonical pair. A closer look at individual cubics is therefore indicated. So far one cubic is like another. When we consider planes which osculate the cubics, then differences appear.

Each point P of S_{3} is on one and only one cubic K. The cubic has an osculating plane at P. The osculating plane is tangent to the cone Q with vertex at P along the ruling of Q which is tangent to K, the ruling which contains no other point of K. For example, the plane $P_{1} P_{2} P_{3}$ osculates the cubic
K_{1} at P_{1} (page 707). The osculating plane ρ, like every other plane in S_{3}, contains an absolute conic C determined by the relation of ρ to V. The equation $B_{5} x_{1}-B_{4} x_{2}+B_{3} x_{3}-B_{2} x_{4}+B_{1} x_{5}=0$ is used to determine both the conic C and the set W of quadrics, and hence also the cubics. The points of X which give conics in ρ which consist of a single line counted twice must give cones in S_{3}, since the conic in ρ is the intersection of ρ with the quadric. The only degenerate parabolas in ρ, determined by points in X, are the tangents to C. A plane which passes through two points P_{1} and P_{2} of a cubic K, unless it is tangent to one of the cones with vertices at P_{1} and P_{2}, meets K in a third point, viz., the intersection of the two rulings aside from $P_{1} P_{2}$ in which it meets the eones. If ρ is tangent to the cone with vertex at P_{1}, along the ruling $P_{1} P_{2}$, then it is tangent to K at P_{2}. Hence,

Any plane in S_{3} is tangent to those cubics which pass through the points of the absolute conic C and to no others; the points of tangency are the points of C.

If ρ is the plane which osculates the cubic K at the point P, then ρ is tangent to p other cubics. Some of these cubics may osculate ρ. The number of cubics which osculate a given plane is a projective invariant. If the $p+1$ planes which osculate a given cubic are examined, a set of numbers is obtained which enables us to distinguish among the cubics.

We shall say that a cubic is of type $a_{1}, a_{2}, a_{3}, a_{4}$ if the osculating plane at each of a_{i} points osculates i cubics. (We are dealing here, of course, with space 54.) $a_{1}+a_{2}+a_{3}+a_{4}=p+1=8$. The distribution of the cubics into types is given by the following table:

Type \quad Names of cubics

$2,3,2,1$	$1,14,19,26,39$
$2,1,4,1$	$2,16,27,35,37$
$2,5,0,1$	$6,28,34,45,46$
$4,3,0,1$	$10,18,23,36,50$
$2,4,2,0$	$3,7,8,13,33$
$3,2,3,0$	$4,5,31,32,42$
$3,4,1,0$	$9,11,12,24,43 ; 17,22,40,48,49$
$5,2,1,0$	$15,20,21,30,38 ; 25,29,41,44,47$.

This table records only a small selection of the information about S_{3} that must be sought out. There is not enough here to distinguish between two sets of five cubics of each of the last two types; there is enough information to enable us to go on to the determination of canonical pairs of cubics.

Each of the twenty cubics of the first four types in the above list has an osculating plane which osculates four cubics. There are therefore five planes
in S_{3} each of which osculates four cubics. The planes and the cubics which they osculate are

$$
\begin{array}{rlrl}
k+3 l+2 m+4 n & =0, & & 1,2,46,50 \\
k+5 l+2 m & =0, & & 6,18,26,35 \\
k+5 l+5 m+n=0, & & 14,23,27,28 \\
k+3 l+6 m+6 n=0, & & 10,16,19,34 \\
k+2 l+3 m+6 n=0, & & 36,37,39,45
\end{array}
$$

From this list and the preceding table one reads immediately that if there are any canonical pairs besides 1,2 , they are 26,$35 ; 14,27 ; 19,16$; and 39,37 . If two cubics are a canonical pair, they must be of types $2,3,2,1$ and $2,1,4,1$, and they must have a common osculating plane which osculates four cubics.

A proof that each of the given pairs is a canonical pair could be given by finding the quadric on which the two cubics lie and then noting that we have the configuration which characterizes $l m+2 k n=0$. We shall do this for one pair and then exhibit the collineation which transforms the pair in question into 1,2 ; the collineation is of period five, hence there are five canonical pairs, which could only be these.

The four points $1,4,1,1 ; 1,6,0,3 ; 1,3,2,3 ; 1,3,2,6$, two on each of cubics 16 and 19 , determine four three-spaces in X which intersect in $A_{2}^{\prime}=$ $1,5,1,4,2$. The quadric Q_{2}^{\prime} of the set W determined by A_{2}^{\prime} is

$$
2 k^{2}+k l+k m+4 k n+4 l^{2}+2 l m+5 l n+m^{2}+2 m n+6 n^{2}=0 .
$$

It is represented in Diagram 2. The points of cubic 19 are marked with

circles, those of cubic 16 with crosses. The horizontal and vertical lines are rulings of Q_{2}^{\prime}. This diagram has the same arrangement of vertices of cones and rulings of Q_{2}^{\prime} tangent to cubics 19 and 16 as characterized the quadric $Q_{2}: l m+2 k n=0$ and cubics 1 and 2 . Hence if $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ are given the coordinates of P_{1}, P_{2}, P_{3} in the earlier diagram, S_{3} will appear in the form 54. Thus cubics 19 and 16 are shown to be a canonical pair.

The transformation which puts X into itself, S_{3} into itself, and cubics 19 and 16 into cubics 1 and 2 respectively is

$$
T=\left[\begin{array}{lllll}
1 & 2 & 3 & 6 & 6 \\
6 & 0 & 2 & 6 & 3 \\
3 & 1 & 5 & 4 & 2 \\
4 & 1 & 0 & 6 & 2 \\
3 & 2 & 5 & 3 & 2
\end{array}\right]
$$

The induced transformation in S_{3} is

$$
T=\left[\begin{array}{llllllllll}
2 & 5 & 5 & 2 & 4 & 5 & 6 & 6 & 4 & 3 \\
2 & 3 & 0 & 5 & 0 & 2 & 5 & 3 & 4 & 2 \\
0 & 2 & 3 & 6 & 4 & 6 & 5 & 4 & 6 & 4 \\
3 & 3 & 6 & 5 & 4 & 1 & 6 & 0 & 4 & 1 \\
6 & 3 & 6 & 3 & 5 & 1 & 4 & 6 & 3 & 0 \\
6 & 6 & 5 & 0 & 5 & 1 & 4 & 5 & 4 & 1 \\
5 & 3 & 0 & 3 & 3 & 2 & 1 & 4 & 3 & 3 \\
6 & 1 & 2 & 5 & 2 & 2 & 0 & 2 & 3 & 3 \\
3 & 0 & 4 & 0 & 2 & 2 & 5 & 2 & 0 & 2 \\
5 & 6 & 1 & 2 & 5 & 5 & 5 & 5 & 4 & 6
\end{array}\right] .
$$

It may be verified that points of S_{3} are transformed as follows:

$$
\begin{aligned}
& (1,3,2,3) T=(1,3,0,6,4,3,3,1,0,2) T=1,0,0,0,0,0,0,1,0,0 \\
& (1,4,1,1) T=(1,4,0,2,4,1,4,1,0,1) T=0,1,0,0,0,0,1,0,0,0 \\
& (1,6,0,3) T=(1,6,0,6,2,3,6,1,0,0) T=0,0,0,0,1,0,0,0,0,1 \\
& (1,4,6,5) T=(1,4,0,3,0,5,4,1,0,6) T=0,0,0,2,3,1,0,0,0,0
\end{aligned}
$$

This verifies that T transforms S_{3} into itself by putting P_{i}^{\prime} into $P_{i}, i=$ $1,2,3,4$. Moreover, noting that in X the points $A_{1}(=1,0,0,0,0), A_{1} T$, $A_{1} T^{2}, A_{1} T^{3}, A_{1} T^{4}$ are linearly independent, and that $A_{1} T^{5}=A_{1}$, we have the result that T is of period 5.

That the collineation group of X contains a transformation of period 5 that puts S_{3} into itself was to be expected. S_{3} determines the irreducible polynomial congruence $f(x)=0$ for the value of k / n which would make $B_{1}=\cdots$ $=B_{5}=0$, and determine a point of V. If X, V, S, and S_{3} were immersed in spaces $\bar{X}, \bar{V}, \bar{S}$, and \bar{S}_{3} over $\operatorname{GF}\left(p^{5}\right)$, then the congruence would remain unchanged but would be completely solvable. The Galois group of $\operatorname{GF}\left(p^{5}\right)$
relative to $\mathrm{GF}(p)$ is of order 5 . This group interchanges the points of intersection of \bar{V} and \bar{S}_{3} cyclically; it puts \bar{X} into itself, X into itself, S_{3} into itself. It is not identity in S_{3}, for then it would be identity in \bar{S}_{3}. Since the only possible canonical pairs of cubics are the five given above, the Galois group must interchange them.

The collineation of order 5 just described exists for any p, but the fact that the collineation and its powers are the only collineations of X which put S_{3} into itself depends on our knowledge of the particular space with $p=7$. We note that we cannot expect to find any simple short procedure to determine a transformation of X into itself which puts an arbitrary S_{3} with an irreducible $f(x)$ into the particular one we have been studying. If it can be done at all, it can be done in only five ways, and doing it requires essentially the finding of a canonical pair of cubics.

We proceed to examine an arbitrary S_{3} which has no point on V and no Σ-line. In S_{3} we select an arbitrary point P_{1} and take for $P_{1} P_{2} P_{3}$ the plane which osculates the cubic through P_{1}. A coordinate system can be selected so that the plane is $k, l, 0,0, m, 0, l, k, 0, m . \quad S_{3}$ contains

$$
P_{4}=0,0, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0 .
$$

For any point P in S_{3} the B 's are

$$
\begin{aligned}
& B_{1}=k^{2}+a_{8} k n-a_{6} l n+a_{3} m n+a_{3} a_{5} n^{2} \\
& B_{2}=a_{9} k n-l^{2}-a_{7} l n+a_{4} m n+a_{4} a_{5} n^{2} \\
& B_{3}=k m-a_{3} l n-\left(a_{3} a_{7}-a_{4} a_{6}\right) n^{2} \\
& B_{4}=l m+a_{4} k n-\left(a_{3} a_{9}-a_{4} a_{8}\right) n^{2} \\
& B_{5}=m^{2}+a_{5} m n+k l+a_{7} k n+a_{8} l n-\left(a_{6} a_{9}-a_{7} a_{8}\right) n^{2}
\end{aligned}
$$

The cone of the set W with vertex at P_{1} is $a_{9} B_{4}-a_{4} B_{2}=0$. Now transformation T_{17} changes $P_{1} P_{2} P_{3}$ into itself leaving P_{1} fixed, and in it c can be chosen to make $a_{4}=0$ if $a_{9} \neq 0$. This transformation moves P_{2} along the conic C in $P_{1} P_{2} P_{3}$, so we may assume $a_{4}=0$ if $a_{9} \neq 0$. If $a_{4}=0$, the cone with vertex at P_{1} is $B_{4}=l m-a_{3} a_{9} n^{2}=0$, which intersects $P_{1} P_{2} P_{3}$ in the two lines $l=0$ and $m=0$. But since the plane osculates the cubic through P_{1}, it must be tangent to the cone, and hence the choice of P_{1} and the plane brings with it the result that a_{9} in P_{4} is zero. Since $a_{9}=0$, it follows that $a_{4} \neq 0$, for otherwise $B_{4}=0$ and $B_{2}=0$ would be two cones with vertices at P_{1}. Since $a_{9}=0$ and $a_{4} \neq 0, T_{17}$ can be selected to reduce a_{7} to zero.

We now solve $B_{3}=0$ for m in terms of k, l, n; we use this value of m in $B_{1}=0$ to solve for l in terms of k and n; we use this value of l to get m in terms of k and n; and we use the values of l and m in one of $B_{2}=0, B_{4}=0$, $B_{5}=0$. We obtain the equation

$$
k^{5}+\alpha k^{4} n+\beta k^{3} n^{2}+\gamma k^{2} n^{3}+\delta k n^{4}+\varepsilon n^{2}=0
$$

where

$$
\begin{aligned}
\alpha=2 a_{8}, \quad \beta=2 a_{3} a_{5}+a_{8}^{2}, & \gamma=2 a_{3} a_{5} a_{8}+4 a_{3} a_{4} a_{6} \\
\delta=a_{3}^{2} a_{5}^{2}+4 a_{3} a_{4} a_{6} a_{8}+a_{3}^{3} a_{4}-a_{4} a_{5} a_{6}^{2}, & \varepsilon=a_{3}^{3} a_{4} a_{8}+a_{4}^{2} a_{6}^{3}-a_{3}^{2} a_{4} a_{5} a_{6} .
\end{aligned}
$$

The polynomial $f(x)=x^{5}+\alpha x^{4}+\beta x^{3}+\gamma x^{2}+\delta x+\varepsilon$ is irreducible. The possible S_{3} 's are those such that the α 's of P_{4} will give $\alpha, \beta, \gamma, \delta, \varepsilon$ of an $f(x)$ which is irreducible.

We note that multiplication of the coordinates of P_{4} by $t \neq 0$ in $\operatorname{GF}(p)$ changes $f(x)=0$ to the equation whose roots are t times those of $f(x)=0$. This would allow us to restrict attention to P_{4} 's with an arbitrary nonzero coordinate equal to 1 , or to one $f(x)$ of the set obtained from one by multiplying its roots by $t \neq 0$. Making use of a change of the unit point in X we can do both of these things. The change of coordinates in X carried out by the diagonal matrix with $1, d, 1 / d, d^{2}, 1 / d^{2}$ down the main diagonal does not change the coordinates of P_{1}, P_{2}, P_{3} but does change $f(x)=0$ to the equation whose roots are d times its roots.

We may therefore look for possible $S_{3}{ }^{\prime}$'s by separating them into classes: (1) those with $a_{3}=0$, and (2) those with $a_{3}=1$.
(1) If $a_{3}=0$, then $\gamma=0$ and $\beta-2 \alpha^{2}=0$. By taking account of the fact that changing the unit point in X and changing the coordinates of P_{4} by multiplication by $t \neq 0$ do not change S_{3}, it will be found that there are 14 distinct S_{3} 's for which $a_{3}=0$.
(2) When $a_{3} \neq 0$, it may be made 1 , and at the same time α may be made 1 if it is not zero, or if $\alpha=0, \beta$ may be made 1 if it is a square, or a particular not-square if it is not a square. If $a_{3}=1, \alpha$ determines a_{8}; then β determines a_{5}, and γ determines $a_{4} a_{6}$. With a_{8}, a_{5}, and $a_{4} a_{6}$ determined, δ and ε give two linear congruences to determine a_{4} and a_{6}. These determine a_{4} and a_{6} uniquely when they are independent, and when they are not, the value of $a_{4} a_{6}$ determines a_{4} and a_{6}. There are $66 S_{3}$'s so obtained. ${ }^{23}$

The final step in the solution of the problem is now simple. In any threespace in S_{3} which has no point on V and no Σ-line, an arbitrary point P_{1} may be selected and then a coordinate system in X so that

$$
P_{1}=1,0,0,0,0,0,0,1,0,0
$$

the osculating plane of the cubic through P_{1}, is $k, l, 0,0, m, 0, l, k, 0, m$, and $P_{4}=0,0, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, 0$. There are 80 sets of a_{3}, \cdots, a_{9} such that $f(x)$ is irreducible and no two of the $f(x)$'s can be obtained one from the

[^17]other by replacing x with $t x$. These 80 possibilities may all be realized by proper choice of P_{1} in space 54. The group of collineations of X which transform space 54 into itself distributes the 400 points into 80 sets of conjugates. Two P_{1} 's selected from two different sets give different $f(x)$'s since $f(x)$ determines P_{4} uniquely.

7. Removal of dependence on the value of p

Some of the argument of the preceding pages depended on p being 7 , but most of it did not. The final result is independent of the value of p, and we now divest the argument of dependence on p.

In the treatment of lines, planes, and the first $53(+4)$ three-spaces any dependence on $p=7$ comes from the selection of particular polynomials having certain required properties, generally an irreducible quadratic, or cubic, or quartic. The existence of such polynomials does not depend on p. We confine our attention to space 54 , i.e., to S_{3} with no point on V and no Σ-line. The locus J in X exists, the four-parameter set W of quadrics in S_{3} exists, no quadric in the set W has more than one vertex, and no two cones in the set W have the same vertex. $\quad S_{3}$ contains $p^{2}+1$ nonintersecting rational cubic curves. The Galois group Γ of $\mathrm{GF}\left(p^{5}\right)$ relative to $\mathrm{GF}(p)$ transforms X into X, V into V, and S_{3} into S_{3}. Though the final result is the same for all p, there are different geometric situations for different types of the prime.

When $p=5 t+1$, both $p+1$ and $p^{2}+1$ are congruent to $2, \bmod 5$. Hence, Γ must transform two cubics, K_{1} and K_{2}, each into itself, and on each of the invariant cubics it leaves two points fixed. Let the fixed points in S_{3} be P_{1} and P_{4} on K_{1}, and P_{2} and P_{3} on K_{2}. Γ must then leave fixed the four points, on J, in X, which give cones with vertices at these points, and also Γ must leave fixed the point A_{2} in X, not on J, which gives the nondegenerate ruled quadric Q on which K_{1} and K_{2} lie. Having these special elements in X and S_{3}, it is comparatively easy by the methods that have been used to show that a coordinate system can be selected so that S_{3} is

$$
k, l, 0, n, m, r n, l, k, 0, m
$$

where r is not a fifth power, $\bmod p$, but is otherwise arbitrary.
The situation is quite different from the case where $p=7$ and there are no invariant cubics, no fixed cones, no fixed nondegenerate ruled quadric. When $p=5 t+1$, the point A_{2} is the intersection of the fixed planes σ_{1} and σ_{2} determined by the cubics K_{1} and K_{2}. In each of the planes σ_{1} and σ_{2} the four lines on A_{2} which determine the rulings of Q through the vertices of the four fixed cones reduce to two. The point A_{2} is outside both conics C_{1} and C_{2} in the planes σ_{1} and σ_{2}.

When $p=5 t-1$, then $p+1$ is divisible by $5, p^{2}+1$ is congruent to 2 , mod 5. Hence, in this case there are two fixed cubics, but the cubics have no fixed points. The fixed cubics determine the planes σ_{1} and σ_{2} in X and a fixed quadric Q of the set W. The intersection A_{2} of planes σ_{1} and σ_{2} is inside
both conics C_{1} and C_{2} in the fixed planes. The polars of A_{2} with respect to conics C_{1} and C_{2} are fixed, under Γ, and they determine two fixed lines in S_{3}.

When $p=5 t \pm 2$, then there is no cubic in S_{3} left fixed by Γ, and hence there are no fixed points. The number of quadrics in W is congruent to 1 , $\bmod 5$, and hence there is a fixed quadric Q^{\prime}. Neither Q^{\prime} nor the point A^{\prime} in X which determines it came forward to help in characterizing space 54 for $p=7 . \quad Q^{\prime}$ is nondegenerate and has no rulings; the number of points on Q^{\prime} is $p^{2}+1$, one on each cubic.

Our first step in identifying the space 54 , with $p=7$, was to show that an S_{3} containing a quadric in the set W on which the two cubics were properly related to each other could be put in the canonical form in which 54 appears. When $p=5 t+1$, the group Γ picks out a quadric with two cubics on it and gives all the necessary information to determine a canonical form. With $p=7$ we started with a configuration we could not be sure was in every S_{3}, but in this case there is no uncertainty.

Let A_{2} be the point in X which determines the nondegenerate ruled quadric Q left fixed by $\Gamma .^{24}$ On A_{2} are fixed planes σ_{1} and σ_{2} containing fixed conics C_{1} and C_{2}. On C_{1} are fixed points A_{3} and A_{5} which determine in S_{3} fixed cones with vertices at P_{2} and P_{3} respectively; P_{2} and P_{3} are points of the cubic K_{1}. On C_{2} are fixed points A_{1} and A_{4} which determine cones with vertices at P_{4} and P_{1} on K_{2}.

The lines $P_{1} P_{2}$ and $P_{3} P_{4}$ are rulings of Q, they are rulings of the cones with vertices on K_{1} at P_{2} and P_{3}, and they are the lines tangent to K_{1} at P_{2} and P_{3}. Similarly, lines $P_{1} P_{3}$ and $P_{2} P_{4}$ are rulings of Q, they are rulings of the cones with vertices at P_{1} and P_{4} on K_{2}, and they are tangents to K_{2} at P_{1} and P_{4}.

The plane $P_{1} P_{2} P_{3}$ osculates K_{2} at P_{1}, since the plane is tangent to K_{2} at P_{1} and has no other point on K_{2}; it is tangent to K_{1} at P_{2}. The cone with vertex at P_{3} is tangent to $P_{1} P_{2} P_{3}$ along $P_{2} P_{3}$. Hence, the points P_{1}, P_{2}, P_{3} have the proper relations so that the plane takes the form

$$
k, l, 0,0, m, 0, l, k, 0, m
$$

It is necessary only to determine coordinates of P_{4}, which is located by rulings of Q through P_{2} and P_{3}. We still have at our disposal the coordinates of one point on C_{1} and of one point on C_{2}. These can be selected so that $P_{4}=$ $0,0,0,1,0, a_{6}, 0,0,0,0$, where $f(x)=x^{5}+a_{6}^{3}$ is irreducible, i.e., where a_{6} is not a fifth power. A change of the unit point will change $f(x)$ into $x^{5}+$ $d^{5} a_{6}^{3}$, which says that without changing the choice of P_{1} the constant term in $f(x)$ can be made to take any value in one coset of the nonzero numbers in $\mathrm{GF}(p)$ with respect to the subgroup of fifth powers. The points P_{1}, P_{2},

[^18]P_{3}, P_{4} enter indistinguishably, i.e., any one of them can be taken for P_{1} in the above determination of coordinates of P_{4}. By changing P_{1} the constant term in $f(x)$ may be made any number in $\mathrm{GF}(p)$ which is not a fifth power. Therefore, when $p=5 t+1$ and S_{3} has no point on V and no Σ-line, a coordinate system can be selected so that S_{3} is $k, l, 0, n, m, r n, l, k, 0, m$, where r is an arbitrary number not a fifth power in $\operatorname{GF}(p)$.

In the foregoing consideration of S_{3} for $p=5 t+1$, attention was directed to the value of p at only two places: (1) $p+1$ and $p^{2}+1$ were both congruent to $2, \bmod 5$, which ensured two cubics fixed under Γ and two fixed points on each cubic; and (2) $\quad p-1=0, \bmod 5$, which permits the existence of the polynomial $x^{5}+a_{6}^{3}$, irreducible in $\operatorname{GF}(p)$. For other primes we do not have the convenient $P_{1}, P_{2}, P_{3}, P_{4}$ to work with, and neither can we get the simple canonical form.

We can retain the argument and get a canonical form in the following manner. For $p=5 t-1, p^{2}=1$, $\bmod 5$, so that $p^{2}+1$ and $\left(p^{2}\right)^{2}+1$ are both congruent to $2, \bmod 5$. For $p=5 t \pm 2, p^{4}+1$ and $\left(p^{4}\right)^{2}+1$ are both congruent to $2, \bmod 5$. Thus, if we immerse X, S, and S_{3} in spaces \bar{X}, \bar{S}, and \bar{S}_{3} over $\operatorname{GF}\left(p^{2}\right)$ and $\operatorname{GF}\left(p^{4}\right)$ respectively in the two cases, we recover the two fixed cubics and the two fixed points on each; $f(x)$ is still irreducible in the extended fields. The argument goes unchanged to give a canonical form for \bar{S}_{3}, but now a_{6} is a number in $\operatorname{GF}\left(p^{2}\right)$ or $\operatorname{GF}\left(p^{4}\right)$.

A canonical form for \bar{S}_{3} determines a canonical form for S_{3}, and vice versa. For p 's not of the form $5 t+1$ we can not use the elements fixed under Γ so directly to get a canonical form that will be useful for the groups. However, knowing that one S_{3} which gives an irreducible quintic is related to V in the same way as any other, we may take any such S_{3} for the canonical form.

To determine that two S_{3} 's are conjugate under a collineation of X, it is necessary only to see that the polynomials $f(x)$ for both are irreducible. To determine the collineation is a direct and reasonably simple problem when $p=5 t+1$; it is not so simple when $p=5 t \pm 2$. Even at this late stage, when the essentials of the problem and its solution are quite clear, the characterization of S_{3} by means of the geometric configuration we did use or by any other looks fortuitous. If we incline to think that now the somewhat tentative method used for $p=7$ can be replaced by the direct method used for $p=5 t+1$, we are given pause when we recognize that the work must be carried out in spaces over GF $\left(p^{20}\right)$.

University of Illinois
Urbana, Illinois

[^0]: Received May 5, 1958.
 ${ }^{1}$ Finite metabelian groups and the lines of a projective four-space, Amer. J. Math., vol. 73 (1951), pp. 539-555.
 ${ }^{2}$ Strictly, the paper establishes the completeness of a corrected list. Four groups, those connected with spaces of $9^{\prime}, 20^{\prime}, 20^{\prime \prime}$, and 21^{\prime}, were overlooked in the earlier paper. Spaces 20^{\prime} and 21^{\prime} were first noted by Dr. W. E. Koss and Mr. Peter Yff respectively.

[^1]: ${ }^{3}$ Finite metabelian groups and Plücker line-coördinates, Amer. J. Math., vol. 62 (1940), pp. 365-379.

[^2]: ${ }^{4}$ We omit accents for the new coordinates; we wish only to differentiate here between $c^{\text {oordinates }}$ which are zero and those that are not known to be zero.

[^3]: ${ }^{5}$ We omit the computation because of its length; it is exactly like that which determined the matrix T_{3}.
 ${ }^{6}$ In this case $f(\theta)=-1$. The transformation $\theta=1 / \theta^{\prime}$ in (iv) applies, giving $f\left(\theta^{\prime}\right)=\theta^{\prime 3}$.

[^4]: ${ }^{7}$ If ρ has two points on V, it contains a Σ-line, so we should expect it to come from (c) or (f).
 ${ }^{8}$ One reason for keeping the above canonical form for plane 15 is that it is in print; another reason is to exhibit one of the places where it would be easy to go astray in accounting for all the possibilities. It would not be hard to miss the fact that it makes a difference whether or not a_{4} / a_{3} is a square. Plane 15 was found first, and many attempts were made to change 14 into 15 before they were looked at closely enough to see the difference explained above.

[^5]: ${ }^{9}$ This point is obtained as the intersection of the polar spaces of $(c, 0, a)$ and $(0, c, b)$.

[^6]: ${ }^{10}$ We call attention to this, for we shall have frequent use for this space in what follows.

[^7]: ${ }^{11}$ Spaces 9^{\prime}, and later 20^{\prime} and $20^{\prime \prime}$, were missing from the paper cited earlier; it is desired to keep the numbering of the earlier paper for the other spaces.

[^8]: ${ }^{12}$ The additional point is

 $$
 \begin{array}{lr}
 a_{6}, a_{8}, a_{3}, a_{4}, 0, a_{6}, a_{7}, a_{8}, a_{9},\left(a_{3} a_{7}-a_{4} a_{6}\right) / a_{6}, & \text { if } a_{6} \neq 0 \\
 a_{7}, a_{9}, a_{3}, a_{4}, 0,0, a_{7}, 0, a_{9}, a_{3}, & \text { if } a_{6}=0, a_{7} \neq 0 \\
 0,1, a_{3}, a_{4}, 0,0,0, a_{8}, a_{9},\left(a_{3} a_{9}-a_{4} a_{8}\right) & \text { if } a_{6}=a_{7}=0
 \end{array}
 $$

[^9]: ${ }^{13}$ It is to be noted that the k and l here are the parameters of transformation T_{2}.

[^10]: ${ }^{14}$ It will appear later that this second possible S_{3} does not exist.

[^11]: ${ }^{15}$ We recall that these forms are for $p=7 ;-1$ is not a square.

[^12]: ${ }^{16}$ There is getting to be less freedom in the change of the unit point, and we should perhaps point out the details here. If in X the point $1, d_{1}, d_{2}, d_{3}, d_{4}$ is taken for the new unit point, the unit point in S is changed to

 $$
 d_{1}, d_{2}, d_{3}, d_{4}, d_{1} d_{2}, d_{1} d_{3}, d_{1} d_{4}, d_{2} d_{3}, d_{2} d_{4}, d_{3} d_{4}
 $$

 In order to keep the plane $P_{1} P_{2} P_{3}$ in the canonical form, it is necessary only to require that $d_{2}=d_{1} d_{4}$. In order to get $P_{4}^{\prime \prime}$ into the desired form, we must have $a_{5} d_{1} d_{2}=a_{10} d_{3} d_{4}=-a_{4} d_{4}$. These requirements can be satisfied since $a_{4} a_{5}$ is not a square; if $a_{4} a_{5}$ were a square, S_{3} would have three points on V.

[^13]: ${ }^{17}$ For the irreducible quartic this comes under a theorem by L. E. Dickson, Criteria for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc., vol. 13 (1906), p. 7. The quartic which is the product of two irreducible quadratics defines a GF $\left(p^{2}\right)$ in which the quartic is completely reducible and reducible to quadratic factors in three ways corresponding to the three roots of the resolvent cubic. The roots of the cubic are in GF $\left(p^{2}\right)$, and hence at least one of them is in $\operatorname{GF}(p)$.
 ${ }^{18}$ This is done most easily by transforming both (A) and (C) to the form $x^{3}+\alpha x+\beta=$ 0 which can be made the same for both.

[^14]: ${ }^{19}$ Again we note that the details are being carried out for p such that -1 is not a square.
 ${ }^{20}$ The simplest way to verify this is to take S_{3} with r arbitrary, change the plane $P_{1} P_{2} P_{3}$ from $n=0$ to $l-a n=0$, and change the coordinate system so that $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, P_{4}^{\prime}$ are in proper form. It will then appear that for no a except $a=\infty$ is the form of P_{4} left unchanged.

[^15]: ${ }^{21} \mathrm{We}$ are dealing with $p=7$. For the next several pages we shall be more closely tied to $p=7$ than we have been heretofore. At the end we shall divest the argument of dependence on $p=7$, but it seems desirable to separate the difficulties of the problem from the difficulties that arise from different properties of different primes.

[^16]: ${ }^{22}$ It is to be noted that in the above argument there is no dependence on p being 7 . We used that assumption when we exhibited the quadric with no rulings, but that fact is not important for our purposes and as will be seen later can be proved easily without any assumption about p.

[^17]: ${ }^{23}$ These results are obtained by examining a list of irreducible quintic polynomials; actually only 560 of the total 3360 need be considered. The list would require a lot of space; the preparation of a list to check the above statements is a long process. In Irreducible quintic congruences, Thesis, University of Illinois, Urbana, 1952, Dr. C. B. Hanneken gives a straightforward method of determining them. His contribution is a direct and relatively simple way to find one of each set of conjugate quintics under the linear fractional group in GF (p).

[^18]: ${ }^{24}$ In the earlier argument we used primed letters, $A^{\prime}, Q^{\prime}, P^{\prime}$, etc. to denote points, etc. until we found that accents could be dropped and the letters have their usual meanings. As soon as things are named, it will be seen that thev are named properly, so we dispense with accents here.

