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1. Introduction

This paper continues the study of metabelian groups with elements of
order p which are generated by five elements, and which are not direct prod-
ucts of abelian groups and metabelian groups with fewer generators. The
problem is stated precisely and the method of investigation is explained in an
earlier paper. In that paper the existence and the distinctness of eighty-five
such groups of orders from p15 tO pll were established. This paper will
establish the completeness of the list for these orders.
The considerations will all be geometric; nevertheless this is a paper about

groups. The groups motivate the study of the complicated considerations
required to determine invariants and to show in each case that a given set of
invariants is sufficient to characterize a space. We shall be interested in
planes and three-spaces in the finite nine-dimensional projective space S
which is determined by the Plticker coordinates of the lines of a projective
four-space X over GF(p). We classify planes and three-spaces of S under
collineations of X.

2. Geometric formulation
We state the problem in geometric terms; the reader is referred to the

earlier paper for consideration of the bearing of this study, and also for any
proofs required for statements in this section.
Denote the five elements which generate G, any one of these groups, by

U1, U2, Us. Designate commutators of pairs of U’s as follows:

U1U1U2 U181,

U71UIU3 U182,

U1U1U4 U183,

U1UIU5 U184,

Received May 5, 1958.

U-Iu.ua-- Uess,
UU.U, U.so
U-;’UU UST

UU4U Uso.

Finite metabelian groups and the lines of a projective four-space, Amer. J. Math.,
vol. 73 (1951), pp. 539-555.

Strictly, the paper establishes the completeness of a corrected list. Four groups,
those connected with spaces of 9’, 20’, 20", and 21’, were overlooked in the earlier paper.
Spaces 20’ and 21’ were first noted by Dr. W. E. Koss and Mr. Peter Yff respectively.
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642 H.R. BRAHANA

If the s’s are all independent, the group is of order ply; all other groups
satisfying the given conditions are quotient groups of this with respect to
subgroups of the central C {s, s, s0}.
Any element of G is cUIU... U where c is an element of C

and x, x, x re numbers in GF(p). To this element we let correspond
the point x, x, x in u finite projective spuce X of four dimensions. A
second element c’U U U of G determines second point YI, Y2, y

,al,a2 ,,al0 whereof X. The commutator of these two elements is o- 0

al, a:, a0 are the Pliicker line-coordinates of the line xy in X. These
numbers can be used as the coordinates of a point in projective nine-space S
over GF(p). Every point of S determines a cyclic subgroup of C, the central
and the commutator subgroup of G of order p.
The points of S which correspond to commutators, or which correspond to

lines of X, are points of the V defined by B B B 0, where

B aas a2a aa,

B2 aa a2a7 aa

Ba aao aaa aa,

B4 a2ao aaa -’t- a,as

B aao aa aas.

We shull designate this locus by V.
Every group satisfying the given conditions will be obtained by setting

certain elements of the commutator subgroup of the biggest group equal to
identity. Elements dependent on those set equal to identity will constitute a
subgroup of C and will correspond to a linear space in S. Different subgroups
of the same order will correspond to subspaces of the same dimension; if
these subspaces of S have different relations to V, then the corresponding
quotient groups of G will be groups that are not simply isomorphic. We are
to see that there are just 22 types of plane and 58 types of three-space in S;
points and lines were discussed completely in the earlier paper.
We list some facts that will be needed in all that follows.

(1) The lines of a pencil in X determine the points of a ruling of V.

(2) A point P of S not on V is on a line joining two points of V; a choice
of coordinate system in X will put P in the form 1, 0, 0, 0, 0, 0, 0, 1, 0, 0.

(3) Two points of V on a line with P not on V are images on V of two skew
lines in X; these lines determine a three-space R in X;R depends on P only,
and not on the points of V which were used to define it.

(4) The equation of R is Bx B,x .-[- Bxa B:x Bx O, where
the B’s are those for the point P which determines R.
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(5) We denote by 2 the five-space in S determined by the lines of a three-
space in X; a point P in S is in one and only one 2 unless P is on V. Lines,
planes, etc. in a 2; are called Z-lines, Z-planes, etc.

(6) A line in S not a Z-line has one or no points on V; respective canonical
forms are k, 0, 0, l, 0, 0, 0, k, 0, 0 and k, l, 0, 0, 0, 0, l, k, 0, 0.

(7) The line k, l, 0, 0, 0, 0, l, k, 0, 0 determines a unique point M on V
such that the plane determined by M and the line is tangent to V at M. The
six-dimensional space tangent to V at M contains planes, three-spaces, etc.,
which we shall call r-planes, r-three-spaces, etc.

(8) So much use will be made of the close connection between the canoni-
cal form ], l, 0, 0, 0, 0, l, k, 0, 0 in S and the frame of reference in X that we
shall describe it briefly here. Let be a line in S which is not a Z-line and
has no point on V. Let P. and P be arbitrary points on l; let R and R
be the corresponding three-spaces in X; let the plane of intersection of R
and R be ; let the images on V of the lines of be the points of the plane ;
and let 2 and 2 be the five-spaces in S which contain P and P respectively.
The polar of P with respect to the intersection of V and 2 intersects r in a
line l ;likewise P determines a line l in . Lines l and l intersect in the
point M. A line joining P to a point Q on l and not M intersects V in a
second point Q a line joining P. to a point Q. on l and not M intersects V
in Q. The points M, Q, Q, Q, Q are images on V of lines m, q, q, q,
q in X; these lines have the following relations" m, q, and q are in the plane
a, and the intersection of q and q. may be taken to be A1 1, 0, 0, 0, 0; m and
q intersect at A.- 0, 1, 0, 0, 0; m and q: intersect at Aa 0, 0, 1, 0, 0; q
passes through Aa and contains A4 0, 0, 0, 1, 0; q passes through A. and
contains A 0, 0, 0, 0, 1. With this choice of a coordinate system in X
and the corresponding determination of the coordinate system in S, the line
takes the canonical form above. This rapid description shows the great
arbitrariness in choosing a coordinate system to give a line the canonical
form. By taking advantage of this arbitrariness we get a start in classifying
planes.

3. The planes of S

(i) -planes in S. There are 2;-planes in S; each such plane lies in the 2;

determined by the lines of a three-space in X. In dealing with them we may
neglect X and consider only the three-space. These planes were all deter-
mined in a previous paper. The Z-planes are

1. k, l, 0, 0, m, 0, 0, 0, 0, 0, the image of a plane of lines in X.
2. k, l, m, 0, 0, 0, 0, 0, 0, 0, the image of a bundle of lines in X.

Finite metabelian groups and Pliicker line-coSrdinates, Amer. J. Math., vol. 62 (1940),
pp. 365-379.
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3. 1, l, 0, 0, 0, 0, 0, m, 0, 0,
4. 1, l, m, 0, 0, 0, 0, 1, 0, 0,
5. It, l, 0, 0, 0, m, 0, , 0, 0,
6. lc, l, m, O, O, rl, O, 1, O, 0

point.

which intersects V in two lines.
which intersects V in one line.
which intersects V in a conic.
(r not a square), which intersects V in a

The intersection of V and 2 is a four-dimensional hyperciuadric. Any
plane in 2 then intersects V in a conic or else lies wholly on V. The latter
possibilities are 1 and 2. If the conic is not degenerate, the plane is 5;if the
conic is degenerate with one vertex, it is 3 if the quadratic polynomial is
factorable in GF(p), otherwise it is 6; if the conic has a line of vertices, the
plane is 4. The proofs that planes having the properties listed can be put in
the forms given are not attempted here; they are given, however, in the paper
cited, and they are not hard to supply.

(ii) A preliminary classification of planes not in any 2;. A plane p which is
not in any 2 contains points not on V, for a plane lying on V is determined by
three points of V which are images of three lines in X that intersect in pairs,
and three such lines either lie in a plane or pass through a point, in either of
which events they lie in a three-space. Let p contain the point P which is
not on V. P determines a five-space 2:, and p does not lie in 2. If p con-
tained as many as four points of V no three of which were collinear, then p

would be a 2-plane. One of the vertices of the diagonal triangle of the quad-
rangle determined by the four points would be not on V and so could be
taken for P above. The three-space determined in X by P would contain
the lines of which the four points of V are images, and so the corresponding 2
would contain p. Therefore any plane of S which is not a 2-plane intersects
V in 0, 1, 2, 3 points, in a line, or in a line and one additional point.

Unless p is a 2-plane, it cannot contain two 2-lines which intersect in a
point not on V. Hence every p which is not a 2-plane contains a line which
is not a 2-line. If p intersects V in a line, then every has a point on V; if p

does not contain a line of V, then p contains an which has no point on V.
Hence, any plane p which is not a 2-plane contains one or the other of the
lines given in (6) of Section 2.

(iii) Some transformations of S which leave a line fixed. The planes p of S
which contain 0, 1, 2, or 3 points of V all contain the line It, l, 0, 0, 0, 0, l, 1, 0, 0
which we shall call P1P2 with P1 given by 0 and P by 0. Each such
p is given by one additional point whose coordinates may be modified by using
some of the freedom noted when we discussed the canonical form of PP.
We give here three transformations of S into itself which leave the form of
P1P unchanged. We employ the notation of Section 2.
For the first transformation we move A4 along q and A5 along q, leaving

Px, P2, Q, Q2, Q, Q fixed. Denote this transformation by Tx. The effect
of T1 in X is described by the matrix of coefficients
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1 0000

0 1 0

b 0 0

in expressions of the new coordinates in terms of the old. The matrix which
follows is the description of T1 in S by means of the matrix of coefficients in
the expressions of the old coordinates in terms of the new; its elements are the
properly ordered two-rowed minors of the inverse of the matrix above.

-1 0 O0 0 000 0 0-
0 1 O0 0 000 0 0
0 -a 1 0 0 000 0 0
-b 0 01 0 000 0 0
0 0 O0 1 000 0 0
0 0 O0 -a 1 O0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 O0 0 O01 0 0
0 0 O0 b 000 1 0
0 0 0 0 -ab b 0 0 -a 1_

The second transformation T2 represents the changes in the coordinate
systems brought about by moving Q1 and Q along the lines 12 and l respec-
tively, still leaving P and P fixed. The points A4 and A are not determined
by the Q’s, but a combination of T and T will do all that can be done in that
respect. The following transformation moves Q to )1 Q1 W kM and
Q:toQ Q W1M.

1 000 -k 0 0
0 100 -l 0 0
-k 0 1 0 k2 -1 0
0 0 1 -l 0 -1
0 000 1 0 0
0 000 0 1 0
0 0 0 0 0 1
0 0 0 0 k 0 0
0 0 0 0 0 0 0
0 0 0 0 -kl 0

0 0 0-
0 00
k 00
0 k 0
0 00
0 00
0 00
1 00
0 10
-101

For the third transformation T3 we let the point aP P play the role
of P and determine a coordinate system so that P and the new P have co-
ordinates in canonical form. There is arbitrariness in the choice of Q1 and Q.
as well as in the choice of A4 and A. We shall carry out the selections which
determine the matrices of T3 in X and in S.
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P1 1, 0, 0, 0, 0, 0, 0, 1, 0, 0.

R1 x5 0.

1, 0, 0, 0
o" O, 1, O, 0

1, 0, 0, a, 0.

fO, O, O, O, 1, O, O, O, O, 011 a, --1, 0, 0, 0, a2, 0, --a, 0, 0.

M 0, 0, 0, 0, 1, 0, 0, 0, 0, 0.

Q 1, 0, 0, 0, 0, a, 0, 0, 0, 0.

Q2 a, -1, 0, 0, 0, a2, 0, -a, 0, 0.

0, 0, 0, A2
ql 1, 0, 0, a, 0, A1

q f,0,-a,l, 0,0, A3
0, 0, 1, 0,

P2 a, 1, O, O, O, O, 1, a, O, O.

R2 axi -- X4 -’[- a2x5 O.

0, O, O, O, 1, O, O, O, O, 0
r 1,0,0,0,0, a, 0,0,0,0.

0, 1, 0, 0, 0, 0, 0, a, 0, 0

O, O, O, 1, O, O, O, O, 012 1,0,0,0,0, a, 0,0,0,0.

Q o, o, o, o, o, -a, o, 1, o, O.

Q -2a, O, O, o, O, -a2, -1, o, o, O.

=f-l, 0, 0, a, 0
q2 \0, -a, 1, 0, 0.

fO, 1, O, O, 0
q \2a, O, O, -a, -1, A.

The A’s at the right just above designate the points selected for the vertices
of the new frame of reference in X. The matrix of T3 in X is the set of A’s
in their proper order.

1
a
0
0
0T 0
2a
0
2a
0

The matrix in S is

0 0 0 0 --a 0 0 0 0-
1 0 0 0 --a 0 -a 0 0
0 1 0 0 0 0 0 0 0
0 --a 1 0 0 0 0 0 a
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 a 1 0 0 0
0 0 0 0 a 0 1 0 0

--2a 0 0 0 a a a 1 0
0 --2a 0 0 0 0 0 0 1

(iv) Planes with no point on V. Among planes which contain the line
PiPe of (iii) are those with no point on V. These planes are

7. t, l, O, O, O, m, l, t + rm, m, O.
8. k, l, m, O, --rm, O, l, k, O, O.
9. k, l, O, O, m, O, l, k, O, m.

We proceed to show that if p is not a Z-plane and has no point on V it can
be put in one of these forms. The plane is determined by P, P2, and a
third point which may be taken to be

P3 0, 0, a3, a4, a5, a6, a7, as, a9 al0.
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We consider first the possibility that p is a r-plane. The line P1P is in
the space tangent to VatM- 0,0,0,0, 1,0,0,0, 0, 0. If P3 is in that
tangent space, a3 a4 al0 0. Any point in p is P kP -{- 1P. mP.
Conditions that P be on V are

k askm alm O, akm alm O,

(aas aa)m + tel -- akm -- aslm O.

Eliminating m between the lst two congruences, we get

ak akl -- askl al O.

Since there exist irreducible cubic congruences, it follows that there exist
r-planes with no point on V. We note that the above conditions re in-
dependent of a. Moreover, neither a nor a is zero, nd so a or b in T cn
be selected so that P’ has a5 0.
Now let p be the plane determined by P, P, and

P3 0, 0, 0, 0, 0, a6, aT, as, ag, 0

where the cubic ag0 aT0 - as0 a6 is irreducible. If we apply transforma-
tion T3 with a 1, the point P3 goes into

P’ --2a 2a, --2a 0, 0, 0, a -- a -- as -- a, a--a, as--a, ag, 0.

The point in p whose first two (new) coordinates re zeros has for its nonzero
coordinates a, a, as, a which are the coefficients of the transform of the
irreducible cubic by 0 0’ 1. The interchange of P1 and P performs the
same transformation on the cubic as does 0 1/0’; the transformation in X
which leaves the vertices of the frame of reference fixed and changes the unit
point to d, 1, d, 1, d performs the transformation 0 dO’ on the cubic. These
transformations generate the linear fractional group on 0, and under this
group all irreducible cubics are coniugate. Hence, in any r-plane which has
no point on V, points can be selected so that P and P. are in canonical form
and P 0, 0, 0, 0, 0, 1, 0, r, 1, 0, where x rx 1 is an arbitrary irre-
ducible polynomial. This is plane 7.
For any other plane on PIP. the tangent spa.ce at M cannot contain P,

and hence not all of a, a4, and a0 are zero. We note that transformations
T, T, and T all leave a4 unchanged, and that T and T leave a3 and a0
unchanged also. We separate the planes into two classes: (1) those de-
termined by P3 with a4 0, and (2) those determined by P with a 0.

(1) Suppose a 0 and al0 0. We may apply T3 with a 2aoa 0
and obtain a3 0. Since p contains P and P, it contains a point
P 0, 0, 0, 0, a5, a, aT, as, a, a0. Application of T will give a as 0,
and T will give a a 0. By proper choice of the unit point we obtain

(a) P 0, 0, 0, 0, 1, 0, 0, 0, 0, 1.

We omit accents for the new coordinates; we wish only to differentiate here between
oordinates which are zero and those that are not known to be zero.

c
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The other planes of set (1) are those for which al0 0 and hence as 0.
Applying T2 with 2aa W as 0 and -aal W a6 0 gives a6 0 and al as.
Then p contains the point Pa 0, 0, as, 0, as, 0, aT, 0, a9,0. When a9 0,
we may apply T with a5 --t- ba 0 and -aaa a7 to remove a and to make
a2 a. When a 0, T can be applied to make a a. In both cases,
Pa can be changed to a point which has a a 0. Thus we have the
possibilities"

(b) P3 0, 0, a3,0, 0, 0, 0, 0, a, 0,
(c) P3 0, 0, aa, 0, a, 0, 0, 0, 0, 0.

We note that in the case of (c) the line P1P is a 2-line.
(2) Now suppose a 0. Then in consideration of Ta we may suppose

a0 0. We consider first those planes given by Pa with aa 0. With
proper choice of k and l, Te gives a a 0. Pa can be selected in p so that
a as 0. Applying T with proper choice of a and b will change al and
a. to zero. Hence, we have

(d) P 0, 0, a3, a, a, 0, 0, 0, 0, 0.

Finally, suppose a 0. T2 and a change of P will remove a., aT, as,
and ag, introducing al 0. We then have

P al, 0, 0, a,, a, a, 0, 0, 0, 0.

T1 can be used to remove a and to remove a5 if a 0. We have the pos-
sibilities"

(e) P 0, 0, 0, a4,0, a, 0, 0, 0, 0,
(f) P 0, 0, 0, a, a, 0, 0, 0, 0, 0.

In the case of (f), PP is a Z-line.
We shall now show that the plane determined by (a) contains no Z-line,

so that planes (c) and (f) are different from (a). Denote the plane given by
(a) ask, l, 0,0, m, 0,1, k, 0, m. A point P k, l, m in it determines the
three-space

R: (m + kl)x lmx. + kmx -t-- 12x + k,x O.

If P is on the line m 0 (i.e., the line PP.), R is klx + l:x + kx O. If
P is P, R is xl 0. For no lc and can these be the same R, and hence a
Z-line in p does not pass through P3. A Z-line in p must therefore intersect
PP. and P2P in distinct points. If P is on the line 0, R is mx kmx +
kx 0; if P is on k 0, then R is mx lmx lx4 O. These R’s are
the same only if the corresponding P’s are the same. Hence, p contains
no Z-line.
We next show that the planes determined by (a), (b), (d), and (e) are the

same, and those determined by (c) and (f) are the same; they are respectively
planes 9 and 8 above.
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The transformations used so far to simplify the coordinates of P3 have all
left the line P1P2 fixed; in order to go farther it will be convenient to change
to a differentP1P2. If in (b) wemakethe changeP P1, P P, P P,
and then change the coordinate system so that P and P are in canonical
form, P’3 becomes 0, 0, 0, 0, 1, 0, 0, 0, 0, 1. If in (e) we interchange the
r61es of P1 and P, we obtain (a) again. In (d) we may take P’ P + P,
P P P, P P, and this will change (d) into (a). Hence, any plane
in S which has no point on V, contains no 2-line, and is not a r-plane can
be put in the form 8.

Interchange of P and P. interchanges (c) and (f). Hence, any plane in
S which has no point on V, is not a r-plane, but which contains a Z-line, can
be put in the form 9. This concludes the determination of planes that do
not intersect V.

(v) Planes with 1, 2, or 3 points on V. The planes with 1, 2, or 3 points
on V all contain a line PP.. The transformations in (iv) still pertain; the
present planes were excluded by requiring that there be no point on V. By
looking more closely at that requirement we determine the planes"

10. /c, l, 0, 0, m, 0, l,/, 0, 0.
11. ]c, l, 0, 0, 0, m, l, It, 0, 0.
12. k, l, m, 0, 0, 0, l, It, 0, 0.
13. ]c, l, O, O, O, m, -rm, , O, 0 (r not a square).
14. k, l, m, rm, O, O, l, k, O, O.
15. k, l, 0, 0, 0, 0, l, k, 0, m.
16. kWm, l, 0,0,0,0,1, k, 0,0.
17. kWm, l,m, 0,0,0,1, k, 0,0.
18. k+m, lWm, 0, 0, 0, 0,1,1c, 0,0.

When p is a r-plane, it will be determined by PP and the point
P 0, 0, 0, 0, as, a6, aT, as, ag, 0. The polynomial f(O) ago aTO +
as0 a6 will now be reducible. The transformations on this polynomial in
(iv) show that unless f(0) is identically zero we may suppose a6 or a is not
zero, and hence a5 may be made zero. The one case it may not be made
zero gives plane 10; this plane is obviously unique, since PP2 determines
the unique point P M. Plane 10 has one point on V and is tangent to
V at that point.
The reducible f(0) may be a cube as is given by 11. This plane has one

point on V and contains the tangent line 0.
If f(0) is the product of a linear and an irreducible quadratic factor, the

plane is 13 which has one point on V and no line tangent to V. If f(O) is the
product of a linear factor by the square of another, the plane is 16. For this

We omit the computation because of its length; it is exactly like that which deter-
mined the matrix T

In this case f(O)=- 1. The transformation 0--1/0’ in (iv) applies, giving
f(o’) ’.
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the P3 in the proper form gives f(O) which is reduced to O. f(O) 0 has the
root zero and the double root infinity. Plane 16 has two points on V. If
f(O) has three distinct linear factors, the plane is 18; it has three points on
V;f(O) 0 O.
When o is not a r-plane, P3 can be made to take one of the forms (a) to (f)

of (iv) with the added possibility that some of the a’s are zeros. Case (a)
was obtained on the assumption that aa0 0; if in this ease a 0, we have
plane 15. This plane has one point on V and no tangent line.

In eases (b) and (c) we have aa 0. If in the respective eases a 0 and
a 0, we have plane 12 which has one point on V and the line 0 tangent
to V. If in (c) r -a/a is not a square, we have plane 8 with no point on
V, but if r is a square we have plane 17, with two points on V.
Both (e) and (f) reduce to 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 which gives a o that is

changed into 12 by interchanging P and P:.
In ease (d) we could have a 0, in which case we have plane 14 if r

a/a is not a square. This has one point on V and no tangent line. If r
is a square, the plane will still have one point on V and no tangent line. The
planes for r a square and r not a square are different. To see this, consider
the plane

k, l, m, rm, O, O, l, k, O, O.

The three-space in X determined by a point/, l, m is

klx rkmx lmxa + 12X4 + kX O.

By means of this relation every point of X determines a conic in p. Now,
has a special point, P3, which is on V and is the image of a line p. in X. The
points of pa determine the conics of a special pencil in p.

P= 0,0,1, r, 0,0,0,0,0,0 and p.={:0,0,0,00, 0, 1, r’

and these points on p give the conics kl 0 and + rk 0. The special
pencil of conics is r/c + },kl + 0. When r is not a square, every conic
of the pencil consists of two distinct lines; when r is a square, there are two
conics each of which is a line counted wice. This was the difference be-
tween planes 14 and 15 that was explained in the earlier paper. Since we
have now found all planes which contain PP, it should follow that plane
15 and this last one with r a square are the same. To see that they are the

If p hs two points on V, it contains a 2:-line, so we should expect it to come from
(c) or (f).

One reson for keeping the above csnonicM form for plsne 15 is thst it is in print;
snother resson is to exhibit one of the plsces where it would be essy to go sstrsy in
sccounting for M1 the possibilities. It would not Be hsrd to miss the fsct that it mskes

difference whether or not a/a is s squsre. Plane 15 ws found first, snd msny
tempts were mde to,chsnge 14 into 15 before they were looked st closely enough to see
he difference explained sbove.
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same, we notice that in the case of plane 15 the points P1 and P are one each
on the two degenerate parabolas. Making this change in the case where
a4/a3 is a square gives the form 15.

(vi) Planes with a line on V that are not Z-planes.
not 2-planes, each of which contains a ruling of V:

19. k, 0, 0, 0, 0, 0, 0, 0, l, m.
20. k, 0, 0, 0, l, 0, 0, k, m, 0.
21. k, 0, 0, 0, 0, 0, l, k, m, 0.
22. k, 0, 0, 0, 0, 0, 0, k, l, m.

There are four planes,

Plane 19 has the line k 0 and the point m 0 on V; any plane with
a line and a point on V can be put in the form 19. For the line PP3 de-
termines a pencil of lines in X which may be taken to be in the plane a

AaA4A with vertex of the pencil at A. The other point P1 in p and on V
determines a line p in X. The line p cannot intersect the plane a for then
P, P., and P would all be in a five-space 2 determined by the lines of a
three-space in X and p would be a Z-plane. Hence, A and A. may be selected
on pl, and p takes the form 19.

Let p be a plane, not a 2-plane, intersecting V in one line PPa only, and
let P be a point of p not on V. There is no more than one Z-line in p on

P1 hence there is no more than one line through P tangent to V. There-
fore, p is in no more than one of the spaces tangent to V at points of PPa.
Suppose p is tangent to V at the point P. Then since any tangent is

conjugate to any other, we may take PP to be

k, 0, 0, 0, l, 0, 0, k, 0, 0.

The points of the line P2P3 image the lines of a pencil in a plane in X. P
determines the three-space R1 in X; R1 does not contain and hence inter-
sects it in the line p. pa is a line in and intersects R1 only at its inter-
section with p. We wish to show that this intersection can be taken to be

A3. The line p is !I0, 1, 0, 0, 0
The point P1 is on Q1Q where

[,0, O, 1, O, O"

Q 1,0,0,0,0,0,0,0,0,0 nd Q 0,0,0,0,0,0,0, 1,0,0.

If we take a new q t’, a, b, 0, 0
0, 0, 1, 0’

we have

Q 0,0,0,0,0, a, 0, b, 0,0 and Q b, 0,0,0,0,-a, 0,0,0,0.

Hence, Q and Q can be selected so that PP. is in the above form and so that
pa passes through A3 0, 0, 1, 0, 0, the intersection of p and qr. Then A
may be taken onp3, not in R. pisthenin the form 20 p is tangent to
V at P.
Now suppose p intersects V in a line and is not tangent to V at any point
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of the line. Let P be point of p not on V; let P,P, be the ruling of V;let
nd R be s bove. The intersection q of R nd does not pss through

the vertex of the pencil p,p, for then p would be in the spce tngent to V t
8 point of P,.P,. Hence, q intersects p,. nd p, t distinct points. The point
Q, on V, my or my not be such that QP is tngent to V. If it is not, then
QP meets V in point Q’. By selecting A nd A,. on q’, A, on p, nd q,
A on p, nd q, nd A on p nd p,, we hve the cnonicl form 22. This
plane is not r-plane.

If Q bove is on the polar of P, coordinate system in R cn be selected
so that

P- 1,0,0,0,0,0,0,1,0,0 nd Q 0,0,0,0,1,0,0,0,0,0.

The line common to nd R is AA,. A cn be tken t the vertex of the
pencil p.p, which is not in R. The plane p is then plane 21 which is in the
spce tngent to V t Q. This completes the determination of the types of
plane in S.

4. Some collineations of S leaving certain planes unchanged in form

In the determination of the types of plane in S it ws necessary to obtain
more information bout lines thn ws required to determine the types of
line. Likewise, in the determination of types of three-spsce it will be neces-
sary to hve more information bout certain of the types of plane. A three-
spce with certain relations to V cn often readily be seen to contain 8 plane
of certain type. Knowing that 8 plane of given type is present, we know
that coordinate system cn be selected to exhibit it in 8 prticulr
form. Usually that cn be done in mny wys. That it could be done t 11
ws enough to fix cnonicl form for the type, but to determine 8 cnonicl
form for the three-spce that will give the plane the cnonicl form for its
type generally will require special selection of the frame of reference in the
plane. It my thus become necessary to know 11 possible selections of the
coordinate system to present given plane in cnonicl form. The col-
linetions that were found necessary in classifying the three-spces re col-
lected in this section.

(i) The plane lc, l, O, O, O, O, l, lc, O, m. This plane intersects V in the point
P,’]c 0 only; it is not r-plne nd contains no 2-line. We sk how
much is the freedom of choice of P, nd P if the form is to remain unchanged.
We note first that the lines PP, nd PP, re completely determined by

the plane’s relation to V. Let P (/, l, m) be ny point of the plane. For
P we hve the following:

B l, B. -1, B lcm, B lm, B ld.

The three-space R in X determined by P is ldxt lmx: + lcmx, + l"x +
/’x 0. If/, l, m are given, this defines R. If x, x, x are given,
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this defines a conic in the plane. The point P3, being on V, is the image of

line in X, namely, the line {_’ 0, 0, 1, 0
,0, 0, 0, 1"

This pencil of points in X, which has a special relation to the plane, de-
termines a pencil of conics in the plane, namely,/c -b kl 0. The pencil
of conics contains the two degenerate parabolas/2 0 and 12 0, given by, 0 and , , respectively. Hence, the lines/ 0 and 0 are special
lines in the plane. If the plane is to have the given form, P1 and P2 must be
selected on these lines.

If P1 and P2 are left fixed, the coordinate system can be changed, still
leaving the coordinates of P1 and P2 unchanged. Transformations T and
T2 do this. Neither T nor T2 leaves P3 unchanged. Hence, if we wish the
plane to retain the above form, choice of P1 and P2, necessarily on the special
lines, determines the coordinate system excepting that there is left some free-
dom in the choice of the unit point.
We give the transformation resulting from the choices P PI q-- aP and
P P + bP3.

1 0 -b 0 0 0 0 0
0 1 0 a 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
-b -a b -a 1 0 a b
0 0 -a 0 0 1 0 0
0 0 0 -a 0 0 1 0
0 0 b 0 0 0 0 1
0 0 0 b 0 0 0 0
0 0 0 0 0 0 0 0

(ii) The plane k, k, O, O, O, 0, l, m, O, O.
three points on V.
fixed is

1
0
0
e

(iii) The plane
useful in dealing

0 0
0 0
0 0
0 0
0 -ab
0 0
0 -b
0 -a
1 0
0 1

This is one form of the plane with
A transformation which leaves every point of the plane

0 0 0 a 0 0 0 0 0-
1 0 0 -a 0 0 0 0 0
-b 1 0 ab -a 0 -a 0 0
0 0 1 -ac 0 -a 0 -a 0
0 0 0 1 0 0 0 0 0
0 0 0 -b 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 c 0 0 0 1 0
0 0 0 -bc c 0 0 -b 1

k, l, 0, 0, 0, 0, l, m, O, O. This is a form of plane 16; it is
with three-spaces with two points on V. A transformation
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which leaves every point of the plane fixed is

1 0 0 0 0 0
0 1 0 0 -a 0
0 -b 1 0 ab -a
c a 0 1 a 0

0 0 0 0 1 0
0 0 0 0 -b 1
0 0 0 0 a 0
0 0 0 0 0 0
0 0 0 0 c 0
0 0 0 0 -bc c

The points P1 nd P3 re obviously special

0 0 0 0-
0 0 0 0
0 0 0 0
-a 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 -a -b 1

points in the plane, being on V;
the line PIP2 is special, being tangent to V at P. A transformation of the
plane into itself which keeps the form could only move P long the line
PP. Such is

T7

-1 0 0 0 0 0 0 0 0 0:
0 1 0 0 0 0 0 0 0 0
0 b 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 b 1 0 0 0 0
c 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 c 0 0 0 0 0 0 1 0
0 bc c 0 0 0 0 0 b 1

(iv) The plane lc, l, m, O, 0, O, l, k, 0, 0. The line PP3 is tangent to V t
P3. If the form of the plane is to remain unchanged, P must remain on that
line. We note that T3 leaves P3 unchanged, and hence P may be moved
long the line PP. Then if we combine T with a transformation which
moves P1 long P1P nd leaves P2 fixed, we will hve a transformation which
leaves the plane in cnonical form with PP2 any line not on P, and P2 ny
point, except P, on that line. Even then we can change the coordinate
system by pplying T with a 0. The following transformation moves
P1 to P P aP and P. to P P. -t- bP3.

1 0 0 0 0 0 0 0 0 0
0 -b 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
a 0 0 0 1 -b 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 -a 0 0 0 0 1 0 0
0 0 0 -a 0 0 0 0 1 -b
0 0 0 0 0 0 0 0 0 1
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(v) The plane/, l, 0, 0, 0, 0, 0, 0, 0, m. This is a plane with a ruling and
an additional point on V; it is not tangent to V at any point of the inter-
section. The line of V represents a pencil of lines in X with vertex at A1
the pencil lies in the plane A1A2A3 the other point on V is the image of the
line A4A5 in X. If the form of the plane is left unchanged, the point A1,
the plane AA2A3, and the line A4A5 must be left unchanged. The most
general transformation in X is

1 0 0 0 0

d 1 0

0 0 f
The corresponding transformation in S is

1 b 0 0 0 0 0 0 0 0
d 1 0 0 0 0 0 0 0 0
0 0 1 e 0 0 0 0 0 0
0 0 f 1 0 0 0 0 0 0

ad-c a--bc 0 0 1-bd 0 0 0 0 0
0 0 a ae 0 1 e b be 0
0 0 af a 0 f l bf b 0
0 0 c ce 0 d de 1 e 0
0 0 cf c 0 df d f 1 0
0 0 0 0 0 0 0 0 0 1--el_

(vi) The plane k, l, O, O, O, m, l, k, O, O. The line P1Pa is tangent to V at
P P is an arbitrary point not on PPa. Transformations T: and T3 leave
the form of the plane unchanged, and T with a 0 does also. The follow-
ing transformation moves P and P. along the lines PIP and PP3.

T10

-1 0 0 0 0 0 0 0 0 0-
-a 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 -b 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
a 0 0 0 0 -b 1 0 0 0
0 0 0 0 0 -a 0 1 0 0
--a a 0 0 0 ab -a -b 1 0
0 0 a 0 0 0 0 0 0 1

(vii) The plane k, l, O, 0, O, m, + m, k, 0, 0. This is a r-plane with P on
V; - m 0 is a 2-line; there is no line tangent to V. The following trans-
formation moves P1 along the 2-line.



Vll

d 0 0 0 -ad 0 0 0 0 0
0 d 0 0 0 0 -ad 0 0 0
0 0 d 0 0 0 0 0 0 0
0 0 0 d 0 0 0 0 0 ad
0 0 0 0 d 0 0 0 0 0
ad 0 0 0 0 d 0 0 0 0
ad 0 0 0 0 ad d 0 0 0
0 ad 0 0 0 0 0 d 0 0
0 -ad 0 0 0 0 0 ad d 0
0 0 -ad -ad 0 0 0 0 0 d

(d 1 -t-aS).

We shall have use for another transformation, which leaves P1 fixed but
moves P2 along PPa.

T12

-dO 0 0 0 0 0 0 0 0-
0 d 0 0 0 0 0 0 0 0
0 0 d 0 0 0 0 0 0 0
0 0 -b 1 0 0 0 0 0 0
0 0 0 0 d 0 0 0 0 0
0 0 0 0 0 d 0 0 0 0
0 0 0 0 0 -b 1 0 0 0
0 0 0 0 0 0 0 d 0 0
0 0 0 0 0 0 0 -b 1 0
0 0 0 0 0 0 0 0 0 1

(viii) The plane k, l, m, O,
it contains the 2Mine PIPa.

-rm, O, l, k, O, O.

(d=b+ 1).

This plane has no point on V;
If the form of the plane is to remain unchanged,

P1 and Pa must remain on the 2-line. Pa is determined by P1, since they
are conjugates with respect to the hyperquadric in which 2: intersects V.
The transformation Ta, which moves P2 along the line P1P, leaves P1 and
P3 unchanged; Tx with a 0 also leaves P3 unchanged. We give a trans-
formation which moves Px along PxPa and leaves P fixed. This with Ta
will allow us to select any line in the plane, except PPa, for PP. If P
Pi -- aP3, then P’3 -aP -t- Pa.

1
0
0
0
a

Tla 0
0
0
0
0

0 0 0 --a 0 0 0 0 0-
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 a 0 0
0 0 1 0 0 0 0 a 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 --a 0 0 0 0 1 0 0
0 0 --a 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
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(ix) The plane k, l, 0, 0, O, m, l, k + am, m, O. This is a r-plane, with no
point on V if x + ax 1 is irreducible. In determining the canonical form
it was necessary to move P2 along P1P., to interchange Pj. and P., and to
change the unit point; it was not necessary to change the line PIP. This
is a r-plane, and it contains no 2-line; any line in it can be taken for P1P.
The point P3 is determined by PIP. There is only one point on a given line
that can serve for P and give the canonical cubic, because the group of trans-
formations of the line into itself is exactly the group of linear fractional trans-
formations of x. In order to show that P1 may be taken to be any point in
the plane, it is necessary only to show that a change of the line PP2 in the
pencil on P, leaving P fixed, changes the polynomial in x. For, since every
line has a P and no point is the P1 of more than one line, every point must be
the P1 of some line. The following transformation has P’ P and P
aP P3.

a -a 0 0 0 -a(aa--1) 0
a(aa--1) a 0 0 0 --(aa-1) 0

o o o o o o
o o -(aZr-aa-a) a 0 0 0
o o o o o o

T, a 1 0 0 0 a 0
--o a a 0 0 0 --a a
a a-- a 0 0 0 a*(a a-- 1) 0
a(aa--1)--aa 0 0 0--a(aa--1) aa--1.-- 0 0 --a(aa--1) --1 0 0 0

aa -f- aa 1.

aa--1 0 0 "]
a(a a-- 1) 0 0 /o o o

0 0 aa--1
o o o

--a 0 0
a --1 0
a 0 0

--a a 0
0 0 a

This transforms the point P2 into

--a, a A- a2, O, O, O, --a (aa 1)2, a, a a(aa 1), --1, 0.

The point P is

O, O, O, O, O, a -4- (aa 1) a, -2a -4- a(aa 1), 1, 0.

The corresponding cubic is

x- ax -4- a(aa 3)x [a -+- (aa 1)2] O.

Since this cannot be transformed into x A- ax 1 0 by a change that
leaves P1P2 and also the point P fixed, it follows that P may be taken to be
any point in the plane, and then P and P may be determined so that the
plane has the above canonical form.

(x) The plane k, l, O, O, O, m, O, O, O, O. This is a 2-plane in the five-space
determined by the lines in R:x 0; it intersects V in the two lines 0 and
m 0. The two lines on V determine two pencils of lines in R; the planes
of the pencils in R intersect in a line which belongs to both pencils. To ob-
tain the above form, A1 and A2 are selected at the vertices of the two pencils,
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A3 in the plane of the pencil with vertex at A1, and A4 in the plane of the
other. A3 may be moved about its plane, and likewise A4, and also A may
be selected anywhere outside of R without affecting the form of the plane.
These changes are made by

T15

1 0 0
-b 1 0
-d 0 1

bg-[-dh-f g h
a 0 0
c o o

-ag-che 0 0
ad-bc c -a
1 e-ch ah
2 cg e-ag

af adh W bch- be,

o o o o o o o
o o o o o o o

oo o o o o o
1 o o o o o o
0 1 0 0 0 0
0 0 1 0 0 0
0 -g -h 1 0 0
0 d -b 0 1 0 O|
-a f-dh bh -b -h 1
-c dg f-bg -a g 0

cf bcg W adg de.

(xi) The plane lc, l, m, -m, 0, 0, l,/, 0, 0. This plane contains Pa on V;
it contains no special line; any line not on Pa can be taken for PP. We
give a transformation which moves P and P. along the lines PPa and PPa
respectively.

1 0 0 a 0 0 0 0 0 0
0 1 --b 0 0 0 0 0 0 0
O0 1 0 0 0 O0 0 0
O0 0 1 0 0 O0 0 0
a b -b a 1 -b 0 0 -a ab
O0 b 0 0 1 O0 0 -a
0 0 0 b 0 0 1 0 0 0
0 0 -a 0 0 0 0 1 0 0
0 0 0 -a 0 0 0 0 1 -b|
O0 0 0 0 0 O0 0 1

(xii) The plane It, l, O, O, m, O, l, k, O, m. This plane involves the most
complex considerations of all because it has no points or lines that are ob-
viously special, and there is no point on V specially related to it as, for ex-
ample, in the case of a r-plane. Yet its relation to V does determine a special
locus in the plane.

For any point P (/, l, m) in the plane we have

B k, B -1, B3 km, B4 lm, B5 m kl.

Setting the B’s equal to zero gives five conics in the plane. These conics are
linearly independent and determine a unique conic apolar to them. This
absolute conic is C: m 2kl O. C depends only on the plane;it does not
depend on the coordinate system, for a change of coordinates would change
the conics among conics of the linear set, and C is apolar to all of them. The
points P1 and P are on C, and P3 is the pole of the line PP2 with respect to
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C. We shall show that P1 and Ps can be taken to be any two points of C,
and then if P is taken to be the pole of PIP., a coordinate system can be
selected so that the plane is in the canonical form.
We look for the relations of P, P., and P to V which characterize the

canonical form.

P 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, P. 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,

P 0,0,0,0,1,0,0,0,0,1.

PP. is in the space tangent to V at

M 0,0,0,0,1,0,0,0,0,0.

The point P is on the line joining M to a second point on V,
Q 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.

P is on the line joining two points of V"

QI 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 and Q 0, 0, 0, 0, 0, 0, 0, 1, 0, 0.

Ps is on the line joining

Q. 0,1,0,0,0,0,0,0,0,0 and Q-- 0,0,0,0,0,0,1,0,0,0.

Corresponding to points Q1, Q, Qs, Q, M, Q on V are lines qi, q q.
q, m, qa n X. These lines have incidences which have been described earlier
(Section 2) for the first five. The sixth line qa intersects q and q. These
relations make it possible to select the frame of reference in X to give the
canonical form.
We now prove that P is the only point in the plane, not on PP, such

that the line joining it to M has a second point on V. The points of the line
joining M to an arbitrary point of the plane are

]or, lr, O, O, mr 1, O, lr, kr, O, mr (r O, 1, p 1, ).

Conditions that this point be on V are B. ]r 0, Bs lr O,
Ba kmr O, B lmr O, B (m W kl)r mr 0. Ifm 0,
these equations are all quadratic with a double root zero (where they are not
identically zero) corresponding to the fact that a line joining M to a point
of PiPs is a tangent to V. If m 0, the last equation has a term of the first
degree in r; hence the others must be identically zero, and hence ]c 0.
Therefore, there will be a second point of V on the line only if (k, l, m)
(0,0, 1).
Any line in the plane is al + bl cm O. This line is in the space tangent

to V at the point

M’ bc, ac, bc, -ac, (2ab + c)c, b, -a(ab + c), -b(ab -- c), a, -abc.

This point is obtained s the intersection of the polar spces of (c, O, a) nd (0, c, b).
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Conditions on P (k, l, m) derived from requiring M’ rP to be on V for
some r give P (b, a, c). This is a necessary condition on P3 and the line
P1P, if the plane is to have the canonical form. A further condition is that
PIP, must cut C in two points, i.e., c 2ab must be a square, not zero.

Conversely, if c 2ab is a square, not zero, and P and P, are intersections
of ale bl cm 0 with m 2/el 0, then Q, Q, Q,, Q can be de-
termined so that P1, P, P, have the required coordinates. If P, is moved
along the line PP,, which is tangent to C at P, and P, is moved along C
to the polar of the new P,, and if then a coordinate system exists such that
P1, P, P, have the above form, it will follow that P may be taken to be
any point of the plane outside C; .the result comes from the fact that P and
P. enter symmetrically in relation to P,, to C, and also in relation to the frame
of reference in X.
We give the transformation which leaves P1 fixed, moves P, to P cP,,

c 0, and moves P. along C.

-5c 0 6c 0 0 0 0 0 0 0
4c 6c 6c 0 2c 4c 0 3c 0 0
0 0 c 0 0 5c 0 0 0 0
3c 5c 4c 2c 4c 4c 3c 6c 0 6c
2c 0 c 0 4c 4c 0 5c 0 0
0 0 0 0 0 3c 0 0 0 0
2c 0 c 0 c 3c 6c 3c 0 3c
0 0 c 0 0 6c 0 5c 0 0
6c 6c 5c 2c 6c 3c 5c 5c 3c 2c
0 0 6c 0 0 3c 0 4c 0 4c

(for p 7).

It may be verified that T7 puts

1, 0, 0, 0, 0, 0, 0, 1, 0, 0

1, 2c, O, O, 2c, O, 2c, 1, O, 2c

into

into

1, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 1, 0, 0, 0, 0, 1, 0, 0, 0,

1,0,0,0, c, 0,0, 1,0, c into 0,0,0,0, 1,0,0,0,0, 1.

5. Three-spaces which intersect V in at least one point

(i) Introduction. The three-spaces most easily dealt with are those having
large intersections with V; one of the two three-spaces with no point on V
requires more work than all the others, and for this reason the two are sepa-
rated from them.

There is one three-space Sa which will not be included in our list because
it leads to a group that has been excluded. This S lies wholly on V. Since
every pair of points in Sa is the image of a pair of intersecting lines in X,
of these lines must pass through a point. If this point is taken to be A, then
As, Aa, A, A may be selected arbitrarily, except that all five A’s must be
linearly independent, and then S will be ], l, m, n, 0, 0, 0, 0, 0, 0. The group
of order pl defined by this three-space is given by the additional relations:
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sl S. S3 S4 1;it is the direct product of the metabelian group
U2, U3, U4, Us} of order pl0 and the cyclic group U}.

(ii) Three-spaces containing a Z-plane cutting V in a nondegenerate conic.

1. k, O, m, O, n, O, O, l, O, O, the ruledquadricklWmn- O on V.
2. k,l,m,O,n,-1, O,k,O,O, thequadrick + + mn O on V.
3. k, l, n, O, O, l, O, m, O, O, the conekm- OonV.
4. n, n, O, O, k, m, O, O, m, l, the conic kl m O, n 0 and the line

l=m=OonV.
5. k, + n, m, O, n, n, l, + n, O, O, the conick-t-kn-n + mn O,

0, and the point 1, 1, 0, -1 on V.
6. n, 0,0,0, k,m, 0, n,m, 1, the conickl- m 0, n 0onV.

If the intersection of $3 and V contains a nondegenerate conic, the plane
of the conic will be a 2-plane. Hence, the spaces in this set all contain 2;-

planes at least; the first three are actually Z-three-spaces, in the 2 determined
by the lines of the three-space x5 0 in X.

If $3 lies in a 2, the intersection of V and 2 cuts it in a quadric; if the quadric
is degenerate, it can be at worst a cone with a single vertex, since we insist that
some plane of S intersect V in a nondegenerate conic. Suppose the quadric
is not degenerate and that it has rulings. Let P1 be an arbitrary point of the
quadric; let P and P3 be arbitrary points, one on each of the rulings through
P and let P be the intersection of two other rulings, one through P. and
the other through Pa. Corresponding to these four points of V are four lines
pl, p., pa, p in X. p intersects p2 and pa and does not intersect p. p
intersects p and pa, and p does not intersect pa. pl, p:, and p, determine
a three-space, and p lies in it; this three-space determines in S the 2 in which
Sa lies. We select a frame of reference in X as follows: A is on p and p.
A. is on pl and pa A3 is on pe and p4 A4 is on p3 and p4 A5 is anywhere
outside the three-space already determined. Then $3 will have the form 1.

Let $3 intersect V in a nondegenerate quadric which has no rulings. S
contains a plane which cuts the quadric in a nondegenerate conic; this plane
is a 2-plane. Let P be a point of this plane not on V; a line joining P to a
point of the quadric not in the plane cuts V twie or else is a tangent, and
hence the line is a Z-line. The quadric and S. are thus seen to be in a Z.
A coordinate system can be selected so that the plane of the conic is

k, O, m, O, n, O, O, k, O, O.

The three-space in X determined by a point of the plane is x 0.
$3 is in the five-space a4 a7 a9 ai0 0. Any point of S is

Hence,

al, a2, aa, O, a, as, O, as, 0, 0.

Sa contains a point P 0, a2,0, 0, 0, a, 0, as, 0 0. The polar spaces of
Pa 0, 0, 1, 0 and P4 0, 0, 0, 1 with respect to V are respectively a
a a 0andaa a4 a0 0. Both containPandP. Pisnoton
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V, and hence the line P1P contains a point P2 conjugate to P1 with respect
to V. For this point we have a A- as 0, and hence

P2 a, a2, O, O, O, as, O, --a O, O.

A change of coordinates:

A a.A "4- aA4 A, a2A asA,,
and a proper choice of the unit point gives P. 0, 1, 0, 0, 0, r, 0, 0, 0, 0, r not
a square. This is space 2.

Let $3 inter:sect V in a cone, and let the vertex of the cone be P4. Every
point of $3 is in the space tangent to V at P4. Let p be a plane which cuts
the cone in a conic C. Let P1 and P. be points of C, and let Pa be the pole
of PP with respect to C. Then pl and p are two skew lines in X, and p
intersects both of them. If A is the intersection of p and p, A the inter-
section of p2 and p, A. an arbitrary point not A on p, and Aa an arbitrary
point not A on p2, we have

P1 1,0,0,0,0,0,0,0,0,0, P- 0,0,0,0,0,0,0, 1,0,0,

P4 0,0, 1,0,0,0,0,0,0,0.

The three-space containing pl and p2 is x5 0. Consequently,

Pa al a2, aa, O, as, as, O, as, O, O.

Since P3 is in the space tangent to V at P, a 0. Since PIPa is tangent
to V at P, as 0; and since P2Pa is tangent to V at P2, a 0. By rotating
the plane of C on PP2 we may move Pa to the point 0, a2,0, 0, 0, as, 0, 0, 0, 0,
and then by a choice of the unit point we may make a2 as 1. This
gives 3.
Whenever Sa lies in a five-space 2, $3 will intersect V in a quadric. We

have taken care of all such S’s except such as contain a plane of V. It has
seemed desirable to consider Sa’s with planes on V separately. The remain-
ing spaces under the present heading all intersect at least one 2 in a plane.
Sa cannot contain a second 2-plane, for the intersection of the two planes
would contain points not on V and Sa would lie in the 2 determined by such
a point.

Suppose Sa contains two points on V besides the points of the conic.
Neither of the two points can be in the plane of the conic, since no 2-plane
intersects V in a conic and an additional point. Denote the line on the two
points by L. L intersects the plane of the conic in a point which must be
on the conic, for otherwise Sa would be in the 2 determined by that point.
L then has three points on V and hence lies wholly on V. If P is taken to be
a point on L not on the conic, P2 as the point on L and the conic, Pa on the
conic, and P the pole of P.Pa with respect to the conic, coordinates can be
chosen so that we have 4.
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Suppose next that $3 contains a conic C and an additional point P4 on V,
but contains no ruling of V. Coordinates can be selected so that the plane of
Cisk, 0,1,0, m, 0,0, k, 0, 0. The equation of C is /c + lm O. The
points of C are kl, O, 12, O, -k, O, O, kl, O, O. The lines of X imaged on these

l, O, k, O, 0
These lines of set of thepoints are

0, k, 0, l, 0"
are rulings one quadric

xlx x3x4 0, x5 0. Any point of the plane of C, not on C, determines
the three-space R:x5 O, which contains the above quadric. P is not in R,
but it intersects R in a point. The point of intersection cannot be on the
quadric, since Sa contains no ruling of V. We may take A to be on p, and
the intersection of p and R to be a, a7 ag, al0 0; since this point is not
on the quadric, a4a7 agalo O. P O, O, O, a, O, O, a O, a, ao.
We show that S cannot be in the space tangent to V at any of its points. If
B b, b., b0 is a point of V such that the plane n 0 of S is in the
tangent space at B, it is easily seen that B b, b., 0, 0, 0, b6,0, -bl, 0, 0.
The requirement that P be in the tangent space at B gives aa aalo O,
which is not so. We determine a canonical form for Sa. Let K be the point
in which p intersects R. Through K take a line in R which intersects the
quadric in two points; these points will lie on two distinct rulings of the
quadric which are imaged on V on two points of C; let these two points be
P2 and P3. Denote the pole of P.Pa with respect to C by P. The polar
space of P with respect to V does not contain the point T, which is the image
on V of the line in X, for otherwise $3 would lie in the space tangent to V at
T. Hence, the line joining P1 to T intersects V again at a point which we
denote by Q. The line q in X intersects both p and pa, since P1 and T are
both in the tangent spaces at P2 and Pa. The lines p, pa, t, q’l, and p4 in X
are related as follows" and q’ are skew and intersect both p2 and p3 also
intersects pa, which is not in the space of p and p. Denote the intersections
of with p. and p3 by A and A respectively, and the intersections of q’ with
p and p by A, and An; select the unit point in R so that K is 1, 1, 0, 0, 0,
and select A on p. Then Sa takes the form 5.

Suppose Sa intersects V in the conic C and in no other point. Any point
of the plane p of the conic, not on V, determines the three-space R and the
five-space 2:. Let R be x 0. If P1 and P. are chosen on C and Pa is the
pole of PP with respect to C, a frame of reference in X can be chosen withA
arbitrary, not in R, so that p is 0, 0, 0, 0, k, m, 0, 0, m, 1. There is a point in
$3, not on p, with coordinates al, a, a, a, 0, a6, a, as, 0, 0. If A1 is re-
placed by A 1, a, b, c, d and the other A’s are left unchanged, this point
has new coordinates al, ..., a0. The numbers a, b, c, d can be selected so
thata a andav 0. Sa containsa point

P4 al a2 aa a O, O, O, as, O, 0

(dropping the accents). Since P is not on V, as rs 0, and not both a and
a are zero. Any point in Sa is
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For P we have
P aln, a.n, aan, a4n, k, m, 0, asn, m, 1.

B1 aakn a2mn + alasn2,
B2 a4kn "4- alton,

B3 al.ln -t- a,mn,

B, a.ln a3mn -t-- a4asn,
B kl- m.

The conditions that P be on V are (1) n O, kl m O, which gives C, or
(2) n 0,

a2m A- aasn 0

+ aim 0

all A- am 0

al a:m -t-- a,asn O.

The last three equations have a solution k, l, m, n not all zeros, n 0 re-
quires either alaa -4- a2a rs 0 or a 0. Suppose a.aa A- a2a 0, a4 0;
then k, l, m, n aas, O, O, -a3, and aa 0. This is a solution of the four
equations, and hence gives a point on V not on C. This is not possible with
this Sa. Suppose aaa -4- aa4 O, a O. Then if al 0, the solution of
the last three equations is a. a/al a (alaa A- aa)/aas which also
satisfies the first equation. If al 0, the solution of the last three has n 0
and satisfies the first, and hence is not suitable. Then suppose alaa A- aa O,
a 0. Since P is not on V, al 0andhencea3 0. Asolutionofthe
last three equations is k, 0, 0, 1, k arbitrary, and this does not satisfy the
first. Hence in this case

P a a O, O, O, O, O, as, O, O, alas O.

R intersects R in the plane Xl x 0. We note also that Sa contains a
r-plane P1P:P tangent to V at the point P1 which is on C. If a2 is not zero,
it may be made so by moving A. to A A2 A-a:Aa/a, and A to A’
--a2A4/a .+- Aa. Then proper choice of the unit point puts Sa in the form 6.
There remains the possibility that alaa + a2a O, a rs O. We show that

this is not different from the space just considered, showing first that it con-
tains a plane tangent to V at a point of C.
The space tangent to V at the point B hi, b0 is

bsxl b6x2 + bx + b3x b.x6 + blxs O,

bx. bx: "4- bx, + b,x b2x + b.x O,
0 We call attention to this, for we shall have frequent use for this space in what

follows.
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boXl bxa -b bx bx bax bxo O,

box. bxa bsx -}- bxs bax bxo O,

box bx bx bx b bxo O.

Its intersection with Sa is

ba bm (asb aab ab abs)n O,

b bm (ab ab ab)n O,

b1% b,m W (a,b aab W abo)n O,

bl ham % (asb W abs aab % abo)n O,

bo % bl (b % b)m % asbn O.

If this intersection is a plane, the rank of the matrix of coefficients must be 1.
This requires that b= b= ba= b=0. If the plane is not n=0, then
the coefficients of n in the first four equations are zero. This gives four
linear equations in b, b0. Two obvious solutions are

a,aa,a,0,0,0 and 0,0, a,0, a,aa.

On the line joining them is -aa, -aaa, O, 0, aa, aa which is also a solu-
tion. The point is in the plane p since aaa aa O, and is also on C.
The r-plane, which is given by the last equation above, passes through P,
since b is zero. If now this point of C is selected for P and coordinates are
determined as before, P will have a a 0 since P is in the tangent space
at P. This completes the consideration of S’s with a nondegenerate conic
Oa Y.

(iii) Three-spaces with a plane on V.

7. k, l, m, O, n, O, O, O, O, O.
8. , l, m, O, O, O, n, O, O, O.
9. , l, m, O, n, O, O, O, O, n.
9’. k, l, m, n, n, 0, 0, 0, 0, 0.11
10. k, l, 0, 0, m, 0, 0, 0, 0, n.
11. k, l, 0, 0, m, n, 0, 0, n, 0.

The planes of V are of two types" (1) planes whose points represent the
lines of a plane in X, and (2) planes whose points represent the lines of a
bundle. In the first four spaces above, the plane n 0 is of the second type;
in the other two the only plane on V is of the first type. Space 7 has two
planes on V; space 8 has a plane and a line; spaces 9 and 9’ intersect V only in
a plane. Space 9’ is in the space tangent to V at each point of PP space 9
is not a r-space. Space 11 is a r-space, and 10 is not.

Spaces 9’, and later 20’ and 20", were missing from the paper cited earlier; it is
desired to keep the numbering of the earlier paper for the other spaces.
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Suppose $3 contains a plane p of the second type. The points of p represent
the lines of a bundle in X; these lines lie in a three-space R. The vertex of
the bundle may be taken to be A1, and A_, A3, A4 may be taken on any three
independent lines of the bundle. Then p will take the form of n 0 in
7, 8, 9, 9’. If $3 contained another plane of the second type, their line of
intersection would represent the lines of a pencil common to the two bundles,
and so the two bundles would have the same vertex and S would lie on V.
This possibility has been dealt with. So a second plane on V must be of
the first type. This second plane intersects p in a line, and hence its points
represent the lines of a plane in X which lies in R and passes through A1.
S is therefore in the 2 determined by R. The plane in R may be taken to be
AA2A. If A5 is selected to be any point not in R, S takes the form 7. This
is a 2-space; the two planes constitute the degenerate quadric in which S
intersects V.

Suppose S contains p and a point P4 on V and not on p. The line p4 is not
in R, for if it were, $3 would be a 2-space and would intersect V in a quadric
consisting of two planes since it contains p and an additional point. Hence,
p4 intersects R in a point. The point cannot be A, for then S would lie
wholly on R. The point may be taken to be A2. A5 may be taken on p4,

and then S has the form 8. This space intersects V in the plane p and the
line m 0.
Any other S which contains p can have no further point on V. Let $3

contain p and a point P not on V. P determines a three-space R4 in X. R4
and R cannot coincide, for then S would be a 2-space intersecting V in a
quadric consisting of the plane counted twice, and P would be in each space
tangent to V at a point of p. There is no such point not on V. Therefore R4
intersects R in a plane . If does not pass through A, the plane on V
whose points represent the lines of does not intersect p. The polar of P4
with respect to V intersects in a line. If Q is selected in not on the polar
of P, then the line PQ will intersect V in a second point Q. q4 lies in ,
and q4, which lies in R, intersects . A2 and A may be taken on q4, A on
q and , and A on q. Then $3 will take the form 9.

Next, suppose the plane of the last paragraph passes through A. The
planes p and will intersect in a line ,1. The polar of P intersects in a
line . Suppose , and coincide. Then the point P is in each tangent
space to V at a point of , which we may take to be PP. It then follows
that P 0, 0, 0, a4, a, 0, 0, 0, 0, 0. A choice of the unit point puts S in the
form 9’. This space is then tangent to V at every point of PP..

Space 9 is not in the space tangent to V at any point of V; however, to show
that 9 and 9’ are different, we need only to note that in 9 the point P is not
in the space tangent to V at any point of p.

There is one further possibility to consider. If the lines ,1 and in the
plane r do not coincide, they intersect in a point which we may take to be
P. P would be in the space tangent to V at P; hence P
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0, O, O, a4, a5, a6 aT, O, O, O. By examining $3 for points on V, it is found
that unless a7 0 there is a point k, l, m, n O, a4as, a4a6, a on V and not
on p. In that case the space is 8 with an additional line on V; if a 0 and
a 0, P4 can be selected so that ,1 and 2 coincide, showing $3 to be 9’.
An S which contains a plane on V and is not one of the foregoing contains

a plane of the first type. A coordinate system can be chosen so that the plane
is n 0 of 10 and 11, A1, A2, and A being arbitrary independent points of
the plane in X whose lines are imaged on the plane p in $3. If P4 is a point
of $3 on V and not in p, then the line p, in X may or may not intersect . If
it intersects , we have $3 in a five-space 2: given by a three-space in X; $3 then
intersects V in two planes, giving 7, or else lies wholly on V. If p4 does not
intersect , A, and A5 may be selected on p and we have 10.

Finally, suppose S contains the plane p of the last paragraph and no other
point of V. Let P, be a point of S not on p. The three-space R, intersects
in a line, for if were in R, S would be in the five-space determined by R4
and would be 7. This line of intersection of and R is imaged on V in a point
of p which is such that the line joining it to P4 is tangent to V, being in a 2 and
having no other point on V. If Q, is selected in R, so that q, intersects the
above line, then q will intersect the above line also. These intersections may
be taken to be A and A, respectively. If then A, is taken on q, and A5 on
q, S will have the form 11.
We have considered all the possibilities for S with a plane on V.

(iv) Three-spaces containing at least two rulings but no plane of V.

12.
13.
14.
15.
16.
17.
18.

k, l, O, O, O, m, O, O, O, n.
k, l, O, n, O, m, n, O, 0, 0.
k, l, O, O, O, m, O, O, n, n.
k, l, O, n, O, m, O, n, O, O.
k, l, O, n, O, m, n, n, O, O.
k, l, O, O, n, m, O, O, O, n.
k, l, O, n, n, m, O, O, O, O.

The first two have three rulings on V; in 13 the rulings pass through a point;
in 12 they do not. In each of the rest there are two intersecting rulings; 14
contains one additional point and the others none. 15 and 18 are r-spaces;
16 and 17 are not. 18 is in the space tangent to V at a point of intersection
with V; 15 is in the space tangent to V at a point not in $3. The distinction
between 16 and 17 is more difficult; it is shown at the end of this section.

If S contains rulings of V but no planes or nondegenerate conics, the
number of rulings cannot be greater than three since otherwise Sa would
contain planes with four or more discrete points on V. If Sa contains three
rulings of V, each ruling must intersect another for otherwise Sa would con-
tain planes on one ruling intersecting V in two additional points and no such
planes exist.
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Suppose $3 contains three rulings which do not pass through a point. De-
note the rulings by 11, l., and 13, and let 11 and l intersect. 11 and l. are
images of two pencils of lines in X whose planes have a line in common. The
planes of the pencils lie in a three-space R. An obvious choice of the co-
ordinate system in X gives the plane lll. the form of the plane n 0 in the
spaces above. The line l intersects one of the lines l and l. we may assume
the intersection to be P. Any point on l is in the space tangent to V at P,
and hence its coordinates satisfy as a4 a9 0; and since it is a point of V,

alas + a3aa O, aao aaa O, aalo A- aas O.

Hence, aa/al ao/a7 -asia5 r. The line in X which is imaged on this

.fax ,0, -as, 0, -aT The lines p p pa arepoint is\0 1, 0, r, 0

{1,o,o,o, o {o,O,O,O,OPl= 0,1,0,0,0’ P= ,0,1,0,0’ P= \0,0,0,1,0"
Achangeofcoordinates’A A i 1,2,3, A (1/r)A + A4, A
axA1 aAa aA leaves P, P, Pa unchanged, but makes the point on 13
take the form P 0, 0, 0, 0, 0, 0, 0, 0, 0, 1. Sa has the form 12.
When Sa contains three rulings which pass through a point, P, P2, Pa may

be taken as above, and the third ruling passes through P. For any point P
on this ruling, we have as a9 a0 0, and

a2a- aaa O, a2a a4a5 O, a3a- a4a O.

r, 0, 0, 0 A ofFrom thisa/a= a/aa a/a r. Pa 0,0, a., aa, a
change

coordinates" A A, i 1, 4, A aAa + aA + aA and a proper
selection of the unit point give the form 13.
A three-space Sa containing two skew lines l and l. which are rulings of V

has three or more lines which are rulings of V. The lines 11 and l determine
two pencils of lines in X lying in two planes and as. If the planes intersect
in a line, they lie in a three-space, and $3 is a 2-space. Sa is of the form 1 and
intersects V in a nondegenerate ruled quadric. If 1 and as intersect in
point, that point cannot be the vertex of either pencil, for otherwise one line
of one pencil would intersect every line of the other and Sa would contain a
plane and a line of V;it would be 7 or 8. The remaining possibility allows us
to take the pencils in the planes AAA and AAaA with vertices at As and
A. Then Sa is k, l, 0, 0, 0, m, 0, 0, n, 0 which has three rulings and is 12.
The remaining S3’s in this section contain two rulings, and the two rulings

intersect. The plane of Sa containing the rulings is the plane n 0 above.
We designate this 2-plane by p and the corresponding three-space in X by R.

Let Sa contain an additional point P on V. The line p intersects R in a

point. This point is not in either of the planes determined by the lines of p

on V, for if p were the line of the pencil through that point, PP would be a
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pencil of points on V representing the pencil of lines pp4, and Sa would con-
tain a third line of V. A line may be taken through the intersection of p4 and
R intersecting the planes of the two pencils in points which may be taken for
Aa and A4 without changing the coordinates of P1, P,., or Pa. Then A5 may
be selected on p not in R. Sa becomes 14.
Any other Sa which contains two rulings of V contains the plane n--0

above and a point

P4 0, 0, aa, a, a5,0, ar, as, a9, al0.

To this & we apply transformation T15 (page 658). This transforms p into
itself, and transforms P into P a,
which a a a O, and

a’a aa ah asa -+. agah q- ao(e af),

a a5 arg A- asd "4- a(f dh) -f- aodg,

There is in Sa a point for

a4 a4 aga al0v

a7 a7- agb aloa,

as as- a9h A- aog, a9 ag, alo ao.

(a) Suppose a9ao O. Then since b appears only in a, c only in a, d in
and e in aa, we may make a a a5 a as 0 by selecting65,

a, f, g, h, to satisfy as agh A- aog 0 and solving for b, c, d, and e. This
gives 14 again.

(b) Suppose a9 0, al0 0. a and g can be selected to make a7 as 0;
then ifg0, d,c, e can be selected to makea5 a= a3=0. This is 12
again. If g 0, we get P4 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, which is 17.

(c) Suppose a9 0, a0 0. b and h can be selected to make a7 as 0;
then f and a can be selected to make a5 a4 0. a3 is then determined; it
cannot be zero since P4 is not on V, but a choice of the unit point will make
a’3 a. We shall postpone the identification of $3 k, l, n, 0, 0, m, 0, 0, n, 0.

(d) Suppose a9 ao 0.
(i) aras O. a and a can bemade zero. a4, a, as cannot bechanged.

We have the possibilities"

(ii)

P, O, O, O, a O, O, a as, O, O. This is space 16.

P, O, O, O, O, O, O, at, as, O, O.

a O, as O. d and a can be selected to make a aa O.

P4 0, 0, 0, 1, 0, 0, 0, 1, 0, 0.

(iii)
a # O, aa an be mde aero, nd P is on V.

a O, as O. g can be selected to make a 0.
Hence a4 0 and

Then if

P 0, 0, 1, 0, 0, 0, 1, 0, 0, 0.

(iv)
not on V.

at= as=0. Thena#0sinceR4isnotR.
aa can be made zero. Sa is 18.

a5 0, since P4 is
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The transformation T15 is the most general collineation of X that leaves the
form of p unchanged and also leaves A1 and AN unchanged. A collineation
which interchanges A and AN, and of course interchanges the pencils with
vertices at A and AN, leaves p unchanged. If A3 and A4 are interchanged as
well as A1 and A., the pencils will be interchanged. This transformation puts
the space of (c) above into that of (b); it puts the second space of (d, i) into
the space of (d, ii), which is 15; and it puts the space of (d, iii) into that of
(d, iv).
To distinguish between spaces 16 and 17 we note that any point/, l, m, n of

16 determines in X the three-space

nx n2x. - mnx3 - lnx4 - (lcn lm)x5 0;

any point of 17 determines the three-space

n x lnx2 -[- knx lmx O.

All the spaces in X determined by points of 16 pass through 1, 1, 0, 0, 0, which
is a point of the special line, the line in both pencils determined by the inter-
sections of $3 and V. All the spaces in X determined by points of 17 pass
through 0, 0, 0, 1, 0, which is not on the special line.

(v) Three-spaces containing one ruling of V.

19.
20.
20’.
20".
21.
21 r.
22.
23.
24.
25.
26.
27.

m, 0, 0,/c, 0, 0, l, n, Ic, 1.
It, l, O, O, O, n, 0, O, n, m.
], l, O, n, n, O, O, O, O, m.
lc, l, O, n, n, n, O, O, O, m.
It, l, m, n, O, rn, m, O, O, O.
]c, l, m, n, m, n, O, O, O, O.
]c, l, O, O, O, n, m, m, rn, O.
lc, l, m, O, m, O, n, n, O, O.
It, l, O, O, n, O, m, m, O, --rn.
It, l, m, O, n, O, O, O, m, n.
]c, l, n, O, O, O, m, m, n, O.
t, l, m, n, O, O, m, n, O, O.

Each r above is a not-square.

Space 19 has a ruling and two points on V. Only spaces 20, 20’, and 20"
have the ruling and one additional point on V; space 20 contains a line tangent
to V at P3 the other two do not have such a tangent; space 20’ contains the
2-plane PIP,P4 space 20" contains no 2-plane. Spaces 21 and 21’ are in the
space tangent to V at P1,21’ having a plane tangent to V at P., 21 having
no such plane; space 22 is not in a space tangent to V at a point of PP ;it is
in the space tangent to V at a point not in it;none of the others is a r-space.
To distinguish among the remaining five we state some geometric facts that
are obviously sufficient, and then to show how these facts may be established
we carry out in detail the argument for space 23.
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In space 23 every plane on P1 is a r-plane, and every line in P1PsP3 is
tangent to V at its intersection with P1Ps. The space 24 contains a r-plane
n 0, which is in the space tangent to V at 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; it con-
tains a pencil of r-planes on P3P4 PaP4 is a Z-line which does not intersect
the ruling. All the r-planes pass through Pa, but not every plane on P is a
r-plane. Space 25 contains a pencil of r-planes on PsPa and no others. Space
26 contains a pencil of r-planes on P1P5 the plane m 0 is tangent to V at
P5 ;there is no plane tangent at any other point of P1Ps. Space 27 contains
a pencil of r-planes on P1P. m 0 is tangent to V at Ps, and n 0 at Pl.
We now establish the facts stated for space 23. Let B bi, b2, bl0 be

a point of V. The space tangent to V at B is given on page 664. Substituting
in these equations the coordinates of a point in space 23, we get five linear
equations in/c, l, m, n with the following matrix of coefficients"

bs -b6 b3 b5 bl
b9 -b7 b4 -b5

M bl0 0 -b7 -b3
0 bl0 -b9 b
0 0 bl0 b b8

If Sa were a r-space, it would be possible to select B so that the rank of M
would be zero; this would require all the bi’s to be zero. Hence, $3 is not a
r-space. If the rank of M is one, the space tangent to V at the point B will
intersect $3 in a plane. This requires b4 b bs b bl0 0; hence all
the r-planes pass through P1. In addition, we should have either (a) b6 0
and ba -t- b5 0, or (b) b. ba 0. In case (a) the r-plane is n 0; it is a
2-plane. In case (b) the r-plane is -bl bm bin O. Since b,, b, b
are arbitrary, every plane on P1 is a r-plane.
We now show that the above are the only three-spaces meeting V only in one

ruling and possibly some isolated points. S can have no more than two
isolated points on V, for if it had three, the plane on them would intersect the
ruling or contain it, and no such plane exists. If Sa contains two points of V
besides the ruling, the line joining the two points must be skew to the ruling.

Let Sa contain the ruling P1P5 and the two points P and P4 on V. Then
in X the lines p3 and p are skew to each other, and both are skew to the plane
of the pencil plp. The lines p and p determine a three-space R which inter-
sects the plane pip5 in a line ,. The line k may belong to the pencil plp., or it
may not. If k does not belong to the pencil, it intersects the two lines pl and
in two distinct points, 01 and 05 respectively. The plane p01 intersects p
in a point we take to be A, and A01 intersects p3 in a point we take to be A1.
By means of 05 we determine A on p and A5 on pa. 01 may be taken to be
A1 -[- A3, and 05 to be A5 + A4. A may be taken to be the vertex of the
pencil pips. Then Sa will be 19.

If ), belongs to the pencil pip2, we may suppose that it coincides with
We may take 01 to be the vertex of the pencil and 0. any other point on pl



We may proceed as above and finally take A5 to be a point of p.. Then $3
will have the form

/ -- m, 0,/, l, -k, 0, 0,/ -{- n, l, 0.

It is easy to verify that this Sa has a conic and a line on V and hence is space 4.
We consider an Sa which intersects V only in the line PP and the additional

point Pa. In X the plane of the pencil plp. is skew to the line pa. The plane
of the pencil may be taken as AA.A3, with A the vertex of the pencil, and
A and A5 may be taken on pa. The plane PPPa will then have the form
/c, l, 0, 0, 0, 0, 0, 0, 0, m. In S there is the point

P 0, 0, aa, aa, a5, a, a, as, a, 0.

The space tangent to V at P does not intersect the line PP, so its inter-
section with S will be the line PaP if a5 0, or will be P alone if a5 0.
The space tangent to V at a point of PP does not contain Pa, and hence its
intersection with Sa will be at most the plane PPP, but may be only the
line PP.
Now suppose a5 0, so that PaP is a tangent. Conditions that PPP be

tangent to V at the point aP -- bP are

asa- ab O, aa- ab O.

If a and b exist so that these equations are satisfied we must have aa-
aas O. In that case Sa has an additional point on V. So an Sa with only
a line and a point on V, with a line tangent to V at Pa, has P with aa
aas O. The three-space R, determined by P, does not contain A.
Hence the intersection of R and pp, which is a line, may be taken to be
AAa we denote the line by q. The corresponding point Q on V is such
that PQ intersects V in a second point unless it is a tangent. Suppose PQ
is tangent. Then since Q 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, P must have
aa a a0 0. Since aa aas O, we may select

A a6A4 -b aTA5 and A asA4 -b agAs

Then P becomes 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, and Sa is the space 20.
The final supposition, that led to space 20, was that P,Q, is tangent to V.

If this were not so, there would exist a such that Q + tP would be on V.
The B5 for this point is (a6a aTas)t, which requires 0. We have thus
shown that the only S with a line and a point on V and with a line tangent to
V at the isolated point is 20; and space 20 has no plane tangent to V at a
point of the line on V.

12 The additional point is

as aa a3 a4 O, as, aT as, a9, (asa a4as)/a if a8 0;

aT,ag,as,a,0,0, aT,0, a,. as, if as---- 0, aT 0;

O, 1, a a O, O, O, as, a (a3a aas) if as aT 0.
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We now consider Sa with a point and a line on V which contains a plane
tangent to V at every point of the line; such a plane is a 2-plane in the five-
space 2 determined by any point in the plane not on V. For the point P4,
which is in the 2-plane, has a6 a7 as a9 0. Sa contains no tangent
line atPa, soas0. P4=0,0, a3 a4 as 0, 0, 0, 0, 0. A can be moved
along pa so that Sa becomes 20’.

Suppose Sa contains a plane tangent to V at one and only one point of P1P2.
The point may be taken to be P1. Then P4 has as a9 0, a5 0. P4
0, 0, as, a, a, a6, a7,0, 0, 0. R intersects pa at 0, 0, 0, aa, a using this
point for A5 we reduce aa to zero. We can now move A to 0, 0, 0, a, a and
remove a, if a 0. In that case Sa is 20".

If a 0 just above, Sa intersects V in another point, namely,

O, aa/a O, a4 a O, a O, O, O.

We will now show that this list of Sa’s containing a point and a line on V,
and no other point on V, is complete by showing that such an Sa having no
plane tangent to V ut u point of the line is 20. As shown above, the fact that
Sa contains no plane tangent to V at a point of PIP requires P to be such
that aa aTas O. Now, making use of T, the point P
0, 0, aa, a, as, a6, az, as, a, 0 is changed to P’ a, a, al0,

a as(ad- c), a a(a- bc),

a a A- af -4- aa -+- aaf -f- asc A- acf,

a, aae -1-- a + aae -t- aa + asce 4- ac,

a a(1 bd), a a -b ad A- asd -f- adf,

a ae + a + asde + ad, as a& + abf + as + af,

a a&e A- ab A- ase -4- a ao O.

Since aa aas r O, a and c in To can be found to make aa a, 0. Then
the change of A, and A on pa that gave 20, and if necessary a change of P in
the plane PPP’, to makea a 0, will give P, 0, 0, 0, 0, a, 1, 0, 0, 1, 0.
Examining Sa for points on V, we find the additional point k am -n
0, which is one too many points unless a 0.
We consider a space Sa which contains the ruling PP. and no other point of

V, and which lies in the space tangent to V at P ;no Sa with only one line on
V could lie in more than one such tangent space. Let Pa and P be two points
of Sa which are on a line skew to PIP2. The plane PPaP is tangent to V
since every line in it through P is a tangent. Pa and P determine two three-
spaces Ra and R, in X. Ra and R may or may not be distinct, but both cer-
tainly contain the line p. If Ra and R coincide, then PPP, is a plane in a
five-space 2:, and it has one point on V. This is plane 6 of the list of planes.
Coordinates can be selected so that the plane is k, O, m, n, O, rn, m, O, O, O, r
not a square. The space Ra R is x 0.



The line pl is in Ra, and consequently thevertex of the pencil pip2 is in R.
We now show that coordinates can be selected so that P1, P3, and P4 have
the above form and .at the same time A1 is at the vertex of the pencil plp2.

Let a be an arbitrary plane in R3 on the line p, and let r be the image on V
of a. The polar spaces of P3 and P4 with respect to V cut r in two distinct
lines which intersect at P ;let the lines be respectively Xa and },,. Qa and Q
may be selected respectively on ?4 and )3 to give the above form of the co-
ordinates of P, Pa, and P. The point A is the intersection of p, q, and

and q4. Since A and A. enter sym-q4; A is the intersection of p, q3,

metrically, if either is the vertex of the pencil pp, we may take it to be A1.
If neither is the vertex of the pencil, we may move P3 along PP. The line
},3 then swings in r about P1, and the intersection of q and p moves along p.
Thus we may move A to the vertex of the pencil pp.
Now, the plane of the pencil pp2 is not in Ra, for otherwise Sa would be in

the space tangent to V at each point of PP.. Therefore the line p2 inter-
sects Ra only at A1, and any other point on it may be taken for Aa. S is thus
seen to be 21.

If there were any other S intersecting V only in a ruling and tangent to V
at a point of it, then for no selection of P3 and P would Ra and R, coincide.
For any selection of Pa and P4 the line p would be in both Ra and R4. Co-
ordinates can be selected so that

P 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, Pa 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,

P4 0, 1, 0, 0, 0, 0, 1, 0, 0, 0.

P. is in the space tangent to V at P and hence has a a4 a0 0. We
may suppose that the vertex of the pencil plp is at A (see, for example, the
change in A3 in deriving T). p will be a line joining A. to a point
of AIA.AA. Hence,

P2 a, 0, 0, 0, a, a, a, 0, 0, 0.

We may move P2 along the line PP, and so we may assume a 0. Then
any point in S is

P m 4 all, n, O, O, k, al, n 4" al, m, O, O.

For this point we have
B m 4- alm asln,

B -n(n d- al),

Bs 0,

B4 0,

Bs m(n d- al).

n-Jr-al--0 gives a plane every point of which determines the three-space
xs 0, which is R3. Thus PPs is a Z-line which does not intersect PP for
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arbitrary m unless a7 0. If a7 0, al 0, $3 has another point on V, and
hence is no new space. If al a 0, an obvious change of coordinates puts
$3 in the form 21’.
We now consider an $3 which intersects V only in the line PxP2, which is

in the space tangent to V at a point but not in the space tangent to V at a
point of PP2. We may select points Pa and P4 in Sa so that PaP4 is skew to
P1P2 and such that Ra and R are distinct. This follows from the fact that
since $3 is not in the tangent space at P1, it can contain at most a plane which
is in that tangent space, and the plane contains P2. Pa can be selected so
that PxPa is not a tangent, and then P will not be in the five-space 2a deter-
mined by Pa. So if P3 and P4 determine the same three-spaces in X, then
P -4- Pa and P will determine distinct three-spaces.
The line PaP4 determines a point M on V such that MP3P4 is tangent to

V at M; PP2 is in the space tangent to V at M. PIP2 does not pass through
M, since Sa is not in the space tangent to V at a point of PP2. The plane
PP2M lies wholly on V. Two possibilities arise" (a) the lines p, p2, and m
lie in a plane; or (b) the vertex of the pencil pp2 is on m.

In case (a) the plane of intersection of R and R4 and the plane of the pencil
pp2 intersect in the line m. We may take the vertex of the pencil to be A1,
and we may take A and A8 to be respectively the intersections of m with p
and p2. Then Pa and P4 will be in the space tangent to V at M
0, 0, 0, 0, 1, 0, 0, 0, 0, 0; hence, for each we have a8 a al0 0. Now,
we may determine two other points for P3 and P4, each of the form
0,0,0,0, as,as,a,as,ag,0. The new line PaP is a 2-line; the cor-
responding three-space in X is xx 0. Since coordinates of P3 and P4 can
be put in canonical form by transformations in the space x 0, and since
P and P2 are arbitrary points of PP, Sa becomes 22.

In case (b) the vertex of the pencil pip2 is on m. We may take the vertex
to be A1, the plane of the pencil to be AA2A3, and the line m to be AA4.
Then Pa and P4, being in the space tangent to V at M, will each have a5

a7 a 0; moreover, for each we may take a a 0, since each may be
moved in the plane determined by it and the line PxP2 without affecting the
relations in consideration. Then on the line joining Pa and P, there will be a
point 0, 0, aa, 0, 0, a6,0, as, 0, a0 which is on V. Hence, case (b) gives no
Sa with the required properties.
None of the remaining S3’s with a ruling on V is in the space tangent to V

at a point; the largest intersection of Sa with a tangent space would be a r-

plane. Sa may have several such planes.
We consider first the possibility that S contains a r-plane PP2Pa, where

PxP. is a ruling of V and the plane is tangent to V at every point of PIP2
the plane is a 2-plane. The line joining Pa to any point of PP2 is tangent to
V, and hence the three-space Ra contains the plane of the pencil pp2. If
P is any point of Sa not in PP2Pa, R4 cannot be R3, for otherwise PP would
be a tangent and Sa would be in the space tangent to V at P. Coordinates
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can be selected so that

Pa 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, P4 0, 0, 0, 0, 0, 0, 1, 1, 0, 0.

The line PaP4 is in the space tangent to V at M 0, 0, 0, 0, 0, 1, 0, 0, 0, 0.
The tangent space at M is as a a9 0; the five-space 2 determined by
P3 is a a7 a9 al0 0. Since $3 is not in the tangent space at M, not
both P1 and P. can have ag. 0; one point of PIP: does have as 0, and we
may take it to be P. Hence, Sa contains a r-plane P1PP, which is not tan-
gent at P1 but is in the space tangent to V at M. Therefore, p intersects
m; ps does not intersect m, for otherwise Sa would be in the space tangent to
V at M. The plane a of intersection of Ra and R contains m. The point
P4 can be selected on P3P so that qa passes through the intersection of pl and
m. The plane pp. is not a since p is not in R. The line PPa is a tan-
gent; p intersects qa and hence must intersect q. q may be moved in the
pencil qm until it passes through the vertex of the pencil pips ;then A1 may
be moved along q to this point. P then becomes 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.
Pa is in the space tangent to V at Ps p. intersects q and hence must also
intersect qa. Therefore, the intersection of pp. and a is q3, and Ps
0, 1, 0, 0, 0, 0, 0, 0, 0, 0. So an Sa containing only a ruling on V, contain-
ing a r-plane tangent at every point of the ruling, and not in the space tan-
gent to V at any point, is 23.
A Z-plane intersects V in at least one point; any line in the plane which

passes through the point on V is tangent to V at the point. Hence if $8 inter-
sects V in a ruling PP2 and no other point, and if S contains a 2-plane, the
2-plane contains PPs, or else S is in the tangent space to V at the point where
PIP. intersects the 2-plane. Therefore, no other S than those already con-
sidered contains a ruling and a 2-plane.

Let us suppose that Sa contains two r-planes which intersect in a line skew
to PP.. The line of intersection may be taken to be PsP. The line is a
2-line, since otherwise it could not be in the spaces tangent to V at two points.
The two r-planes intersect PP and may be taken to be PP3P and PP3P4.
Neither p nor p can be in either of the three-spaces Ra or R, for
then P, P., Pa, and P would be in the space tangent to V at P1 (or P).
The plane of the pencil pips intersects Ra in a line which is not a line of the
pencil. This line may be taken to be q then q is determined, and q and q
may be selected so that Pa and P are in canonical form (for a 2-line which does
not intersect V). The vertex of the pencil pp. is outside Ra and may be taken
to be A1. Then Sa has the form 24.
To help with the remaining cases we prove:

Every S3 which contains a ruling and no other point of V contains at least p q- 1
r-planes.

Unless Sa contains a pencil of r-planes on the ruling PsP, it will contain a
plane on PsP3 which has no other point on V and which is not a r-plane.
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Coordinates may be selected so that this plane is k, 0, 0, 0, 0, 0, 0, k, l, m.
(This is number 22 of the list of planes.) Then in $3 we may select the point
P4 al, a., aT, 0, 0, 0. Any point of S. is

P ] aln, a2n, aan, aTn, k, l, m.

The conditions that B bl, b, b0 be a point of V such that the space
tangent to V at B intersect Sa in a plane give a set of five linear congruences in
k, l, m, n which has for a matrix of coefficients

bl - bs 0 0 abs a2b6 a3b5 asb3 a6b’
b9 b 0 ab9 a2b a4b -{- ab ab2 |
blo 0 b abo aab-t- ab ab aTba|,
b -ba b. a2bo aab + a4bs
b -b b ablo ab aTbs

and it must be possible to select B so that the rank of the matrix is 1.
matrix has rank 1, b 0; then since B is on V,

If the

b.b6- bab5 O, b2b- b4b 0, bab- b4ba O.

Unless b. b3 b4 0, we have b rb., b rba, b rb4. Under these
conditions the rank of the matrix is 1 if the first three elements in the fourth
column are zeros. These give

(aar a)b. + (a ar)ba O,

(a4r- a)b2 + (a- ar)b4 O,

(a4r aT)ba -}- (a a.r)b O.

The determinant of the matrix of coefficients of the b’s is zero.
any set of a’s there is a r-plane bk bal b2m O, where

52" 53" 54 a2r as" aar a" a4r a7

Hence, for

These are not all zero since P4 is not on V. There is one for every r, and hence
there are p + 1 of them. The r-planes all pass through the intersection of the
planes

a4 a3l am 0 and ak a6l am 0

and hence constitute a pencil. A necessary and sufficient condition that this
line of intersection have a point in common with P:P, the ruling of V, is that
a2a aaa 0. When the condition is satisfied, the point of intersection of
the axis of the pencil of r-planes and the ruling is k, l, m, n 0, a2, aa, 0. The

0, 0, a2, aa, 0line in X corresponding to this point is
0, 0, 0, 0, 1

The three-space R in

X, determined by P, is

(-aaa + aa)xa (-a2a + aa)x O.

Hence the line in X is in R, and the axis of the pencil of r-planes is a 2:-line
with a point on V and is therefore a tangent to V at that point. The axis of
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the pencil of r-planes and the ruling lie in a plane tangent to V at their inter-
section.
Any other $3 which intersects V in a ruling only will consequently contain

a pencil of r-planes whose axis is either a 2;-line intersecting the ruling or the
ruling itself. We consider the first possibility.

Let $3 contain the ruling P;P4 and a pencil of r-planes on P1P:, P1 not on
PP4. PIP is a 2;-line; PPP4 is a r-plane tangent to V t P3. PP4 is not
tangent, for otherwise p4 would be in R and PPP would be a 2-plane. Let
P be any point of S not in PIP,P4. P is not in the tangent space at P,
for in that case S would be a r-space and of type already considered. Since
PP3 is not a tangent, the line p is not in R. Hence R and R are distinct.
Therefore the plane PPP is a r-plane, since it contains PP, with the line
PP tangent to V at P. This is number 11 of the list of planes. Coordi-
hates can be selected so that PIPP is l, l, 0, 0, 0, m, l, , 0, 0. The point
P4 is on V and is such that p and p4 intersect. The line p3 is AA4. The
vertex of the pencil p,p is not A, for then S would be in the space tangent
to V at M 0, 0, 0, 0, 1, 0, 0, 0, 0, 0. The vertex my be made A by proper
choice of Q on the line QM. Hence we have

a., as as, 0,
p4 \0, 0, 0, 1, 0,

al0 nd P4 0, 0, aa, 0, 0, as, O, as, O, ao.

By moving P4 along PAP4, as may be made to take any value. Now by
applying transformation Ta (page 646), which moves P along PAP2, we may
keep the plane PxPPa unchanged and obtain

P4 0, 0, aa 2al0a, O, O, as -+- asa, 0, as, 0, a0.

Selecting a to satisfy a; 2aoa O, and then selecting as so that as A- asa
0, we have P4 0, 0, 0, 0, 0, 0, 0, as, 0, al0. Applying T2 with
k O, as alol 0, we get P4 0, 0, 0, 0, 0, 0, 0, 0, 0, 1. Changing coordi-
nates will put Sa in the form 25.
Every other Sa which intersects V only in the ruling P.P2 contains a pencil

of r-planes on PP2. We observe first that Sa contains a line P;P4 skew to
PP2 and not a Z-line. Suppose P;P4 t.o be a Z-line skew to PP then no
point, say P, of P.P2 can be in the five-space 2;4, for otherwise PIP3P4 would
be a Z-plane, PxP’: and PP4 would be tangents, and $3 would be in the space
tangent to V at P. Now since PaP; is not a Z-line, P3 P A- P. deter-
mines in X an Ra which is different from R4, and PaP4 is skew to PP.
Two r-planes on PP2 intersect P;P4 in two points which may be taken to

be Pa and P4. Let p be the plane of the pencil pp2; let a be the plane of
intersection of Ra and R4 ;let r be the plane on V whose points represent the
lines of a. The plane r contains a point M such that MP:P4 is tangent to
V at M. Planes p and may coincide, may intersect in a line, or may inter-
sect in a point. If p and coincide, then P.P2 is in r, and Sa is in the space
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tangent to V at M; $3 is then either 21 or 22 according as M is on or is not
on P1P.
Now suppose p and do not coincide but intersect in a line 1. Let L be the

point of r which represents l; every point of P1P2 is in the space tangent to
V at L. Hence if L coincides with M, $3 is again a r-space. So we suppose
and m distinct but intersecting in the point D. If D is the vertex of the

pencil plp., every line of the pencil intersects m, and $3 is in the space tangent
to V at M. We therefore suppose D is not the vertex of the pencil; D then
determines a line of the pencil which we may take to be p,. Sa contains the
r-plane PIPaP4 which has one point on V. This r-plane must be one of planes
10, 11, and 13 of the preceding list.
Plane 10 is tangent to V at its intersection with V, P. is in the space tangent

to V at P, and hence if PPaP4 were plane 10, S would be a r-space. We then
consider PP3P4 to be plane 11, which contains one line tangent to V at
For the rest of this argument we interchange the roles of PIP and P3P4 so we
may use the plane 11 in the given form. Plane 11 is PP2P3

k, l, O, O, O, m, l, k, O, 0;

it intersects V at P, and contains the tangent line PIP. Now the point
P4 is on V and is in the space tangent to V at P ;hence for P4, a a
a9 0, and

a.as -4- a:a O, a.ao a3a. O, aao + aas O.

Also, since P may be any point on PaP, we may suppose as 0. Unless
al a5 aT 0, the above conditions give a3/a -as/a5 axo/a r.
The conditions that P2PP be a r-plane are the conditions that there exist a
B bl, b2, b0 on V with the plane PPaP in the tangent space at B.
The requirement leads to the result that all the b’s are zero except b and b
which satisfy asb A- aab aiob alob5 0. Hence a0 0. Then (1)
r 0, or (2) aT 0. In case (2), the plane PPaP4 is 2-plane, and Sa is
space 23. In case (1), P4 al, 0, 0, 0, as, 0, aT, 0, 0, 0. Then Sa intersects
V in the line PaP and also in the conic: A- an O, k + akn A- amn O.
If the only intersection is PaP, we must have a aT 0, and Sa is 21; it is
in the space tangent to V at P. This disposes of plane 11.
Next suppose the plane PP3P above is plane 13, and take it in the form

PIP:Pa k, l, O, O, O, m, A- m, k, O, O. P is on V and is in the space tangent
to V at Pa. Hence for P, a2 aa a4 as a9 0. Also, either (1)
a a aT 0, or (2) aa/ai -as/a aio/a r. The requirement that
P2PaP4 be a r-plane leads again to the requirement that a0 0, and hence
that rat O. So we have the possibilities:

P a, 0, 0, 0, a, 0, aT, 0, 0, 0,
P O, ra ra a O, O, --ra5al, --raa O.
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P gives an $3 with additional points on V, unless al a7 0, in which case
$3 is in the space tangent to V at P. If r 0, P’’ is P ;if r O, P’’ gives
an S whose r-planes all pass through PP3 and hence is 25. This completes
consideration of plane 13; it also proves that no new Sa is obtained by suppos-
ing that p and a intersect in a line.
We therefore suppose that p and a intersect in a point D. The pencil of

lines in on D maps into a line d in r. If M is on d, then at least one of the
points of the ruling PIP, say P, is in the space tangent to V at M, and
PP3P4 is plane 10, 11, or 13. The argument just completed still holds.
Hence for a new Sa, M is not on d. Two new spaces, 26 and 27, are obtained
according as D is or is not the vertex of the pencil pp.

Since d does not pass through M it intersects the polars of P and P4 in two
distinct points which may be taken to be Q and Q respectively. The point
D is the intersection of qa and q. Coordinates may be selected so that D is
A 1, 0, 0, 0, 0, and

Pa 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, P4 0, 1, 0, 0, 0, 0, 1, 0, 0, 0.

If D is the vertex of the pencil plp., the line of intersection of p with each
of Ra and R is a line of the pencil since it contains D. These lines can be
taken to be p and p respectively, pl then passes through A and a point of
A.A3A, which cannot be on AAa since p is not in R4. By moving A4 on
the line AaA (which can be done without changing the form of Pa or P),
the line pl may be made to intersect A2A. Hence,

P2 a, O, 1, O, O, O, O, O, O, O.

But since pl is in Ra, PIP3 is tangent to V at P. Hence, a 0.
same considerations we may select A5 on p, and have

By the

P 0, 0, 0, 1, 0, 0, 0, 0, 0, 0.

An interchange of names of. vertices of the frame of reference in X changes this
into space 27.

If D is not the vertex of the pencil plp, the plane p meets R3 in a line of the
pencil, say pl, but meets R4 in a line not of the pencil. Coordinates can be
chosen so that P1, Pa, and P are as above and the vertex of the pencil is
A4. The intersection of p with R is a line joining A to a point of AAaA5
which cannot be on AAa and hence can be taken to be on AA. Thus
P. 0, 0, 0, 0, 0, 0, 0, a, 0, 1. In order for PPP to be a r-plane, it is re-
quired that a 0. This is space 26. We have completed the determination
of all the spaces which contain one and only one ruling of V.

(vi) Three-spaces with at least three points but no plane curve on V.

28.
29.
30.

k + n, k, O, O, O, n, l, m, n, O.
k, k, n, n, n, O, l, m, O, n.
k, k, n, n, O, O, l, m, O, n.
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31.
32.
33.
34.
35.

k, lc, n, n, O, O, l, m A- n, n, n.
k, k, n, n, n, O, l, m, O, n.
k, k, O, n, n, O, l, m, O, n.
k, k, O, n, O, n, l, m, O, O.
k, k, n, n, n, n, l, m, O, n.

Spaces 28 and 29 intersect V respectively in a twisted cubic curve and in
five points; spaces 30 and 31 have four points on V, the first with a line
tangent to V at one of the points and the second with no such line; the others
intersect V in three points. In all the spaces the plane n 0 contains
2-lines joining pairs of P1, P2, Ps space 35 contains no other Z-line, space
34 contains one other which is tangent to V, and space 32 contains one other
which does not intersect V.

Suppose Ss contains three points of V and does not intersect V in a line or a
conic. The three points can be taken to be P1, P., and Ps, and coordinates
can be selected so that PP2Ps is

k, k, O, O, O, O, l, m, 0, 0.

If Ss contains two more points of V, the line joining them cannot intersect
any of the lines PP2, PPs, or P2Ps, for otherwise Ss would contain a plane
with four points on V and hence would intersect V in a line or a conic. This
line intersects the plane of PIP2Ps in a point P which can be taken to be the
unit point in the plane; furthermore the line is a 2-line and contains a point
uniquely defined as the conjugate of P with respect to V. Let this conjugate
of P be P4 al, a2, al0. The fact that P4 is conjugate to

gives
P 1,1,0,0,0,0,1,1,0,0

a1-- as -4- as O, a2-4- a-- a O,

--aa -4-- ao O, a A-- alo O, a + as O.

These relations hold not only when Ss has five points on V, but al whenever
Ss has three points on V and the line PP is a Z-line. We note that all or
none of as, a4, al0 are zero.
The transformation T5 (page 653) leaves each of the points P1, P, Ps, P

unchanged, but changes P4 to P with

A- a5 asb -f- ac aobc,
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In the case where a3 a4 alo O, a, b, and c can be selected to make
a5 0. We then haveP al,a.,0,0,0, a6,aT,as,ag,0. Sacontains

ff" " 0, 0, a9 0 It may be verified that ifthe point PP a 0, 0, 0, 0, a6
p! f! f!

a aa O, Sa intersects V in a line or a conic. An obvious change of the
unit point in X changes the a’s to l’s. The space is thus shown to be 28. It
will be useful to consider this space more closely.
The B’s for a point in S are

B1 km -4-mn- kn,

B2 kn-t-n- kl,

Setting the B’s equal to zero we get three cones with vertices at P, P2, and
P3. Each pair of the cones has a common ruling, and the remainder of the
intersection is a cubic curve; the ruling is not on the third cone, but the cubic
curve is. Sa thus intersects V in the cubic curve; of course Sa contains a line
tangent to the curve at each of its points.

In the case where a3a4ao rs 0 we may select a, b, and c in T so that al

a2 a7 0. Taking account of the fact that P is conjugate to P and mak-
ing the proper selection of the unit point in X, we obtain

P 0,0,1, -1, -r, 0,0,0,0,1.

Changing the unit point in X to 1, d, d, 1, 1 changes r in P to rd2. Hence the
possibilities are" r is 0, 1, or a particular not-square. If r 1, Sa has five
points on V and is 29. Conversely, if Sa has five points on V, r 1.

If r 0, then P is on V, PP’ is tangent to V, and Sa is 30. Conversely,
if Sa has just four points on V and contains a line tangent to V at one of them,
the above argument holds, and we obtain P with r 0.

If r is a not-square, then Sa has only three points on V. The line PP is a
2-line not in the plane PIP.P3 and with nb point on V. This is space 32 and is
defined by these properties.
There is no other Sa intersecting V in a curve or in five points. If there is

an S other than 30 with just four points on V, it can have no line tangent to V
at any of the four points. Let the four points on V be Px, P2, Pa, P where
P1P2Pa is as above and P is al a2, ax0. Any point in Sa is

]c + aln, ]c + an, a3n,’.., -t- an, m -- asn, an, aon.

If aa O, the space tangent to V at P. intersects V in the line k + an
m + ash O; likewise if a O, the space tangent to V at Pa intersects Sa in
a line. We may therefore suppose that aa4 O. Then a, b, c in T may be
selected so that P O, O, a, a, a, a, O, as, a, a0. Since P is on V,
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we have a3a5 a4a5 a4a6 -a3a9 atas aalo- a6a9 O. Thus,
a a O, a4 raa, a ras. It may be verified that if al0 0, S has a
line tangent to V at P, and if as 0 it contains a line tangent at P4. The
unit point in X can be selected to make r aa as a0 1. The space
is 31.
Any other space of this set will have just three points on V; if it has a

2-line not in the plane of the three points, one of the three points may be on it;
it does not intersect the triangle PP2P elsewhere since no Z-plane intersects
V in two points. We suppose that Sa has a 2-line tangent to V at P2 we
take P1P.Pa as above and Pt an arbitrary point, not P, on the 2-line. Then
P4 a, 0, 0, a4, a, a, 0, 0, a, a0. We have the following possibilities"

(1) a4 al0-- 0. P is not on V and hence a 0. We may determine
c in T to make a 0. The unit point in X may be selected to make a
a a. This Sa is 28.

(2) aao O. Then c in T5 can be selected to make a 0. If
aalo aa 0, then a6 is also zero. a and b can be selected to make a 0.
Proper choice of the unit point gives 33. If aao ata O, selection of c to
makeal 0makesa 0. Then b can be selected to make a 0anda
to make a9 0. In this case $3 has a fourth point on V, namely,

k, l, m, n -ata6, O, aalo, ao.

(3) a4 0, al0 0. C and b in T can be selected to make a a 0.
If al 0, the plane k 0 intersects V in a conic;if a 0, a can be selected
to make a 0. Hence we need consider here only

k -- n, k, O, O, O, O, l, m, O, n.

(4) at 0, al0 0. T5 can be selected to make a a 0, and if a6 0
to makea 0also. Ifa 0, theplanem 0intersects Vinaconic.
Hence we have k, k, 0, n, 0, n, l, m, 0, 0.
Each of (2), (3), (4) gives an S with three points on V and a line tangent to

V at P. We examine their intersections with the spaces tangent to V at
P1 and P also. In the respective cases, the tangent spaces are

Case (2) atPa" /c n 0, atP" m n 0,

Case (3) atP" /-t-n 0, atP" m n 0,

Case (4) atP" k n 0, atPl" m- n 0.

Hence Sa in case (2) differs from the other two which are alike, as may be
shown by interchanging the roles of P and P. Case (4) is 34.

Finally, any other S with just three points on V contains no line tangent to
V at any of the points. In P4 none of a3, at, a0 is zero. T can be selected
to make a a. a4 0. Then PPt can be changed in S to make
a7 as 0. If either of a or a is zero. there is a fourth point on V. This
S is 35.
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(vii) Three-spaces with two points on V.

36.
37.
38.
39.
40.
41.
42.

k n, l, n, O, O, m, l, k -{- rm, m, 0,
k, l, 0, --n, n, 0, l, m, 0, n.
k, l, 0, 0, n, 0, l, m, 0, n.
k, l, O, n, rn, O, l, m, O, O.
k, l, O, n, O, n, l, m, n, O.
k, l, O, n, O, n, l, m, O, O.
k, l, n, n, n, O, l, m, O, O.

x rx 1 irreducible.

The r-plane n 0 in 36 has no point on V; every r-plane in each of the
others has at least one point on V. Spaces 37 and 38 have three r-planes; in
37 one of the r-planes contains both points of V; in 38 two of the r-planes
contain both points of V. All of the planes on P3 in 39 are r-planes, and so
also is P1P2P. Space 40 contains two r-planes. Spaces 41 and 42 have
pencils of r-planes on the two points of V, and in each the plane m 0 is a
r-plane; the difference between them is harder to describe and will be left to
the end of this section.
We consider a three-space $3 with two points, 01 and 02, on V. The line

010. is obviously a 2-line. $3 contains planes with no points on V; such planes
are of three types: 7, 8, and 9 of the preceding list. We shall show first that
there is iust one type of S. which contains a r-plane with no point on V; then
we shall show that every other $3 on 01 and 0. contains a r-plane on 0102.

Let $3 contain the r-plane which has no point on V:

k,l, 0,0,0, m,l,k + rm, m,O.

In considering transformation TI it was shown that P1 could be chosen
arbitrarily and then P. and P3 determined so that the plane has this form.
Hence we may assume that 0102 pusses through P1 and that 01 is

P4 al a2 aa, O, a, as, O, as, O, O,

where alas a2a6 -- a3a5 O, and since P1P intersects V in two points
al -t- as 0. Transformation T2 leaves P1 and P2 unchanged; it changes
P3 and P to

P’a O, O, O, O, rk, 1, O, r, 1, O,

al a3k, a2, a, O, -alk a21 2r- a3k -t- a5 -t- ask, -a31 A- a6, O,

a3k + as, O, 0,13

Transformation T1 then changes P’3 and P to

P’ O, O, O, O, rk a -f- b, 1, O, r, 1, O, al a2 ,al0,

13 It is to be noted that the k and here are the parameters of transformation T:.
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where

al al

a2 a2 a3a,

a3 a,

a --0

’ ak a.l + k + + k (-.l + a),

We seleeg , b, k, and o satisfy

ak + a 0, -l + 0,

hen

P’ 0, 0, 0, 0, 0, 1, 0, r, 1, 0,

a6 al "4- a6

as ak + as,

a9 O,

alo O.

a2- aaa O, rk a -4- b O.

a O, a3 O, a5 O, O, O, O, O.

Since P’ is on V, a3 a5 O. If a3 O, S would be in the space tangent to V
at O, O, O, O, 1, O, O, O, O, O, and in particular Sa would contain a r-plane on
00. If a O, PP, has only one point on V. An obvious choice of the
unit point in X changes P’ to 1, 0, 1, 0, 0, 0, 0, 0, 0, 0. S is spce 36. We
hve thus shown that n S with two points on V nd r-plane which does
not intersect V either is 36 or else contains r-plane which hs two points
on V.14

Suppose S contains plane 8, which has no point on V but has a -line. The
plane is , l, m, O, -rm, O, l, , O, O, r not a square. PP is the Z-line;
PP is any line in the plane except the Z-line. The line 00 intersects this
plane in a point which cannot be on PP, for then the plane OPP would be
a -plane and would intersect V in more than two points. The intersection
can be taken to be P. R is X4 0. Hence O is

P4 al a2 O, a4 as, O, a O, ag O, aia9 a2a7 a4a5 O, a2 + a O.

Transformation Tx3 puts P into

P a + aa, a2, O, a4 aa, a aa, O, a, O, a4a + ag, 0

If a9 0, the plane k 0 is a -plane on PuP4 if a4 0, m 0 is a -plane
on P2P4 if a9 0, hen T3 my be selected 0 mke a4 0. Hence in ny
case $3 contains a z-plane on 002.
Any other $3 contains a plane with no point on V which is not a v-plane and

which contains no Z-line. This plane is 9"

k, l, 0, 0, m, 0, l, k, 0, m.

The line O02 intersects this plane; we examine $3 according to the location of
the intersection with respect to the conic C:m 2kl O. If the intersection

14 It will appear later that this second possible $3 does not exist.
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is on C it may be taken to be P1 if outside C, let it be P3 if inside C, then let
it be P1 -+- P 1, 1, 0, 0, 0, 0, 1, 1, 0, 0.15

(a) The intersection is P1 We may take 01 to be

P4 al, as, a3,0, a, a6,0, as, 0, 0,

where aas aa aa O, a as O. The plane an 0 is in the
spce tngent to V t the point 0, 0, 0, 0, 0, 1, 0, 0, 0, 0. If a 0, this
r-plane contains both 0 nd 0 ;if a 0, the r-plane contains neither. So
S either is 36 or else contains r-plane on 00.

(b) The intersection is P. The three-spce R in X is x 0. Let 0 be

P 0, 0, 0, 0, a, a, a, as, a, a0,

where aao aa aas 0, a + a0 0. A r-plane intersects PPPa in a
line and hence is in the space tangent to V at the point

bc, ac, b2c, -a2c, (2ab c)c, b, -a(ab + c2), -b(ab + c2), a, -abc.

a, b, c must be such that the matrix

b abc aac+ a c

--a bc aTac aa c

bc ao bc a c- a a c

ac aloac-- bc- aaac Jb- a(ab+c) ab(abWc) aaa-aabcabWc ao(2ab+c)c-a as

has rank 1. The space tangent to V at the above point meets PPPa in the
linea bl- cm 0. Ifc 0, the rank of the matrix is lforaandb
satisfying aa asab aab + ab 0. If this polynomial is reducible,
Sa has a r-plane on PP. So at this time we need consider only the case
where the polynomial is irreducible. Then a r-plane would be given only by
a b 0. The r-planewouldbem aon 0. It would pass through
O P4 only if ai0 0, in which case aa aas 0 and the polynomial is
reducible. The r-plane exists and eitheg it contains O and 0, or S is 36.

(c) The intersection is P P:. O and O represent lines in the three-
space R determined by 1, 1, 0, 0, 0, 0, 1, 1, 0, 0. We take O to be

P4 al a2 aa, --a, a5, a6 al a6 as a2 as aa
with aas aa aaa 0. An argument about r-planes similar to that in
(b), with a b and c 0, shows that + + (a + a:)n 0 is a r-plane.
If neither O nor O is in this plane, then Sa is 36. If one of O and O is in
the plane, we my suppose the one is 0, and then a a 0. If
a a 0, thena aa, b -a, c -a gives the r-planeak al
am 0 which contains both O and 0. This settles the question unless
a a aa 0, and in this cse m 0 is a r-plane which contains both

We recall that these forms are for p 7; -1 is not a square.
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01 and 0.. This completes the proof that $3 with iust two points on V either
is 36 or else contains a r-plane on 01 and 02.
We now investigate S’s containing a r-plane on two points of V, and we

take the plane in the form

/, l, 0, 0, 0, 0, l, m, 0, 0.

$3 will contain the point P4 0, 0, a, a4, as, a6, aT, 0, ag, al0. Trans-
formation T6 leaves P1, P2, P unchanged and puts P into P where

al --ac, a --aa a 4-- aoc,

a2 ab "l-- aa, a7 aa "-b aT,

a3 aa as aloa,

a4 a4, a9 a9 alob,

a5 aab aa + a ab -t" aTa -t-- ac alobc, ao alo

We shall sort the Sa’s according to the zeros among aa, a, and al0.

(1) Suppose a3aalo O. Then b in T can be selected to make a 0,
then c to make a6 0a to satisfy aab 2aa a7 0 making a2 a,

0, 0, 0, 0, al0. TransformationIn S there is the point PP 0, 0, aa, a, a,
T, which leaves P1 and Pa fixed and moves P2 along the 2-line P1P., can be
applied with b 0 and a3 aloc 0; this changes P’ to

0, 0, 0, a, a, 0, 0, 0, 0, al0.

A change of the unit point1 gives P’ 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, and Sa
is 37.
We have shown that a coordinate system can be selected so that the particu-

lar Sa we have been studying takes the form 37. We seek information about
it that is independent of the coordinate system to help distinguish among
Sa’s given in different coordinate systems. We examine 37 for r-planes.
The space tangent to V at B bl, b2, b0 intersects S. in a plane if the
matrix

bs -b bl b

b -(b2% b) 0 b- b

b0 -b3 0 bl- b

0 bl0 b b2- bs

0 bs b b5 b0
There is getting to be less freedom in the chunge of the unit point, nd we should

perhups point out the details here. If in X the point 1, dl, d., d, d, is taken for the new
unit point, the unit point in S is changed to

d d da d dd dld did4 dd, dd dd

In order to keep the plane PPP in the cunonical form, it is necessury only to require
that d--did4. In order to get P’ into the desired form, we must have
add aodd atd4. These requirements can be satisfied since aa is not a
square; if a,a were a square, S would have three points on V.
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has rank 1. The only such points B and the corresponding r-planes are

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, with plane ]c 0;

1,0,0,0,0,1,0,0,0,0, with planel- m 0;

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, with plane n 0.

Thus $3 contains just three r-planes, and only one of them, n 0, is on both
01 and

(2) Suppose a3 a al0 0. Then Sa contains the point

P 0, 0, 0, 0, as, as, aT, 0, ag, 0.

Since P is not on V, asa9 O. Then Ts can be selected so that a5 0, and
the unit point can be selected so that P 0, 0, 0, 0, 0, 1, r, 0, 1, 0. If r 0,
the line/ 0 has two points on V, and hence Sa has at least three; if
r 0, S intersects V in a cubic curve.

(3) Suppose aa a 0, al0 0. In Ts we may select b to make a 0,
ctomakeas 0. Thena a- asb aTa. Hence ira7 0, wemay
select a to make a 0, but in that case P is on V. Hence with proper
choice of the unit point we have P 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, and $3 is 38.
It is readily verified that Sa contains the three r-planes" ]c 0; 0; n 0.
Each of the last two is on 010, and therefore 37 and 38 are different.

(4) Suppose aa al0 0, a 0. In Ts we may select a to make a. a7,

thena -aa as- asb -t- aTa a.c. We can selectbandc to make
a 0 unless as a 0.

If as a 0, Sa is 39. The points of V whose tangent spaces intersect Sa
in planes, and the planes, are’

1,0,0,0,0,0,0,0,0,0, withm 0;

0, b.,0,0, b,0,0,0, bg,0, withbo]- bl+ bn O.

Thus every plane on P is a r-plane.
Suppose now that not both as and a are zero. Then

P 0, 0, 0, a, 0, as, 0, 0, a, 0.

Since P is not on V, as 0. If ao 0, S is space 40; it contains only two
r-planes: m 0, and n 0. The plane m 0 does not pass through 0..

If a9 0, then Sa is 41. Sa contains the r-plane m 0 tangent to V at
01, and the pencil of r-planes bsl bn 0 each in the space tangent to V at
0, b, b3,0, b, bs, 0, 0, 0, 0, where the b’s satisfy b_bs bb5 O, b bbs O.

(5) Suppose a al0 0, aa 0. In Ts, b can be selected to make
andatomakeas 0. Thena aaab a- asb aTa-[-ac62 67,

which can be made zero if ao 0. If ao 0, S intersects V in a conic.
Thus we have only to consider S ]c, l, n, 0, 0, 0, l, m, n, 0. It has three
r-planes, two on 0102; it is the same as 38 with the two r-planes on 010
interchanged.
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(6) Suppose a3 O, a4alo O. In T6, b can be selected to make a0 0,
andctomakea6 0. If as 0, this is 37 if a5 0,a to make a2 a7

P is on V.
(7) Suppose a4 O, a3alo O. In T, b can be selected to make a9 0,

c to make a 0, and a to make as aT. a5 cannot be zero since P is not
on V. This Sa has three r-planes, two on 002. Transformation T7 can be
used to change it into 38.

(8) Suppose ai0 0, aaa O. In T, a can be selected to make a 0,
and then if a9 0, c can be selected to make a 0.b to make a. a,

This Sa has a third point on V. Hence a 0 and Sa is 42. It contains the
r-plane m 0 tangent to V at P; it contains also the pencil of r-planes
b3l bn 0 each in the space tangent to V at 0, b2, b, 0, b, b6,0, 0, 0, 0,
where bb- bab O, b b + bab O.
We have shown that any Sa with just two points on V is one of spaces 36 to

42. We have still to show that 41 and 42 differ other than by a choice of
coordinate system. In either space any plane on 0103 could be taken fo7
PP.P3, and it is necessary to show that no such choice could turn one into the
other.
We examine further the space

k, l, n, n, n, 0, l, m, O, O.

For any point P the Bs are
B =km + n,
B. + n,
Ba -ln,

B mn,

B5 lm.

The three-space R in X determined by P is

lmx mnx. lnx -t- (l n)x + (k,m - n)x O.

If we suppose set xi, x, xa, x4, x given, the bove relation defines u quadric
sugace in S. Every point P, excepting P and P, determines a three-space
in X; on the other hand, every point A in X, without exception, determines a
quadric Q in Sa. If A is in the space R determined by P, then P is on the
quadric Q determined by A. The points of S which are on V do not deter-
mine R’s, but these points are on every Q determined by point of X. These
relations do not depend on any particular choice of the coordinate system.
A change of coordinate system changes the B’s but does not change the four-
parameter system of quadrics in Sa.
Now S has two points, P and P, on V. Each of these points is the

image of a line in X. The points of a line in X determine the quadrics of a
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pencil in $3. Consequently, the set of quadrics in $3 determined by the
points of X contains two pencils uniquely defined by the relation of Sa to V.
The pencil determined by pi is lmxl mnx2 0; the pencil determined by P
is lnx3 (1 n:)x4 0. Every quadric of the first pencil consists of a pair
of planes one of which is m 0; likewise, every quadric of the second pencil
is a pair of planes also, since x3 + 4x is irreducible.
For S of type 42 the corresponding system of quadrics is

lmxl mnx - nx + lx4 - (km ln)x5 O.

The special pencils are

lmx mnx2 O, given by P;

nxa -t- lx4 O, given by P3.

The latter pencil contains the two quadrics 0 and n 0, each consisting
of two coincident planes. Thus by no change of coordinate system can 41 be
changed into 42.

(viii) Three-spaces with one point on V.

43. ], l,
44. k, l,
45. , l,
46. ], l,
47. k, l,
48. +
49. ], l,
50. ], l,
51. ], l,
52. ], l,

O, O, n, m, l, k -t- rm, m, 0, x rx 1 irreducible.
0, n, m, n, l, , O, O.
n, 0, n, m, l,/, 0, 0.
0, --n, n, m, l,/c, 0, 0.
n, 0, 0, m, l, ], n, 0.
n, l, m, O, O, rn, l, ]c, n, O, x x r irreducible.
n, 0, 0, m, m, ]c, n, 0.
0, -n, n, m, W m, ], 0, 0.
n, --n, n, 0, l,/c, 0, m.
n, n, --n, 2n, l,/c, 0, m.

Space 43 is tangent to V at P4 which is on V; none of the others has this
property. Spaces 44 and 45 contain one plane each tangent to V at O, the
point of Sa on V; in 45 this tangent plane is a 2-plane; in 44 it is Rot. Spaces
46, 47, 48 intersect the space tangent to V at 0 in a line; 46 contains two
r-planes; 47 and 48 each contains only one; in 47 the r-plane passes through
O;in 48 it does not. The space tangent to V at 0 intersects none of the other
spaces anywhere except at O; space 49 contains a single r-plane; space 50 con-
tains two. Spaces 51 and 52 contain no r-planes; space 51 contains three
special lines which will be described later; space 52 contains only one special
line.

In examining the three-spaces with one point 0 on V we shall make what
use we can of the point 0 and the space tangent to V at O.

There is one obvious S lying in the space tangent to V at O. Any plane
in it not on 0 is a r-plane with no point on V, and hence is
t, l, O, O, O, m, l, lc rm, m, 0; it is in the space tangent to Vat
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0, 0, 0, 0, 1, 0, 0, 0, 0, 0. The space determined by the plane and the point
is 43; it may be readily verified that there is no other point on V.

There is no Ss with just one point on V which is the space tangent to V
at a point not in Ss. Such an Ss would contain P1P2Ps above and the point
0 P4 for which as a4 al0 0, and

aas a2a6 07 aa9 a2a7 O, asao a6a9 O.

The point/, l, m, n whose coordinates satisfy k - aln aTn m an
0 is also a point of V. This point is different from 0 unless al a aT 0.
If they are zero, then m agn k -t- rm ash 0 is on V and is differ-
ent from 0 unless as a9 0 also. The only nonzero coordinate of P is
thus seen to be as, and the space is 43.
We consider next Ss’s which contain 0 and a plane tangent to V at 0.

This plane is k, l, 0, 0, m, 0, l, k, 0, 0. It contains no 2-line except the lines
through O. P and P2 can be selected rbitrarily in the plane except that
PP. does not pass through Ps. Ss will contain the point P4
a, a, as, a, 0, a, 0, 0, a, al0. Not all of as, a4, a0 arezero. We con-
sider first those Ss’s for which a4 0. Ts cn be pplied to mke a0 0;
T can be applied to make a aT, a 0; nd then T cn be applied to
makeal a2 0. We then have

P4-- 0,0, r, 1,0, 1,0,0,0,0.

The point k, l, m, n 0, r, 1, r is on V. Hence Ss hs more thn one point
on V unless r 0. If r 0, Ss is 44. The r-planes in Ss re b]c bn O,
each in the space tangent to V t bl, b, 0, 0, bs, 0, b, 0, b, 0 which must
be on V; they constitute pencil on PPs.

Those Ss’s which contain PIP2Ps above nd a P which hs a 0 give
nothing new. The interchange of P nd P interchanges a nd a in P,
and hence it changes Ss into one we hve iust considered unless as a 0,
and in that case Ss hs t least two points on V.

In ny other S with iust one point on V and r-plane tngent to V t 0,
the r-plane must be 2-plne. Any other plane on 0 contains a 2-line neces-
sarily tangent to V t O. If such other plane is r-plane, it cn be tken to be

The line PPs is the tngent line; P is any point in the plane not on PP.
P can be selected in the 2-plne PPP. R is then R which is x5 0.
ThereforeP4 a, a, as, 0, a, a,0, as,0,0. Since P4 is in the spce
tangent to V at Ps, a 0; lso, P4 can be moved long the line PIP4 to mke
as 0 and along the line PsP to mke a6 0. Hence Ss contains the point
P’4 a, 0, a, 0, a, 0, 0, 0, 0, 0. If a 0, T2 can be pplied to change it
to zero. Then Ss is 45. It contains the r-planes bk bl bn O,
each in the spce tangent to V t b, 0, 0, 0, b, b, 0, 0, 0, 0.
Any other S which contains 2-plne on 0 cn contain no r-plane on 0
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except that one. Hence any other plane on 0 is not a r-plane but contains a
line tangent to V at O; it is/c, l, m, 0, 0, 0, l, /, 0, 0. The tangent line is

0; it contains P1 and is in the Z-plane. If P4 is selected in the 2-plane,
then R4 R1, and P has a a7 a9 a0 0. Since PsP is tangent to
V, a5 0. It is easy to verify that $8 contains a second point on V" viz.,
/c m -[- as n 0, if as 0, or another point on PP if as 0.
For all other Sa’s with just one point on V the space tangent to V at 0 can

intersect $3 in at most a line. We consider now the possibility that Sa con-
tains a line tangent to V at 0 and contains a r-plane on that line. The
r-plane can be taken to be/c, l, 0, 0, 0, m, l,/c, 0, 0. If Sa contains any other
2-line, the 2-line does not cut PP, for then $8 would contain a Z-plane.
Since P. is arbitrary in PP.Pa, we may assume the 2-line is PP4 where
P al, as, 0, a, as, 0, 0, 0, ag, 0. Ifa 0, the linePPcontainsa
point of V. Since a4 0, T. can be applied to remove as and a, and then
T1 to remove a. S is 46; it contains only the two r-planes/ 0 and n 0.
We now consider an S with a line tangent to V at O, with a r-plane on

that tangent line, but with no 2-line except the tangent line. The r-plane is
/, l, 0, 0, 0, m, l,/, 0, 0. The line tangent to V at 0 P3 is 0. Sa con-
rains the point P4 a, a., aa, a, a, 0, 0, 0, a, a0. Not all of aa, a4, al0
are zero, for otherwise S would be 43.

(a) Suppose a 0. T3 can be used to remove al0 T can be used to make
a. a 0; T1 can be used to remove al T10 can be used to remove aa.
Sa is 46.

(b) Suppose a 0, a0 0. Ta will make aa 0, and T. will make a
a. 0. ThenP-- 0,0,0,0, a,0,0,0, a,al0. Ira9 0, thelineP3P
contains two points of V. If a 0, Sa is readily seen to contain a pencil of
r-planes and to be 44.

(c) Suppose a a0 0. Then P ai, as, aa, 0, a, 0, 0, 0, a9, 0.
a 0, for otherwise PP4 Would be a 2-line. T10 can be selected to make
a as, as aT. Hence S3containsP 0,0, aa,0, a,0,0,0, a,0.
Then T with a 0 can be selected to make a5 0. Sa is 47; it contains only
one r-plane.
We have so far determined all the S’s with one point 0 on V which contain

a line tangent to V at 0 and a r-plane on the tangent line. Any other Sa with
a line tangent to V at 0 will contain the plane, l, m, 0, 0, 0, l, ], 0, 0

which is not a r-plane, but which contains the tangent line 0. S contains
the point P a, a:, 0, a, a, a, 0, 0, a, al0 We now apply transforma-
tion Ts, which leaves P, P, and P unchanged.

(a) If a9 0, Ts will remove a and a0. In this case m 0 is a r-plane
not on O; such an Sa is different from any we have obtained previously.

(b) If a 0, a 0, Ts will remove al and a. P
0, a, 0, a, a, 0, 0, 0, 0, a0.
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(c) If as a9 0, thenP4 al,a2,0, a4,0, a6,0,0,0, al0. Here the
plane 0 is tangent to V at Pa. Hence, we need consider cases (a) and (b)
only.

Case (a). T will remove a., and T will remove as. Then, P
a, 0, 0, 0, 0, a6,0, 0, a9,0. The unit point in X can be chosen to make
a a, if a 0, but a6 cannot at the same time be made equal to a unless
a, aa. If al a-- a,orifa 0, Shas a second point onV. If
a6 0, Sa contains the Z-line P.P. Hence, Sa is

tc n, l, m, O, O, rn, l, t, n, O, x nt- x r irreducible.

This is 48; it contains the r-plane m 0. The irreducibility of x - x r
is required for there to be no second point on V.

Case (b). a0 0, for otherwise PP would be a Z-line. If a 0, Ta
would make a0 0. Hence, a 0. The unit point can be chosen to give
P4 one of the forms

(1) 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, (2) 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,

(3) 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,

depending on the zeros of a and as. In cases (1) and (2), S has two points
on V; in case (3), the plane 0 is a r-plane on the tangent line, and $3
is 47.
The remaining S’s with one point on V will contain no line tangent to V

at O. Such an S contains the plane k, l, 0, 0, 0, m, -}- m, k, 0, 0 and a point
P a, a., a, a, a, 0, 0, 0, a, al0. Not all of a3, a, and a,0 are zero,
for otherwise S would lie in the space tangent to V at 0, 0, 0, 0, 1, 0, 0, 0, 0, 0.

(a) Suppose a a0 0. If a 0, the line PP4 is a Z-line, and since
P is on the 2;-line -+- m n 0, S contains a 2;-plane not on P and hence
contains another point of V. Since a9 0, TI with a aga 0 removes
a. T. will remove al and T will remove a. The unit point can be chosen
so that P 0, 0, 1, 0, 0, 0, 0, 0, 1, 0. S is space 49; it contains a single
r-plane and has no line tangent to V.

(b) Suppose a 0. If not both a and a0 are zero, we may suppose a
0. Tn can be used to make a0 0; T will rembve a9 and T will remove
al. Hence, P 0, a, a, a, a, 0, 0, 0, 0, 0. S contains two r-planes"
n 0 and/ 0. If a a, $3 contains no line tangent to V, and hence is
different from 46. We may apply T, to remove a, and then choose the unit
point so thatP 0, r, 0,-1, 1,0,0,0,0,0. Ifr 0, S is 50 which is
different from any S previously obtained. If r 0 and S has no point
except P on V, it contains two r-planes on P, and an interchange of the
r-planes will put S into 50. We shall not carry out this change, but will
point out the relations that must be considered in doing it.
The space ], l, 0, -n, n, m, -+- m, ], 0, 0 contains two r-planes: k 0

and n 0. The line -+- m n 0 is the Z-line in one of them; the line
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P2P4 is the 2;-line in the other. The line P2P3 is special, the intersection of
the two r-planes. The two 2;-lines in the r-planes determine two special
points on the line PP3, their intersections with P.P. The point P is there-
fore uniquely determined as the intersection of the line in both r-planes with
the 2;-linein one of them. Every point of a Z-line determines another point
of it, the point coniugate to it with respect to its "imaginary" intersections
with V. P and P4 are coniugate points of the 2;-line in / 0;
PI and (0, 1, -1, 0) are coniugate points of the Z-line in n 0, the second
point being the intersection of the Z-line with P.P. Thus the coordinate
system in S is determined as soon as we decide in which of the r-planes to
take P1. In the case above with r 0, change of coordinates required by
selecting P1 in the plane/ 0 puts S into 50.
Any $3 with one point 0 on V, other than those so far obtained, will have

no r-plane. Any plane on 0 will be one or the other of types 14 and 15 of the
list of planes. We shall show first that $3 always contains a plane of type 15.

Suppose S contains a plane of type 14: ], l, m, -m, 0, 0, l, ], 0, 0. Then
S contains the point P4 0, 0, 0, a, as, as, aT, as, ag, a0. Any point
in S is

k, l, m, --m -- an, asn, an, -- an, lc asn, agn, aon.

The points of intersection of S with the space tangent to V at P3 satisfy
an ]c (as a)n - (as a)n O. S3 has no line tangent to V at
P3 and hence a 0. Then a and b in T can be selected to make a as,

and consequently S contains PIP.P3 anda2 a7,

P4 0, O, O, a, a, as, 0, 0, a, al0.

For a point P in Sa we have

Bx k aln + amn,

B akn asmn - aan,
B3 alon lm aemn - a4aen,
B4 aloln tom - akn amn,

B k,1 + (aao- aa)n.
Using the relation Bx B4x. B3x3 Bx -{- Bx 0, a point in X deter-
mines a quadric Q in Sa. The point Pa, being on V, determines a line p3 in
X;the points of p determine the quadrics of a special pencil in S. The line

is _,_1, 0, 0, 0, 0
The corresponding pencil of quadrics is determinedpa byo, 0, 0, 1, 1"

kl -- (asalo- aa)n O, k + agkn aln + a4an O.

The first of these two quadrics intersects each of the planes/c 0 and 0
in a line through Pa. Hence, both planes are of type 15.
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We have thus shown that S contains the plane

/c, l, 0, 0, 0, 0, l,/c, 0, m.

S contains the point P 0, 0, a, a, a, a, a, as, a, 0. Not both a
and a are zero, for then S would contain a r-plane; a 0, for otherwise the
line PP would be tangent to V at P. T can be used to make a as and
a a. Hence we may assume P 0,0, a,a,a,a,0,0, a,0. This
is as far as we can go in reducing P without changing the plane PPP. We
shall now find a special line in S and making use of it determine a canonical
form.
We examine the special pencil of quadrics in S determined by the line p

in X. For a point P in S we have

B1 2 a61n aan2,

B2 a9n aan2,

B =km aln aa6n2,

B lm akn aa9n2,

B kl amn a6a9n2.

The line p is ’O, 0,0, 0,0, 0,1’01 The quadrics of the pencil ar

2 akn l a61n a(a a4) 0.

These quadrics are all cones with vertex at P. The condition that the quad-
ric given by be a pair of planes is that

ak 3aak 3aa a 0(A) s

have a root in GF(p). We shall show that this root exists.
So far we have not used to the full the fact that Ss intersects V only at Ps.

The conditions that P be on V are that B 0, i 1, 5. From each
of the pairs B B 0 and Bs B 0 it follows that a asl
as}n aasln O. Hence if we solve B 0 for in terms of and n, use
that value of in B 0, and solve B4 0 for m, we will have a set of values
of k, l, m, n which satisfy the first four equations. The equation obtained from
B 0is

(B) 2aaln aaln + (aa + aaa)n O.

This is also the condition thst }, l, m, n satisfy Bs 0. The condition that
Ss intersect V only at Ps is that (B) have no solution in GF(p). Thus (B)
must be either an irreducible quartic, or else the product of two irreducible
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quadratics. In either case the resolvent cubic
22 24(C) + 2a,ast 4(aa + aaasa)t (aa + aaa,aao + aoaQ 0

of (B) has a root in GF(p).17

There exists a transformation (ah + b)/(ch + d), a, b, c, d in GF(p),
which changes (C) into (A).18 Hence if (B) has no root in GF(p), (A) has
a root in GF(p).
The pencil of cones in S determined by the line pa therefore contains one

member which consists of a pair of planes. The line of vertices of this quadric
is the special line we sought. We take P on this line of vertices. Any plane
on P1Pa which is not a plane of the quadric determined by the root of (A) in
question is cut by the pencil of cones determined by pa in a pencil of conics
one of which is the line PPa counted twice. Hence, any such plane is of the
type of 15 of the list of planes and may therefore be taken to be PP2P. above.
The cone B. 0 intersects the plane n 0 in the parabola 0 which is
the line P1Pa counted twice. The cone B. 0 intersects the plane 0 in
the conic aokn a4an 0; since this is the parabola n 0, it follows that
a9 0. With this choice of coordinate system the equation (B) above be-
comes (l a4an) 0. Since (B) has no linear factor in GF(p), it follows
that aa is not a square. Moreover, the quadric B2 0 is a,asn 0
and consists of two "imaginary" planes; the only points on it are the vertices.
Any plane on PPa will therefore serve for PIPPa above, but when the plane
is chosen, the locations of P1, P, and P are determined.
The cones of the special pencil determined by pa are

k aeln + Xl -- a(a3 a4X)n O.

The matrix of the conic intersection of the cone with PPP4 is

0 0

, 3a

3ae a(as a4))

Setting the determinant of this matrix equal to zero and solving for ), we ob-
tain the ’s which give quadrics consisting of one or two planes. The rank
of the matrix is at least two unless aa a 0, in which case the plane k 0
is a r-plane. Therefore aa and a are not both zero. One of the degenerate

7 For the irreducible quartic this comes under a theorem by L. E. DICKSON, Criteria

for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc., vol. 13 (1906),
p. 7. The quartic which is the product of two irreducible quadratics defines a GF(p2) in
which the quartic is completely reducible and reducible to quadratic factors in three
ways corresponding to the three roots ot the resolvent cubic. The roots of the cubic
are in GF(p), and hence at least one of them is in GF(p).

s This is done most easily by transforming both (A) and (C) to the form x ax

0 which can be made the same for both.
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cones is given by }, the others are given by },’s which satisfy

aaX aah zt- 2a O.

The discriminant of this quadratic, aa2 aaa, cannot be zero since it is
the sum of two squares not both zero. Hence, the quadratic has two distinct
roots, both or neither in GF(p). There are two new Sa’s corresponding to
these two possibilities.
We consider first the case where the special pencil of cones contains three

degenerate members. Two of them must each consist of a pair of imaginary
planes, for otherwise Sa would have points on V besides Pa. We may take
P2 tO be on the line of vertices of the second degenerate cone. Then the cone
k aln -4- aaan 0 CUtS the plane k 0 in a parabola, and hence a 0.
A choice of the unit point puts Sa in the form 51.
When the special pencil of cones contains only one degenerate member, the

one given by X , the number aa aaa must be a not-square, and
hence neither aa nor a is zero. A proper selection of the unit point will put
P4 into one of

0,0, 1, 1, --1, r, 0,0,0,0, 0,0, 1, --1, 1, r, 0,0,0,0,

depending on whether a3a5 is not or is a square; in either case 1 + r is not a
square. There are (p -t- 1)/2 possibilities for r, and hence there are p -t- 1
possibilities for P4. We recall that the plane P1P2P3 is arbitrary on the line
PIPa. There are p A- 1 planes in Sa on PxPa. For a given Sa, the plane
PPP3 can be selected2 to give P4 any one of the p -4- 1 forms listed above.
Hence 52 is a canonical form for Sa.

6. Three-spaces with no point on V

53. /, l, m, 0, m, n, l, k 4- n, n, O.
54. /, l, 0, 2n, m -4- 3n, n, l, k, 0, m.

Space 53 contains the r-plane m 0 and the Z-line PPa space 54 contains
no r-plane and no 2-line.
We shall prove first that an Sa with no point on V contains a r-plane and a

Z-line, or it contains neither. In an S with no point on V every plane is of
one of the types 7, 8, 9 of the list of planes. If $3 contains more than one
r-plane, the intersection of two of them is a 2-line; hence the theorem is true,
or else S. contains not more than one r-plane. Likewise, if Sa contains more
than one 2-line, it contains a r-plane. To prove this, let k, l, m, 0, m, 0, l, k, 0, 0

19 Again we note that the details are being carried out for p such that -1 is not a

square.
20 The simplest way to verify this is to take $3 with r arbitrary, change the plane

P1P2P3 from n 0 to 1- an 0, and change the coordinate system so that
P; P P; P’ are in proper form. It will then appear that for no a except a is
the form of P4 left unchanged.
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be a plane on one 2-line. For this canonical form P2 can be any point in the
plane not on the Z-line PtP3. Hence if $3 contains a second Z-line, it may be
taken to pass through P.. P4 may be selected on the second Z-line, and
hence P4 at, a, 0, a4, as, 0, aT, 0, a9,0. If a9 0, then ]c 0 is a r-plane.
If a9 0, transformation Tta can be used to remove a4. Then m + aan
0 is a r-plane. Hence, Sa contains not more than one r-plane and not more
than one 2-line, or else it contains both a r-plane and a Z-line.
We now show that if $3 contains a Z-line it contains a r-plane. $3 contains

a plane which is not a r-plane and is not on the Z-line;it may be taken to be
It, l, 0, 0, m, 0, l, It, 0, m. This plane contains the uniquely defined conic C:
m 2]cl 0. The Z-line intersects this plane (a) on C, (b) outside C, or
(c) inside C.

(a) The 2-line passes through Pt. Then P on the 2-line is

at, a, a3,0, as, a6,0, as, 0, 0.

Then + an 0 is a r-plane.
(b) The Z-line passes throughP3. Phasat a. aa a 0, and

m + aon 0 is a r-plane.
(c) The Z-line psses through 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, which is inside C.

Then P, at, a., a, -a, a, a6, at -a6, a8, a -as, a3. This is exactly
the situution that ws discussed in determining the space 36; it was shown
there that lc + + (at + a)n 0 is a r-plane. Hence, if S has no point on
V and contains a Z-line, it contains a r-plane.
Now assume that S contains a r-plane. S contains the

plane k, l, 0, 0, m, 0, l, k, 0, m. The r-plane intersects this plane in a line
which is (a) a secant of C, (b) a tangent to C, or (c) a line through P not
intersecting C.

(a) Let the r-plane contain PtP., and select P on it. Then Pt
at,a.,0,0, a,a6,aT,as,ag,0. The linek+atn l+a2n =OisaZ-line.

(b) Let the r-plane contain PtP and select P4 on it.

P, at,0, a,0, a,a6,aT,a8,0,

The Z-line is + an m + aton O.
(c) Let the r-plane contain P and 1, -1, 0, 0, 0, 0, -1, 1, 0, 0. The

r-plane is in the space tangent to V at 0, 0, 0, 0, 0, 1, -1, -1, 1, 0. It con-
tains P 0, 0, a,-a, a, a6, aT, as, ag, 0, a6 + aT + as + a9 0.
For any point P in the r-plane

Bt /c + (a6 %- a8)kn + a3mn + aasn,
B atn l + akn amn aan

B km + akn (a3a6 -+- aa)n,
B4 -lcm akn (a3as + aa)n,
B m + amn k + alcn a8kn + (aas a6ag)n.
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The three-space in X determined by P is Bsxl --B4x2 2t- B3x3 --B2x4 + BlX5 O.
For any k, m, n, Bx -+- B2 0 and Ba + B4 0. If k, m, n are selected so
that Ba 0 and B1 B, then the three-space will be Xl + x + x 0,
which is the three-space determined by 1, 1, 0, 0, 0, 0, 1, 1, 0, 0. The solu-
tion is k as + a, m 2aa, n 2. This completes the proof that if Sa
with no point on V contains a r-plane, it contains a 2-line. Also it completes
the proof of the theorem in italics above.
We now determine a canonical form for Sa which has a r-plane and a -line

but has no point on V. Any plane on the Z-line is k, l, m, 0, m, 0, l, k, 0, 0,
where P is the intersection of the r-plane and the -line and P2 is also
in the r-plane. The r-plane is in the space tangent to V at
0,0,0,0,1, 0, 0,0, 0,0. IfPisinthe r-plane, thenaa a a0 0.
Since P1 and P2 are in the r-plane also, we may take

P4 0, 0, 0, 0, a, as, aT, as, ag, 0.

The condition that $3 have no point on V is that the polynomial f(x)
agx a.x -4- asx as be irreducible. Every suitable $3 determines such
an irreducible cubic, and every irreducible cubic determines a suitable Sa.
We note that a 0, and hence Tx can be used to remove a.
By changing the unit point we may transform f(x) as it is transformed by

x dx’; by interchanging P1 and P2 we may transform f(x) as it is trans-
formed by x 1Ix’; by means of Ta, which leaves Pa unchanged, we may
transform f(x) as it is transformed by x x’ "4- a. Therefore any Sa with
a 2-line but no point on V is space 53.
The three-space

k, l, 0, 2n, m -t- 3n, n, l, k, 0, m

has no point on V and has no 2-line. To prove this directly is rather diffi-
cult. The following proof is instructive. For a point P of Sa we have

B k2- ln,

B2 --12 -- 2mn n2,
B km 4- 2n2,
B lm + 2kn,

B m + kl + 3ran.

The condition that there be a point on V is that there exist k, l, m, n which
make the B’s zero. If we solveB 0 for in terms of k andn, Ba 0
for m in terms of k and n, and use these values in B5 0, we obtain the rela-
tion/5 -f- kn -+- 4n 0. The polynomial f(x) x -f- x -4-4 is irreducible.21

.1 We are dealing with p 7. For the next several pages we shall be more closely
tied to p 7 than we have been heretofore. At the end we shall divest the argument
of dependence on p 7, but it seems desirable to separate the difficulties of the problem
from the difficulties that arise from different properties of different primes.
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Hence $3 has no point on V. If f(x) were reducible, $3 might still have no
point on V, but then f(x) would be the product of an irreducible quadratic
and an irreducible cubic. We have seen irreducible cubics before in this
discussion, in connection with r-planes with no point on V. If f(x) were
factorable but had no linear factor in GF(p), it is clear that $8 would be space
53. For if X, S, V, and Sa were immersed in spaces X, S, V, and $8 over
GF(pa), then a would have three points on ?. When f(x) is irreducible,
then has no. points on l, and hence S has no r-plane.
We propose to show that any $3 which has no point on V and no Z-line, or,

which is the same thing, any Sa whose quintic polynomial f(x) is irreducible,
can be put in the form 54. We cannot distinguish among the points of Sa,
among the lines, or among the planes; we cannot distinguish among the points
of a line, but we can distinguish among the points of a plane by means of the
absolute conic C. In seeking something similar to C which may aid in char-
acterizing S we shall examine some complicated relations between S and X.
For this $8 the equation Bxl B4x2 + Baxa B2x4 + Bx5 0 is

(m + kl + 3mn)x (lm + 2kn)x + (km + 2n)x
q-- (l --2ran -t- n)x q- (k ln)x5 O.

When k, l, m, n are given, this is the three-space R in X determined by P;
when an arbitrary point A x, x2, x3, x, x in X is given, it is a quadric
surface Q in S. The points of Q are the points of Sa whose three-spaces R
in X contain A. No two R’s given by different P’s are the same, since Sa
contains no 2-line. The B’s are linearly independent polynomials in k, l,
m, n. There is thus determined a four-parameter system W of quadrics in
Sa. Some of the quadrics of W are degenerate, and thereby a distinction can
be made among the points of X. The locus of points in X which give cones
in S is

x5 4xx 4x8 6x

4xt x 3x. 3x

4xa 3x xi 5xl x

6x 3x5 5x--x4 2xa+x

J is a manifold of dimension three and order four in X. A point on J deter-
mines a cone in Sa, and the cone has a vertex. It is easy to see that no cone

of the set W has more than one vertex, and to see that every point of Sa is the
vertex of one and only one cone of the set W.
We prove the first statement by showing that if W contains a quadric with

a line of vertices, Sa contains a 2-line. Let W contain a quadric Q with a line
of vertices. Any plane in Sa, in particular a plane on the line of vertices of
Q, may be taken to be k, l, 0, 0, m, 0, l, k, 0, m. Sa contains the point P
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0,0, a3, a4,as,a6,aT,as,ag,0. The B’s for a point P in S3 are

B1 I askn a6ln amn aasn,
B. agkn aTln a4mn a,an,
B ]cm- aln (a,a- a3a)n,
B, lm a,kn (a4a8 aa)n,
B m kl akn asln amn (aas a6ag)n.

The matrix of any quadric of the set W has for the first three columns

x5 4xl 4x3

4xl x4 3x

4(a x a, x a x4 -b as xs) 4(as x a3 xa -b a x a x) 4(a x a, x, -[- aa x)

Now the line of vertices of Q in the plane n 0 has one of three positions"
(1) it is tangent to C and may be taken to be PIP3 (2) it intersects C in two
points and may be taken to be P1P. or (3) it passes through P3 and does not

-1, 0, 0 In the isintersect C; it may be taken to be
0, 0, 1, 0

case (1) quadric

given by the point x, x, xa, x,, x 0, 0, 0, 1, 0. Its equation is B 0,
and since it consists of two planes we have a, a 0. If this is so, the line- an 0, m 0 is a Z-line. Cases (2) and (3) would require xl

x5 0. Hence W contains no quadric with more than one vertex.
That an arbitrary point P k, l, m, n of Sa be the vertex of some cone of the

set W requires that it be possible to select x, x so that k, l, m, n are
the constants of dependence of the columns of the matrix of which three col-
umns are given just above. This gives four linear equations in the x’s with
coefficients linear in k, l, m, and n. Properly signed four-rowed determinants
of the matrix of coefficients constitute a solution for the x’s, if they are not all
zeros. There is at least one solution for every k, l, m, n; there would be more
than one if the rank of the matrix of coefficients were less than four. There
is not more than one solution, as we shall now prove. Let P be any point in
Sa. Any plane on P can be taken to be k, l, 0, 0, m, 0, l, k, 0, m. P may be
(1) on the conic C, P P 1, 0, 0, 0; (2) outside C, P Pa (3) inside
C, P 1, 1, 0, 0. If any one of these sets of k, l, m, n is used for constants
of dependence of the three columns above, a set of four independent equations
in the x’s is obtained. Hence, in every case the solution is unique.

Let P1 and P be arbitrary points on the line in Sa, and let the three-spaces
in X determined by them be R and R respectively. R and R. intersect in a
plane a. Every point in a determines a quadric in Sa which passes through
both P1 and P:. There is thus determined in W a net of quadrics on P and
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P. The line determines a point M on V, the point such that MPP. is
tungent to V at M. M is the image on V of a line m in . Every point on
determines a three-space in X which contains m, and consequently the

quadric in Sa determined by a point of m has the line for a ruling. Thus the
points P and P determine a net of quadrics in S, and in that net is pencil
of quadrics each of which has for a ruling. If A is a point of m, the quadric
Q has for u ruling and hence is a ruled quadric; it is a cone if A is on J.
Now let us consider two lines l nd l. in S. They determine two lines
m and m: in X. If m and m intersect in a point A, the quadric Q determined
by A has both l and l for rulings. If m and m do not intersect, there will
be no quadric of the set W which has both l and l for rulings. If m and
intersect, the quadric Q will not be degenerate if l and l do not intersect. If
m and m: intersect and l and l: intersect also, Q will be a cone if A is on J;
otherwise it will be nondegenerate, and l and l will belong to different reguli
Oil Qo
To study further the relations of lines and quadrics of Sa to lines and planes

of X, we consider the six-spaces tangent to V along a ruling of V. For this
purpose we may take the points of a ruling and the tangent spaces to be

M0 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, To X8 X9 Xl0 0,

M 0, 1,0,0,0,0,0,0,0,0, Too x--- x Xo 0,

Mx 1, h, 0,0,0,0 0,0,0,0, Tx"
+ X8 0

-),x + x 0, x0 0.

The six-spaces Tx are all in the eight-space Ss: x0 0; the intersection of two
of them is the four-space S,’x x xs x xx0 0. Any point in
Ss on the hyperquadric Q:xx xxs 0, x0 0 is in some Tx. Any point
in two Tx’s is in S. Any line in S contains a point on V.
Now let S be a three-space in S with no point on V and no 2:-line. Either

Sa lies wholly in Ss or intersects it in a plane. The points of Q lie in the
hyperquadric in S determined by aao a,a + a.as 0, and hence its inter-
section with Sa is one of the quadrics of the set W. The intersection of Sa
and Ss therefore cannot be a plane. S can have no more than one point in
S, since S has no point on V. Q intersects Sa in a quadric Q. If one Tx
intersects Q in a line, then every Tx intersects it in a line. If two lines in
distinct Tx’s intersect, the intersection is in S and hence is on each of the
rulings of Q, and Q is a cone. If Q has no point in S, then the rulings of Q
cut out by the Tx’s do not intersect, and Q is not degenerate.
Now let us consider the cone Q in Sa with vertex at an arbitrary point Px.

The rulings of Q1 are in the tangent spaces at points of a ruling of V, and these
points on V represent the lines of a pencil in X. Thus a point P in Sa deter-
mines a plane a in X. Every point in a determines a quadric on P, in Sa the
vertex A1 of the pencil determines Q, and A is on J. Any other point A2 in
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a determines a quadric in $3 which has a ruling in common with Q1 All the
quadrics of the set W which contain a particular ruling of Q1 have been shown
to belong to a pencil and hence are given by a particular line in a on A.
Consequently all the quadrics of the set W that intersect Q in a ruling belong
to the net determined by the points of .

Let A. be a second point on the intersection of and J. Then A. determines
a cone Q2 in $3 let the vertex of Q2 be P. The cone Q determines a plane
a’ in X. The line PP is a ruling of both Q and Q. it determines the line
AIA2 in X, and hence AIA2 is in both a and a’. We shall show that the two
planes coincide. Consider a plane p on PIP and not tangent to Q or Q2.
This plane cuts out rulings l and l, not PIP on Q and Q. respectively; let
the intersection of l and l be P. P, P1, and P determine the three-spaces
R, R, and R. in X. The intersection of R and R is the plane whose points
give all the quadrics of the set W which pass through P and P. It con-
tains the line AA, which is a line of corresponding to the ruling PP1 of
Q1, and, since P is on Q., the point A. The plane of intersection of R and
R is therefore which is not dependent on the choice of p and hence not de-
pendent on R. From this it follows that and ’ are the same, and that is
the intersection of R and R..
The plane was determined as the plane of the pencil of lines in X deter-

mined by the rulings of the cone Q has been shown to have the same relation
to Q2 There are thus determined two pencils of lines in with vertices at A
and A. respectively. The plane p in S on P1 and P2 contains a ruling of Q1
and a ruling of Q, and hence determines lines in on A1 and A2 respectively.
The pencil of planes onP and P thus sets up a projectivity between the two
pencils of lines in a. The line AA, which is in both pencils, is not self-corre-
sponding in the projectivity unless the cones Q1 and Q have a common tan-
gent plane. Corresponding lines of the two projective pencils in a intersect
in a conic if Q and Q do not have a common tangent plane; otherwise they
intersect in a line.

Let the intersection of two corresponding lines of the pencils on A and A2
be A. A determines a quadric Q in Sa. Q has each of the lines 11 and l. in
p as a ruling; these rulings intersect, and therefore. Q is a cone with vertex at
P. Hence, if Q and Q do not have a common tangent plane, the points of
which are on J are points of a conic, and the corresponding cones in Sa have
vertices on the cubic curve of intersection of Q1 and Q.. The quadrics de-
termined by the points of a all contain this cubic curve.
Any line in a is imaged in Sa on a point of V which is such that the space

tangent to V there intersects $3 in a line. If A’ is any point of such a line and
Q’ is the corresponding quadric, the rulings of Q’ in common with Q and Q
respectively belong to the same regulus of Q’, the rulings of this regulus de-
termine the lines in a on A’, and one of those lines is the one in question.

If the projective pencils of lines on A1 a.nd A in a were perspective, then a

would contain a line each of whose points would determine a cone in $3, and



the vertices of the cones would lie on a line not P1P.. Then the cone Q
would contain the plane Pl. This is not possible since W contains no quadric
with a plane on it.

Also, there is no cone Q of the set W whose plane a contains no second
point of J. Let A be a point of a; then A determines a quadric Q with a
ruling in common with Q1. Let p be a plane in Sa on the common ruling of
Q and Q, and let p cut Q in a second ruling, which intersects Q at a point P.
Through P there is a ruling of Q of the regulus to which the common ruling of
Q and Q belongs. The two rulings, one of Q and one of Q, determine two
lines on A and A respectively. The intersection of these two lines de-
termines a quadric with two rulings of the same regulus which intersect; this
quadric is therefore a cone, and it is distinct from Q.

Hence, we have shown

If ( is a plane in X determined by a cone of the set W, it intersects J in a conic
which is not degenerate.

If Q and Q are two cones of the set W and if they have a common ruling, they
determine in Sa a net of quadrics each of which has one and only one ruling in
common with each other; the cones of the net are p 1 in number and have vertices
on the cubic curve of intersection of Q and Q..

We have also shown the following theorem about J:

Every point of J determines a unique plane in X which intersects J in a non-
degenerate conic.

These planes are the double tangent planes of J. Each of them contains
p W 1 points of J, and no two have a point of J in common. Their num-
ber is thus shown to be p + 1. Since two planes of X intersect in at least
one point, two double tangent planes of J intersect in a point A which is not
on J, and the quadric Q determined by A is a nondegenerate quadric with
rulings. The second set of rulings on Q determines a plane in X which con-
rains A. Incidentally, we cannot distinguish one point of J from another.
We note that the points of Sa lie on p.W 1 cubic curves each of which is the

intersection of a net of quadrics of the set W, and no two of the cubics in-
tersect.
We note also that not every point of X is on a double tangent plane. A

point not on such a plane determines a quadric Q which has no rulings. Such
apointis0,0,0, 1, 1;Qis- ln + 2mn + n O. Q contains the
point ], l, m, n 0, 0, 1, 0; the plane tangent to Q at that point is n 0.
Points of intersection of the plane and Q satisfy k 0, and hence the
only point is the point of tangency.
Every cone of the set W has on it a single one K of the cubic curves. Every

nondegenerate ruled quadric of the set W has on it two of the cubic curves,
K and K’. it is clear that if Q is a cone with the vertex P determined by the
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point A in X, each ruling of Q intersects K in P and one other point, excepting
the ruling determined by the tangent to the conic intersection of J and the
double tangent plane in which A lies. This ruling is the line tangent to K
at the point P. If Q is a nondegenerate quadric determined by a point A out-
side the conic of intersection C of and J, then a line of the pencil in on A
intersects C in one, two, or no points; thus the rulings of Q of the set cor-
responding to lines on A in meet K in one, two, or no points. If A is inside
C, then each of these rulings meets K in two or no points. The same situation
holds with respect to the other set of rulings of Q and the cubic Kr. The
situation is different, however, with respect to the rulings of Q determined by
the pencil of lines on A in and the points of the cubic K’. The curve K’
is on Q, it has p W 1 points, and no two points of K are on the same ruling of
the set determined by the lines in . Hence there is one point of K on each
of these rulings.
We now investigate the space 54 in the light of these relations.2 The

vertices of the frame of reference in the space 54 lie on the quadric Q. lm
2kn O, which is given by the point A 0, 1, 0, 0, 0 in X; the edges P1P.
and PP4 are rulings of one regulus on Q., and P1P and PP4 are rulings of the
other. The planes in X determined by these reguli are respectively .
AsAA5 and o1 A1AsA. The plane s intersects Jin the conic Cs x W
3xx5 0; A and A are on C., and As is the pole with respect to Cs of the line
joining them. The plane 1 intersects J in the conic C1 "xl 4xs 3xlx 0;
A is on C1 the tangent to C1 at A passes through As. A1 is on the polar of
As with respect to C1 the other intersection of this polar with C1 is 1, 0, 0, 2, 0.
The vertices of the cones in S determined by the points of C2 lie on the

cubic curve K through P and P, the vertices of the cones determined re-
spectively by As and A. The vertices of the cones in $3 determined by the
points of C1 lie on the cubic K1 through P1 ;K1 intersects the line P3P4 at
0, 0, 1, 2. This point determines the space x 0 in X.

Let us designate the point 0, 0, 1, 2 by P.
P 0,0,0,4,0,2,0,0,0,1.

It is on the line joining the two points of V" 0, 0, 0, 4, 0, 0, 0, 0, 0, 1 and
0, 0, 0, 0, 0, 2, 0, 0, 0, 0. These points represent respectively the lines

tl’ 0’ 0’ 2’ 0 and {0’ l’ 0’ 0’ 0
in X" The pints l’ 0’ 0’ 2’ 0 and 0’ 0’ 0’ l’0, 0, 0, 4 0,0,0,2,0

are the points of C1 to which tangents to C1 can be drawn from As. AlAs
l, 0, 0, 2, 0 determines thedetermines the ruling PP4 of Q.. The line
0, 1, 0, 0, 0

ruling

of the same set which passes through P.
It is to be noted that in the above argument there is no dependence on p being 7.

We used that assumption when we exhibited the quadric with no rulings, but that fact is
not important for our purposes and as will be seen later can be proved easily without any
assumption about p.
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We note that the relations described so far are completely determined by the
choice of A2. For any A2 planes zl and are uniquely determined, as well as
conics C1 and C., and the polars of A with respect to C1 and C. A2 must be
outside both C1 and C2. The ruling PP4 is determined by P, and the point
P by the tangent to C through A..
We may look upon A. as being determined by the quadric lm 2kn 0

of the set W. Any nondegenerate ruled quadric of W in any S. which has no
point on V and no 2-line determines a point A in X, two planes z and ,
containing conics C and C and intersecting in A. If A is outside both C
and C., then the polars of A with respect to C1 and C. respectively intersect
C and C in two points each. Each of these four points, on C and C, de-
termines a cone with vertex on Q. If P is the vertex of one of these cones,
the two rulings of Q through P determine two lines in X, both through A,
one in and one in . There are thus distinguished four lines on A in each
of the planes z and z.. Now, for the space k, l, 0, 2n, m 3n, n, l, ]c, 0, m
and the quadric lm 2kn 0 given by A2 above, these two sets of four lines
reduce in one plane to two and in the other to three. The vertices of the
cones determined by 1, 0, 0, 2, 0 and 0, 0, 0, 1, 0 lie on the rulings determined
by AA3 and AAs, and the vertices of the cones determined by A3 and A5 lie
on rulings of Q determined by AA4 and AA., the latter having no point on

C1 Xl W 4x + 3xx O.
The configuration in X just described characterizes

/, l, 0, 2n, m 3n, n, l,/, 0, m

in the sense that any $3, with no point on V and no 2-line, whose set W con-
tains a quadric Q which provides the above configuration, is conjugate to
], l, 0, 2n, m -{- 3n, n, l, ], 0, m under a collineation of X. A proof will be
given by showing how to select a coordinate system in X so that $3 takes the
given form; this will be done by going backwards from the configuration
through the steps by which it was determined. We shall use primed letters
P Q A etc. until we can see that the accents may be dropped and the
letters have the same significance as abgve.
Denote by a.P the plane in which the four lines combine into two, and by

the intersection of and ; denote by C1 the other. Denote by A’
Denote by A and A the intersection of Cthe intersection of J with a.

and the polar of A with respect to C, with A the one whose cone in Sa has
vertex P on the ruling of Q determined by the line on A. in which does not
intersect C. Denote by A the point of C which gives in Sa the cone with
vertex on the ruling of Q given by AA, and denote by A1 the intersection
of the polar of A with the third line in ’, which is not tangent to C’. De-
note by PI’ the vertex of the cone determined by A, and by P3 the vertex of
the cone determined by A.
The plane PPP’ is completely determined by the configuration. The

plane is of type 9 of the list of planes, and we shall now show that P, P, P
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will serve as P1, P2, P3 of that canonical form. The points P and P’3 are
on the cubic curve K determined by the vertices of the cones given by points
of C The cubic K’ lies on the cone with vertex at P. PtP is a ruling of
Q determined by the line AA3, which is tangent to C. Hence, PtP is

D/DIDtangent to K at P’, and hence t2 is tangent to the cone with vertex at
P and therefore intersects the cone in a single line. The absolute conic of the

D/DIDplane 1t.3 is therefore tngent to the line PP t P. The cone with
D/D/Dvertex at P is also tangent to the plane, which we proceed to show.

has its vertex on the cubic KThe cone with vertex at P, given by A,
K has one point besides P on each of the rulings of the cone with vertex at
P except the ruling PP which is determined by the tangent to C at A.
Every point of K is on Q. The points common to Q and are the
points of PP nd PP. We hve just noted that PP hs no second point
on K PP is ruling of Q determined by line in ’ nd hs no point

D/D/D/except P on K Hence, the plane is tngent to the cone with
vertex t P, nd the bsolute conic in it is tngent to PP t P. P is
therefore the pole of PP with respect to the bsolute conic, nd P nd P’
re on the conic. The vertices of the frame of reference in X cn be selected,
nd in only one wy when P, P, P re given, so that is in cnonicl
form. Then for this S the A s hve the coordinates of the A s for the
spce 54.
The points P, P, P re now P, P, P with the proper coordinates. To

complete the cnonicl form it is necessary to determine the coordinates of
P. P is determined s the intersection of two rulings of Q. One ruling is
determined by AA, nd the other by AA. The corresponding points on
V re

ArAb.---> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, A2A---) O, O, O, O, O, O, 1, O, O, O.

The respective spaces tangent to V are as a9 at0 0 and a2 a3 as 0.
Hence, P4 at, 0, 0, a4, as, a6, aT, 0, 0, 0. There are further conditions
that the a’s must satisfy. So far we have required of C2 only that it pass
through Aa and A5 and that A2 and AaA be pole and polar with respect to it;
also it has been required of C1 only that it pass through A4 and that A and
AtA4 be pole and polar.
Any point of Sa is

For this point

k -- aln, l, O, an, m A- an, an, + aTn, k, O, m.

Bt k - atkn adn,

B2 -12 aln + amn A-- aan,
Ba km + atmn A- aan,
B lm -- a4kn,

B m -- kl -4- akn "4- asmn.
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If we take the point of intersection of C1 and A1A4 to be 1, 0, 0, 2, 0, this
requires Q’, the quadric determined by it, to be a cone. The result is that
a5 -b 2a4 0. a4 cannot be zero since Sa contains no r-plane. Hence, we
may takea 2anda5 3. If we take 1, 1,0,3,0tobeonCl,thiswill
give a7 0. The cone with vertex at P2 is tangent to PaP4 at P3 ;this re-
quires a 0. It requires one more point to fix C2 let it be 0, 1, 1, 0, 2;
then a6 1. Hence, the point P4 is 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, and the space
Sa is space 54.

This configuration in X which has just been shown to characterize the space
54 can be described by elements in Sa. We give a representation of the

Pa 0,0,1,0 0,0,1,3 0,0,1,6 0,0,1,2 0,0,1,5 0,0,1,1 0,0,1,4 0,0,0,1 P4

31 21[ 151 17[ 16[ 18

1.016,0 1,1,6,4 1.2,6,1 1,3,6,5 1,4,6,2 1,5,6,6 1,6,6,3 0,1,0,4
(C) XX

37 41 121[ 361 201
1,0,5,0 1,1,5,1 1,2:5,2 1,3,5,3 1,4,5,4 1,5,5,5 1,6,5,6 0,1,0,1

(C)"’ X

1,0,4,0 1,1.4,5 1,2,4,3 1,3,421 1,4,4,6 1,5,4,4 1.6,4,2 0,1,0,5

1,0,3,0 1,1,3,2 1,2,3,4 1,3,3,6 1,4,3,1 1,5,3,3 1,6,3,5 0,1,0.2

1,0,2,0 1,1,2,6 1.2,2,5 1,3,2.4 1,4,2,3 1,5,,2 1,6,2,1 0,1,0,6

1,0,1,0 1,1,1,3 1,2,!,6 1,3,1, 1,4,1,5 1,5,1,1 1,6,1,4 0,1,0,
(C)

P 1,0,0,0 1,1,0,0 1,2,0,0 1,3,0,0 1,4,0,0 1,5,0,0 1,6,0,0 0,1,0,0 P

DAGRA 1

quadric Q2 lm -}- 2kn 0 in Diagram 1. This is a diagram of points and
lines on Q.. The horizontal lines are the rulings of Q. determined by the
pencil of lines on A in a. the vertical lines are rulings of the other set and are
determined by the pencil on A in al. The cubic K passes through the
points marked with a cross (X); the cubic K passes through the points
marked with a circle ((2)). Each horizontal line contains one circle, and may
contain two, one, or no crosses. The line PP, contains no circle and so is
determined by a line in a which does not intersect C it is not a ruling of any
cone with vertex on K1. The two vertical lines each containing just one
circle are determined by the two tangents to C1 from A likewise the two
horizontal lines each containing one cross are determined by the two tangents
to C from A2. The horizontal line through P., since it has no other cross on
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it, is determined by the tangent to C. at the point which determines the cone
with vertex at P. it is the ruling of the cone which is tangent to K2 at P..
This line contains P which is on K1. The vertical line through P1 has no
other circle on it; it is a ruling of Q and of the cone with vertex at P it is
tangent to K1 at P1. P3 is on this line. The horizontal line through P3
contains no other cross; it is a ruling of the cone with vertex at P3 and hence is
tangent to K: at P3. Whenever for a given $3 the set W contains a quadric
on which the two cubic curves have the above relations, then the configura-
tion in X of the preceding pages exists, and the Sa is conjugate to 54 under a
collineation of X.

In the diagram above each point of Q is given by its coordinates It, l, m, n,
and each, excepting the points of K1 and K, has a number written under-
neath it. Each of these numbers 3, 4, 50 is the number of the cubic on
which the point lies. The numbers were assigned arbitrarily to the cubics;
they are included here for future reference.
We have seen that every nondegenerate ruled quadric of the set W has on it

two cubics. No other cubic can have more than one point on Q, since two
points P, and Pa would determine two three-spaces R and Re in X, and their
plane of intersection would determine a third set of rulings of Q. The number
of points of Q is (p + 1); there are p + 1 points on each of K and K2 there
remain p 1 points of Q, which is the number of cubics besides K and K.
Thus the diagram accounts for all the cubics in Sa.
We have given two equivalent, and closely related, ways of characterizing

the space 54 in geometric terms which are independent of any coordinate
system. An attempt to apply these criteria to an arbitrary S with no point
on V and no z-line leads to a long series of computations. The goal is to show
that any such S is the one we have been studying, and hence that any $3 whose
quintic polynomial f(x) is irreducible is conjugate to 54. The application of
this last criterion, namely, the irreducibility of f(x), is relatively a simple
matter; the application of the former is likely to require months of work.
Although it will be possible to show that the necessary condition, the ir-
reducibility of f(x), is sufficient o ensure that S, is 54, the determination of the
transformation which puts one such S, into another will require essentially
determination of the above configuration in X.

It is clear that one is dealing with pairs of cubics when one undertakes to de-
termine the configuration in X for a given S. The number of pairs of cubics
is large; one finds immediately that not every pair is a canonical pair, and then
right away that not every cubic can be one of a canonical pair. A closer look
at individual cubics is therefore indicated. So far one cubic is like another.
When we consider planes which osculate the cubics, then differences appear.
Each point P of Sa is on one and only one cubic K. The cubic has an

osculating plane at P. The osculating plane is tangent to the cone Q with
vertex at P along the ruling of Q which is tangent to K, the ruling which con-
tains no other point of K. For example, the plane PIP:Pa osculates the cubic



K1 at P1 (page 707). The osculating plane p, like every other plane in
contains an absolute conic C determined by the relation of p to V. The
equation Bsxl B4x2 -- Baxa B2x4 -- Blx5 0 is used to determine both
the conic C and the set W of quadrics, and hence also the cubics. The points of
X which give conics in p which consist of a single line counted twice must give
cones in Sa, since the conic in p is the intersection of p with the quadric.
The only degenerate parabolas in p, determined by points in X, are the
tangents to C. A plane which passes through two points P and P of a cubic
K, unless it is tangent to one of the cones with vertices at P and P., meets K
in a third point, viz., the intersection of the two rulings aside from PIP in
which it meets the cones. If p is tangent to the cone with vertex at
along the ruling PP, then it is tangent to K at P. Hence,

Any plane in S is tangent to those cubics which pass through the points of the
absolute conic C and to no others; the points of tangency are the points of C.

If p is the plane which osculates the cubic K at the point P, then p is tangent
to p other cubics. Some of these cubics may osculate p. The number of
cubics which osculate a given plane is a projective invariant. If the p -t- 1
planes which osculate a given cubic are examined, a set of numbers is obtained
which enables us to distinguish among the cubics.
We shall say that a cubic is of type a, as, aa, a if the osculating plane at

each of a points osculates i cubics. (We are dealing here, of course, with
space 54.) a W as - a W a p W 1 8. The distribution of the cubics
into types is given by the following table"

Type Names of cubics

2, 3, 2, 1 1, 14, 19, 26, 39

2, 1, 4, 1 2, 16, 27, 35, 37

2, 5, 0, 1 6, 28, 34, 45, 46

4, 3,0, 1 10, 18, 23, 36, 50

2, 4, 2, 0 3, 7, 8, 13, 33

3, 2, 3, 0 4, 5, 31, 32, 42

3, 4, 1, 0 9, 11, 12, 24, 43; 17, 22, 40, 48, 49

5, 2, 1, 0 15, 20, 21, 30, 38; 25, 29, 41, 44, 47.

This table records only a small selection of the information about $3 that must
be sought out. There is not enough here to distinguish between two sets of
five cubics of each of the last two types; there is enough information to enable
us to go on to the determination of canonical pairs of cubics.
Each of the twenty cubics of the first four types in the above list has an

osculating plane which osculates four cubics. There are therefore five planes
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in $3 each of which osculates four cubics.
they osculate are

]c - 31 -{- 2m -t- 4n 0,

]c -{- 51 -[- 2m 0,

k515m n--O,

31+ 6m + 6n O,
]c + 21 3m + 6n O,

The planes and the cubics which

1, 2, 46, 50,

6, 18, 26, 35,

14, 23, 27, 28,

10, 16, 19, 34,

36, 37, 39, 45.

From this list and the preceding table one reads immediately that if there are
any canonical pairs besides 1, 2, they are 26, 35; 14, 27; 19, 16; and 39, 37.
If two cubics are a canonical pair, they must be of types 2, 3, 2, I and 2, 1, 4, 1,
and they must have a common osculating plane which osculates four cubics.
A proof that each of the given pairs is a canonical pair could be given by

finding the quadric on which the two cubics lie and then noting that we have
the configuration which characterizes lm -}- 2kn 0. We shall do this for one
pair and then exhibit the collineation which transforms the pair in question
into 1, 2; the collineation is of period five, hence there are five canonical
pairs, which could only be these.
The four points 1, 4, 1, 1; 1, 6, 0, 3; 1, 3, 2, 3; 1, 3, 2, 6, two on each of

cubics 16 and 19, determine four three-spaces in X which intersect in A
1, 5, 1, 4, 2. The quadric Q of the set W determined by A is

2]c kl.-l- km 4kn 412 21m 5ln m 2mn 6 O.

It is represented in Diagram 2. The points of cubic 19 are marked with

P 1,6,0,3 1,3,2,6 1,5,3,4 0,1,4,6 1,1,1,1 1,2,5,0 1,0,4,2 1,4,6,5 P

1, 1,4,0,3

0,1,4,0

P 1,3,2,3 0,1 6,5

1,2,4,1
O

0.1,1,0

1,612,0 0,1,3,5

1,5,6,4XO1,5,1,0
1,4,2.10,0,1,4 1,4,5,6

X X

1,3!1,0
1,5,0,6 1,,616 1,0 ,5,2 1,1,4,0 1,2,3,5

DIAGRAM 2

1,4,4,2

1,4,5,0
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circles, those of cubic 16 with crosses. The horizontal and vertical lines are
rulings of Q. This diagram has the same arrangement of vertices of cones
and rulings of Q tangent to cubics 19 and 16 as characterized the quadric
Q2" lm -t- 2Ion 0 and cubics 1 and 2. Hence if Prl, P, P are given the
coordinates of P1, P2, P3 in the earlier diagram, $3 will appear in the form 54.
Thus cubics 19 and 16 are shown to be a canonical pair.
The transformation which puts X into itself, Sa into itself, and cubics 19

and 16 into cubics 1 and 2 respectively is

The induced transformation

2
2
0
3
6T=
6
5

1
6
3
4
3

in Sa is

552
305
236
365
363
650
303
125
040
612

2 366
02 63
1 542
1 0 6 2
2 5 3 2

4 5 6 6
0 2 5 3
4 6 5 4
4 1 6 0
5 1 4 6
5 1 4 5
3 2 1 4
2 2 0 2
2 2 5 2
5 5 5 5

4 3
4 2
6 4
4 1
3 0
4 1
3 3
3 3
0 2
4 6

It may be verified that points of $3 are transformed as follows"

(1, 3, 2, 3)T (1, 3,0, 6,4, 3,3, 1,0, 2)T 1,0,0,0,0,0,0, 1,0,0,

(1, 4, 1, 1)T (1, 4, 0, 2, 4, 1, 4, 1, 0, 1)T 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,

(1, 6, 0, 3)T (1, 6, 0, 6, 2, 3, 6, 1, 0, 0)T 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,

(1, 4, 6, 5)T (1, 4, 0, 3, 0, 5, 4, 1, 0, 6)T 0, 0, 0, 2, 3, 1, 0, 0, 0, 0.

This verifies that T transforms S into itself by putting Pr into P, i
1, 2, 3, 4. Moreover, noting that in X the points A (= 1, 0, 0, 0, 0), A1T,
A1T, A T3, A T are linearly independent, and that A T A1, we have the
result that T is of period 5.
That the collineation group of X contains a transformation of period 5 that

puts Sa into itself was to be expected. $3 determines the irreducible poly-
nomial congruence f(x) 0 for the value of ]c/n which would make B
B 0, and determine a point of V. If X, V, S, and $3 were immersed in

spaces , ?, , and over GF(p), then the congruence would remain un-

changed but would be completely solvable. The Galois group of GF(p)
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relative to GF(p) is of order 5. This group interchanges the points of inter-
section of and 3 cyclically; it puts into itself, X into itself, S into itself.
It is not identity in $3, for then it would be identity in $. Since the only
possible canonical pairs of cubics are the five given above, the Galois group
must interchange them.
The collineation of order 5 just described exists for any p, but the fact that

the collineation and its powers are the only collineations of X which put S
into itself depends on our knowledge of the particular space with p 7.
We note that we cannot expect to find any simple short procedure to determine
a transformation of X into itself which puts an a.rbitrary S with an irreducible
f(x) into the particular one we have been studying. If it can be done at all,
it can be done in only five ways, and doing it requires essentially the finding
of a canonical pair of cubics.
We proceed to examine an arbitrary S which has no point on V and no

Z-line. In S we select an arbitrary point P1 and take for PIP.P3 the plane
which osculates the cubic through P. A coordinate system can be selected
so that the plane is k, l, 0, 0, m, 0, l,/, 0, m. S contains

P4 O, O, aa, a4, a, a, a., as, a9, O.

For any point P in S the B’s are

B k + askn adn + amn + a3asn,
B. agkn 12 aTln --[- a4mn a4asn,
B3 lm a3ln- (aa7- a,a6)n,
B, lm + a,kn (aa9 a,as)n,
B m amn kl akn -t-- asln (aa aas)n.

The cone of the set W with vertex at P1 is aB4 aB 0. Now transforma-
tion T changes PIPPa into itself leaving P fixed, and in it c can be chosen to
make a4 0 if a 0. This transformation moves P2 along the conic C in
PIP2Pa, so we may assume a 0 if a 0. If _a 0, the cone with vertex
at P is B lm aaagn 0, which intersects PxPPa in the two lines

0 andm 0. But since the plane osculates the cubic through P, it must
be tangent to the cone, and hence the choice of P and the plane brings with it
the result that a in P4 is zero. Since a 0, it follows that a 0, for other-
wise B 0 and B 0 would be two cones with vertices at P1. Since
a 0 and a 0, T can be selected to reduce a7 to zero.
We now solve Ba 0 for m in terms of k, l, n; we use this value of rn in

B1 0 to solve for in terms of k and n; we use this value of to get m in
terms of k and n; and we use the values of and m in one of B2 0, B4 0,
B 0. We obtain the equation

k + kn + kn + ,ln + kn + n O,
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where
a 2as, 5 2aaa5 q-- as, "1 2aaasas q- 4aaa,as,
22 23

aaa5 4aaa4asas-4-aaa4 aaasa6 aaa4a8-3t- aaa6 aaaaasa6.

The polynomial f(x) x A- ax "4- fix "4- "rx A- x -4- is irreducible. The
possible &’s are those such that the a’s of P will give a, , % it, of an f(x)
which is irreducible.
We note that multiplication of the coordinates of P by 0 in GF(p)

changes f(x) 0 to the equation whose roots are times, those of f(x) O.
This would allow us to restrict attention to P’s with an arbitrary nonzero
coordinate equal to 1, or to one f(x) of the set obtained from one by multiply-
ing its roots by 0. Making use of a change of the unit point in X we can
do both of these things. The change of coordinates in X carried out by the
diagonal matrix with 1, d, l/d, d, lid down the main diagonal does not
change he coordinates of P, P, Pa but does change f(x) 0 to the equation
whose roots are d times its roots.
We may therefore look for possible S’s by separating them into classes"

(1) those with a 0, and (2) those with aa 1.
(1) If aa 0, then 3’ 0 and 2a 0. By taking account of the fact

that changing the unit point in X and changing the coordinates of P by
multiplication by 0 do not change &, it will be found that there are 14
distinct &’s for which aa 0.

(2) When aa 0, it may be made 1, and at the same time a may be made
1 if it is not zero, or if a 0, fl may be made I if it is a square, or a particular
not-square if it is not a square. If aa 1, a determines as then determines
a, and , determines aas. With as, as, and aas determined, and give
two linear congruences to determine a and as. These determine a and as
uniquely when they are independent, and when they are not, the value of
aas determines a and as. There are 66 &’s so obtained.2a

The final step in the solution of the problem is now simple. In any three-
space in Sa which has no point on V and no 2Mine, an arbitrary point Px may
be selected and then a coordinate system in X so that

Pl 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,

the osculating plane of the cubic through Px, is k, l, 0, 0, m, 0, l, k, 0, m, and
P-- 0,0, aa,a,a,as,a,as,a,0. There are 80 sets ofaa,...,asuch
that f(x) is irreducible and no two of the f(x)’s can be obtained one from the

2a These results are obtained by examining a list of irreducible quintic polynomials;
actually only 560 of the total 3360 need be considered. The list would require a lot of
space; the preparation of a list to check the above statements is a long process. In
Irreducible quintic congruences, Thesis, University of Illinois, Urbana, 1952, Dr. C. B.
Hanneken gives a straightforward method of determining them. His contribution is a
direct and relatively simple way to find one of each set of conjugate quintics under the
linear fractional group in GF(p).
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other by replacing x with tx. These 80 possibilities may all be realized by
proper choice of P1 in space 54. The group of collineations of X which
transform space 54 into itself distributes the 400 points into 80 sets of con-
jugates. Two Pl’s selected from two different sets give different f(x)’s since
f(x) determines P4 uniquely.

7. Removal of dependence on the value of p

Some of the argument of the preceding pages depended on p being 7, but
most of it did not. The final result is independent of the value of p, and we
now divest the argument of dependence on p.

In the treatment of lines, planes, and the first 53 (+ 4) three-spaces any
dependence on p 7 comes from the selection of particular polynomials hav-
ing certain required properties, generally an irreducible quadratic, or cubic, or
quartic. The existence of such polynomials does not depend on p. We con-
fine our attention to space 54, i.e., to $3 with no point on V and no Z-line.
The locus J in X exists, the four-parameter set W of quadrics in $3 exists, no
quadric in the set W has more than one vertex, and no two cones in the set
W have the same vertex. S contains p 1 nonintersecting rational cubic
curves. The Galois group F of GF(p5) relative to GF(p) transforms X into
X, V into V, and S into S. Though the final result is the same for all p,
there are different geometric situations for different types of the prime.
When p 5t + 1, both p + 1 and p + 1 are congruent to 2, mod 5.

Hence, F must transform two cubics, K and K, each into itself, and on each
of the invariant cubics it leaves two points fixed. Let the fixed points in
Sa be P and P4 on K, and P and P on K. 1 must then leave fixed the
four points, on J, in X, which give cones with vertices at these points, and also
F must leave fixed the point A. in X, not on J, which gives the nondegenerate
ruled quadric Q on which K and K. lie. Having these special elements in
X and $3, it is comparatively easy by the methods that have been used to
show that a coordinate system can be selected so that S is, l, O, n, m, rn, l, k, O, m,

where r is not a fifth power, mod p, but is otherwise arbitrary.
The situation is quite different from the case where p 7 and there are no

invariant cubics, no fixed cones, no fixed nondegenerate ruled quadric. When
p 5t 1, the point A is the intersection of the fixed planes zl and z de-
termined by the cubics K and K. In each of the planes and . the four
lines on A. which determine the rulings of Q through the vertices of the four
fixed cones reduce to two. The point A. is outside both conics C1 and C. in
the planes 1 and ..
When p 5t 1, then p 1 is divisible by 5, p - 1 is congruent to 2,

mod 5. Hence, in this case there are two fixed cubics, but the cubics have no
fixed points. The fixed cubics determine the planes al and a in X and a
fixed quadric Q of the set W. The intersection A of planes 1 and as is inside
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both conics C1 and C2 in the fixed planes. The polars of A2 with respect to
conics C1 and C are fixed, under F, and they determine two fixed lines in S.
When p 5t :t: 2, then there is no cubic in Sa left fixed by F, and hence

there are no fixed points. The number of quadrics in W is congruent to 1,
mod 5, and hence there is a fixed quadric Qr. Neither Q’ nor the point A
in X which determines it came forward to help in characterizing space 54 for
p 7. Q’ is nondegenerate and has no rulings; the number of points on Q’ is
p q- 1, one on each cubic.
Our first step in identifying the space 54, with p 7, was to show that an

containing a quadric in the set W on which the two cubics were properly
related to each other could be put in the canonical form in which 54 appears.
When p 5t q- 1, the group F picks out a quadric with two cubics on it and
gives all the necessary information to determine a canonical form. With
p 7 we started with a configuration we could not be sure was in every
but in this case there is no uncertainty.

Let A be the point in X which determines the nondegenerate ruled quadric
Q left fixed by F.24 On A. are fixed planes a and a2 containing fixed conics
C and C.. On C1 are fixed points As. and A which determine in S fixed
cones with vertices at P and P respectively; P. and P are points of the
cubic K1. On C. are fixed points A and A4 which determine cones with
vertices at P4 and P on K:.
The lines P1P2 and PP4 are rulings of Q, they are rulings of the cones with

vertices on K1 at P and P3, and they are the lines tangent to Ki at P and
P. Similarly, lines PP and PP4 are rulings of Q, they are rulings of the
cones with vertices at P and P4 on K2, and they are tangents to K. at P
and P4.
The plane PP2P osculates K at P1, since the plane is tangent to K at

P and has no other point on K it is tangent to K1 at P.. The cone with
vertex at P3 is tangent to PP2P3 along PPa. Hence, the points P, P, Pa
have the proper relations so that the plane takes the form

k, l, 0, 0, m, 0, l, k, 0, m.

It is necessary only to determine coordinates of P4, which is located by rulings
of Q through P. and P. We still have at our disposal the coordinates of one
point on C1 and of one point on C. These can be selected so that P4
0, 0, 0, 1, 0, as, 0, 0, 0, 0, where f(x) x -t- a is irreducible, i.e., where as
is not a fifth power. A change of the unit point will change f(x) into x q-
da, which says that without changing the choice of P the constant term in
f(x) can be made to take any value in one coset of the nonzero numbers in
GF(p) with respect to the subgroup of fifth powers. The points P1, P2,

.4 In the earlier argument we used primed letters, A’, Q’, P’, etc. to denote points, etc.
until we found that accents could be dropped and the letters have their usual meanings.
As soon as things are named, it will be seen that they are named properly, so we dispense
with accents here.
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P3, P4 enter indistinguishably, i.e., any one of them can be taken for P1 in the
above determination of coordinates of P4. By changing P1 the constant
term in f(x) may be made any number in GF(p) which is not a fifth power.
Therefore, when p 5t 1 and S3 has no point on V and no -line, a co-
ordinate system can be selected so that S is , l, O, n, m, rn, l, lc, O, m, where r is
an arbitrary number not a fifth power in GF(p).

In the foregoing consideration of $3 for p 5t 1, attention was directed
to the value of p at only two places" (1) p 1 and p 1 were both con-
gruent to 2, mod 5, which ensured two cubics fixed under 1 and two fixed
points on each cubic;and (2) p 1 0, mod 5, which permits the existence
of the polynomial x a, irreducible in GF(p). For other primes we do
not have the convenient P, P., P3, P to work with, and neither can we get
the simple canonical form.
We can retain the argument and get a canonical form in the following

manner. Forp 5t- 1, p 1, mod5, sothatp+ land(p)+ lare
both congruent to 2, mod 5. For p 5t -+- 2, p 1 and (p) 1 are both
congruent to 2, mod 5. Thus, if we immerse X, S, and S in spaces ., $,
and over GF(p) and GF(p) respectively in the two cases, we recover the
two fixed cubics and the two fixed points on each; f(x) is still irreducible in
the extended fields. The argument goes unchanged to give a canonical form
for $, but now a6 is a number in GF(p) or GF(p4).
A canonical form for determines a canonical form for S, and vice versa.

For p’s not of the form 5t 1 we can not use the elements fixed under F so
directly to get a canonical form that will be useful for the groups. However,
knowing that one $3 which gives an irreducible quintic is related to V in the
same way as any other, we may take any such S for the canonical form.
To determine that two S’s are conjugate under a collineation of X, it is

necessary only to see that the polynomials f(x) for both are irreducible. To
determine the collineation is a direct and reasonably simple problem when
p 5t 1; it is not so simple when p 5t d: 2. Even at this late stage,
when the essentials of the problem and its solution are quite clear, the char-
acterization of S by means of the geometric configuration we did use or by any
other looks fortuitous. If we incline to think that now the somewhat tenta-
tive method used for p 7 can be replaced by the direct method used for
p 5t 1, we are given pause when we recognize that the work must be
carried out in spaces over GF(p).
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