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1. Introduction
In this paper we shall be concerned with integral equations of the form

(1) Jo ](x y)f(y) dy f(x), x > O.

If ]c(x) vanishes exponentially at =t= , the technique of Wiener and Hopf
(see, for instance, [5], 11.17) solves (1) more or less completely. However,
we shall be concerned here with kernels which do not necessarily vanish
exponentially at infinity; our only growth restriction o ]c(x) will be
It(x) e L(- ).

Equations similar to (1), with kernel lc(x) not vanishing exponentially at in-
finity, have been considered before. In a paper of Crlson and Heins [2], for
instunce, nonhomogeneous nalogue of (1) was investigated by introducing
t smll modification of the kernel. This amounted to replacing k(x) by some-
thing like e-llk(x) and applying the Wiener-Hopf technique to the modified
equation. Presumably, then, the solution of the modified equation tends to
solution ()f the original as e -+ 0. A similar device hs been used by Carrier

[3].
Using probabilistic methods, Spitzer [7] has obtained an elegant theory of

(1) under the assumption that lc(x) is a probability density, i.e., that k(x) 0
and .f_ lc(x) dx 1.
Another npproach has been used by Sparenberg [4]. Whereas in the

Wiener-Hopf technique analytic functions which agree in strip are com-
bined, Sparenberg noted that a similar method, in which analytic functions
which agree on a line are combined, could be used to solve (1) and nonhomo-
geneous nlogues.
The method of the present pper is an extension of timt of Sparenberg.

Our main contribution is the following. Sparenberg assumed that the func-
tion 1 f_ eil(x) dx has no (real) zeros; we shall not make this assump-
tion. In fact, it vill be seen that it is the behavior of this function near its
zeros that determines the nature of the solutions of (1).

2. General procedure
Let f(x) be a solution of (1), and define f(x) for negative values of x by the

left side of (1). Set

f0 f0F+(z) z.,
e j(x) dx, F_(z) e’zif(x) dx.
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If we let K() be the Fourier transform of lc(x),

K() eilc(x) dx,

(1) is equivalent, at least formally, to

(2) F_(})-- (K(})- 1)F+(}).

If K($) 1 can be written as the quotient of two analytic functions, say
K(() 1 R_()/R+() where R+(z) and R_(z) are analytic in gz > 0
and gz < 0 respectively, then (2) becomes

(3) F_(})/R_(}) F+(})/R+(}).
Now if f(x) does not grow too rapidly, F+(z) will be analytic in 9z > 0 and
F_(z) in z < 0. Thus the left side of (3) can be extended to be analytic in
z < 0 and the right to be analytic in z > 0, so we might be able to com-
bine F_(z)/R_(z)and F+(z)/R+(z), giving a single analytic (but not neces-
sarily entire) function P(z). We shall then have

F+(z) R+(z) P(z), F_(z) R_(z) P(z),

and so, for any "r > O,

f+ e-"F+(z) dz, x > 0
1

() f(z)
1 f-__i’+ e-"F_(z) dz, x < O.

In this section we shall prove only one result, which gives a sufficient con-
dition for a function on the real line to be the quotient of boundary values of
analytic functions of a certain kind.

LEMMA. Let () be a (complex-alued) funcgon on the real line satisfying
(i) () is bounded and bounded away from zero,
(ii) () 1 e L(- and lim. () 1,
(iii) a continuous arg () exists, satisfies a Lipschitz condition uniformly in

(- , ), and A_<< arg () 0.
Then we can find functions +(z) and _(z) satisfying
(iv) +(z) and _(z) are analytic for z > 0 and z < 0 respectively,
(v) +(z) and _(z) are bounded and bounded away from zero in their re-

spective half-planes,
(vi) the limits+() lim.0+ +( + iv) and _() lim0+ _(- iv)

exist almost everywhere, and () _()/+() almost everywhere.

Proof. By adding a suitable multiple of 2v to arg (), we may assume
arg () 0. Setting log () log () + i arg () with this de-
termination of the argument, it follows easily from (i) and (ii) that log () is
bounded and in L(- , ).
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The integral
1 f log b(’)

2ri -. i" z

represents an analytic function which we denote by x+(z) in z > 0, and an
analytic function which we denote by x-(z) in z < 0. Since log () e L,
x+( + is) and x-( is) converge almost everywhere as e -. 0-t- to func-
tions x+() and x-() satisfying

a ff og (t) dt + 1/2 log ()x+() -pv t_

1 ff log b() d 1/2 log b().x-(/) PV i’--

(See [5], 5.3.) If we set

+(z) exp (-x+(z)), /_(z) exp (-x-(z)),

(iv) and (vi) are immediate. As for (v), it suffices to prove that 6tx+(z) and
6tx_(z) are bounded in their respective half-planes. We have, for > 0,

y f log ](’)] d- + 1 f._ (" ) arg ()
d’.x+( + i,) , + (r ) 2- , + (r )

Since log I() is bounded, the first term is certainly bounded.
second term, denote by p() the ttilbert transform of arg b(),

As for the

p() _1 pv f_ arg:-h(i’) d’.
i’-

The second term is then ([5], 5.3)

(5) f* p(i’)
d’.2" J-o , + (i" )

Since arg () is in L. and satisfies a Lipschit condition, p() is bounded, so
(5) is bounded. Thus 6tx+( i) is bounded; a similar argument applies
to 6tx_( iy). The lemma is therefore proved.

Before proceeding, we should state explicitly what we mean by a solution of
(1). Our solutions f(x) will not necessarily be such that the left side of (1)
converges; rather we consider the integral as evaluated by the Abel method.
More precisely: we call f(x) (- < x < ) a solution of (1) if, for each
> O, e-lxlf(x) . L(-, ) and

(6) 1.i.m. e-’lxl f k(x y)e-’Uf(y) dy
0+

in L(-- , ).
Of course, if f(x) is a solution in this sense, and the left side of (1) converges

for almost all x, then (1) is satisfied almost everywhere.
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3. K() smooth

In this section we assume, aprt from l(x) L.(-, ), that

(a) K() is continuous and K(+/- O,

(b) K() 1 has finitely many (real) zeros a a:

(c) for each j there is a (necessarily unique) integer m such that
(K() .l)( ai)-mi is continuous and nonzero in a neighborhood of ai

(d) rg (K() 1)II (- a.)- satisfies a Lipschitz condition uniformly
in

We shll find all solutions of (1) such that

(e) F+(z) is bounded in z > O, except possibly near the , where
(z )’F+(z) is bounded.

By (6) we hve, for fixed e > 0,

.+( + ie) -t- F_( ie) lim eXe-lxl dx ]c(x y)e f(y) dy

(7)
f K()F+( + i)

lira di.
Sil]c(

lim: f= F+iF + iex)
-.0 r ( -)2 d" q+01im F+( -[- ie" + ie) F+( + iv),

(7) is the same as

(8) F_( i’) lim - f (K() 1)E+( -t-iei)
d’.

Now it follows from (e) above that F+() lim0 F+( + ie) exists almost
everywhere, and from (a), (c), and (e) that (K() 1) F+( + ie.) is bounded
as e -- 0 uniformly in . Thus we can take the limit under the integral sign
in (8), obt;ining

(9) F_( ie) I (K() 1)F+()

Since (K() 1) F+() is bounded, the right side of (9) converges
everywhere, s e" -- 0+, to (K() 1) F+(). (See, for example, [5], 1.17.)
Thus F_() lim0+ F_( i) exists almost everywhere, and (2) holds
almost everywhere.

Set n m.. Then the function

1 K()
II(- )"’

(g +
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is continuous, nowhere zero, and tends to 1 at =t= . If we denote the vari-
ation of its argument (as ( goes from to by -2kri, then it is not hard
to verify that the function

satisfies the conditions of the lemma of 2. Thus we can find functions p+(z)
and __(z) as described in that lemma. Define

(10)
+(z) (z A- i)’/-kb+(z), z > 0

_(z) (z- i)-"-_(z), z < O.

Then we have

and so from (2)

(1)

_(() 1 K(()

F+() II( a.)mj
+()

Now F_(( ie) is bounded (for all ( and s) by (9), and _(( ie) is
bounded away from zero (for bounded ( and e). Thus

(12) lim fe-O

F_( ie) F_()
d$ 0,

the integral being taken over any finite interval. Similarly (using (e))

f F+($ -t- ie)
m0 +( + ) II( + -.) F+() II( )’ d 0(13) +()

again over any finite interval. We obtain from (11), (12), and (13),

lim f F+( - iv)
+($ - is)

F_(( is)
_( is) d

0.

It now follows from a theorem of Carleman ([2], Theorem II, p. 40) that the
functions

F_(z)
and F+(z) II(z aj)m

_(z) +(z)

are analytic continuations of each other, and so together represent an entire
function P(z). Moreover from the boundedness of F_(z), (e), (10), and
the fact that +(z) and _(z) are bounded away from zero, we see that
P(z) O( z "/+k) at infinity. Thus P(z) must be a polynomial of degree at
most 1/2n -1- ]c. But since
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and 1/b_(z) 0(i z [,/2+k) near infinity, we see that the degree of P(z) must
be less than [1/2n - l].
Thus

P(z)ch+(z)(14) F+(z) li(z aj)m., F_(z) --P(z)4)_(z),

and f(x) is given by (4).
We now show that (14) and (4) give a solution of (1) (in the sense (6)) for

any polynomial P(z) of degree less than [n + ].
Note first that by (14) and (10), F+( + i) and F_( i) are in L for

any > 0, that is, ef(x)L for any > 0. Taking Fourier transforms
of both sides of (6), and noting that 1.i.m.0 F+( + i + i) F+( T i),
we see that it suffices to prove

(15) F_( iv) 1.i.E.
(K() 1)F+( + i) d.

0 + (-)
Since

F_( -i) 1.i.m. F_( iv i) 1.i.m.
F_( ie) d,

o o + (- )
(15) is equivalent to

[ f (K() 1)F+( + i) F_( ie)(16) 1.i.m. d 0.
,o L + ( )

Since each of the functions (K() 1) F+( + i) and F_( iex) is domi-
nated by an L function independent of , and since the derence of the
functions approaches zero almost everywhere, this derence approaches zero
in L: mean. This fact and Young’s inequality give (16).

4. K() very smooth

Assume now, in ddition to the assumptions of 3, that K() is 2m 1
times continuously derentiab]e near ech . In this case we cn get
good ide of the behavior of the solutions of (1) t infinity.
We see th log () is m W 1 times continuously derentible near a;

nd so x+(z), nd therefore lso +(z), is y times continuously differentible
near . Hence we can find polynomial (z), of degree at most n 1,
such that

P(z)ch+(z) Q(z)

is bounded near each a.
We have

1 f’+ e-Q(z)
dz Qj(x)e-",
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where Qj(x) is a polynomial of degree less than ms. Thus if we move the
line of integration in (4) down to the real axis we obtain, for x > 0,

1 I:e_P()4+()- Q()d,f(x) Qi(x)e-" +- H( )
the integral representing a function in L.

If ]_% x’J-lk(x) dx < 0 for each j, the integral in (1) converges absolutely
for all y, and (1) is satisfied in the usual sense.

5. K() has a corner

We can treat certain cases in which K() 1 is not smooth near its zeros;
for instance, K() 1 might have a "corner" at one or more of these zeros.
In order not to obscure the modifications necessary in this situation, we shall
treat only a fairly special case. In addition to (a) of 3 we shall assume K()
is real, K() 1 is zero for 0 and nowhere else, and

(K() 1)/ll (a> 0)

is bounded and bounded away from zero near 0. (Actually, only in case
a 1 are we justified in saying that K() has a corner at 0.)
We shall find all solutions of (1) satisfying" F+(z) is bounded in z > 0 ex-

cept possibly near z 0; there is a < 1 such that z t+F+(z) is bounded near

Again, F+() lim0+ F+( i) exists almost everywhere, and we ob-
tain (8). Since (K(i’) 1) F+( -t- i1) is bounded for bounded away from
zero, and for i" near zero is 0(i -) uniformly in , we obtain (9). so,
since

(g() 1)F+()
e L(- , ),

we obtain (2) from (9) by letting v 0 ([5], 1.17).
The function

() K()
i

(+1)

tisfies the conditions of the lemma of 2, and we can find the corresponding
functions +(z) and _(z). Set

]2+(z) (z + i) z- +(z), z > 0,

_(z) (z i-z_(z), z < 0,

where the many-valued functions are determined by i e and -i .
Then _()/+() 1 K(), so from (2)

(7) -[F_()/_()] F+()/+().
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Now I claim F_(z) <= A(1 d-]z ]-)in z < 0 for some constant A. (A
will always represent a constant, but the constant may change with each use
of A.) From (9) and the fact that (K() 1)F+() __< A(1 d- ] [-) we
obtain

F-( i)] =< A d- Ae
e d- (r )2 dr.

Now

’1=< 1!/2 ’1__> 11/2

Thus F_( i)l =< A -t- A rain (-, ( I - / l) l l-a), from which we
easily derive he desired inequality.

Since F+(z) and F_(z) are bounded excep near z 0, we may use (17)
and apply Carleman’s heorem (across any interval no including zero) and
see that -F_(z)/_(z) and F+(z)/+(z) are analytic continuations of each
other, and together represent a function P(z) which is analytic everywhere
except possibly at z 0. Using our bounds, we easily see that P(z) is bounded
at infinity and 0(] z -/2-a) near zero. Thus, if we set

I1/2 1/2 an integer,
r l[1/2a] d- 1 1/2a not an integer,

P(z) has a pole at z 0 of order at most r. Now if P(z) approached a non-
zero constant at infinity, we would have

_
F+( d- i) 12 d , which is

false; therefore P() 0. It follows that P(z) z-iQ(z-i), where Q is a
polynomial of degree less than r, and

(18) F+(z) z-Q(z-),+(z), F_(z) -z-lQ(z-i)dp_(z).

To prove that (18) gives a solution of (1) for any Q of degree less than r,
note first that F+( d- i) and F_( i) are in L2 for any > 0, so f(x)
given by (4) is such that e-l’lf(x) e L2(- , ). Again, it suffices to prove
(16). But since (K() 1)F+(- -4- i1) E_( i1) tends to zero in
LI(-- 1, 1) and in L(1, and L2(- , 1), (16) follows upon application
of two versions of Young’s inequality.
Thus we have obtained r linearly independent sohltions of (1). Note that

if a is an even integer, we have a special case of the situation of 3, the solu-
tions of course being the same.

6. An example
We consider here the equation

1 [ f(y) dy hf(x) 0 < ), < 1(19)
7r 0 1 -- (X- y)2
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Here K(}) X-’e-I}1. If X < 1 the methods of 3 and 4 apply, and we ob-
tain a solution (unique up to a multiplicative constant) which has the form

f(x) Ah + Bh-i* + g(x) (x > O)

where A and B are constants and g(x) e L2(0, ). We have been unable to
obtain F+(z) explicitly in terms of known functions.

In case h 1, the method of 5 applies with z 1. (This example was
also considered by Spitzer [7].) We have, for z > 0,

1 f log [(1 e-I’)[ ]-(f + 1) 1/]x+(iz)
2i J_ iz d

(20)

Let
1/2log(1 q-)q-z-l’lg(1--e-)r’ q- F

z_ f og ( e-"5I(a)
r J0 ’ + z

Then

I’ (a) z__ i d log
r e" 1 -t- z 2

(See, for instance, [6], 12.32.) Therefore

log log

de ( > 0).

where C(z) is independent of a.

theorem gives C(z) 1/2 log 2w, so

2v 2r

and, by (20)

x+(iz) -og (t + z) + -
2" 2a 2r F \2’]

Since, clearly, lim, I() O, Stirling’s

log2n’-- logF

1) log
z z logl(Z)2 2

Hence from (18), suppressing an irrelevant multiplicative constant,
F/(iz) z-a/2(z + 1.)1/ exp (--x+(iz)) z-a/(z/2)l-/%z/:F(z/2).

Consequently, again suppressing a multiplicative constant,

f+i 2 (z+,/2ee (z) dz, x > O.

It is not hrd to ee that f(x) Ax/ at infinity, so the integral in (19) con-
verges absolutely.
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