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1. Introduction

The aim of this paper is to construct almost periodic solutions of systems
of nonlinear differential equations of the form

iWkX(1.1) y f(y) -- g e

Here y is an n-dimensional vector; the dash indicates differentiation with re-
spect to x; the g are constant vectors, and the are real, not necessarily
commensurable, numbers. The components of the vector f(y) are assumed to
be analytic functions of the components of y.

It will be proved that there exists, under certain assumptions, a particular
solution of (1.1) of the form

^i#rx(1.2) y a0 -- a,The vectors a,, r _-> 1, can be determined successively by solving n order
systems of linear algebraic equations. The numbers , are linear combina-
tions of the with nonnegative integral coefficients. In the language of the
theory of nonlinear vibrations this means that the solution is a superposition
of "combination oscillations."

In Appendix 2 of [1] Friedrichs indicated a method for constructing an
almost periodic solution of differential equations that differ from (1.1) in
that f(y) must be a polynomial, while the almost periodic term is allowed
to be an infinite series.
The series in (1.2) will be shown to converge if the gk are sufficiently small.

In this sense the differential equation (1..1) can be regurded, in this paper, as
a perturbation of the equation y’ f(y). In [2] Biryuk has solved a some-
what similar perturbation problem. His perturbation term is more general
than the one in (1.1), but his unperturbed equation is linear. Also, Biryuk’s
method does not lead to an expression for the solution as explicit as (1.2).
The method of this paper has also some relation to a procedure suggested by
E. Weber [3].

In an as yet unpublished article M. Golomb has generalized the results of
this paper considerably. Among other things he has given an extension to
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the case that the almost periodic term is an infinite series of exponential func-
tions. He also permits the function f(y) to depend on x, and he proves,
furthermore, that superharmonic solutions exist in certain cases.

2. The formal procedure
We begin by stating some hypotheses.

ASSUMPTION 1. The equation f(y) 0 possesses a solution y ao.

If v is any vector with components vl, v, v, the symbol v will de-
note the norm

(2.1) I.
ASSUMPTION 2. The components fj(y) of the vector functions f(y) are holo-

morphicfunctions of the n components yl y y, of the vector y in the domain

(2.2) Y ao <- p (p a positive constant).

Let the vector u be defined by

(2.3) y a0 u.

If f(y) f(ao + u) is expanded into a power series in the components ul,
u of u and use is made of Assumption l, the differential equation (1.1)

takes on the form

(2.4) u’ Au + (u) + gke.
Here A is a square constant matrix, viz. the Jacobian of the components f. of f
with respect to the variables y, y, y at the point y a0. The com-
ponents i, J 1, 2, ..., n, of (u) possess series expansions in powers of
u, u, u, without constant or linear terms. These series converge in
the domain

(2.5) u --< p,

thanks to Assumption 2.

ASSUMPTION 3. No eigenvalue of A is purely imaginary.

Consider the set of all ordered m-tuples (n, n, n) of nonnegative
integers. This set may be ordered according to the following rule. If
E.ml TI, < 7=1 ,)2,, tat3 m-tuple (n), n,, ..., n()) comes before
(n:), n), n2)). If 7=1 n) ’7.. n), consider the first component
that is not the same for the two m-tuples and place first the m-tuple for which
this component is larger. Let the (r + 1)" of these m-tuples be denoted by
N, and let 2 be an abbreviation for the m-tuple (0, 0,., 0). Define
the sequence of real numbers by

(r)
Wo

(r)(2.6) / N.2 n)o + m. + + n , r 1, 2,....
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The numbers r are not necessarily all distinct, but the functions ,
r(i, "", m) are. In fact, the same number may occur infinitely often
in this sequence. Observe that

(2.7) tk N. , 1,2, ...,m.

The derential equation (2.4) can be formally satisfied by a series of the
form

(2.8) u a e’.
rl

In order to see this, insert the series into (2.4), expand, and reorder according
to the exponential fctors e’. In this reordering the w are to be treated
as prameters rather than as given numerical values, so that

whereN N, + N in the sense of vector addition. In view of the ordering
principle for the N one has always a + ft. (As mentioned before, it is
possible to have N,. N., a fl, for certain choices of , so that substi-
tution of numerical values for the might make indistinguishable exponential
factors that have to be treated differently in the scheme to be described.)
Since (u) has no constant or linear terms, the full expansion of (u) after in-
sertion of (2.8) for u contains only a finite number of terms having given
exponential factor e’’, and the coefficient of each such term is a monomial
in the components of a a: as_l

After having reordered the terms in the right member of (2.4) iu the manner
described, we require that for every r 1 the coefficients of ex i the two
members be the same. This leads to a recursivc sequence of equttios for the
a of the form.

(2.9) (A --iWr I)a gr, r 5 m

(2.10) (A iN.I)a hr (a a at-l), r > m.

The components of the vector functions h are polynomials in the compoaents
of ai a, a_ without constant or linear terms. Thanks to Assumption
3 the matrices A iN. I, r 1, are all nonsingular, so that the a can be
computed successively.

3. The convergence of of the series

The convergence of the series (2.8) with coefficients ar that arc determined
from (2.9) and (2.10) will now be studied by the method of dominating series.
To that end it will first be shown that there exists a number c, independent of r,
such that, for a solution g (2.9), (2.10),

(3.2) a2, .-., r > m.
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The equations (2.9) and (2.10) are of the form (A XI)v a, where v and
a are vectors and X a parameter. Since v (A XI)-la, it follows that

--< b(X)1t a II, b(X) is the "row-sum" norm of (A XI)-1 i.e.
the largest sum of the absolute values of the elements in any one row of
(A XI)-. The elements of (A XI)- are rational functions vanishing at
infinity. Hence, limx_. b(X) 0. The values of X occurring in (2.9) and
(2.10) are X N.a, r 1, 2, .... By Assumption 3 they are bounded
away from the eigenvalues of A, which are the poles of the elements of
(A XI)-. Therefore, there exists a number c such that b(N.) N c. This
proves (3.1) and (3.2).

Next, a problem will be constructed that dominates (2.4) in the sense of
the method of dominating series. Let M be some upper bound for in the
domain defined by the inequality (2.5). It is a well-known fact from the
theory of analytic functions that the coefficients of the terms of degree k in
the power series for a component i of are numerically not greater than
Mp-. Hence, the series

M p-(S+s+...+s).s.l 2s
Sl+S2+.

represents a function that dominates all Cs, J 1, 2, n.

s=2 p

The series

when expanded by the Inultinomial theorem, has still larger positive coeffi-
cients. Hence the scalar function

--1 p--1(3.4) 5(u) M 1 p us 1- u
i-=l

whose power series expansion is (3.3), dominates all
The last mentioned fact has the following consequence.

tot u in (3.4) formally by the vectorial series
Replace the vec-

(3.5) b eCNr’a:,
r=l

expand, and collect terms with the same exponential factor, as was done be-
fore with (u). There results a scalar series of the form

E r(bl, br-1) eN’’ax,
r--l

whose eoeifieients are polynomials in the components of b, b., b,_
without constant or linear terms. These polynomials dominate the n com-
ponents of the vector function h,(bl, b_) in the sense that the eoetfi-
eients of , are nonnegative and not less than the moduli of the corresponding
eoetfieients of the components of h.

If we denote, furthermore, by g a number such that
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(3.6) g __< g, 1, 2, ..., m,

then the n scalar equations

(3.7) vl- cg(e’‘ + e’ -{- + e’’) c,(v) O, j-- 1, 2,..., n,

for the components v of the vector v can be shown to constitute the desired
dominating problem. Observe that, since (v) depends on =v only, (3.7)
is equivalent to one equation for =v, and all v are equal. Now we at-
tempt to solve (3.7) by a series of the form (3.5), i.e., we insert

(3.8) v be

into (3.7). If b, j 1, 2, n, are the components of b, we obtain the
recursion formulas

(3.9) b b b cg, j 1, 2, ,n.

(3.10) b c(b,b,..-, b_), r > m, j= 1, 2,-.-,n.

Because of (3.1), (3.6), and (3.9),

a gc b b, [[, r 1, 2, ,m.

From (3.2), (3.9), and (3.10) and the dominating property of one con-
eludes that

and, by induction,

(3.11) a b l, r l, 2, ....
In view of the last inequality it suffices to prove the uniform and absolute

convergence of the series in (3.8) in order to deduce that the series in (2.8)
converges in a similar manner. For the study of the convergence of (3.8) re-
place e, 1, 2, m, in (3.7) by

3.12) z e, ]c l, 2, m,

and sum over j, which leads to the scalar equation

(3.13) v ncg z nc(v) O.
i=1

This can be regarded as an equation for w = v in tes of
ncg z. Since (v) has no constant or linear terms in its expansion

(cf. (3.3)), the equation (3.13) is satisfied for w 0, and the partial de-
rivative of the left member th respect to w is not zero at that point. Hence,
(3.13) defines w as a holomorphic function of in a certain circle
i.e., for

(3.14) ncg z o.
kl
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Since the v are ull equal, every v is representable as a uniformly and abso-
lutely convergent power series

12 m
(3.15) c2... 2 -..z,

nl+n2+’

as long as (3.14) holds.
The terms of (3.15) may be assumed to be arranged according the same

principle as the numbers N. before. The coefficients c1... could be
calculated recursively by insertion into

v cg z c(v), j 1,’.. n
kl

and identification of corresponding terms fight and left. But these recursion
formulas become identical with (3.9), (3.10) if c,2... is replaced by b, r
being the order number of the vector N (n, n2, n) and j being ar-
bitrary, since all b, j 1, 2, n, are equal. This proves the uniform
and absolute convergence of the series in (3.8) whenever the condition

(3.16) cg e o
k=l

is satisfied. The series (2.8) converges therefore in like manner.
It remains to be shown that (2.8) tisfies the derential equation. Since

the polynomials h have no constant terms, the b, as determined from (3.9)
and (3.10), nd to zero with g, while the domain of uniform convergence of
the series, as defined by (3.16), expands as g becomes smaller. Hence, the
function v of (3.8) shrinks to zero with g, and the same is true of the function
u of (2.8) which is dominated by v. For sufficiently small g the function u
will therefore satisfy the inequality (2.5). This implies that the series ob-
tained by inserting (2.8) into the right member of (2.4) and collecting terms
according to exponential factors e’’u converges unifoly in every smaller
domain. The series so obtained is the termwise derivative of the series in
(2.8) since this is precisely the content of equations (2.9) and (2.10). Hence,
the function defined by (2.8) satisfies the derential equation. Thus the
following theorem has been proved.

THEOaEM. A differential equation of the form (1.1) satisfying Assumptions
l, 2, and 3, as well as the inequalities

where > 0 is a constant depending on f(y) ly, possesses a particular solution
mitting a series expansion of the form

y ao + ae
rl
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that converges uniformly and absolutely for < x . The sequence ttr is

formed of the numbers km=l nkwlo (not necessarily all different), where the n are
nonnegative integers not all zero. For a suitable ordering of the terms the coei]i-
cients at, r O, can be recursively calculated by solving systems of linear equa-
tions.

If all wk arc integral multiples of the same number , this result and its proof
remain vlid if A has some purely imaginary eigenvalues i., provided - is
not ,u multiple of
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