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1. Introduction

In this paper we study inequalities involving the elementary symmetric
functions and the homogeneous product sums of the characteristic roots of a
nonnegative hermitian matrix. The inequalities obtained for nonnegative
hermitian matrices are applied to problems in combinatorial analysis dealing
with matrices all of whose entries are O’s and l’s.

Let A be a matrix with elements in the real or complex field. Throughout
the discussion A denotes the transpose of A, det A the determinant of A,
A-1 the inverse of A for det A 0, tr (A) the trace of A, Cr(A)the rh

compound or adjugate of A, Pr(A) the rh induced or power matrix of A.
I denotes the identity matrix, and S denotes the matrix all of whose entries
are l’s.
Now let H be a nonnegative hermitian matrix of order v, where v > 1. Let

the characteristic roots of H be ),1 => => Xv, and let l and X’ satisfy

(1.1) tr (H) kv,

x =< + (v- 1_)’ __< x,.
Define the matrix B’ of order v by

(1.3)

Then we prove that

(1.4)

B’ (lc- X’)I +

tr (C,.(H)) <-_ tr (C(B’)).

If equality holds for an r > i and lc q- (v 1)X’ # 0,Equality holds for r 1.
then there exists a unitary U such that H U-B’U.
(1.1) and let SHS #S, where

(zc + (v-(1.5)

Let k, be defined by

The inequalities (1.2) are valid for X X*.
v is defined by

(1.6)

then

Thus if the matrix B* of order

B*= (k,- X*)I + X’S,

(1.7) tr (C(H)) =< tr (C(B*)).
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Moreover, we show that if equality holds in (1.7) for an r > 1 and
tc d- (v 1)X* 0, then H B*. Analogous results hold for the r* in-
duced or power matrix P,(H) of H, where for this ease tr (P(H)) >= tr (P(B’))
and tr (P(H)) > tr (P(B*)).
The results described in the preceding paragraph are derived in Section 4.

Section 2 summarizes the pertinent literature on compound and induced
matrices. In Section 3 we establish some algebraic inequalities involving
symmetric functions and homogeneous product sums. These inequalities
are essential to the derivations in Section 4. Section 5 is concerned with
combinatorial analysis. Let Q be a matrix of order v, all of whose entries
are 0’s and l’s. The matrix QQ’ is nonnegative symmetric, and the integers
tr (C,(QQr)) and tr (p(QQr)) reflect combinatorial properties of Q. Appli-
cations to incidence matrices of v, lc, X configurations are studied in detail,
and the author’s Theorem 3 on maximal determinants [12] is obtained as a
special ease of a more general result.

2. Compound and induced matrices

Let A be an n by n matrix with elements in the real or complex field, and
let r be an integer such that 1 .<_ r =< n. Let {n} be the collection of all
subsets of r elements chosen from the set 1, n. If z and r belong to
n }, and if in the matrix A all rows are deleted whose indices do not belong

to and all columns are deleted whose indices do not belong to r, then there
remains an r by r submatrix of A, which we denote by A,. Let the ele-
ments of {n,} be , , where

nd for convenience, let the ’s be ordered lexicogmphiclly. The N by N
mtrix

C(A) [det A] (i, j 1, -.-, N)
is clled the r’ compound or the r adjugate of A. We state without proof
some of the fundamental properties of C(A) [3; 8; 9; 13; 14]"

(2.1) C(A)C,(B) C(AB) (A nd B of order n),

(2.2) C(A ) (C(A)) ,
(2.3) C(A-) (C(A))- (get A 0),
(2.4) det C,(A) (det A) (M (_)).-
Let a, a, denote the characteristic roots of A. Then the character-

istic roots of C,(A) re
(2.5) , , ,
where the re the terms in the r

t elementary symmetric function of a, ,
n Let

a(A det A,
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where a runs through {n,}. The a,(A)’s are the coefficients, apart from the
signs, of the characteristic polynomial of A

det (xI- A) x al(A)x’-1 + a2(A)x’- + (-1)nan(A).

Thus if al, a, are the characteristic roots of A, then

(2.6) IIl(x + ) x - a(A)x’- - a.(A)xn- + -b an(A).

Note that al(A) tr (A), a,(A) det A, and for r an integer such that
l<r<n,=

a(A tr (Cr(A ).(2.7)

Let

(.S) y a xl + + ai x, (i 1,..., n),

where x and y are indeterminates. Let r be a positive integer, and form
the N* (’+-1) products of the y’s

(2.9) 1 o’2 n
yl y2 Yn

where , r. Order the products (2.9) lexicographically in the sense
that the product yIy.., y" stands before the product y y -.-y,
provided that the first nonvanishing difference , -/t, / ti, , ,
is positive. Denote the products (2.9) written in this order by

Y, Y, Y.,

and denote the corresponding products of the x’s written in the same order
by

X, X, X..
Let X be the column vector with components X1, X., and let Y be
the column vector with components Y, Y.. Then by (2.8),

Y P,(A)X,

where P(A) is a matrix of order N*. This matrix is called the r induced
matrix or power matrix of A. Many theorems on compound matrices have
analogues for induced matrices, and we list the essential formal properties
of P,(A) [7; 8; 9; 13; 14]:

(2.0)

(2.11)

(2.12)

Let a,
acteristic roots of P(A) are

(2.13)

P,(A)P(B) P(AB)

P,(A-) (P(A))-’
det P,(A) (det A)*

a denote the characteristic roots of A.

(A and B of order n),

(det A 0),

(U*= (’+-)).
Then the char-
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where the Z are the terms in the rth homogeneous product sum of al,

a. Thus if

1
1 + hx + hx -t- + h,.x -t" "",II,=1(1 ax)

then for every positive integer r,

(2.14) h tr (P(A)).

3. Algebraic inequalities
Let f(x) a x and g(x) b x be polynomials of degree n, where

the coefficients a and b are nonnegative reals. If a -< b (i 0, 1, n),
then f(x) is majorized by g(x), written

(3.1) f g or g >f.
If f(x) ai x and g(x) b x are formal power series, we writef < g
org ;>fprovided0 =< a-_< b(i 0, 1, 2, ...). It is clear that f< gand
fl < g imply ff .< gg. We now prove the inequalities required in Section
4. Specifically, we study the expressions II(x - ) and 1/II(1 x) for
the a’s nonnegative reals.

LEMMA 3.1. If >= [3 >= 0 and >= O, then

(x + + )(x + ) < (x + )(x + + ).

Equality holds for the coecients of x and x. Equality holds for the coecient
of xif and only if a or e O.

The proof is immediate.
Lemma 3.1 implies the following well known inequality [6].

LEMMA 3.2. If e (a - a)/n and a >= O, then

II, (x + ) < (x + e).
Equality holds for the coecients of xn and x’-. If equality holds for one of
the other coeicients, then each e, and equality holds throughout.

For let al ->_ as => ->_ a => 0, and in Lemma 3.1, set a e, e 1 e,
fl a,. Then

(X -t" OI)(X -t" On) " (X "- e)(X -- O1 "" On e)
and

(3.e) II,: (x + < (x + e)(x + + a, e) H,n-"21 (X + i) < (X + e) ’.

Suppose that equality holds throughout (3.2) for some coefficient of x",
wherer < n- 1. Then since eacha>= 0,

e( + . e),
whence a c, e.
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Next we derive analogues of Lemmas 3.1 and 3.2 for the formal power
series of the form 1/II(1 ai x).

LEMMA. 3.3. Ira >--_ >--_ O and O, then

1 1
(1 (a + v)x)(1 fx) (1 ax)(1- (-t- s)z)"

Equality holds for the coejcients of x and x. If equalily holds for one of the
other coejcients, then a or O, and equality holds throughout.

By direct multiplication,

(-(+)x)(-x) =o=o

If
(1 ax)(1 (-- v)x)

\r--i

r=0 i=0

v ;=o [( + )-- ( + :)-],
then Wo wl 0, and we must prove that w 0. Let

)ik )
(k 0, ],...,r, i 0, 1,

Then

Wr E Wik

2. (w + w,_,_) ( o, , r, i O, , r ).

If r-- k__> k+i, then

,, + ,.__ () ((’;)- (t’))(--"- -:-) o,
andifr-] < +i, then

whence w 0.

LEMMA 3.4. If e (a + + a)/n and a O, lhen

1 1
II,:, ( -,) ( x)n

Equality holds for the coecients of x and x. If equality hos ]r one of the
other coecients, then each a e, and equality holds throughout.

For let a a a, 0, and in Lemma, 3.3, set a e, a e,
a. Then

1 1
( ,x)(1 ,.) (1 x)( (,, + ,. e)x)
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1 1
(1 + II (,

whence the result follows.

t. Hermilin m=lrices

We now study inequalities involving tr (Ur(H)) and tr (Pr(H)), where the
matrix H is nonnegative hermitian. Define the matrix B of order v by the
equation

(4.1) g (k X)I H- XS.

Here lc and X are real numbers, I is the identity matrix, and S is the matrix
all of whose entries are l’s. We select v > 1 and note that B is the matrix
with k in the main diagonal and X in all other positions. The characteristic
polynomial of B is easily computed by subtracting column one of det (xI B)
from each of the other columns, and then adding to row one each of the re-
maining rows. Thus

(4.2) det (xI- B) (x- (lc + (v- 1)X))(x- (lc- X))v-l,

and hence the v characteristic roots of B are lc H- (v 1)X taken ()nee and
lc-- Xtakenv-- ltimes. Note that

(4.3) det B (k -t- (v- 1)X)(k- X)v-.
It is now easy to evaluate tr (C(B)) and tr (P(B)) explicitly. Evidently,

(4.4) tr (C,.(B))

and

(4.5) tr (P,.(B)) .= (+-e) (lc na (v- 1)X)-’ (lc X)’:.
Let H be a nonnegative hermitian matrix of order v, where v > 1. Let

the characteristic roots of H be M, v, where

M > > X > 0
Let lc and X’ satisfy

(4.6)
(4.7)

tr (H) kv,
X, <- k H- (v- 1)X’ =< X.

Now define the matrix B’ of order v by

(4.8) B’=

Note that by (4.7) the matrix B’ is nonnegative hermitian.

THEOIt,:M 4.1. The matrices H and B’ satisfy

tr (C,.(H)) <= tr (C,(B’)).
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Equality holdsfor r 1. If equality holdsfor an r > 1 and tc + (v 1)h’ O,
then there exists a unitary U such that

H U-B’U.
In Lemma 3.1, let 1 (k + (v 1)), a. e, and .

Then
(x + )(x + X) < (x + + (v 1)k’)(x + , + e).

Now

(X + e + Xe + + X_x)/(v- 1)= (kv- X, + e’)/(v- 1)= lc- X’.
Thus by Lemma 3.2,

(4.9)

< (z + ( + (v 1)x’))(z + ( x’))-,
whence the first conclusion of the theorem follows.

Suppose now that k + (v 1)X’ # 0 and that equality holds throughout
(4.9) for some coefficient of x, where r # v, v 1. Consider the ca in
which k X’ > 0. Then equality must hold for some cfficient of z in

(z + x + ,)H: (z + x,) < (x + ( x’))*-,
wherer# v- 1, v- 2. ByLemmu3.2,

Moreover, we must have

xx. ( + (v- 1)x’)(- x’)
and

x, + x. (- x’) + ( + (v- 1)x’),

whenceh lc+ (v-- 1)h’andX k-- X’,orA k-- h’andh k+
(v 1)X’. If X’ 0, then e X X 0 and M kv. Thus
under M1 possibilities the characteristic roots of H must be k + (v 1)’
taken once and k A’ taken v 1 times. This means that H and B’ have
the same characteristic roots, and hence there exists a unitary U such that
H B’U.
TEOnEM 4.2. The matrices Ha B’ satisfy

tr (P.(H)) tr (P,(B’)).

If equality hoMs #r an r > 1, then tre ezists aEquality holds for r 1.
unitary U such that

H U-1B’U.
In Lemma 3.3, let e A1 (k + (v 1)’), a A1 e, and
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Then

(1 hz)(1

Furthermore,

( ( + (v )x’)z)( (x + )x)"

(4..o)
(i ( + ( i)x’)x)(i (x,, + )) II: (i

1
(1 (]G -I- (v- 1)X’)x)(1 (IG-)’)x)

Suppose that equality holds throughout (4.10) for some coefficient of xr,
where r 0, 1. Then equality must hold for some coefficient of x in

1 1
(1,- 0,v q- e)x)Ii- (1 Mx) (1 (]- ’)X)

where r 0, 1. Thus ), X-I X, q- e k ),’. Also equality
must hold for some coefficient of x in

(1 (/ q- (v 1)X’)x)(1 (M -t- e)x)’
where r 0, 1. Thus we must have e O, ,t k --b (v 1)},’,
andv lc- },’,ora t,M /- ’,andL, k,-k (v- 1)),’. Hence
the characteristic roots of H are k q- (v 1)},’ taken once and/ ,r taken
v 1 times. Thus there exists a unitary U such that H U-1B’U.

Consider the matrix B (/c X)I q- XS of order v, where l is fixed by
(4.6) and where

(4.11) -l/(v- 1) __< X _-< k.

The matrix B is nonnegative hermitian, and tr (G(B)) and tr (P,.(B)) are
polynomials in X. Theorems 4.1 and 4.2 imply that for r > 1, tr (C,.(B))
is strictly decreasing and tr (P,.(B)) is strictly increasing in the interval
0 _-< X _-< k. Also tr (C,.(B)) is strictly increasing and tr (P,.(B)) is strictly
decreasing in the interval-l/(v- 1) =< =< 0. For if X _>_ 0, let

(4.12) --X/(v- 1) =< X’ -< ,,
and if X 0, let

(4.13) h <-_ h’ <- --/(v- 1).

Then if B’ (/ X’)I q- X’S, it follows that

(4.14) tr (C,.(B)) <- tr (Cr(Br))
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and

(4.15) tr (P,.(B)) >= tr (Pr(B’)).
In Theorems 4.1 and 4.2 the X’ is confined to the interval

(4.16) (X- lc)/(v- 1) __< X’ (X- k)/(v- 1),

where hi is the maximal and Xv is the minimal characteristic root of H. The
preceding remarks imply that the best selection for X’ in the theorems from
the standpoint of sharpness of approximation is either (X ]c)/(v 1) or
(X, k)/(v 1). However, these values require information concerning

X’ X*the characteristic roots of H. In what follows we select a that satis-
fies the inequalities (4.16) and is determined by the sum of the nondiagonal
elements of H. Moreover, if equality holds in the theorems for the ease
X’ X*, then the matrices themselves are equal.

Let lc be defined by (4.6), and let

(4.17) SHS

where

(4.18) , (It + (v- 1)X*)v.

Define the matrix B* of order v by

.THEotnM 4.3. The malrices H and B* satisfy

tr (Cr(H)) <= tr (C(B*)).

If equality holds for an r > 1 and lc + (v I)X* 0,Equality holds for r I.
then

Since H is nonnegative hermitian, there exists matrix P such that

H 15TP,
where the bar denotes complex conjugate. Let p denote the sum of row i
of P. Then

SPrPS (p- -t--p, p,)S SHS
whence

(4.20)

Now there exists a unitary U such that

u
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LetQ UP. Then
(jrQ DrrUp Drp H.

Moreover,
QS UPS "x/" S "x/’k -4- (v 1)X* S.

Now the characteristic roots of H QrQ stisfy

X > h > > v
nd theorem of Browne [1] asserts that if p is a characteristic roo of Q,
then

But since QS %/17----(v 1)k* S, we may select p V -f- (v k*,
whence

(4.21.)

Thus by Theorem 4.1,
tr (Cr(H) <= tr (Cr(B*) ).

If equality holds for an r > 1 nd k -- (v l)h* O, then there exists
unitary U such that

H U’’B*U (k- ,*)I +
Let u denote the sum of row i of U nd let

u=u+...+u,,.

SHS (k h*)vS -+- h*uiS (k ,* + h*v)vS,

h*u h%2.

If h* 0, then H B* kI, and if h* 0, then

(4.23)

Since (- :’U I,

(4:.24) u " q- -4- u , v.

But Cuchy’s inequality implies

v (u + + Uv)(a + + a) <= (ua + + Uva), v.

Since equality holds, we must have u, u, e, where e 1. Thus

US eS, e(-]rS S, andSU eS US. Hence
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THEOREM 4.4. The matrices H and B* satisfy

tr (Pr(H)) >= tr (Pr(B*)).
Equality holds for r 1. If equality holds for an r > 1, then

H B*.
This theorem is a consequence of Theorem 4.2 and the preceding discussion.

5. Applications to combinatorial analysis
Let Q [qi] be a matrix of order v, all of whose entries are O’s and l’s.

Let v > 1, and let r denote the total number of l’s in Q. The matrix Q
may be regarded as an incidence matrix for an arrangement of v elements
xl, x, into v sets $1, S,, where q 1 if xj is in S, and q 0
if x is not in S. The incidence matrix Q gives a complete description of the
combinatorial arrangement of the v elements into the v sets.
With Q we associate the nonnegative symmetric matrix

(5.1) W QQr,
where

(5.2) tr (W) /v r.

Suppose that we perform arbitrary permutations to the rows and to the
columns of Q. This is equivalent to multiplying Q on the left by a permuta-
tion matrix P1 and on the right by a permutation matrix P. Now if
Q* P1 QP. and W* Q*Q*r, then

W*= PWP-,
and

(5.3)

(5.4)

tr (C(W*)) tr (C,(W)),

tr (P(W*)) tr (P,(W)).

Thus both tr (Cr(W)) and tr (P,.(W)) are invariant under arbitrary permu-
tations of the rows and of the columns of Q. Such functions of Q are of
combinatorial interest because they describe properties of the arrangement
of the v elements into the v sets independent of the particular labelling of
elements and sets.
By (2.1) and (2.2),

C(QQr) C(Q)C(Q) Cr(Q)(C(Q)) ’.
Thus tr (C,.(W)) is equal to the sum of the squares of the r order minor de-
terminants of Q. Note that

(5.5) tr (C(W)) r,

(5.6) tr (C(W)) A,

(5.7) tr (C,(W)) (det Q)::
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where A denotes the number of 2 by 2 nonsingular submatrices of Q. It is
clear that

(5.8) tr (C,(W)) >- O,

and in particular, A 0. Moreover, z 0 if and only if by permutations
of rows and columns, we may write Q in the form

Here S is the matrix of l’s and is of size e by f, where

(5.13)

Now define

and the O’s denote zero blocks.
Also,

(5.10) tr (PI(W)) kv

and

(5.11) tr (P,.(W)) <= (M -b -t’- ),,,)" kvr,
where 1, }, are the v characteristic roots of W QQr. If equality
holds in (5.11) for some r > 1, then equality holds in (5.11) for every r, and
one characteristic root of W must equal kv and the remaining v 1 char-
acteristic roots must equal 0. But then A 0, and by permutations of rows
and columns we may write Q in the form (5.9). Conversely, every Q that
by permutations of rows and columns may be written in the form (5.9) satis-
fies

tr (Pr(W))
for every r.
The previous discussion suggests the study of the arrangement of the r

l’s in Q for tr (C,.(W)) maximal, and the related problem for tr (P,.(W)) mini-
mal. Such a study will lead us to matrices of considerable combinatoriM
importance. Moreover, their structure is diametrically unlike those of (5.9).
Let tr (W) kv r and let S be the v by v matrix of l’s. Let SWS IS,
where

(5.12) (k-[- (v- 1)x(Q))v.

Here X(Q) is a rational number determined by the arrangement of the O’s
and l’s within Q. Indeed, if c denotes the sum of column i of Q, then

v(v 1)

(5.14) k(/ 1)
v--1

Every 0, 1 matrix Q of order v containing r kv l’s must satisfy

X(Q) >= x.
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For we have

and

whence by (5.13),

Also,

and by (5.13),

Hence it follows that

E Ci ICY

E]21) Ci V Ci

X(Q) c-/v > (/ 1)
v(v- 1) v- 1

2 c _-< v 2 c =lcv

X(Q) <-
v(v- 1)

(5.15) X __< x(Q) =< k.

We describe now some special 0, 1 matrices A of order v, called incidence
matrices of v, lc, X configurations. Let v elements xl, xv be arranged
into v sets $1, Sv such that every set contains exactly lc distinct ele-
ments and such that every pair of sets has exactly X elements in common,
0 < X < lc < v. Such an arrangement is called a v, k, X configuration. Every
v, /c, X configuration must satisfy (5.14) [11]. For such a configuration, let
a. if x. is an element of S, and let a. 0 if x. is not an element of
S. The v by v matrix A [a..] of 0’s and l’s is called the incidence matriz

of the v, lc, X configuration. One verifies easily that if 0 < X < lc < v, then a
v, k, ), configuration exists if and only if there exists a 0, 1 matrix A of order
v such that,

(5.16) AAr= B (lc- X)I -t- XS.

The v, ]c, X configurations and their related incidence matrices have been
studied very extensively in recent years. The central problem concerns the
determination of the precise range of values of v, lc, and X for which configura-
tions exist. Certain nonexistence theorems are established in [2] and [4],
and a general survey of the literature is available in [5; 10; 11]. The following
theorems show that an incidence matrix A of a v, lc, configuration has the
0, 1 arrangement with tr (C(AAr)) maximal and tr (P,(AA r)) minimal.

THEOREM 5.1. Let Q be a O, 1 matrix of order v, containing exactly r kv
l’s. LetX= lc(lc- 1)/(v- 1) andB= (/c-X)I+XS, where0<X < k < v.
Then

tr (C(QQr)) <= tr (C(B)).

Equality holds for r 1. If equality holds for an r > 1, then Q is the incidence
matrix of a v, lc, configuration.

By Theorem 4.3,
tr (G.(QQ r)) <= tr (Cr(B*)),
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where B* (l (Q))I - (h(Q))S. But by (5.15), _-< (Q) -< k, and
hence

tr (Cr(B*)) <= tr (Cr(B)).
If equality holds in the theorem for an r > 1, then

QQr B* B,
nd Q is the incidence matrix of a v, k, }, configuration.
Note that Theorem 5.1. implies that

(5.17) (det Q) _-<
where equality holds if and only if Q is the incidence matrix of a v,/c, h con-
figuration [12].
THEOREM 5.2. Under the hypothesis of Theorem 5.1,

tr (P(QQr)) >__ tr (P(B)).
Equality holds for r 1. If equality holds for an r 1, then Q is the incidence
matrix of a v, lc, conguration.

By Theorem 4.4,
tr (p(QQr)) >= tr (P(B*)),

nd _-< ,(Q) =</ implies tr (Pr(B*)) > tr (P(B)).
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