INEQUALITIES OF COMPOUND AND INDUCED MATRICES WITH APPLICATIONS TO COMBINATORIAL ANALYSIS ${ }^{1}$

BY
H. J. Ryser

1. Introduction

In this paper we study inequalities involving the elementary symmetric functions and the homogeneous product sums of the characteristic roots of a nonnegative hermitian matrix. The inequalities obtained for nonnegative hermitian matrices are applied to problems in combinatorial analysis dealing with matrices all of whose entries are 0's and 1's.

Let A be a matrix with elements in the real or complex field. Throughout the discussion A^{T} denotes the transpose of A, $\operatorname{det} A$ the determinant of A, A^{-1} the inverse of A for $\operatorname{det} A \neq 0, \operatorname{tr}(A)$ the trace of $A, C_{r}(A)$ the $r^{\text {th }}$ compound or adjugate of $A, P_{r}(A)$ the $r^{\text {th }}$ induced or power matrix of A. I denotes the identity matrix, and S denotes the matrix all of whose entries are 1's.

Now let H be a nonnegative hermitian matrix of order v, where $v>1$. Let the characteristic roots of H be $\lambda_{1} \geqq \cdots \geqq \lambda_{v}$, and let k and λ^{\prime} satisfy

$$
\begin{gather*}
\operatorname{tr}(H)=k v \tag{1.1}\\
\lambda_{v} \leqq k+(v-1) \lambda^{\prime} \leqq \lambda_{1} \tag{1.2}
\end{gather*}
$$

Define the matrix B^{\prime} of order v by

$$
\begin{equation*}
B^{\prime}=\left(k-\lambda^{\prime}\right) I+\lambda^{\prime} S \tag{1.3}
\end{equation*}
$$

Then we prove that

$$
\begin{equation*}
\operatorname{tr}\left(C_{r}(H)\right) \leqq \operatorname{tr}\left(C_{r}\left(B^{\prime}\right)\right) \tag{1.4}
\end{equation*}
$$

Equality holds for $r=1$. If equality holds for an $r>1$ and $k+(v-1) \lambda^{\prime} \neq 0$, then there exists a unitary U such that $H=U^{-1} B^{\prime} U$. Let k be defined by (1.1) and let $S H S=\mu S$, where

$$
\begin{equation*}
\mu=\left(k+(v-1) \lambda^{*}\right) v . \tag{1.5}
\end{equation*}
$$

The inequalities (1.2) are valid for $\lambda^{\prime}=\lambda^{*}$. Thus if the matrix B^{*} of order v is defined by

$$
\begin{equation*}
B^{*}=\left(k-\lambda^{*}\right) I+\lambda^{*} S \tag{1.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{tr}\left(C_{r}(H)\right) \leqq \operatorname{tr}\left(C_{r}\left(B^{*}\right)\right) \tag{1.7}
\end{equation*}
$$

[^0]Moreover, we show that if equality holds in (1.7) for an $r>1$ and $k+(v-1) \lambda^{*} \neq 0$, then $H=B^{*}$. Analogous results hold for the $r^{\text {th }}$ induced or power matrix $P_{r}(H)$ of H, where for this case $\operatorname{tr}\left(P_{r}(H)\right) \geqq \operatorname{tr}\left(P_{r}\left(B^{\prime}\right)\right)$ and $\operatorname{tr}\left(P_{r}(H)\right) \geqq \operatorname{tr}\left(P_{r}\left(B^{*}\right)\right)$.

The results described in the preceding paragraph are derived in Section 4. Section 2 summarizes the pertinent literature on compound and induced matrices. In Section 3 we establish some algebraic inequalities involving symmetric functions and homogeneous product sums. These inequalities are essential to the derivations in Section 4. Section 5 is concerned with combinatorial analysis. Let Q be a matrix of order v, all of whose entries are 0 's and 1 's. The matrix $Q Q^{T}$ is nonnegative symmetric, and the integers $\operatorname{tr}\left(C_{r}\left(Q Q^{T}\right)\right)$ and $\operatorname{tr}\left(P_{r}\left(Q Q^{T}\right)\right)$ reflect combinatorial properties of Q. Applications to incidence matrices of v, k, λ configurations are studied in detail, and the author's Theorem 3 on maximal determinants [12] is obtained as a special case of a more general result.

2. Compound and induced matrices

Let A be an n by n matrix with elements in the real or complex field, and let r be an integer such that $1 \leqq r \leqq n$. Let $\left\{n_{r}\right\}$ be the collection of all subsets of r elements chosen from the set $1, \cdots, n$. If σ and τ belong to $\left\{n_{r}\right\}$, and if in the matrix A all rows are deleted whose indices do not belong to σ and all columns are deleted whose indices do not belong to τ, then there remains an r by r submatrix of A, which we denote by $A_{\sigma \tau}$. Let the elements of $\left\{n_{r}\right\}$ be $\sigma_{1}, \cdots, \sigma_{N}$, where

$$
N=\binom{n}{r}=\frac{n!}{r!(n-r)!},
$$

and for convenience, let the σ 's be ordered lexicographically. The N by N matrix

$$
C_{r}(A)=\left[\operatorname{det} A_{\sigma_{i} \sigma_{j}}\right] \quad(i, j=1, \cdots, N)
$$

is called the $r^{\text {th }}$ compound or the $r^{\text {th }}$ adjugate of A. We state without proof some of the fundamental properties of $C_{r}(A)[3 ; 8 ; 9 ; 13 ; 14]$:

$$
\begin{array}{rlr}
C_{r}(A) C_{r}(B) & =C_{r}(A B) & (A \text { and } B \text { of order } n), \\
C_{r}\left(A^{T}\right) & =\left(C_{r}(A)\right)^{T}, & (\operatorname{det} A \neq 0), \\
C_{r}\left(A^{-1}\right) & =\left(C_{r}(A)\right)^{-1} & \left(M=\binom{n-1}{r-1}\right) .
\end{array}
$$

Let $\alpha_{1}, \cdots, \alpha_{n}$ denote the characteristic roots of A. Then the characteristic roots of $C_{r}(A)$ are

$$
\begin{equation*}
\Sigma_{1}, \Sigma_{2}, \cdots, \Sigma_{N} \tag{2.5}
\end{equation*}
$$

where the Σ_{i} are the terms in the $r^{\text {th }}$ elementary symmetric function of α_{1}, \cdots, α_{n}. Let

$$
a_{r}(A)=\sum_{\sigma} \operatorname{det} A_{\sigma \sigma},
$$

where σ runs through $\left\{n_{r}\right\}$. The $a_{r}(A)$'s are the coefficients, apart from the signs, of the characteristic polynomial of A

$$
\operatorname{det}(x I-A)=x^{n}-a_{1}(A) x^{n-1}+a_{2}(A) x^{n-2}-\cdots+(-1)^{n} a_{n}(A)
$$

Thus if $\alpha_{1}, \cdots, \alpha_{n}$ are the characteristic roots of A, then

$$
\begin{equation*}
\prod_{i=1}^{n}\left(x+\alpha_{i}\right)=x^{n}+a_{1}(A) x^{n-1}+a_{2}(A) x^{n-2}+\cdots+a_{n}(A) \tag{2.6}
\end{equation*}
$$

Note that $a_{1}(A)=\operatorname{tr}(A), a_{n}(A)=\operatorname{det} A$, and for r an integer such that $1 \leqq r \leqq n$,

$$
\begin{equation*}
a_{r}(A)=\operatorname{tr}\left(C_{r}(A)\right) \tag{2.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
y_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \quad(i=1, \cdots, n) \tag{2.8}
\end{equation*}
$$

where x_{i} and y_{i} are indeterminates. Let r be a positive integer, and form the $N^{*}=\binom{n+r-1}{r}$ products of the y_{i} 's

$$
\begin{equation*}
y_{1}^{\gamma_{1}} y_{2}^{\gamma_{2}} \cdots y_{n}^{\gamma_{n}} \tag{2.9}
\end{equation*}
$$

where $\sum \gamma_{i}=r$. Order the products (2.9) lexicographically in the sense that the product $y_{1}^{\gamma_{1}} y_{2}^{\gamma_{2}} \cdots y_{n}^{\gamma_{n}}$ stands before the product $y_{1}^{\delta_{1}} y_{2}^{\delta_{2}} \cdots y_{n}^{\delta_{n}}$ provided that the first nonvanishing difference $\gamma_{1}-\delta_{1}, \gamma_{2}-\delta_{2}, \cdots, \gamma_{n}-\delta_{n}$ is positive. Denote the products (2.9) written in this order by

$$
Y_{1}, Y_{2}, \cdots, Y_{N^{*}}
$$

and denote the corresponding products of the x_{i} 's written in the same order by

$$
X_{1}, X_{2}, \cdots, X_{N^{*}}
$$

Let X be the column vector with components $X_{1}, \cdots, X_{N^{*}}$, and let Y be the column vector with components $Y_{1}, \cdots, Y_{N^{*}}$. Then by (2.8),

$$
Y=P_{r}(A) X
$$

where $P_{r}(A)$ is a matrix of order N^{*}. This matrix is called the $r^{\text {th }}$ induced matrix or power matrix of A. Many theorems on compound matrices have analogues for induced matrices, and we list the essential formal properties of $P_{r}(A)[7 ; 8 ; 9 ; 13 ; 14]$:

$$
\begin{array}{rr}
P_{r}(A) P_{r}(B)=P_{r}(A B) & (A \text { and } B \text { of order } n), \\
P_{r}\left(A^{-1}\right)=\left(P_{r}(A)\right)^{-1} & (\operatorname{det} A \neq 0), \\
\operatorname{det} P_{r}(A)=(\operatorname{det} A)^{M^{*}} & \left(M^{*}=\binom{n+r-1}{n}\right) \tag{2.12}
\end{array}
$$

Let $\alpha_{1}, \cdots, \alpha_{n}$ denote the characteristic roots of A. Then the characteristic roots of $P_{r}(A)$ are

$$
\begin{equation*}
\Sigma_{1}^{*}, \cdots, \Sigma_{N^{*}}^{*} \tag{2.13}
\end{equation*}
$$

where the Σ_{i}^{*} are the terms in the $r^{\text {th }}$ homogeneous product sum of α_{1}, \cdots, α_{n}. Thus if

$$
\frac{1}{\prod_{i=1}^{n}\left(1-\alpha_{i} x\right)}=1+h_{1} x+h_{2} x^{2}+\cdots+h_{r} x^{r}+\cdots
$$

then for every positive integer r,

$$
\begin{equation*}
h_{r}=\operatorname{tr}\left(P_{r}(A)\right) \tag{2.14}
\end{equation*}
$$

3. Algebraic inequalities

Let $f(x)=\sum a_{i} x^{i}$ and $g(x)=\sum b_{i} x^{i}$ be polynomials of degree n, where the coefficients a_{i} and b_{i} are nonnegative reals. If $a_{i} \leqq b_{i}(i=0,1, \cdots, n)$, then $f(x)$ is majorized by $g(x)$, written

$$
\begin{equation*}
f \prec g \quad \text { or } \quad g>f \tag{3.1}
\end{equation*}
$$

If $f(x)=\sum a_{i} x^{i}$ and $g(x)=\sum b_{i} x^{i}$ are formal power series, we write $f<g$ or $g>f$ provided $0 \leqq a_{i} \leqq b_{i}(i=0,1,2, \cdots)$. It is clear that $f \prec g$ and $f_{1} \prec g_{1}$ imply $f f_{1} \prec g g_{1}$. We now prove the inequalities required in Section 4. Specifically, we study the expressions $\Pi\left(x+\alpha_{i}\right)$ and $1 / \Pi\left(1-\alpha_{i} x\right)$ for the α_{i} 's nonnegative reals.

Lemma 3.1. If $\alpha \geqq \beta \geqq 0$ and $\varepsilon \geqq 0$, then

$$
(x+\alpha+\varepsilon)(x+\beta) \prec(x+\alpha)(x+\beta+\varepsilon)
$$

Equality holds for the coefficients of x^{2} and x. Equality holds for the coefficient of x^{0} if and only if $\alpha=\beta$ or $\varepsilon=0$.

The proof is immediate.
Lemma 3.1 implies the following well known inequality [6].
Lemma 3.2. If $e=\left(\alpha_{1}+\cdots+\alpha_{n}\right) / n$ and $\alpha_{i} \geqq 0$, then

$$
\prod_{i=1}^{n}\left(x+\alpha_{i}\right)<(x+e)^{n} .
$$

Equality holds for the coefficients of x^{n} and x^{n-1}. If equality holds for one of the other coefficients, then each $\alpha_{i}=e$, and equality holds throughout.

For let $\alpha_{1} \geqq \alpha_{2} \geqq \cdots \geqq \alpha_{n} \geqq 0$, and in Lemma 3.1, set $\alpha=e, \varepsilon=\alpha_{1}-e$, $\beta=\alpha_{n}$. Then

$$
\left(x+\alpha_{1}\right)\left(x+\alpha_{n}\right)<(x+e)\left(x+\alpha_{1}+\alpha_{n}-e\right)
$$

and

$$
\begin{equation*}
\prod_{i=1}^{n}\left(x+\alpha_{i}\right)<(x+e)\left(x+\alpha_{1}+\alpha_{n}-e\right) \prod_{i=2}^{n-1}\left(x+\alpha_{i}\right)<(x+e)^{n} . \tag{3.2}
\end{equation*}
$$

Suppose that equality holds throughout (3.2) for some coefficient of x^{r}, where $r<n-1$. Then since each $\alpha_{i} \geqq 0$,

$$
\alpha_{1} \alpha_{n}=e\left(\alpha_{1}+\alpha_{n}-e\right)
$$

whence $\alpha_{1}=\cdots=\alpha_{n}=e$.

Next we derive analogues of Lemmas 3.1 and 3.2 for the formal power series of the form $1 / \Pi\left(1-\alpha_{i} x\right)$.

Lemma 3.3. If $\alpha \geqq \beta \geqq 0$ and $\varepsilon \geqq 0$, then

$$
\frac{1}{(1-(\alpha+\varepsilon) x)(1-\beta x)}>\frac{1}{(1-\alpha x)(1-(\beta+\varepsilon) x)}
$$

Equality holds for the coefficients of x^{0} and x. If equality holds for one of the other coefficients, then $\alpha=\beta$ or $\varepsilon=0$, and equality holds throughout.

By direct multiplication,

$$
\frac{1}{(1-(\alpha+\varepsilon) x)(1-\beta x)}=\sum_{r=0}^{\infty} \sum_{i=0}^{r}(\alpha+\varepsilon)^{i} \beta^{r-i} x^{r}
$$

and

$$
\frac{1}{(1-\alpha x)(1-(\beta+\varepsilon) x)}=\sum_{r=0}^{\infty} \sum_{i=0}^{r} \alpha^{i}(\beta+\varepsilon)^{r-i} x^{r}
$$

If

$$
w_{r}=\sum_{k=0}^{r}\left[(\alpha+\varepsilon)^{r-k} \beta^{k}-(\beta+\varepsilon)^{r-k} \alpha^{k}\right]
$$

then $w_{0}=w_{1}=0$, and we must prove that $w_{r} \geqq 0$. Let

$$
\begin{aligned}
& w_{i k}=\binom{r-k}{i} \varepsilon^{i}\left(\alpha^{r-k-i} \beta^{k}-\beta^{r-k-i} \alpha^{k}\right) \\
&(k=0,1, \cdots, r, \quad i=0,1, \cdots, r-k)
\end{aligned}
$$

Then

$$
\begin{aligned}
w_{r} & =\sum w_{i k} \\
2 w_{r} & =\sum\left(w_{i k}+w_{i, r-k-i}\right) \quad(k=0,1, \cdots, r, \quad i=0,1, \cdots, r-k)
\end{aligned}
$$

If $r-k \geqq k+i$, then

$$
w_{i k}+w_{i, r-k-i}=\varepsilon^{i}(\alpha \beta)^{k}\left(\binom{r-k}{i}-\binom{k+i}{i}\right)\left(\alpha^{r-2 k-i}-\beta^{r-2 k-i}\right) \geqq 0,
$$

and if $r-k<k+i$, then

$$
w_{i k}+w_{i, r-k-i}=\varepsilon^{i}(\alpha \beta)^{r-k-i}\left(\binom{r-k}{i}-\binom{k+i}{i}\right)\left(\beta^{-r+2 k+i}-\alpha^{-r+2 k+i}\right) \geqq 0,
$$

whence $w_{r} \geqq 0$.
Lemma 3.4. If $e=\left(\alpha_{1}+\cdots+\alpha_{n}\right) / n$ and $\alpha_{i} \geqq 0$, then

$$
\frac{1}{\prod_{i=1}^{n}\left(1-\alpha_{i} x\right)}>\frac{1}{(1-e x)^{n}} .
$$

Equality holds for the coefficients of x^{0} and x. If equality holds for one of the other coefficients, then each $\alpha_{i}=e$, and equality holds throughout.

For let $\alpha_{1} \geqq \alpha_{2} \geqq \cdots \geqq \alpha_{n} \geqq 0$, and in Lemma 3.3, set $\alpha=e, \varepsilon=\alpha_{1}-e$, $\beta=\alpha_{n}$. Then

$$
\frac{1}{\left(1-\alpha_{1} x\right)\left(1-\alpha_{n} x\right)}>\frac{1}{(1-e x)\left(1-\left(\alpha_{1}+\alpha_{n}-e\right) x\right)}
$$

and

$$
\frac{1}{\coprod_{i=1}^{n}\left(1-\alpha_{i} x\right)}>\frac{1}{(1-e x)\left(1-\left(\alpha_{1}+\alpha_{n}-e\right) x\right) \prod_{i=2}^{n-1}\left(1-\alpha_{i} x\right)}
$$

whence the result follows.

4. Hermitian matrices

We now study inequalities involving $\operatorname{tr}\left(C_{r}(H)\right)$ and $\operatorname{tr}\left(P_{r}(H)\right)$, where the matrix H is nonnegative hermitian. Define the matrix B of order v by the equation

$$
\begin{equation*}
B=(k-\lambda) I+\lambda S \tag{4.1}
\end{equation*}
$$

Here k and λ are real numbers, I is the identity matrix, and S is the matrix all of whose entries are 1 's. We select $v>1$ and note that B is the matrix with k in the main diagonal and λ in all other positions. The characteristic polynomial of B is easily computed by subtracting column one of $\operatorname{det}(x I-B)$ from each of the other columns, and then adding to row one each of the remaining rows. Thus

$$
\begin{equation*}
\operatorname{det}(x I-B)=(x-(k+(v-1) \lambda))(x-(k-\lambda))^{v-1} \tag{4.2}
\end{equation*}
$$

and hence the v characteristic roots of B are $k+(v-1) \lambda$ taken once and $k-\lambda$ taken $v-1$ times. Note that

$$
\begin{equation*}
\operatorname{det} B=(k+(v-1) \lambda)(k-\lambda)^{v-1} \tag{4.3}
\end{equation*}
$$

It is now easy to evaluate $\operatorname{tr}\left(C_{r}(B)\right)$ and $\operatorname{tr}\left(P_{r}(B)\right)$ explicitly. Evidently,

$$
\begin{equation*}
\operatorname{tr}\left(C_{r}(B)\right)=\binom{v}{r}(k+(r-1) \lambda)(k-\lambda)^{r-1} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(P_{r}(B)\right)=\sum_{i=0}^{r}\left({ }_{i}^{v+i-2}\right)(k+(v-1) \lambda)^{r-i}(k-\lambda)^{i} . \tag{4.5}
\end{equation*}
$$

Let H be a nonnegative hermitian matrix of order v, where $v>1$. Let the characteristic roots of H be $\lambda_{1}, \cdots, \lambda_{v}$, where

$$
\lambda_{1} \geqq \cdots \geqq \lambda_{v} \geqq 0 .
$$

Let k and λ^{\prime} satisfy

$$
\begin{gather*}
\operatorname{tr}(H)=k v \tag{4.6}\\
\lambda_{v} \leqq k+(v-1) \lambda^{\prime} \leqq \lambda_{1} \tag{4.7}
\end{gather*}
$$

Now define the matrix B^{\prime} of order v by

$$
\begin{equation*}
B^{\prime}=\left(k-\lambda^{\prime}\right) I+\lambda^{\prime} S \tag{4.8}
\end{equation*}
$$

Note that by (4.7) the matrix B^{\prime} is nonnegative hermitian.
Theorem 4.1. The matrices H and B^{\prime} satisfy

$$
\operatorname{tr}\left(C_{r}(H)\right) \leqq \operatorname{tr}\left(C_{r}\left(B^{\prime}\right)\right)
$$

Equality holds for $r=1$. If equality holds for an $r>1$ and $k+(v-1) \lambda^{\prime} \neq 0$, then there exists a unitary U such that

$$
H=U^{-1} B^{\prime} U
$$

In Lemma 3.1, let $\varepsilon=\lambda_{1}-\left(k+(v-1) \lambda^{\prime}\right), \alpha=\lambda_{1}-\varepsilon$, and $\beta=\lambda_{v}$. Then

$$
\left(x+\lambda_{1}\right)\left(x+\lambda_{v}\right)<\left(x+k+(v-1) \lambda^{\prime}\right)\left(x+\lambda_{v}+\varepsilon\right)
$$

Now
$\left(\lambda_{v}+\varepsilon+\lambda_{2}+\cdots+\lambda_{v-1}\right) /(v-1)=\left(k v-\lambda_{1}+\varepsilon\right) /(v-1)=k-\lambda^{\prime}$.
Thus by Lemma 3.2,

$$
\begin{align*}
\left(x+\lambda_{1}\right)\left(x+\lambda_{v}\right) & \prod_{i=2}^{v-1}\left(x+\lambda_{i}\right) \\
& <\left(x+\left(k+(v-1) \lambda^{\prime}\right)\right)\left(x+\lambda_{v}+\varepsilon\right) \prod_{\substack{v-1 \\
i=2}}^{v-1}\left(x+\lambda_{i}\right) \tag{4.9}\\
& <\left(x+\left(k+(v-1) \lambda^{\prime}\right)\right)\left(x+\left(k-\lambda^{\prime}\right)\right)^{v-1}
\end{align*}
$$

whence the first conclusion of the theorem follows.
Suppose now that $k+(v-1) \lambda^{\prime} \neq 0$ and that equality holds throughout (4.9) for some coefficient of x^{r}, where $r \neq v, v-1$. Consider the case in which $k-\lambda^{\prime}>0$. Then equality must hold for some coefficient of x^{r} in

$$
\left(x+\lambda_{v}+\varepsilon\right) \prod_{i=2}^{v=1}\left(x+\lambda_{i}\right) \prec\left(x+\left(k-\lambda^{\prime}\right)\right)^{v-1}
$$

where $r \neq v-1, v-2 . \quad$ By Lemma 3.2,

$$
\lambda_{2}=\cdots=\lambda_{v-1}=\lambda_{v}+\varepsilon=k-\lambda^{\prime}
$$

Moreover, we must have

$$
\lambda_{1} \lambda_{v}=\left(k+(v-1) \lambda^{\prime}\right)\left(k-\lambda^{\prime}\right)
$$

and

$$
\lambda_{1}+\lambda_{v}=\left(k-\lambda^{\prime}\right)+\left(k+(v-1) \lambda^{\prime}\right)
$$

whence $\lambda_{1}=k+(v-1) \lambda^{\prime}$ and $\lambda_{v}=k-\lambda^{\prime}$, or $\lambda_{1}=k-\lambda^{\prime}$ and $\lambda_{v}=k+$ $(v-1) \lambda^{\prime}$. If $k-\lambda^{\prime}=0$, then $\varepsilon=\lambda_{2}=\cdots=\lambda_{v}=0$ and $\lambda_{1}=k v$. Thus under all possibilities the characteristic roots of H must be $k+(v-1) \lambda^{\prime}$ taken once and $k-\lambda^{\prime}$ taken $v-1$ times. This means that H and B^{\prime} have the same characteristic roots, and hence there exists a unitary U such that $H=U^{-1} B^{\prime} U$.

Theorem 4.2. The matrices H and B^{\prime} satisfy

$$
\operatorname{tr}\left(P_{r}(H)\right) \geqq \operatorname{tr}\left(P_{r}\left(B^{\prime}\right)\right)
$$

Equality holds for $r=1$. If equality holds for an $r>1$, then there exists a unitary U such that

$$
H=U^{-1} B^{\prime} U
$$

In Lemma 3.3, let $\varepsilon=\lambda_{1}-\left(k+(v-1) \lambda^{\prime}\right), \alpha=\lambda_{1}-\varepsilon$, and $\beta=\lambda_{v}$.

Then

$$
\frac{1}{\left(1-\lambda_{1} x\right)\left(1-\lambda_{v} x\right)}>\frac{1}{\left(1-\left(k+(v-1) \lambda^{\prime}\right) x\right)\left(1-\left(\lambda_{v}+\varepsilon\right) x\right)}
$$

Furthermore,

$$
\begin{aligned}
& \frac{1}{\left(1-\lambda_{1} x\right)\left(1-\lambda_{v} x\right) \prod_{i=2}^{v-1}\left(1-\lambda_{i} x\right)} \\
& \quad>\frac{1}{\left(1-\left(k+(v-1) \lambda^{\prime}\right) x\right)\left(1-\left(\lambda_{v}+\varepsilon\right) x\right) \prod_{i=2}^{v-1}\left(1-\lambda_{i} x\right)} \\
& \quad>\frac{1}{\left(1-\left(k+(v-1) \lambda^{\prime}\right) x\right)\left(1-\left(k-\lambda^{\prime}\right) x\right)^{v-1}}
\end{aligned}
$$

Suppose that equality holds throughout (4.10) for some coefficient of x^{r}, where $r \neq 0,1$. Then equality must hold for some coefficient of x^{r} in

$$
\frac{1}{\left(1-\left(\lambda_{v}+\varepsilon\right) x\right) \prod_{\substack{v=2 \\ i=1}}\left(1-\lambda_{i} x\right)}>\frac{1}{\left(1-\left(k-\lambda^{\prime}\right) x\right)^{v-1}}
$$

where $r \neq 0,1$. Thus $\lambda_{2}=\cdots=\lambda_{v-1}=\lambda_{v}+\varepsilon=k-\lambda^{\prime}$. Also equality must hold for some coefficient of x^{r} in

$$
\frac{1}{\left(1-\lambda_{1} x\right)\left(1-\lambda_{v} x\right)}>\frac{1}{\left(1-\left(k+(v-1) \lambda^{\prime}\right) x\right)\left(1-\left(\lambda_{v}+\varepsilon\right) x\right)}
$$

where $r \neq 0,1$. Thus we must have $\varepsilon=0, \lambda_{1}=k+(v-1) \lambda^{\prime}$, and $\lambda_{v}=k-\lambda^{\prime}$, or $\alpha=\beta, \lambda_{1}=k-\lambda^{\prime}$, and $\lambda_{v}=k+(v-1) \lambda^{\prime}$. Hence the characteristic roots of H are $k+(v-1) \lambda^{\prime}$ taken once and $k-\lambda^{\prime}$ taken $v-1$ times. Thus there exists a unitary U such that $H=U^{-1} B^{\prime} U$.

Consider the matrix $B=(k-\lambda) I+\lambda S$ of order v, where k is fixed by (4.6) and where

$$
\begin{equation*}
-k /(v-1) \leqq \lambda \leqq k \tag{4.11}
\end{equation*}
$$

The matrix B is nonnegative hermitian, and $\operatorname{tr}\left(C_{r}(B)\right)$ and $\operatorname{tr}\left(P_{r}(B)\right)$ are polynomials in λ. Theorems 4.1 and 4.2 imply that for $r>1, \operatorname{tr}\left(C_{r}(B)\right)$ is strictly decreasing and $\operatorname{tr}\left(P_{r}(B)\right)$ is strictly increasing in the interval $0 \leqq \lambda \leqq k$. Also $\operatorname{tr}\left(C_{r}(B)\right)$ is strictly increasing and $\operatorname{tr}\left(P_{r}(B)\right)$ is strictly decreasing in the interval $-k_{k} /(v-1) \leqq \lambda \leqq 0$. For if $\lambda \geqq 0$, let

$$
\begin{equation*}
-\lambda /(v-1) \leqq \lambda^{\prime} \leqq \lambda \tag{4.12}
\end{equation*}
$$

and if $\lambda \leqq 0$, let

$$
\begin{equation*}
\lambda \leqq \lambda^{\prime} \leqq-\lambda /(v-1) \tag{4.13}
\end{equation*}
$$

Then if $B^{\prime}=\left(k-\lambda^{\prime}\right) I+\lambda^{\prime} S$, it follows that

$$
\begin{equation*}
\operatorname{tr}\left(C_{r}(B)\right) \leqq \operatorname{tr}\left(C_{r}\left(B^{\prime}\right)\right) \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(P_{r}(B)\right) \geqq \operatorname{tr}\left(P_{r}\left(B^{\prime}\right)\right) \tag{4.15}
\end{equation*}
$$

In Theorems 4.1 and 4.2 the λ^{\prime} is confined to the interval

$$
\begin{equation*}
\left(\lambda_{v}-k\right) /(v-1) \leqq \lambda^{\prime} \leqq\left(\lambda_{1}-k\right) /(v-1) \tag{4.16}
\end{equation*}
$$

where λ_{1} is the maximal and λ_{v} is the minimal characteristic root of H. The preceding remarks imply that the best selection for λ^{\prime} in the theorems from the standpoint of sharpness of approximation is either $\left(\lambda_{1}-k\right) /(v-1)$ or $\left(\lambda_{v}-k\right) /(v-1)$. However, these values require information concerning the characteristic roots of H. In what follows we select a $\lambda^{\prime}=\lambda^{*}$ that satisfies the inequalities (4.16) and is determined by the sum of the nondiagonal elements of H. Moreover, if equality holds in the theorems for the case $\lambda^{\prime}=\lambda^{*}$, then the matrices themselves are equal.

Let k be defined by (4.6), and let

$$
\begin{equation*}
S H S=\mu S \tag{4.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=\left(k+(v-1) \lambda^{*}\right) v \tag{4.18}
\end{equation*}
$$

Define the matrix B^{*} of order v by

$$
\begin{equation*}
B^{*}=\left(k-\lambda^{*}\right) I+\lambda^{*} S \tag{4.19}
\end{equation*}
$$

Theorem 4.3. The matrices H and B^{*} satisfy

$$
\operatorname{tr}\left(C_{r}(H)\right) \leqq \operatorname{tr}\left(C_{r}\left(B^{*}\right)\right)
$$

Equality holds for $r=1$. If equality holds for an $r>1$ and $k+(v-1) \lambda^{*} \neq 0$, then

$$
H=B^{*}
$$

Since H is nonnegative hermitian, there exists a matrix P such that

$$
H=\bar{P}^{T} P
$$

where the bar denotes complex conjugate. Let p_{i} denote the sum of row i of P. Then

$$
S \bar{P}^{T} P S=\left(p_{1} \bar{p}_{1}+\cdots+p_{v} \bar{p}_{v}\right) S=S H S=\mu S
$$

whence

$$
\begin{equation*}
\mu=p_{1} \bar{p}_{1}+\cdots+p_{v} \bar{p}_{v} \tag{4.20}
\end{equation*}
$$

Now there exists a unitary U such that

$$
U\left[\begin{array}{c}
p_{1} \\
\vdots \\
p_{v}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{\mu / v} \\
\vdots \\
\sqrt{\mu / v}
\end{array}\right]
$$

Let $Q=U P$. Then

$$
\bar{Q}^{T} Q=\bar{P}^{T} \bar{U}^{T} U P=\bar{P}^{T} P=H
$$

Moreover,

$$
Q S=U P S=\sqrt{\mu / v} S=\sqrt{k+(v-1) \lambda^{*}} S
$$

Now the characteristic roots of $H=\bar{Q}^{T} Q$ satisfy

$$
\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{v},
$$

and a theorem of Browne [1] asserts that if ρ is a characteristic root of Q, then

$$
\lambda_{v} \leqq \rho \bar{\rho} \leqq \lambda_{1}
$$

But since $Q S=\sqrt{k+(v-1) \lambda^{*}} S$, we may select $\rho=\sqrt{k+(v-1) \lambda^{*}}$, whence

$$
\begin{equation*}
\lambda_{v} \leqq k+(v-1) \lambda^{*} \leqq \lambda_{1} \tag{4.21}
\end{equation*}
$$

Thus by Theorem 4.1,

$$
\operatorname{tr}\left(C_{r}(H)\right) \leqq \operatorname{tr}\left(C_{r}\left(B^{*}\right)\right)
$$

If equality holds for an $r>1$ and $k+(v-1) \lambda^{*} \neq 0$, then there exists a unitary U such that

$$
H=\bar{U}^{t} B^{*} U=\left(k-\lambda^{*}\right) I+\lambda^{*} \bar{U}^{T} S U
$$

Let u_{i} denote the sum of row i of U and let

$$
\begin{equation*}
u=u_{1}+\cdots+u_{v} \tag{4.22}
\end{equation*}
$$

Then

$$
S H S=\left(k-\lambda^{*}\right) v S+\lambda^{*} u \bar{u} S=\left(k-\lambda^{*}+\lambda^{*} v\right) v S
$$

and

$$
\lambda^{*} u \bar{u}=\lambda^{*} v^{2} .
$$

If $\lambda^{*}=0$, then $H=B^{*}=k I$, and if $\lambda^{*} \neq 0$, then

$$
\begin{equation*}
\left(u_{1}+\cdots+u_{v}\right)\left(\bar{u}_{1}+\cdots+\bar{u}_{v}\right)=v^{2} . \tag{4.23}
\end{equation*}
$$

Since $\bar{U}^{T} U=I$,

$$
\begin{equation*}
u_{1} \bar{u}_{1}+\cdots+u_{v} \bar{u}_{v}=v . \tag{4.24}
\end{equation*}
$$

But Cauchy's inequality implies

$$
v^{2}=\left(u_{1}+\cdots+u_{v}\right)\left(\bar{u}_{1}+\cdots+\bar{u}_{v}\right) \leqq\left(u_{1} \bar{u}_{1}+\cdots+u_{v} \bar{u}_{v}\right) v=v^{2}
$$

Since equality holds, we must have $u_{1}=\cdots=u_{v}=e$, where $e \bar{e}=1$. Thus $U S=e S, e \bar{U}^{T} S=S$, and $S U=e S=U S$. Hence

$$
H=\left(k-\lambda^{*}\right) I+\lambda^{*} \bar{U}^{T} S U=B^{*}
$$

Theorem 4.4. The matrices H and B^{*} satisfy

$$
\operatorname{tr}\left(P_{r}(H)\right) \geqq \operatorname{tr}\left(P_{r}\left(B^{*}\right)\right)
$$

Equality holds for $r=1$. If equality holds for an $r>1$, then

$$
H=B^{*}
$$

This theorem is a consequence of Theorem 4.2 and the preceding discussion.

5. Applications to combinatorial analysis

Let $Q=\left[q_{i j}\right]$ be a matrix of order v, all of whose entries are 0 's and 1 's. Let $v>1$, and let τ denote the total number of 1 's in Q. The matrix Q may be regarded as an incidence matrix for an arrangement of v elements x_{1}, \cdots, x_{v} into v sets S_{1}, \cdots, S_{v}, where $q_{i j}=1$ if x_{j} is in S_{i}, and $q_{i j}=0$ if x_{j} is not in S_{i}. The incidence matrix Q gives a complete description of the combinatorial arrangement of the v elements into the v sets.

With Q we associate the nonnegative symmetric matrix

$$
\begin{equation*}
W=Q Q^{T}, \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{tr}(W)=k v=\tau \tag{5.2}
\end{equation*}
$$

Suppose that we perform arbitrary permutations to the rows and to the columns of Q. This is equivalent to multiplying Q on the left by a permutation matrix P_{1} and on the right by a permutation matrix P_{2}. Now if $Q^{*}=P_{1} Q P_{2}$ and $W^{*}=Q^{*} Q^{* T}$, then

$$
W^{*}=P_{1} W P_{1}^{-1}
$$

and

$$
\begin{align*}
& \operatorname{tr}\left(C_{r}\left(W^{*}\right)\right)=\operatorname{tr}\left(C_{r}(W)\right) \tag{5.3}\\
& \operatorname{tr}\left(P_{r}\left(W^{*}\right)\right)=\operatorname{tr}\left(P_{r}(W)\right) \tag{5.4}
\end{align*}
$$

Thus both $\operatorname{tr}\left(C_{r}(W)\right)$ and $\operatorname{tr}\left(P_{r}(W)\right)$ are invariant under arbitrary permutations of the rows and of the columns of Q. Such functions of Q are of combinatorial interest because they describe properties of the arrangement of the v elements into the v sets independent of the particular labelling of elements and sets.

By (2.1) and (2.2),

$$
C_{r}\left(Q Q^{T}\right)=C_{r}(Q) C_{r}\left(Q^{T}\right)=C_{r}(Q)\left(C_{r}(Q)\right)^{T}
$$

Thus $\operatorname{tr}\left(C_{r}(W)\right)$ is equal to the sum of the squares of the $r^{\text {th }}$ order minor determinants of Q. Note that

$$
\begin{align*}
& \operatorname{tr}\left(C_{1}(W)\right)=\tau \tag{5.5}\\
& \operatorname{tr}\left(C_{2}(W)\right)=\Delta \tag{5.6}\\
& \operatorname{tr}\left(C_{v}(W)\right)=(\operatorname{det} Q)^{2} \tag{5.7}
\end{align*}
$$

where Δ denotes the number of 2 by 2 nonsingular submatrices of Q. It is clear that

$$
\begin{equation*}
\operatorname{tr}\left(C_{r}(W)\right) \geqq 0 \tag{5.8}
\end{equation*}
$$

and in particular, $\Delta \geqq 0$. Moreover, $\Delta=0$ if and only if by permutations of rows and columns, we may write Q in the form

$$
Q=\left[\begin{array}{ll}
S & 0 \tag{5.9}\\
0 & 0
\end{array}\right]
$$

Here S is the matrix of 1 's and is of size e by f, where

$$
e f=\tau
$$

and the 0 's denote zero blocks.
Also,

$$
\begin{equation*}
\operatorname{tr}\left(P_{1}(W)\right)=k v \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(P_{r}(W)\right) \leqq\left(\lambda_{1}+\cdots+\lambda_{v}\right)^{r}=k^{r} v^{r} \tag{5.11}
\end{equation*}
$$

where $\lambda_{1}, \cdots, \lambda_{v}$ are the v characteristic roots of $W=Q Q^{T}$. If equality holds in (5.11) for some $r>1$, then equality holds in (5.11) for every r, and one characteristic root of W must equal $k v$ and the remaining $v-1$ characteristic roots must equal 0 . But then $\Delta=0$, and by permutations of rows and columns we may write Q in the form (5.9). Conversely, every Q that by permutations of rows and columns may be written in the form (5.9) satisfies

$$
\operatorname{tr}\left(P_{r}(W)\right)=k^{r} v^{r}
$$

for every r.
The previous discussion suggests the study of the arrangement of the τ 1's in Q for $\operatorname{tr}\left(C_{r}(W)\right)$ maximal, and the related problem for $\operatorname{tr}\left(P_{r}(W)\right)$ minimal. Such a study will lead us to matrices of considerable combinatorial importance. Moreover, their structure is diametrically unlike those of (5.9). Let $\operatorname{tr}(W)=k v=\tau$ and let S be the v by v matrix of 1 's. Let $S W S=\mu S$, where

$$
\begin{equation*}
\mu=(k+(v-1) \lambda(Q)) v \tag{5.12}
\end{equation*}
$$

Here $\lambda(Q)$ is a rational number determined by the arrangement of the 0 's and 1's within Q. Indeed, if c_{i} denotes the sum of column i of Q, then

$$
\begin{equation*}
\lambda(Q)=\frac{\sum c_{i}^{2}-k v}{v(v-1)} \tag{5.13}
\end{equation*}
$$

Now define

$$
\begin{equation*}
\lambda=\frac{k(k-1)}{v-1} \tag{5.14}
\end{equation*}
$$

Every 0, 1 matrix Q of order v containing $\tau=k v$ 1's must satisfy

$$
\lambda(Q) \geqq \lambda
$$

For we have

$$
\sum c_{i}=k v
$$

and
whence by (5.13),

$$
\begin{gathered}
k^{2} v^{2}=\left(\sum c_{i}\right)^{2} \leqq v \sum c_{i}^{2} \\
\lambda(Q)=\frac{\sum c_{i}^{2}-k v}{v(v-1)} \geqq \frac{k(k-1)}{v-1} .
\end{gathered}
$$

Also,

$$
\sum c_{i}^{2} \leqq v \sum c_{i}=k v^{2}
$$

and by (5.13),

$$
\lambda(Q) \leqq \frac{k v^{2}-k v}{v(v-1)}=k
$$

Hence it follows that

$$
\begin{equation*}
\lambda \leqq \lambda(Q) \leqq k \tag{5.15}
\end{equation*}
$$

We describe now some special 0,1 matrices A of order v, called incidence matrices of v, k, λ configurations. Let v elements x_{1}, \cdots, x_{v} be arranged into v sets S_{1}, \cdots, S_{v} such that every set contains exactly k distinct elements and such that every pair of sets has exactly λ elements in common, $0<\lambda<k<v$. Such an arrangement is called a v, k, λ configuration. Every v, k, λ configuration must satisfy (5.14) [11]. For such a configuration, let $a_{i j}=1$ if x_{j} is an element of S_{i}, and let $a_{i j}=0$ if x_{j} is not an element of S_{i}. The v by v matrix $A=\left[a_{i j}\right]$ of 0 's and 1's is called the incidence matrix of the v, k, λ configuration. One verifies easily that if $0<\lambda<k<v$, then a v, k, λ configuration exists if and only if there exists a 0,1 matrix A of order v such that

$$
\begin{equation*}
A A^{T}=B=(k-\lambda) I+\lambda S \tag{5.16}
\end{equation*}
$$

The v, k, λ configurations and their related incidence matrices have been studied very extensively in recent years. The central problem concerns the determination of the precise range of values of v, k, and λ for which configurations exist. Certain nonexistence theorems are established in [2] and [4], and a general survey of the literature is available in [5;10;11]. The following theorems show that an incidence matrix A of a v, k, λ configuration has the 0,1 arrangement with $\operatorname{tr}\left(C_{r}\left(A A^{T}\right)\right)$ maximal and $\operatorname{tr}\left(P_{r}\left(A A^{T}\right)\right)$ minimal.

Theorem 5.1. Let Q be a 0, 1 matrix of order v, containing exactly $\tau=k v$ 1's. Let $\lambda=k(k-1) /(v-1)$ and $B=(k-\lambda) I+\lambda S$, where $0<\lambda<k<v$. Then

$$
\operatorname{tr}\left(C_{r}\left(Q Q^{T}\right)\right) \leqq \operatorname{tr}\left(C_{r}(B)\right)
$$

Equality holds for $r=1$. If equality holds for an $r>1$, then Q is the incidence matrix of a v, k, λ configuration.

By Theorem 4.3,

$$
\operatorname{tr}\left(C_{r}\left(Q Q^{T}\right)\right) \leqq \operatorname{tr}\left(C_{r}\left(B^{*}\right)\right),
$$

where $B^{*}=(k-\lambda(Q)) I+(\lambda(Q)) S$. But by (5.15), $\lambda \leqq \lambda(Q) \leqq k$, and hence

$$
\operatorname{tr}\left(C_{r}\left(B^{*}\right)\right) \leqq \operatorname{tr}\left(C_{r}(B)\right)
$$

If equality holds in the theorem for an $r>1$, then

$$
Q Q^{T}=B^{*}=B
$$

and Q is the incidence matrix of a v, k, λ configuration.
Note that Theorem 5.1 implies that

$$
\begin{equation*}
(\operatorname{det} Q)^{2} \leqq k^{2}(k-\lambda)^{v-1} \tag{5.17}
\end{equation*}
$$

where equality holds if and only if Q is the incidence matrix of a v, k, λ configuration [12].

Theorem 5.2. Under the hypothesis of Theorem 5.1,

$$
\operatorname{tr}\left(P_{r}\left(Q Q^{T}\right)\right) \geqq \operatorname{tr}\left(P_{r}(B)\right)
$$

Equality holds for $r=1$. If equality holds for an $r>1$, then Q is the incidence matrix of $a v, k, \lambda$ configuration.

By Theorem 4.4,

$$
\operatorname{tr}\left(P_{r}\left(Q Q^{T}\right)\right) \geqq \operatorname{tr}\left(P_{r}\left(B^{*}\right)\right)
$$

and $\lambda \leqq \lambda(Q) \leqq k$ implies $\operatorname{tr}\left(P_{r}\left(B^{*}\right)\right) \geqq \operatorname{tr}\left(P_{r}(B)\right)$.

References

1. E. T. Browne, The characteristic equation of a matrix, Bull. Amer. Math. Soc., vol. 34 (1928), pp. 363-368.
2. R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Canadian J. Math., vol. 1 (1949), pp. 88-93.
3. N. G. de Bruidn, Inequalities concerning minors and eigenvalues, Nieuw Arch. Wisk. (3), vol. 4 (1956), pp. 18-35.
4. S. Chowla and H. J. Ryser, Combinatorial problems, Canadian J. Math., vol. 2 (1950), pp. 93-99.
5. Marshall Hall, Jr., Projective planes and related topics, California Institute of Technology, 1954.
6. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, 1952.
7. A. Hurwitz, Zur Invariantentheorie, Math. Ann., vol. 45 (1894), pp. 381-404.
8. Dudley E. Littlewood, The theory of group characters and matrix representations of groups, Oxford, 1950.
9. C. C. MacDuffee, The theory of matrices, Berlin, 1933.
10. Günter Pickert, Projektive Ebenen, Berlin, 1955.
11. H. J. Ryser, Geometries and incidence matrices, Slaught Papers no. 4, Mathematical Association of America, 1955.
12. H. J. Ryser, Maximal determinants in combinatorial investigations, Canadian J. Math., vol. 8 (1956), pp. 245-249.
13. Issai Schur, Ueber eine Klasse von Matrizen die sich einer gegebenen Matrix zuordnen lassen, Dissertation, Berlin, 1901.
14. J. H. M. Wedderburn, Lectures on matrices, Amer. Math. Soc. Colloquium Publications, vol. 17, 1934.
The Ohio State University
Columbus, Оhio

[^0]: Received September 2, 1957.
 ${ }^{1}$ This work was sponsored in part by the Office of Ordnance Research.

