INEQUALITIES OF COMPOUND AND INDUCED MATRICES WITH
APPLICATIONS TO COMBINATORIAL ANALYSIS'

BY
H. J. RyYsEr

1. Introduction

In this paper we study inequalities involving the elementary symmetric
functions and the homogeneous product sums of the characteristic roots of a
nonnegative hermitian matrix. The inequalities obtained for nonnegative
hermitian matrices are applied to problems in combinatorial analysis dealing
with matrices all of whose entries are 0’s and 1’s.

Let A be a matrix with elements in the real or complex field. Throughout
the discussion A" denotes the transpose of 4, det A the determinant of 4,
A7 the inverse of A for det 4 % 0, tr (4) the trace of 4, C\(A4) the rt
compound or adjugate of A, P.(A) the 7t induced or power matrix of A.
I denotes the identity matrix, and S denotes the matrix all of whose entries
are 1’s.

Now let H be a nonnegative hermitian matrix of order », where v > 1. Let

the characteristic roots of H be A\, = --+ = \,, and let £ and N\ satisfy
(1.1) tr (H) = kv,

(1.2) MSk4+@— DN N.

Define the matrix B’ of order » by

(1.3) B = (k — \N)I + \&.

Then we prove that

(1.4) tr (Cw(H)) = tr (Co(B")).

Equality holds for r = 1. If equality holdsforanr > 1and k + (v — L)\ 5% 0,
then there exists a unitary U such that H = U 'B’U. Let k be defined by
(1.1) and let SHS = uS, where

(1.5) w= (k4 (v — Drw.

The inequalities (1.2) arc valid for A’ = A*. Thus if the matrix B* of order
v is defined by

(1.6) B* = (k — NI 4+ \*S,
then
(1.7) tr (C.(H)) = tr (C.(B¥%)).
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Moreover, we show that if equality holds in (1.7) for an r > 1 and
k 4+ (v — 1)A* = 0, then H = B*. Analogous results hold for the »* in-
duced or power matrix P,(H) of H, where for this case tr (P,(H)) = tr (P,(B’))
and tr (P,(H)) = tr (P,(B*)).

The results described in the preceding paragraph are derived in Section 4.
Section 2 summarizes the pertinent literature on compound and induced
matrices. In Section 3 we establish some algebraic inequalities involving
symmetric functions and homogeneous product sums. These inequalities
are essential to the derivations in Section 4. Section 5 is concerned with
combinatorial analysis. ILet @ be a matrix of order », all of whose entries
are 0’s and 1’s. The matrix QQ” is nonnegative symmetric, and the integers
tr (C.(QQ™)) and tr (P,(QQ")) reflect combinatorial properties of Q. Appli-
cations to incidence matrices of v, k, A configurations are studied in detail,
and the author’s Theorem 3 on maximal determinants [12] is obtained as a
special case of a more general result.

2. Compound and induced matrices

Let A be an n by n matrix with elements in the real or complex field, and
let 7 be an integer such that 1 < r < n. Let {n,}] be the collection of all
subsets of r elements chosen from the set 1, ---, n. If ¢ and 7 belong to
{n.}, and if in the matrix 4 all rows are deleted whose indices do not belong
to o and all columns are deleted whose indices do not belong to 7, then there
remains an 7 by r submatrix of A, which we denote by A4,,. ILet the ele-
ments of {n,} be o1, - -+, o, where

n!
riin—nrt’
and for convenience, let the o’s be ordered lexicographically. The N by N
matrix

N=() =

C.(4) = [det As;0;] G,j=1,---,N)

is called the r™ compound or the r® adjugate of A. We state without proof
some of the fundamental properties of C.(4) [3; 8; 9; 13; 14]:

(2.1) C.(A)C.(B) = C.(AB) (4 and B of order n),

(2.2) C(AT) = (C(A)),

(2.3) C.(A7h = (C.(A)™ (det 4 = 0),

(2.4) det C,(4) = (det A)" M = (721).
Let ay, -, a, denote the characteristic roots of A. Then the character-

istic roots of C,.(4) are

(2.5) 21, 29,00, 2y,

where the =; are the terms in the 7™ elementary symmetric function of ey , - - -
Ky . Let

)

a(A) = Za det Ao,
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where ¢ runs through {n,}. The a,(4)’s are the coefficients, apart from the
signs, of the characteristic polynomial of A

det (zI — A) = 2" — ai(A)z"™ + ax(A)z"" — -+ + (=1 "a.(4).
Thus if ey, «++, a, are the characteristic roots of 4, then
2.6) IIki@ + a) = 2" + a(A)z™ ™ + @(4)z™ + -+ + aa(4).

Note that a;(4) = tr (4), a.(A) = det 4, and for r an integer such that
1=r =0,

2.7 a,(A) = tr (C.(4)).
Let
(2.8) Yi=0a @1+ ++ + Qin Tn @G=1---,n),

where x; and y; are indeterminates. Let r be a positive integer, and form
the N* = (**7™) products of the y.’s

(2.9) yi'ys® - ya",
where ) y; = r. Order the products (2.9) lexicographically m the sense
that the product y{'ys® --- ya" stands before the product yl yz < ,."

provided that the first nonvanishing difference y1 — 81, v2 — 82, -+ , ¥n — 6a
is positive. Denote the products (2.9) written in this order by

er Y2} ) YN‘)
and denote the corresponding products of the z;’s written in the same order
by

Xy, Xo, oo, Xyv.

Let X be the column vector with components X;, -+, Xy+, and let Y be
the column vector with components Yy, -+, Ya+«. Then by (2.8),

Y = P,(A)X,

where P,(A) is a matrix of order N*. This matrix is called the ™ induced
matriz or power mairix of A. Many theorems on compound matrices have
analogues for induced matrices, and we list the essential formal properties
of P.(A) [7;8;9; 13; 14]:

(2.10) P,(A)P.(B) = P.(4B) (A and B of order n),
(2.11) PA7h = (P(A)™ (det 4 > 0),
(2.12) det P,(A) = (det )™ M+ = ("5,

Let aj, -+, a, denote the characteristic roots of A. Then the char-
acteristic roots of P.(4) are

(2.13) =, e, 2k
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where the =¥ are the terms in the rt* homogeneous product sum of e, - - -
a,. Thusif

b

1
I3 — i)
then for every positive integer r,
(2.14) h, = tr (P.(4)).

3. Algebraic inequalities

= 1z + haa® + o+ b’ oo

Let f(x) = 2 a;a’ and g(z) = Y b;a’ be polynomials of degree n, where
the coefficients a; and b; are nonnegative reals. Ifa; < b; (¢ = 0,1, --- , n),
then f(x) is majorized by g(x), written
(3.1) f<g or g>f
If f(x) = X, a;2" andg(z) = _ b; 2’ are formal power series, we write f < ¢
org > fprovided0 < a; £ b; (¢ =0,1,2, ---). Itisclear that f < g and
fi < g1 imply ffi < gg1. We now prove the inequalities required in Section

4. Specifically, we study the expressions [[(z + ;) and 1/[J(1 — «; 2) for
the a,’s nonnegative reals.

Lemma 3.1. Ifa= 3= 0and ¢ = 0, then
E+at+e)lz+8) < @+ a)z+ 8+ ).

Equality holds for the coefficients of * and x. Equality holds for the coefficient
of * if and only if &« = Bor e = 0.

The proof is immediate.

Lemma 3.1 implies the following well known inequality [6].

Lemma 3.2. Ife = (v + -+ + an)/n and a; = 0, then

i@+ a) < @+ o)™

Equality holds for the coefficients of ™ and =", If equality holds for one of
the other coefficients, then each a; = e, and equality holds throughout.

Forleta; = ap = - = a, = 0,and in Lemma 3.1, set « = ¢, £ = oy — ¢,
B8 = an,. Then

4+ o)z + o) <@+ e)(x+ a4+ an — €
and
32 [l +a)< @+e)(z+a+a—e [[15 @+ a)< (x+e)"

Suppose that equality holds throughout (3.2) for some coefficient of ',
where r < n» — 1. Then since each a; = 0,

a1 0y = e(al + on — 6),

whence ay = -+ = a, = e.
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Next we derive analogues of Lemmas 3.1 and 3.2 for the formal power
series of the form 1/]J(1 — ).

Immma 33, Ifa= B = 0and ¢ = 0, then

1 > 1
(I=(a+ o)1 — pz) ° (1 —ax)(1 — (B+ &)2)

Equality holds for the coefficients of «° and x. If equality holds for one of the
other coefficients, then o = B or ¢ = 0, and equality holds throughout.

By direct multiplication,

1 0 r

(N rEar e I SDICE D

and
: 33 i r—i_r
1 — ax)1 — (B + &)z) f;};a(ﬁ + o)
If

we = Do [l + 7B — (B + &),
then wy = w; = 0, and we must prove that w., = 0. Let
wa = ()@ — gk
k=0,1,--+,r, 2=0,1,-+-,r—k).
Then

we = Y wa,
2w, = D (wa + Wiri) k=0,1,---,r, 2=0,1,---,r —Fk).
Ifr — k= k -+ <, then
wie + Wi = £@8) () = (TN ™ = 77 2 0,
and ifr — &k < k + ¢, then
wie + Wi = (@) (T — (TNETHT = &) 2 0,
whence w, = 0.
Lumma 34. Ife = (a1 + -+ + an)/nand a; = 0, then

1 1
Mo G —as 0=

Fquality holds for the coefficients of a® and x. If equality holds for one of the
other coefficients, then each a; = e, and equality holds throughout.

Forlebas = ap = -+ = a» = 0, and in Lemma 3.3, set & = ¢, ¢ = oy — ¢,
8 = a,. Then
1 > 1
(I —a2)(q —anz) " 1 — ex)(1 — (1 + an — €)x)
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and
1 N 1
II?=1 1 — o) 1 —e)1 — (o + oy — e)x) H?=_21 a- Otiil?)’

whence the result follows.

4. Hermitian matrices

We now study inequalities involving tr (C.(H)) and tr (P.(H)), where the
matrix H is nonnegative hermitian. Define the matrix B of order » by the
equation

(4.1) B = (k — NI + \S.

Here k and \ are real numbers, [ is the identity matrix, and S is the matrix
all of whose entries are 1’s. We select v > 1 and note that B is the matrix
with & in the main diagonal and \ in all other positions. The characteristic
polynomial of B is easily computed by subtracting column one of det (I — B)
from each of the other columns, and then adding to row one each of the re-
maining rows. Thus

(4.2) det (@I — B) = (x — (k + (v — DA)(x — (b — A)"™,

and hence the » characteristic roots of B are & + (v — 1)\ taken once and
k — X\ taken» — 1 times. Note that

(4.3) det B= (k4 (v — DNk — N
It is now casy to evaluate tr (C.(B)) and tr (P,(B)) explicitly. Iividently,
(4.4) tr (C,(B)) = (2) (k + (r — DNk — )™
and
(4.5) tr (Py(B)) = Siea (D) (b 4+ 0 — DN — N

Let H be a nonnegative hermitian matrix of order », where » > 1. Let
the characteristic roots of H be Ay, - -+, N, , Where

Mz o2 M 20

Let k& and N satisfy
(4.6) tr (H) = ko,
4.7) MEEk+ @—DN =N,
Now define the matrix B’ of order » by
(4.8) B = (k —\)I 4+ N8S.

Note that by (4.7) the matrix B’ is nonnegative hermitian.
Traeorem 4.1.  The mairices H and B’ satisfy
tr (Co(H)) = tr (C:(B")).
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Equality holds for r = 1.  If equality holds foranr > 1 and k + (v — 1)N = 0,
then there exists a unitary U such that
H = U"'B'U.
In Lemma 3.1,let e = N\ — (K 4+ (@ — DN),a =N — g,and 8 = A, .

Then

+MNax+N) <@+E+ @— D)@+ N+ o).
Now

Mtet+rt+ o FM)/0—1)= (v =N+ &)/0—1) =k—N.
Thus by Lemma 3.2,
@+ M)+ M) 1= @+
(4.9) <@+ G+ 0= D)@+ N+ )@+ 2
<@+ k+@—DN)&+ &—N),

whence the first conclusion of the theorem follows.

Suppose now that & + (v — 1)\ # 0 and that equality holds throughout
(4.9) for some coefficient of z’, where r ¢ », » — 1. Consider the case in
which & — N > 0. Then equality must hold for some coefficient of z” in

@+ M+ I @+ 2) < (@ + (6 — M),
where r ¢ v — 1, v — 2. By Lemma 3.2,
M= -=Mha=M+e=k—2N.
Moreover, we must have
Mh =4+ — DN)E—N)

and
M+ N =((—=N)+ &+ @— 1N),
whence \;y = k+ (v — DN and N, =k — N,or My =k — Nand A, = k +
w—1N. Ifk—N=0,thene=NN= .- =)\, =0and N = kv. Thus
under all possibilities the characteristic roots of H must be k¥ 4+ (» — 1)\
taken once and &k — N taken v — 1 times. This means that H and B’ have
the same characteristic roots, and hence there exists a unitary U such that
H = U'B'U.
THEOREM 4.2. The matrices H and B’ satisfy
tr (P,(H)) Z tr (P/(B)).

Equality holds for r = 1. If equality holds for an r > 1, then there exists a
unitary U such that
H = U"B'U.

In Lemma 33,let e =\ — (k+ @ — DN), @ = Ay — &, and 8 = ), .
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Then
1 N 1
A—-—Mn)0d —N2) " =G+ @ —DN))(1 — (N + o))

Furthermore,

1
(1 —n2)(1 — N2) [T 4 — o)

1
TA= G 0= DVDA = (vt o) (150 = na)
N 1
A =&+ @—DN)2)1 — (b — N)z)™t°

Suppose that equality holds throughout (4.10) for some coefficient of =z,
where r ¥ 0, 1. Then equality must hold for some coefficient of z in

(4.10)

1 1
> ,
=0+ o2 [0 —ne) " Q= k= Na)?
where » 5 0,1. ThusAs = -+ = Ay = A, + &€ = k — N Also equality
must hold for some coefficient of 2" in

1 N 1
1O —-—Nn2)A —N2) " =G+ @ — DM@ — N + o))’

where 7 5 0, 1. Thus we must have ¢ = 0, Ay = k + (@ — L)\,
and\, =k —N,ora=8MN=Fkk—=2X,and\, = k + (v — 1)\". Hence
the characteristic roots of H are k + (» — 1)\’ taken once and & — A’ taken
v — 1 times. Thus there exists a unitary U such that H = U'B'U.

Consider the matrix B = (¢ — NI + AS of order v, where £ is fixed by
(4.6) and where

(4.11) —k/w— 1) S\ S k.

The matrix B is nonnegative hermitian, and tr (C.(B)) and tr (P.(B)) are
polynomials in N\. Theorems 4.1 and 4.2 imply that for » > 1, tr (C,(B))
is strictly decreasing and tr (P,(B)) is strictly increasing in the interval
0 <N = k. Also tr (C.(B)) is strictly increasing and tr (P,(B)) is strictly
decreasing in the interval —k/(v — 1) = A = 0. Forif A = 0, let

(4.12) -\ @ —1) £\ =2,
and if A = 0, let
(4.13) AsSA = —Me - ).

Then if B = (k — A) + \'S, it follows that
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and
(4.15) tr (P,(B)) = tr (P.(B")).

In Theorems 4.1 and 4.2 the )" is confined to the interval
(4.16) N =B/ —1)=N= N -k/0-1),

where \; is the maximal and A, is the minimal characteristic root of H. The
preceding remarks imply that the best selection for \” in the theorems from
the standpoint of sharpness of approximation is either (\; — k)/(» — 1) or
A\ — k)/(v — 1). However, these values require information concerning
the characteristic roots of H. In what follows we select a A" = \* that satis-
fies the inequalities (4.16) and is determined by the sum of the nondiagonal
elements of H. Moreover, if equality holds in the theorems for the case
A" = \* then the matrices themselves are equal.
Let k& be defined by (4.6), and let

(4.17) SHS = uS,
where

(4.18) w=(k+ (v — DNw.
Define the matrix B* of order » by

(4.19) B* = (k — NI + \*S.

Tuarorem 4.3. The matrices H and B* satisfy
tr (Co(H)) = tr (C,(B¥)).

Equality holds forr = 1. If equality holds foranr > 1and k + (v — DX*® 5 0,
then

H = B*.
Since H is nonnegative hermitian, there exists a matrix P such that
H = PP,

where the bar denotes complex conjugate. ILet p; denote the sum of row 7
of . Then

SP"PS = (prpr+ -+ 4 pDu)S = SHS = uS,
whence

(420) ,Lt'—‘plﬁ:—l-”'—l-pvf)v.

Now there exists a unitary U such that

ul = : |
Do \/ u/v
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Let Q@ = UP. Then _ _
Q’Q = P'UTUP = P"P = H.

QS = UPS = \Vu/v8S=Vk+ @©— 1A*S.
Now the characteristic roots of H = Q”Q satisfy
M2 -2,

Moreover,

and a theorem of Browne [1] asserts that if p is a characteristic root of ¢,
then
Ao S 0 S )\1

But since QS = Vk + (v — DA* S, we may select p = V'k + (v — X%
whence
(4.21) MEFk4+ @ — DN N,

Thus by Theorem 4.1,
tr (C.(H)) = tr (C.(B*)).

If equality holds for an» > 1 and & + (v — 1)A* 5 0, then there exists a
unitary U such that

H = U'B*U = (k — NI + \*U"SU.
Let u; denote the sum of row 7 of U and let
(4.22) U=1u+ -+ u.

Then
SHS = (k — N)vS + NuaS = (b — N* + NS,
and
N = ¥’

If \* = 0, then H = B* = kI, and if \* £ 0, then
(4.23) (w + - Fw) @+ e+ w) =0
Since U'U = I,
(4.24) Wy + -+ Uy Uy = 0.
But Cauchy’s inequality implies

= (wm+ - Fuwm+ o+ w) = (A w b = v
Since equality holds, we must have u; = --- = u, = ¢, where e¢ = 1. Thus
US = eS,eU'S = S, and SU = eS = US. Hence

H = (k — NI + MU"SU = B*.
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TurOREM 4.4. The matrices H and B* satisfy
tr (P,(H)) = tr (P(B¥)).
Equality holds for r = 1. If equality holds for an r > 1, then
H = B*
This theorem is a consequence of Theorem 4.2 and the preceding discussion.

5. Applications to combinatorial analysis

Let @ = [gs;] be a matrix of order v, all of whose entries are 0’s and 1’s.
Let v > 1, and let r denote the total number of 1’s in Q. The matrix @
may be regarded as an incidence matrix for an arrangement of v elements
Ty, -+, X, into v sets S1, - -+, S,, where ¢;; = 1if z;isin S;, and ¢;; = 0
if z;is not in S;. The incidence matrix @ gives a complete description of the
combinatorial arrangement of the » elements into the v sets.

With @ we associate the nonnegative symmetric matrix

(5.1) W = QQ",
where
(5.2) tr (W) = kv = .

Suppose that we perform arbitrary permutations to the rows and to the
columns of . This is equivalent to multiplying @ on the left by a permuta-
tion matrix P; and on the right by a permutation matrix P,. Now if
Q* = P, QP; and W* = Q*Q*", then

W* = P,WPY,
and
(5.3) tr (C,(W*)) = tr (C\(W)),
(5.4) tr (P.(W*)) = tr (P.(W)).

Thus both tr (C.(W)) and tr (P,(W)) are invariant under arbitrary permu-
tations of the rows and of the columns of Q. Such functions of @ are of
combinatorial interest because they describe properties of the arrangement
of the v elements into the v sets independent of the particular labelling of
elements and sets.

By (2.1) and (2.2),
CQQ") = CAQ)C(Q") = CHR)C(Q)".

Thus tr (C.(W)) is equal to the sum of the squares of the r** order minor de-
terminants of . Note that

(5.5) tr (Cy(W)) = =,
(5.6) tr (Co(W)) = A,
(5.7) tr (C,(W)) = (det Q)’,
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where A denotes the number of 2 by 2 nonsingular submatrices of Q. It is
clear that
(5.8) tr (C.(W)) = 0,

and in particular, A = 0. Moreover, A = 0 if and only if by permutations
of rows and columns, we may write @ in the form

(5.9) Q= [g g].
Here S is the matrix of 1’s and is of size ¢ by f, where
ef =1,

and the 0’s denote zero blocks.

Also,
(5.10) tr (PU(W)) = kv
and
(5.11) tr (P,(W) £ M+ -+ +N) =KV,
where Ay, -+, A\, are the v charaecteristic roots of W = QQ". If equality

holds in (5.11) for some r > 1, then equality holds in (5.11) for every r, and
one characteristic root of W must equal kv and the remaining » — 1 char-
acteristic roots must equal 0. But then A = 0, and by permutations of rows
and columns we may write @ in the form (5.9). Conversely, every @ that
by permutations of rows and columns may be written in the form (5.9) satis-
fies
tr (P,(W)) = kW

for every r.

The previous discussion suggests the study of the arrangement of the =
1’s in Q for tr (C.(W)) maximal, and the related problem for tr (P,(W)) mini-
mal. Such a study will lead us to matrices of considerable combinatorial
importance. Moreover, their structure is diametrically unlike those of (5.9).
Lettr (W) = kv = 7 and let S be the v by v matrix of 1’s. Let SWS = uS§,
where

(5.12) p=(k+ (— DNQN.

Here A(Q) is a rational number determined by the arrangement of the 0’s
and 1’s within . Indeed, if ¢; denotes the sum of column ¢ of @, then

_ Z ¢ — kv
Now define
(5.14) A= k—(f:—ll)

Every 0, 1 matrix @ of order v containing » = kv 1’s must satisfy

AMQ) =\
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For we have

2ci=1v
B = Qo) 2w e,
\Q) = 2=k k(b = 1)

and

whence by (5.13),

v —1) T v —1
Also,
Zc% = chi = I*,
and by (5.13),
k* — ko
< —_— = ":.
NQ) = (v — 1) L
Hence it follows that
(5.15) NENQ) =k
We describe now some special 0, 1 matrices A of order », called incidence
matrices of », k, A configurations. Let » elements 1, ---, x, be arranged
into » sets S;, ---, S, such that every set contains exactly & distinet ele-

ments and such that every pair of sets has exactly A elements in common,
0 < A <k <w. Suchan arrangement is called a v, k, X configuration. Every
v, k, X configuration must satisfy (5.14) [11]. For such a configuration, let
a;; = 11if z; is an element of S;, and let a;; = 0 if x; is not an element of
S:. The v by v matrix A = [a,;] of 0’s and 1’s is called the incidence matriz
of the v, k, \ configuration. One verifies easily that if 0 < X < k < v, then a
v, k, X configuration cxists if and only if there exists a 0, 1 matrix 4 of order
v such that

(5.16) AA" = B = (k — NI + \S.

The », k, N\ configurations and their related incidence matrices have been
studied very extensively in recent years. The central problem concerns the
determination of the precise range of values of v, k, and X for which configura-
tions exist. Certain nonexistence theorems are established in [2] and [4],
and a gencral survey of the literature is available in [5; 10; 11]. The following
theorems show that an incidence matrix 4 of a v, k, N configuration has the
0, 1 arrangement with tr (C.(AA")) maximal and tr (P,(AA4")) minimal.

TurorEM 5.1. Let Q be a 0, 1 matrix of order v, containing exactly v = kv
's. Leth=k(k—1)/(v—1)and B = (k — NI + \S, where0 <\ < k < v.
Then

tr (C.(QQ")) = tr (C.(B)).

Bquality holds for r = 1. If equality holds for an r > 1, then Q is the incidence
matriz of a v, k, N configuration.

By Theorem 4.3,
tr (Or(QQT)) é tr (CT(B*)))
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where B* = (k — MN@Q))] + (\(@Q))S. But by (5.15), A < A(Q) = ¥, and

hence B
tr (C.(B*)) =< tr (C,(B)).
If equality holds in the theorem for an r > 1, then
QQ" = B* = B,

and @ is the incidence matrix of a », k, A configuration.
Note that Theorem 5.1 implies that

(5.17) (det Q) < Kk — N7,

where equality holds if and only if @ is the incidence matrix of a v, k, A con-
figuration [12].

TaroreM 5.2. Under the hypothesis of Theorem 5.1,
tr (P,(QQ")) = tr (P.(B)).

Equality holds for r = 1. If equality holds for an r > 1, then Q s the incidence
matriz of a v, k, N configuration.

By Theorem 4.4,
tr (P,(QQ")) = tr (P.(B¥),
and A £ AMQ) = k implies tr (P,(B¥)) = tr (P.(B)).
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