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1. Introduction

Bessel polynomials arise in the solution of the classical wave equation in
spherical coordinates. They are defined by Krall and Frink [1] by the
formula

(1) ’,(x, a, b) Fo(-n, a --t-- n 1; -xb).

Recently a number of papers have been written on these polynomials. Full
references for these papers are given in Agarwal’s paper [2], where a second
definition is given on p. 414, namely

1 f0 e-XX+-2(2) ,(x, a, b)
r(a -[- n 1)

(1 -t- )x/b) d,,

where R(a -f- n 1) _-> 0.
Also u divergent generating function was given by Brafman [3].
In 2 an identical relation between Bessel polynomials will be established,

and in 3 an integral involving a modified Bessel function will be evaluated
by means of this relation in terms of these polynomials. Some further iden-
tities for Bessel polynomials and Kummer functions are deduced in 4.

2. An identity involving Bessel polynomials
The formul to be established is

(3) Cr(1 a 2/ n; r),+_(x, a + r, b)(b/x) ,(x, a, b),
r--0

where n, l, r are positive integers (or zero) and

(a; r) F(a - r) a(a -t- 1) (a - r 1), r 1,2, 3,.-.
() r()

(; 0)

To prove it, start with the two known relations for Bessel polynomials,
namely, if k is any positive integer-

(5) (x, a, b) _(x, a + 1, b) + (x/b)(a -k k 1)/_(x, a + 2, b);

(2It + a l),(x, a, b)
(6)

/5’-(x, a -t- 1, b) - (a -t- / 1)(x, a - 1, b).

Multiply (5) by (2/c -k a 1) and subtract (6); thus
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(7)
y(x, a 4- 1, b) + (1 2k a)(b -1Ix) %_1(x, a + 2, b)

i-1(x, a 4- 1, b).
Here replace k by k -k 1 and a by a 1, and get

(8) ’/,+1(x, a, b) -}- 2k a) -1(b/x) ")’k(x, a 4- 1, b) (x, a, b),

which is formula (3) with n 1.
Now assume (3) for a particular value of n, and apply (8) to each term on

the left-hand side. This then becomes

k nC,.(1 a 2k- n; r)(b/x)-"
r-----0

X YA;+n--r+I(X, a + r, b) -t- (--2k 2n + r --a

But

3’+,-r(x,a -t- r ’i- 1,b) 1
nCr(1 a- 2k- n;r)

q- ’C+1(1 a 2k n; r 1)(-2k 2n + r a)

n+ic(1 a- 2k- n- 1;r).
Therefore (3) holds with n -k I in place of n. It holds, however, when n 1;
hence it holds for all positive integral values of n.

3. An integral involving a modified Bessel function

The integral formula

k-m 2e--(a+b/x)kkm--k--l(1 + k) I2m[ Y/{x-labX(1 + X)}] dX

(9)

F(2m -t- 1)
iFx(2m k; 1 -t- 2m;a),(x, 1 -I- 2m 2k, b),

where R(b) > a l, R(2m k) > 0, 2m + 1 is not a negative integer or zero,
and k is any positive integer, will now be established.
To prove (9), assume m > -1/2, expand e and I.m in a series, and multiply.

Then the integral becomes

e-bXxm--l(1 "}- )k) X E (-- l)
r---O s-.O

by (2).

E
r0 s-----0

{x-abh(1 Jr- 3,)}-(ah)
r(2m + r s -I- 1)s!(r s)!

d

(ab/x)-a
F(2m -+- r = !(r s)!

f0 e-Xx2m-c+r-i(1 -- Xx/b)C+r- dX
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Therefore the left-hand side of (9) is equal to

am()-m F(2m--/c-r)a
r=0 r!F(2m + 1 + r)

X rc(-2m r; s) k_r_s(X, 1 -t- 2m 2k + s, b)
s-O

r(2m + 1) =o r](2m + 1; r)
ar’)’k(X’ 1 -- 2m 2lc, b),

by (3). From this (9) follows after removing the restriction m > -1/2 by
analytical continuation.

4. Further identities

In (9) assume m > --1/2, expand I., and apply formula (2); the left-hand
side of (9) then becomes

(_.b)m F(2m--/c+r
r-----0 r! F(2m + 1 + ) a + 7+ (x, 1 + 2m 2k, ax + b).

Thus if R(b) > a , R(2m ]c) > O, and k is any positive integer,

F(2m k;2m
(o)

=0 r (2m + 1;r) kax + b]
+(x, 1 + 2m 2l, b + ax),

where the restriction m > - is now removed. In (3) take lc 0, and get

(11) 1 Cr(1 a n; r)(b/x)-r_r(x, a + r, b)
r0

which cn be proved lternatively by considering the Cauchy product for a
double series nd then applying Gnuss’s theorem.

In (9), take 0, x 1; thus if R(b) > ]a , R(m) > O, and 2m + 1 is
not a negative integer or zero,

e-(a+)x -(1 + )- Im 2 abh(1 + ) }] dk
(12)

1 + l2m+l (2m+2) +2m+3 +
which is a new integral formula.
Again in (10) take ]c 0, and get

2- r]kax + b]
(x, 1 + 2m, b + ax)

(13)

where R(b) > a , R(m) > O, and 2m + 1 is not a negative integer or zero
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Finally I may mention the following formulae"

(14) kCr(a + 2n + 1 ]c; r) "+l_k(x, a + r, b)(b/x) ,+l(x, a, b),

where It, n are any positive integers (or zero) such that n W 1 k >= 0; and

n(1 a n),_ (x, a + 2, b)

(15) + (2 a b/x)%,(x, a, b)- (b2/x)’+l(x, a 2, b) O.
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