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Among the problems posed by D. Hilbert at the Second International
Congress of Mathematicians at Paris in 1900, the fourteenth still remains
undecided. This problem can be stated as follows:

If S denotes the ring of polynomials in n indeterminates over a field k, and
if F is a subfield of the field of fractions of S which contains k, then is the ring
R S n F finitely generated over k?

In a paper, [2], published in 1954, O. Zariski posed a problem which gen-
eralizes the above problem of Hilbert. Zariski’s problem is the following.

Let F be a field finitely generated over a field k, and let S be a finitely gen-
erated, normal integral domain over k whose field of fractions F’ contains F.
Then is the ring R S n F finitely generated over k?

It will be convenient at this point to introduce the following terminology.
We shall suppose a field F given. Then if the answer to the above problem
is in the affirmative for all choices of S, subject to the conditions stated in
the problem, we shall say that F is a Zariski field over/. In the paper al-
ready cited, Zariski proved that any field of transcendence degree 1 or 2 over

is a Zariski field over and posed the conjecture that every finitely generated
extension of k is a Zariski field over k.
The next contribution to this problem was made by Nagata in [1]. Na-

gata’s main contribution to the problem lies in the following result.
If F is a finitely generated field extension of k, F is a Zariski field over ] if

and only if the following is true. Given any finitely generated normal in-
tegral domain A over k with F as field of fractions and any ideal a of A, the
ring B [Ja is finitely generated over A and therefore k. Here a denotes
the set of elements x of F such that xa . A whenever a e

It will be convenient to state this result of Nagata in a somewhat different
form. We recall that if A is a finitely generated normal integral domain, then
with each minimal prime ideal of A we may associate a discrete valuation
v(x) on the field of fractions F of A. The set 2 of valuations thus obtained
has the following properties:

(i) x A if and only if v(x) >= 0 for every valuation (x) in
(ii) if x F, v(x) 0 for all save a finite number of valuations in 2;.

It follows from (ii) that, if a is any ideal of A, there is only a finite number
of valuations v(x) in 2 such that v(x) > 0 for all elements x of a. Let a be
a fixed ideal of A, let these valuations be vl(x), ..., k(x), and let e be the
least value of (x)with x in a. Then l(x), ..., vk(x) are also the only
valuations in 2 which are positive on an, and the least value of v(x) on a is
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ne. It follows that x e a if and only if v(x) -ne (i 1, ..., k) and
(x) -> 0 for all other valuations u(x) in 2. Hence we may characterize B
as the ring of all elements x of F such that v(x) >- 0 for all valuations v(x)
in 2 save the finite set of valuations v(x) (i 1, .-., k). We shall say that
A has the Nagata property if, for every finite subset v(x), ..., v(x) of 2,
the ring B constructed in this way is finitely generated over A. Then we can
restate Nagata’s result in the following form:
A finitely generated extension F of k is a Zariski field over/ if and only if

every finitely generated normal integral domain A over ]c having F as field of
fractions has the Nagata property.

After these preliminaries, we now come to the main purpose of this note.
This is to show that a finitely generated extension F of a field k of transcend-
ence degree 3 over ]c need not be a Zariski field over . In the counterexam-
ple we shall construct, k is the field of complex numbers. We shall now de-
scribe how this counterexample is constructed. We start with a nonsingular
curve C in the projective plane, with homogeneous generic point (x0, x, x)
and take a point P on C. Since k is assumed algebraically closed, the prime
ideal of k[xo, x, x] generated by those forms in x0, x, x which vanish at
P may be generated by two linear forms y, z in x0, x, x. We now define
the ring A’ to be k[x0, x, x, ty, tz, t-], where is an indeterminate over
k(x0, x, x) and A is to be the integral closure of A in its field of fractions
F It(x0, x, x, t). Clearly F has transcendence degree 3 over k. We
shall show below that if A has the Nagata property, then, for some integer k,
the symbolic power () of is a principal ideal of/[x0, x, x.]. Stated in
geometrical language, this implies that there is a curve C in the projective
plane which meets C in P counted/c times and in no other point. If we as-
sume this result, it is a simple matter to construct the counterexample re-
quired. For take C to be a nonsingular elliptic cubic curve. If we now con-
sider the parametrization of C by elliptic functions, then the condition that
there should exist a curve meeting C multiply at P and at no other point is
that the value of the parameter at P should be a rational multiple of a period.
It follows therefore that there are points P on C such that no multiple of P
is a complete intersection, and for such points the ring A constructed above
does not have the Nagata property. This implies that F is not a Zariski
field over k. Notice that F is in this case obtained by adjoining two inde-
terminates to an extension of/ which is of transcendence degree I and genus 1.
The rest of this paper will be devoted to the proof of the result assumed

above, namely that if A has the Nagata property, then some symbolic power
of is a principal ideal.

Before we proceed to the proof of this result, we must make some prelimi-
nary remarks. First consider the ring A ]c[x0, x, x, ty, tz, t-]. Any
element of this ring can be written in the form .._ c where
c R k[xo, x, x] and, for r

_
0 we must have c . Secondly, R is

integrally closed in its field of fractions. This is a consequence of the assump-
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tion that C is a nonsingular plane curve and therefore pro]ectively normal,
which amounts to saying that R is integrally closed in its field of fractions.
It therefore follows that A, the integral closure of A’ in its field of fractions,
is contained in R[t, t-l], since the latter is a normal integral domain containing
A’. Hence every element ofA is of the form

__
cr with cr in R. Further,

since A’ is a graded ring, that is, =_ c, belongs to A’ if and only if each of
the terms cr belongs to A’, its integral closure A has the same property, that
is, if ._ c, t" belongs to A, where cr e R for each r, then c, te A. Finally,
in the first of our subsidiary lemmas we shall be concerned with the ring B
defined as follows. Let v(x) be the valuation defined on k(x0, xl, x) which
is associated with the minimal prime ideal of R k[x0, xl, x2]. Then B is
the ring of all finite sums -v c , where c R and satisfies v(cr) >= r if
r->0.

LEMMA 1. If A has the Nagata property, then B is finitely generated over R.

Let u -1. Then if 2: is the set of valuations associated with the minimal
prime ideals of A, there is only a finite set of valuations v(x) in 2 for which
v(u) > O. Let these be v(x), v(x). Consider the valuation v*(x) de-
fined on A by v*(’___ c ) Min___,....(v(c) r). Now v*(x) >- 0 for
all elements in A and therefore all elements of A. Further v*(u) 1 O.
We shall now show that v*(x) belongs to 2 and therefore to the set v(x),
v(x) by showing that the ideal * of A, consisting of those elements of A such
that v*(x) > O, is a minimal prime ideal of A. Firstly, * n R . Sec-
ondly, as contains an element c such that v(c) 1, A and, a fortiori, A
contains an element ct such that v*(ct) 0 and therefore not belonging to *.
From this it follows that A/O* has a field of fractions whose transcendence de-
gree over/ is at least 1 greater than that of the field of fractions of RIo over
k. Since is a minimal prime ideal of R, this implies that the field of frac-
tions of A/O* has transcendence degree at least 2 over/. But the field of frac-
tions of A has transcendence degree 3 over/c. Hence * is a minimal prime
ideal of A. Take v*(x) to be v(x) so that v(u) 1, and let vi(u) ei (i 2,.., /c). Let a be the ideal of A consisting of all elements of A such that
v.(x) -> e (i 2, ,/c). Then a consists of all elements of the field of
fractions F of A such that vi(x) >-- -nei (i 2, k) and v,(x)

_
0 for all

other valuations associated with A. But this is the case if and only if u’x A
and v(u"x)

_
n. Hence, if x g__c , and n => q, x a-" if and only if

v(cr) >= r when r >= 0, and c e R for all r. This implies that B [Ja-" and is
therefore finitely generated over A and, consequently, finitely generated over
over R.

LMMh 2. With the same hypothesis as in Lemma 1, there exists an integer
lc such that, for all n, (()) ().
The ring B of the last lemma is a graded ring, and therefore the generators

of B over R may be chosen to be homogeneous. Since B contains u and,
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further, every element of B of degree < 0 is of the form cu with c in R, we
may take these generators to be u and elements a (i 1, p) where
r > 0. Let r be the least common multiple of r, ..., r, and take k pr.
Now () is generated by those products a7 a for which ’’_ r s > m,
since all elements of the form xt with x in ) belong to B, and conversely,
if xt (x e R) belongs to B, then x e If m pr, then at least one of the
products r s r, and hence we can write

al ap (al ai

where r/r and therefore the first factor belongs to (-) and the second
to (). Proceeding in this way, we see that, for any positive integer

(+t (.(().
Since ()) (), this implies that, for all n > O, () (()). The re-
verse inclusion is obvious.

L3. If k is the ingerfound in the last lemma, is a principal ideal.

We shall write a for the idol () and let a, ..., a be a basis of a. Let
P be the ring R[a t, a t, t-]. Then P is finitely generated over R and
hence over the base field k. Further P is integrally closed in its field of frac-
tions F. For, since R normal, the same applies to R[t, ]. Hence the
integral closure of P is contained in R[t, ]. On the other hand, ff v(x) is the
valuation on k(, x, ) aociated with , a () is the set of elements
of R wch satisfy v(x) nk. Hence, if v*(x) is the valuation on F deter-
mined by defining v*(at) v(a) rk, a R, v*(x) 0 on P, and, if r is posi-
tive, v*(at) > 0 implies that a e i.e. ate P. Hence P is integrally closed
in F.

Let u -, and consider the ideal uP of P. Ts is a rank 1 ideal and con-
sists of those elements of P which satisfy v*(x) k. Hence it is a primary
ideal whose radical * consis of those elements of P which satisfy v*(x) > 0
and meets R in . Let m deno the maximal homogeneous ideal (x0, x, x).
Since m , mP uP is of ra at least 2, and therefore the ring P’
P/(mP + uP) has transcendence degree at most 1 over k. Now the base field
k infinite. Hence there exists an element a’ of degree 1 in P’ such that
P’ is a finite k[a’]-module. If a is an element of a such that a’ is the residue of
at modulo mP uP, it then follows that, for n sufficiently large, a"+

aa ma+, which, since m is the maximal homogeneous ideal of R, im-
plies that a"+ aa. Now let b, ..., bq be a basis of a", and let b be any
element of a. Then bb belongs to a+ for each i, and hence we can write

q

bb a cb where c R and i 1, q.

This implies that
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and therefore that b/a is integrally dependent on R. Since the latter is in-
tegrally closed, it follows that b/a R and finally that a aR, that is, a is a
principal ideal.
The author is greatly indebted to Dr. J. A. Todd for assistance in the geo-

metrical part of the construction of the above counterexample.
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