NORMAL SUBGROUPS OF THE UNIMODULAR GROUP

BY
Irving Reiner
\section*{1. Introduction}

Let Γ denote the proper unimodular group consisting of all 2×2 matrices with rational integral elements and determinant +1 . For m a positive integer, define the principal congruence group $\Gamma(m)$ by

$$
\begin{equation*}
\Gamma(m)=\{X \in \Gamma: X \equiv I(\bmod m)\} \tag{1}
\end{equation*}
$$

where I denotes the identity matrix in Γ, and where congruence of matrices is interpreted as elementwise congruence. It is easily seen that the index ($\Gamma: \Gamma(m)$) is finite, and that $\Gamma(m)$ is a normal subgroup of Γ. Therefore, any normal subgroup of Γ which contains $\Gamma(m)$ for some m must be of finite index in Γ.

It was conjectured that, conversely, every normal subgroup of Γ of finite index must contain a principal congruence group $\Gamma(m)$ for some m. In 1887 this conjecture was disproved by R. Fricke [3] and G. Pick [4]. In this note we shall simplify their proofs of the falsity of the conjecture, and shall give a larger class of counterexamples.

The author wishes to thank Professor R. Baer for his helpful suggestions

2. A class of normal subgroups

For p a prime, we know from the results of H. Frasch [2] that $\Gamma(p)$ is a finitely-generated free group. If we let $\Gamma^{\prime}(p)$ denote the commutator subgroup of $\Gamma(p)$, it then follows that $\Delta(p)=\Gamma(p) / \Gamma^{\prime}(p)$ is a finitely-generated free abelian group. Therefore $\Delta(p) / \Delta^{s}(p)$ is finite, where $\Delta^{s}(p)$ is the subgroup of $\Delta(p)$ generated by

$$
\left\{X^{s}: X \in \Delta(p)\right\}
$$

Let $\Omega(p, s)$ be the inverse image of $\Delta^{s}(p)$ under the canonical mapping of $\Gamma(p)$ onto $\Delta(p)$. Since $\Delta^{s}(p)$ is a normal subgroup of $\Delta(p)$, we see that $\Omega(p, s)$ is a normal subgroup of $\Gamma(p)$, and in fact

$$
\Gamma(p) / \Omega(p, s) \cong \Delta(p) / \Delta^{s}(p)
$$

Therefore $\Omega(p, s)$ is the subgroup of $\Gamma(p)$ generated by $\Gamma^{\prime}(p)$ and $\left\{X^{s}: X \in \Gamma(p)\right\}$, and is of finiteindex in Γ. Since $\Gamma(p)$ is a normal subgroup of Γ, and $\Omega(p, s)$ is a characteristic subgroup of $\Gamma(p)$, it follows that $\Omega(p, s)$ is a normal subgroup of Γ. The groups $\Omega(p, s)$ give an infinite set of normal subgroups of Γ of finite index in Γ.

Received April 8, 1957; received in revised form July 27, 1957.

3. Subgroups of $\Omega(p, s)$

Hereafter we assume that $s>1$ and $(s, p)=1$. We shall prove that $\Omega(p, s)$ cannot contain any principal congruence group. Suppose to the contrary that for some k we have $\Gamma(k) \subset \Omega(p, s)$. Since $\Gamma(a k) \subset \Gamma(k)$ for any positive integer a, we may assume that

$$
\begin{equation*}
\Gamma\left(p^{r} s t\right) \subset \Omega(p, s) \tag{2}
\end{equation*}
$$

where r is a non-negative integer, and $(t, p)=1$.
Set

$$
T=\left(\begin{array}{ll}
1 & p \tag{3}\\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{ll}
1 & 0 \\
p & 1
\end{array}\right)
$$

Let q be an integer to be determined in a moment, and set

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=U^{q} T U T^{s t-1}
$$

Then we have

$$
\begin{equation*}
b / p=p^{2}(s t-1)+s t, \quad(d-1) / p^{2}=q(b / p)+s t-1 \tag{4}
\end{equation*}
$$

Therefore $(b / p, p s t)=1$, and so we may choose q so that $(d-1) / p^{2} \equiv 0$ $\left(\bmod p^{r} s t\right)$. With this choice of q, we have $d \equiv 1\left(\bmod p^{r} s t\right)$. Since $a d-b c=1$, this shows that $a \equiv 1+b c\left(\bmod p^{r} s t\right)$.

The above congruences imply

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{cc}
1+b c & b \\
c & 1
\end{array}\right)=B \quad\left(\bmod p^{r} s t\right)
$$

Therefore $A B^{-1} \epsilon \Gamma\left(p^{r} s t\right)$, and so assuming (2) we deduce that $A B^{-1} \epsilon \Omega(p, s)$. Now $B=T^{b / p} U^{c / p}$, whence

$$
\begin{equation*}
A B^{-1}=U^{q} T U T^{s t-1} U^{-c / p} T^{-b / p} \tag{5}
\end{equation*}
$$

We shall show below that if a power product of T and U lies in $\Omega(p, s)$, then the sum of the exponents to which T occurs must be a multiple of s. Using this, we deduce from $A B^{-1} \in \Omega(p, s)$ that

$$
1+(s t-1)-b / p \equiv 0 \quad(\bmod s)
$$

If we substitute for b / p the expression given in (4), this becomes

$$
s t-p^{2}(s t-1)+s t \equiv 0 \quad(\bmod s)
$$

which is impossible since $(p, s)=1$. This gives a contradiction, and hence $\Omega(p, s)$ cannot contain a principal congruence group.

We now consider the group $\Gamma(p)$. According to the results of H. Frasch [2], the group $\Gamma(p)$ has a set \mathcal{S} of free generators consisting of T and a collection of generators of the form (λ, μ, ν) (in Frasch's notation). Using his equation (19a), we find that $U=(0,1,1)^{-1}$. Frasch's elimination procedure shows that either ($0,1,1$) is one of the free generators, or else it can be ex-
pressed in terms of the free generators other than T. Therefore when U is expressed as a power product of elements of \mathcal{S}, the generator T does not appear as a factor. ${ }^{1}$

On the other hand, we may characterize $\Gamma^{\prime}(p)$ in terms of the free generators in \mathcal{S}; namely, $\Gamma^{\prime}(p)$ consists of all power products of the generators in \mathcal{S} for which the exponent sum for each generator is zero. Therefore $\Omega(p, s)$ consists of all power products of the generators in δ for which the exponent sum for each generator is a multiple of s. It follows at once that if a power product of T and U lies in $\Omega(p, s)$, the exponent sum for T must be a multiple of s. This completes the proof.

Remarks.

(i) In the papers of Fricke and Pick, only the groups $\Omega(2, s)$ are given.
(ii) The corresponding conjecture for the $n \times n$ proper unimodular group is as yet unsettled for $n>2$.

References

1. J. L. Brenner, Quelques groupes libres de matrices, C. R. Acad. Sci. Paris, vol. 241 (1955), pp. 1689-1691.
2. H. Frasch, Die Erzeugenden der Hauptkongruenzgruppen für Primzahlstufen, Math. Ann., vol. 108 (1933), pp. 229-252.
3. R. Fricke, Ueber die Substitutionsgruppen, welche zu den aus dem Legendre'schen Integralmodul $k^{2}(\omega)$ gezogenen Wurzeln gehören, Math. Ann., vol. 28 (1887), pp. 99-118.
4. G. Рıск, Ueber gewisse ganzzahlige lineare Substitutionen, welche sich nicht durch algebraische Congruenzen erklären lassen, Math. Ann., vol. 28 (1887), pp. 119124.

University of Illinois
Urbana, Illinois

[^0]
[^0]: ${ }^{1}$ This fact implies the result of J. L. Brenner [1] that T and U generate a free group.

