
ON THE EXISTENCE OF THE STIELTJES MEAN a’-INTEGRAL

BY
PASQUALE PORCELLI

The object of this paper is to establish a necessary and sufficient condition
(Theorem 1) for the existence of the Stielt]es mean -integral ffdg, where f
is a bounded function on [a, b] and g is of bounded variation on [a, b]. We
then use this condition to settle a question raised by T. H. Hildebrandt
(Corollary 1.1) and to show that the mean -integral is absolutely convergent
(Corollary 1.2) when f and g satisfy the above condition and ]fdg exists.
We base our proof of Theorem 1 on an earlier existence theorem due to T. H.
Hildebrandt.
We recall that the Stielt]es mean -integral is one of several limits intro-

duced by H. L. Smith (cf. [2]) and is defined as follows" if each of f and g is
a function on [a, b], then the statement that the number J (hereafter denoted
by ffdg) is the Stielt]es mean -integral of f with respect to g on [a, b] means
that for each e > 0, there exists a subdivision D of [a, b] such that if E is any
refinement of D, then ]ffdg S(f, g; I)[ < , where

S(f, g; I) =0 -2 [f(y + 1) + f(y,)][g(y,+) g(y)],

y, i 0, 1, m 1, are the terms of E, and I denotes the interval [a, b].
If for each subinterval I’ of [a, b], we set

ff, g; ’)

LUB [] S(f, g; I’) S(f, g; I’) ]; all subdivisions E and F of I’],

then, according to Hildebrandt (cf. [1], Theorem 2.13), ]fdg exists if, and
only if,

GLB [. w(f, g; 1); D] 0,

where D is a subdivision of [a, b] and I, p 0, 1, n, are the subintervals
formed by D.
We shall need the following definitions and lemmas.

DEFINITION 1.1. If f is a bounded function on [a, b] and k a positive num-
ber, then M(L W) denotes a subset of [a, b] such that x is in M(L kW) if, and
only if, x b and for each y > x there exist points and t’ in the segment
(x, y) such that t < b, t’ < b, and f(t) f(t’) . M(L k-) denotes a
subset of [a, b] such that x is in M(, k-)if, and only if, x a and for each y < x
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there exist points and t’ in the segment (y, x) such that a < t, a <: t’, and
If(t) f(’) >= ]. M(f,/) denotes the logical sum M(f, k-t-) -t- M(f, k-).

DEFINITION 1.2. If f is a bounded function on [a, b], g a nondecreasing
function on [a, b], and k > 0, then the statement that M(L k) has directed
content Cg M(f, k) means that Cg M(f,/) is the largest nonnegative number S
such that if {[a, b]}=l is a finite collection of nonoverlapping subintervals
of [a, b] satisfying

(i) a is not in M(f, k-) and b is not in M(f,/-t-) for p 1, n, and
(ii) {[a, b]} _-1 covers M(f, ]),

then _- [g(b) g(a)] -> S.

LEMM_ 1. If f is a bounded function on [a, b], g of bounded variation on
[a, b], lc > O, and [c, d] a subinterval of [a, b] such that, either c is in
d is in M(f, l-), or there exists a point common to the segment (c, d) and
M(f k) then

[c, >_ [.

Proof. Suppose/ > e > 0.
(c, d) such that,

There exist points t’ and t" in the segment

f(t’)- f(t")l >- k- ,
and

[f(t’) --f(t")].[g(d) g(c)] f(t’) -f(t")].] g(d) g(c) l,

g(t’) g(t") <- eN-,
where N is an upper bound of ]f] on [a, b]. If E and D are subdivisions of
[c, d] consisting of just the terms c < t’ < d and c < t" < d respectively, then

IS(f, g; [c, d] S)(f, g; [c, d] >- 2-1 [f(t’) f(t")][g(d) g(c)]

-t- [f(c) f(d)][g(t’) g(t")] >- 2-1(/ e) g(d) g(c) .
Since this holds for all e > O, we get

w(f, g; [c, d]) ->_ 2-] g(d) g(c)i.
LEMMA 2. If f is a bounded function on [a, b], g of bounded variation on

[a, b], lc > O, and [c, d] a subinterval of [a, b] such that,
(1’) c is not in M(f, +),
(2’) d is not in M(f, k-), and
(3’) for each x in the segment (c, d), x is not in M(f, ]),

then there exists a finite collection {[y+, y]}= of nonoverlapping subintervals
of [c, d] covering [c, d] such that

-_ w(f, g; [y,+l, y]) -<_ 6k[g*(d) g*(c)],

where g* is the variation function of g.

Proof. Suppose the lemma is false and c’ denotes the midpoint of [c, d].
In view of (3’), we see that each one of the intervals [c, c’] and [c’, d] satisfies
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(1’), (2’), and (3’). Consequently, let {I}--i, Ii [c, d], be a sequence of
nested intervals having iust one point, say t, in common such that, for each
n, I satisfies the hypotheses of the lemma, but for which the conclusion is
false. Suppose <: d. There exists a point s’ such that ,< s’ < d and for
any point s in the segment (t, s’), If(x) f(y)[ -< / for <: x =< s and

<: y <- s. Let N be an upper bound of Ill on [a, b] and a nonnegative
number such that =< k(2N)-l[g*(s) g*(t)]. There exists a point z in the
segment (t, s) such that ]g(u) g(v) < ’ for < u -< z and < v =< z.

If A and B are subdivisions of [t, z], then

[S(f, g; [t, z]) SB(f, g; [t, z])l 2k[g*(z) g*(t)];

if D and E are subdivisions of [z, s], then

]S)(f, g; [z, s]) S(f, g; [z, s])l _-< (/)’[g*(s) g*(z)].

Similarly, if c < t, then there exists a point r’ in the segment (c, t) such that
for any point r in the segment, there exists a point y in the segment (r, t)
which has the same properties as the point z has in the segment (t, s).

Suppose, now, I is an interval in the nested sequence which is also a sub-
interval of [r’, s’] such that is an interior point of I, which is the worst case.
If we pick the r and s so that Jr, s] I., then Jr, y], [y, t], It, z], and [z, s] is
a collection of nonoverlapping subintervals of I satisfying the conclusion of
the lemma. This contradiction completes the proof of Lemma 2.

THEOREM 1. If f is a bounded function on [a, b] and g is of bounded variation
on [a, b], then a necessary and sufficient condition that the mean a-integral ffdg
exist is that for each positive number k, C. M(f, k) O, where g* is the variation

function of g on [a, b].

Proof. In order to prove the necessity, let us suppose ]fdg exists,/ > 0,
C. M(f, k) > 0, and > 0. Let F be a subdivision of [a, b] and E a refine-
ment of F such that, (1) [ffdg S(f, g; [a, b])l < e, and (2) if x, x
0, 1, ..., n + 1, denote the terms of E, then olg(x+l) g(x)l
-0[g (x+i) g*(x)] e. There exists a finite collection {[a, b]}..i
of n0noverlapping intervals such that,

(i) for each p -<_ m, there exists i

_
n such that a x and b x+l,

(ii) b M(f, k-t-) and al M(f,/-),
(iii) if, for some p < m, b,, M(f, k+), then b a+ and there exists x

such that a -< x < b and x M(f, k-), or a < x < b and x M(f,
(iv) if.for oiiie p > 1, a M(f,/c-), then a b_l and there exists a

point x such that a < x -< b and x e M(f, k-), ora < x < b and x
and

(v) for each p, [a, b] contains a point of M(f, ).
Upon applying Lemma 1 to the intervals {[a, b]}___, we get. ..w.(f,.g; [x,+, x,]) ->

_
w(f, g; [a, b]

>= 2-’k .. g(b) g(a) >-_ 2-’kiCk. M(f, k) ].
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This implies that GLB [. w(f, g; I); D] >- 2-1 Cg, M(f, k) > 0, which is
a contradiction. This completes the proof of the necessity.

In order to prove the sufficiency, suppose/ > 0, > 0, and
is a collection of pair-wise mutually exclusive subintervals of [a, b] satisfying
conditions (i) and (ii) of Definition 1.2 such that

_"y=[g (by) g*(ay)] < eN-1,
where N is an upper bound of If] on [a, b]. Consequently,

(h) = w(f, g; [ay, by]) < 2.

There exists a finite collection {[cg d] }= of nonoverlapping subintervals
of [a, b] such that,

(i) except possibly for c a, each c, is some by, and except possibly for
d b, each d, is some

(ii) ({[ay, by]} =1 H- {[cs, ds]} =1) forms a nonoverlapping covering of
[a, b], and

(iii) each [c,, d,] satisfies the hypotheses of Lemma 2.
In view of this and (A) above, we see that the sufficiency part of Theorem 2.13
of [1] is satisfied, so that j’ fdg exists. This concludes the proof of Theorem 1.
As a consequence of Theorem 1, we have"

COROLLARY 1.1. Iff is a bounded function on [a, b] and g is of bounded vari-
ation on [a, b], then f fdg exists if, and only if, f fdg* exists.

In view of the fact that C,, M(f, ]c) 0 implies C, M( f [, ) O, we
have"

COROLLARY 1.2. If f is a bounded function on [a, b], g of bounded variation
on [a, b], and f fdg exists, then f f dg exists.

COROLLARY 1.3. If f is a bounded function on [a, b] and g is of bounded vari-
ation on [a, b] such that no discontinuity of g is in M(f, tc) for every k > O, then

fdg exists if, and only if, l, M(f) O, where lg, M(f) denotes the outer g*-length
of M(f) and M(f) denotes the logical sum := M(f, n-l).

Proof. Since no point in M(f) is a discontinuity of g and M(f, tc) is a closed
point set for tc > O, l, M(f) 0 is equivalent to C, M(f, l) O.

COROLLARY 1.4. Iff is a bounded function on [a, b] and g is of bounded vari-
ation on [a, b] such that f and g have no common discontinuity and fdg exists,
then the Riemann-Stieltjes integral RSfdg exists.

Proof. Suppose D denotes the set of discontinuities of f. If Dy, p
1, 2, is a subset of D such that x is in Dy if, and only if, x is in D, x is
not in M(if), and the ordinary oscillation of f at x is greater than or equal to
p-, then D M(f) -F =Dy. For each p, Dy is at most a countable set
and l, Dy 0, since f and g have no common discontinuity. It follows from

RSfafdg exists.this and Corollary 1.3 that l, D 0; i.e
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