ON SOME ARITHMETICAL FUNCTIONS

BY
Hubert Delange

In a paper on additive arithmetical functions, ${ }^{1}$ P. Erdös incidentally states the following result:
(\mathcal{E}_{1}) Let $\omega(n)$ be the number of prime divisors of the positive integer n, and let λ be any irrational number.

Then the numbers $\lambda \omega(n)$ are uniformly distributed modulo 1.
This means that, for $0 \leqq t \leqq 1$, the number of n 's less than or equal to x and such that ${ }^{2}$

$$
\lambda \omega(n)-I[\lambda \omega(n)] \leqq t
$$

is $t x+o[x]$ as x tends to $+\infty$.
P. Erdös adds that the proof is not easy.
(ε_{1}) can actually be deduced from a later result of Erdös, say (ε_{2}), concerning the number of integers $n \leqq x$ for which $\omega(n)=k$. ${ }^{3}$

Also a very short proof can be based on the following formula due to Atle Selberg: ${ }^{4}$

As x tends to $+\infty$,

$$
\sum_{n \leqq x} z^{\omega(n)}=F(z) x(\log x)^{z-1}+O\left[x(\log x)^{\mathscr{R z - 2}}\right]
$$

uniformly for $|z| \leqq R$, where R is any positive number and

$$
F(z)=\frac{1}{\Gamma(z)} \Pi\left[1+\frac{z}{p-1}\right]\left[1-\frac{1}{p}\right]^{z}
$$

We have only to take $z=\exp [2 \pi q \lambda i]$, where q is any positive integer, and use a well known theorem of H. Weyl. ${ }^{5}$

However the proof of $\left(\varepsilon_{2}\right)$ is not very simple, while the proof of Selberg's formula uses the properties of the Riemann Zeta-function in the critical strip.

In the present paper, we shall first give a simple proof of $\left(\varepsilon_{1}\right)$ which uses only the nonvanishing of $\zeta(s)$ for $\mathfrak{R} s \geqq 1$. We shall also give some generalizations.

[^0]1. We shall use the following alternative form of the classical tauberian theorem of Ikehara:

Theorem A. Let $\alpha(t)$ be a real function defined for $t \geqq 0$, nondecreasing and satisfying $\alpha(0) \geqq 0$.

Suppose that the integral $\int_{0}^{+\infty} e^{-s t} \alpha(t) d t$ is convergent for $\operatorname{Rs}>a>0$ and equal to $f(s)$.

Suppose further that, for each real y other than zero, $f(s)$ tends to a finite limit as s tends to $a+i y$ in the half plane $R s>a$, and that, as s tends to a in this half plane,
$f(s)-A /(s-a)=O\left[|s-a|^{-\omega}\right]$, where $A>0 \quad$ and $\quad 0<\omega<1$.
Then, as tends to $+\infty$,

$$
\alpha(t) \sim A e^{a t} .
$$

The proof of Ikehara's theorem in Widder's book, The Laplace Transform, yields this alternative form as well.
1.1. From this we deduce the following result:

Theorem B. Consider the Dirichlet series $\sum_{1}^{+\infty} a_{n} / n^{s}$, where the a_{n} 's are real or complex numbers satisfying $\left|a_{n}\right| \leqq 1$.

Obviously this series is absolutely convergent for $\mathfrak{R} s>1$.
Suppose that, for $\operatorname{Rs}>1$,

$$
\sum_{1}^{+\infty} a_{n} / n^{s}=(s-1)^{-\beta-i \gamma} g(s)+h(s)
$$

where the functions g and h are regular for $\Omega s \geqq 1, \beta$ and γ are real numbers, $\beta<1$, and $(s-1)^{-\beta-i \gamma}$ has its principal value.

Then, as x tends to $+\infty$,

$$
\sum_{n \leqq x} a_{n}=o[x]
$$

The proof is as follows: Set $a_{n}=u_{n}+i v_{n}$, where u_{n} and v_{n} are real, and

$$
A(t)=\sum_{1 \leqq n \leqq e^{t}}\left[1+u_{n}\right], \quad B(t)=\sum_{1 \leqq n \leqq e^{t}}\left[1+v_{n}\right]
$$

The functions A and B are nondecreasing for $t \geqq 0$; we have $A(0) \geqq 0$, $B(0) \geqq 0$ and, for $\mathfrak{R} s>1$,

$$
\sum_{1}^{+\infty} \frac{1+u_{n}}{n^{s}}=s \int_{0}^{+\infty} e^{-s t} A(t) d t
$$

and

$$
\sum_{1}^{+\infty} \frac{1+v_{n}}{n^{s}}=s \int_{0}^{+\infty} e^{-s t} B(t) d t
$$

If D is a domain which is symmetric with respect to the real axis and contains the closed half plane $\mathcal{R} s \geqq 1$, and in which f and g are regular, we may write in this domain

$$
g(s)=g_{1}(s)+i g_{2}(s) \quad \text { and } \quad h(s)=h_{1}(s)+i h_{2}(s)
$$

where g_{1}, g_{2}, h_{1}, and h_{2} are regular in D and real for z real in D. Namely we have

$$
\begin{array}{ll}
g_{1}(s)=\frac{1}{2}[g(s)+\overline{g(\bar{s})}], & g_{2}(s)=\frac{1}{2 i}[g(s)-\overline{g(\bar{s})}], \\
h_{1}(s)=\frac{1}{2}[h(s)+\overline{h(\bar{s})}], & h_{2}(s)=\frac{1}{2 i}[h(s)-\overline{h(\bar{s})}],
\end{array}
$$

where \bar{z} denotes the conjugate of z.
We then see that, for s real and >1, and hence for $\mathfrak{R} s>1$,
$\int_{0}^{+\infty} e^{-s t} A(t) d t=\frac{1}{s} \zeta(s)$
$+\frac{1}{s}(s-1)^{-\beta}\left\{g_{1}(s) \cos \left[\gamma \log \frac{1}{s-1}\right]-g_{2}(s) \sin \left[\gamma \log \frac{1}{s-1}\right]\right\}+\frac{1}{s} h_{1}(s)$,
and
$\int_{0}^{+\infty} e^{-s t} B(t) d t=\frac{1}{s} \zeta(s)$
$+\frac{1}{s}(s-1)^{-\beta}\left\{g_{1}(s) \sin \left[\gamma \log \frac{1}{s-1}\right]+g_{2}(s) \cos \left[\gamma \log \frac{1}{s-1}\right]\right\}+\frac{1}{s} h_{2}(s)$.
Theorem A enables us to conclude that, as t tends to $+\infty$,

$$
A(t) \backsim B(t) \backsim e^{t},
$$

so that

$$
\sum_{n \leqq e^{t}} u_{n}=o\left[e^{t}\right] \quad \text { and } \quad \sum_{n \leqq e^{t}} v_{n}=o\left[e^{t}\right] .
$$

Therefore, as x tends to $+\infty$,

$$
\sum_{n \leqq x} u_{n}=o[x] \quad \text { and } \quad \sum_{n \leqq x} v_{n}=o[x]
$$

2. Now the result of Erdös which we stated at the beginning, and the similar result for $\Omega(n)$, are immediate consequences of the already mentioned theorem of H . Weyl and of the following theorem, which we proved in detail in our paper, Sur la distribution des entiers ayant certaines propriétés: ${ }^{6}$

Theorem C. There exist two functions $\varrho_{1}(s, z)$ and $\varrho_{2}(s, z)$ with the following properties:
(α) They are regular in s and z for $|z|<\sqrt{2}$ and s belonging to a certain domain Δ, which contains the closed half plane $\mathfrak{R s} \geqq 1$;

[^1](β) For $\mathcal{R} s>1$ and $|z| \leqq 1$,
\[

$$
\begin{equation*}
\sum_{1}^{+\infty} z^{\omega(n)} / n^{s}=\mathcal{G}_{1}(s, z)(s-1)^{-z} \tag{1}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\sum_{1}^{+\infty} z^{\Omega(n)} / n^{s}=\mathrm{G}_{2}(s, z)(s-1)^{-z} \tag{2}
\end{equation*}
$$

where $(s-1)^{-z}$ has its principal value.
In fact, λ being any irrational number, for any positive integer q we see, by taking $z=\exp [2 \pi q \lambda i]$ in (1) and (2), that we have for $\mathscr{A} s>1$

$$
\sum_{1}^{+\infty} \frac{\exp [2 \pi i g \lambda \omega(n)]}{n^{s}}=\mathcal{G}_{1}[s, \exp (2 \pi q \lambda i)](s-1)^{-\exp (2 \pi q \lambda i)}
$$

and

$$
\sum_{1}^{+\infty} \frac{\exp [2 \pi i q \lambda \Omega(n)]}{n^{s}}=\mathcal{G}_{2}[s, \exp (2 \pi q \lambda i)](s-1)^{-\exp (2 \pi q \lambda i)}
$$

Since $\mathfrak{R}[\exp (2 \pi q \lambda i)]<1$, we may conclude by Theorem B that, as x tends to $+\infty$,

$$
\sum_{n \leqq x} \exp [2 \pi i q \lambda \omega(n)]=o[x] \quad \text { and } \quad \sum_{n \leqq x} \exp [2 \pi i q \lambda \Omega(n)]=o[x] .
$$

3. It is to be noticed that the results we proved for $\omega(n)$ and $\Omega(n)$ can be extended to other functions:

Let $f(n)$ be an integral valued arithmetic function, and suppose that we have for $|z| \leqq 1$ and $\operatorname{Rs}>1$

$$
\begin{equation*}
\sum_{1}^{+\infty} z^{f(n)} / n^{s}=\mathcal{G}(s, z)(s-1)^{\alpha-1-\alpha z}+\mathfrak{H}(s, z) \tag{3}
\end{equation*}
$$

where α is a real positive number and, for $|z| \leqq 1$, the functions $\mathcal{G}(s, z)$ and $\mathfrak{H}(s, z)$ are regular in s for s belonging to a certain domain Δ which contains the closed half plane $\mathrm{Rs} \geqq 1$.

Then, λ being any irrational number, the numbers $\lambda f(n)$ are uniformly distributed modulo 1.

In fact, for any positive integer q we have for $\mathfrak{R} s>1$

$$
\sum_{1}^{+\infty} \frac{\exp [2 \pi i q \lambda f(n)]}{n^{s}}=g[s, \exp (2 \pi q \lambda i)](s-1)^{\alpha-1-\alpha \exp (2 \pi q \lambda i)},
$$

and, since $\mathfrak{R}[-\alpha+1+\alpha \exp (2 \pi q \lambda i)]<1$, Theorem B enables us to conclude that, as x tends to $+\infty$,

$$
\sum_{n \leqq x} \exp [2 \pi i q \lambda f(n)]=o[x]
$$

3.1. We thus see that the uniform distribution modulo 1 of $\lambda f(n)$ for any irrational λ holds for all functions of the family (F) we consider in our paper, Sur la distribution des valeurs de certaines fonctions arithmétiques. ${ }^{7}$

[^2]Let us recall the definition of this family.
E being a given set of primes, we define the two functions $\omega_{E}(n)$ and $\Omega_{E}(n)$ as follows:
$\omega_{E}(n)$ is the number of prime divisors of n which belong to the set E, and $\Omega_{E}(n)$ is the total number of factors belonging to E in the factorization of n. In other words, we have

$$
\omega_{E}(1)=\Omega_{E}(1)=0
$$

and, if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}} m$, where $p_{1}, p_{2}, \cdots, p_{k}$ are distinct primes of $E, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ are positive integers, and m is a positive integer which is not divisible by any prime of E,

$$
\omega_{E}(n)=k \quad \text { and } \quad \Omega_{E}(n)=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}
$$

Then the family (F) consists of all the functions $\omega_{E}(n)$ and $\Omega_{E}(n)$ corresponding to the sets E which have the following property:

There exist a real positive number $\alpha \leqq 1$ and a function $\delta(s)$ regular for $\mathfrak{R} s \geqq 1$, such that we have for $\mathfrak{R} s>1$

$$
\sum_{p \in E} 1 / p^{s}=\alpha \log \{1 /(s-1)\}+\delta(s)
$$

(where $\log \{1 /(s-1)\}$ of course has its principal value).
The set of all primes has this property. So does the set of all primes belonging to a given arithmetic progression, or to the union of two or more arithmetic progressions with the same difference. ${ }^{8}$
4. We may consider the modulo 1 distribution of the numbers $\lambda f(n)$ for n running through a certain infinite set A of positive integers, distinct from the set of all positive integers.
4.1. A being an infinite set of positive integers, and $\left\{u_{n}\right\}$ a sequence of real numbers, it is natural to say that the numbers u_{n} are uniformly distributed modulo 1 when n runs through the set A if, for $0 \leqq t \leqq 1$, the number of the n 's not greater than x and such that

$$
u_{n}-I\left[u_{n}\right] \leqq t
$$

is $t \nu(x)+o[\nu(x)]$ as x tends to $+\infty$, where $\nu(x)$ is the total number of the n 's belonging to A and not greater than x.

It is seen very easily that H . Weyl's theorem can be extended as follows:
In order that the u_{n} 's be uniformly distributed modulo 1 when n runs through the set A, it is necessary and sufficient that, for every positive integer q, we have

$$
\sum_{n \leqq x, n \in A} \exp \left(2 \pi i q u_{n}\right)=o[\nu(x)]
$$

as x tends to $+\infty$.

[^3]If A has a positive density, $o[\nu(x)]$ may obviously be replaced by $o[x]$.
4.2. $f(n)$ being an integral valued arithmetic function, Theorem B enables us to prove that, for any irrational λ, the numbers $\lambda f(n)$ are uniformly distributed modulo 1 when n runs through the set A of positive density, if we have for $\operatorname{Rs}>1$ and $|z| \leqq 1$

$$
\begin{equation*}
\sum_{n \in A} z^{f(n)} / n^{s}=\mathcal{G}(s, z)(s-1)^{\alpha-1-\alpha z}+\mathfrak{H}(s, z),^{9} \tag{4}
\end{equation*}
$$

where α is a positive number and, for $|z| \leqq 1$, the functions $\mathcal{G}(s, z)$ and $\mathscr{H}(s, z)$ are regular in s for s belonging to a certain domain Δ, which contains the closed half plane $R s \geqq 1$.

We thus see that, if f is a function of the family (F), for any irrational λ, the numbers $\lambda f(n)$ are uniformly distributed modulo 1 when n runs through the set of all squarefree positive integers. ${ }^{10}$

Similarly, if $f(n)=\omega(n)$ or $\Omega(n)$, and if k is an integer >1 and l any integer coprime to k, then, for any irrational λ, the numbers $\lambda f(n)$ are uniformly distributed modulo 1 when n runs through the set of all positive integers satisfying

$$
n \equiv l(\bmod k)
$$

or even when n runs through the set of all positive squarefree integers satisfying this congruence. ${ }^{11}$

It can be proved that these last two results still hold if we do not suppose that k and l are coprime, provided that in the latter case we assume that the greatest common divisor of k and l is squarefree ${ }^{12}$ (otherwise no integer satisfying the congruence could be squarefree).
5. We shall add that it is possible to consider simultaneously two functions f and g of the family (F). Then the property to be proved is the uniform distribution of the points

$$
\left(\xi_{n}, \eta_{n}\right)=(\lambda f(n)-I[\lambda f(n)], \mu g(n)-I[\mu g(n)])
$$

in the square $0 \leqq \xi \leqq 1,0 \leqq \eta \leqq 1, \lambda$ and μ being irrational numbers.
To deal with this question, one has only to use the formulas we give in $\S 6.2$ of paper C, Theorem B, and the two-dimensional form of H. Weyl's theorem. ${ }^{13}$

The desired property holds for any irrational λ and μ, when n runs either through the set of all positive integers or through the set of positive square-

[^4]free integers, if f and g correspond to two sets of primes E_{1} and E_{2} with no common element.

If $f(n)$ and $g(n)$ are the functions $\omega_{E}(n)$ and $\Omega_{E}(n)$ corresponding to the same set E, the property holds when n runs through the set of all positive integers, for λ and μ so chosen that $q \lambda+q^{\prime} \mu$, where q and q^{\prime} are rational integers, can never be a rational integer unless $q=q^{\prime}=0$.

It is also possible to prove that, if $f(n)$ and $g(n)$ are $\omega(n)$ and $\Omega(n)$, the property holds for λ and μ satisfying the latter condition, when n runs through the set of positive integers belonging to a given arithmetic progression.

The Institute for Advanced Study
Princeton, New Jersey
University of Clermont-Ferrand
Clermont-Ferrand, France

[^0]: Received November 13, 1956; received in revised form April 29, 1957.
 ${ }^{1}$ On the distribution function of additive functions, Ann. of Math. (2), vol. 47 (1946), pp. 1-20. See p. 2, lines 4 and 5.
 ${ }^{2} I[u]$ denotes the greatest integer not exceeding u.
 ${ }^{3}$ On the integers having exactly k prime factors, Ann. of Math. (2), vol . 49 (1948), pp. 53-66.
 ${ }^{4}$ Note on a paper by L. G. Sathe, J. Indian Math. Soc., vol. 18 (1954), pp. 83-87.
 ${ }^{5}$ Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. vol. 77 (1916), pp. 313352, Satz 1, p. 315.

[^1]: ${ }^{6}$ Ann. Sci. École Norm. Sup. (3), t. 73 (1956), pp. 15-74. In the following we shall denote this paper by "paper A". We also sketched the proof in Quelques théorèmes taubériens relatifs à l'intégrale de Laplace et leurs applications arithmétiques, Univ. e Politec. Torino. Rend. Sem. Mat., vol. 14 (1954-55), pp. 87-103 (§§3, 4, 5, 6, 7).

[^2]: ${ }^{7}$ Colloque sur la théorie des nombres, Bruxelles 19, 20 et 21 décembre 1955, pp. 147-161.
 In the following we shall denote this paper by "paper C".

[^3]: ${ }^{8}$ See paper A, §§3.1 to 3.2.1.

[^4]: ${ }^{9}$ We take this opportunity to note that the assertion at the end of $\S 5.4$ of paper C is false with formula (2) as it is there ($\mathbf{p} .152$). This formula has to be replaced by formula (4) here. This needs only obvious changes in §§5.1 to 5.1.2.
 ${ }^{10}$ See paper A, §5.3.
 ${ }^{11}$ See paper $\mathrm{A}, \S \S 3.4,3.5$, and 3.6 .
 ${ }^{12}$ For this, one has to use arguments similar to those of paper A in $\S(3.10,3.10 .1,3.10 .3$, 3.10.4, 3.10.5.
 ${ }^{13}$ Loc. cit., Satz 3, p. 319.

