TWISTED RANKS AND EULER CHARACTERISTICS

BY ALEX HELLER¹

In a previous paper [2] the author introduced the notion of the twisted Euler characteristic of a complex on which a group of prime order operates. The twisted Euler characteristic of the complex is equal to that of the fixedpoint set; this generalizes part of a classical result of P. A. Smith.

In view of the theorem of Artin and Tate on periodicity in the homology of a finite group [1, XII, 11] the twisted Euler characteristic may be generalized to other groups of operators, and the theorem quoted above remains true if the most generous notion of fixed-point set is adopted. This generalization is made here.

The standpoint is that of the theory of abstract abelian categories (the "exact" categories of Buchsbaum [1, appendix]). Although no application, other than the one just mentioned, is considered here, it is clear that similar constructions may be made, for example, in categories of sheaves.

1. Ranks and Euler characteristics

If \mathfrak{K} is an abelian category, a *rank* on \mathfrak{K} is a function ρ on the objects of \mathfrak{K} with values in an additive group, such that if $0 \to A' \to A \to A'' \to 0$ is exact, then $\rho A = \rho A' + \rho A''$. In particular, then, $\rho 0 = 0$.

For example, on the category of finite dimensional vector spaces over a field, the dimension is a rank. On the category of finite abelian groups $\mathfrak{o}G$, the logarithm of the order of G is a rank.

LEMMA 1. If ρ is a rank on K and the diagram

$$\rightarrow A_{2n-1} \rightarrow B_{2n-1} \rightarrow C_{2n-1} \rightarrow \cdots \rightarrow B_0 \rightarrow C_0$$

is exact in K, then

$$\sum_{i=0}^{2n-1} (-1)^{i} \rho B_{i} = \sum_{i=0}^{2n-1} (-1)^{i} \rho A_{i} + \sum_{i=0}^{2n-1} (-1)^{i} \rho C_{i}.$$

For if \overline{A}_i , \overline{B}_i , \overline{C}_i are the kernels in A_i , B_i , C_i , then, writing indices modulo 2n:

$$\rho A_{j} = \rho A_{j} + \rho B_{j}$$
$$\rho B_{j} = \rho \overline{B}_{j} + \rho \overline{C}_{j}$$
$$\rho C_{j} = \rho \overline{C}_{j} + \rho \overline{A}_{j-1}$$

from which the lemma follows immediately.

The notation \mathcal{K}' will be used for the category of finitely graded objects

Received December 7, 1956.

¹ Fellow of the Alfred P. Sloan Foundation.

of \mathcal{K} , that is, the category whose objects are sequences

$$A = \{ \cdots, A_{-1}, A_0, A_1, \cdots \}$$

of objects of \mathfrak{K} such that $A_i = 0$ except for a finite set of *i*. If *A*, *B* are objects of \mathfrak{K}' , then $\operatorname{Hom}(A, B)$ is the graded group $\sum_k \operatorname{Hom}_k(A, B)$ where $\operatorname{Hom}_k(A, B) = \sum_i \operatorname{Hom}(A_i, B_{i+k})$ is the subgroup of maps homogeneous of degree *k*. Clearly \mathfrak{K} is again an abelian category.

If ρ is a rank on \mathcal{K} , then the function χ_{ρ} on the objects of \mathcal{K}' is defined by $\chi_{\rho} A = \sum_{i} (-1)^{i} \rho A_{i}$. Then if $0 \to A' \xrightarrow{\varphi'} A \xrightarrow{\varphi''} A'' \to 0$ is exact in \mathcal{K}' and φ', φ'' are homogeneous of degrees k', k'',

$$\chi_{\rho} A = (-1)^{k'} \chi_{\rho} A' + (-1)^{k''} \chi_{\rho} A''.$$

With respect to the maps of even degree in \mathcal{K}' , which form a subcategory, χ_{ρ} is again a rank.

The category $d\mathcal{K}$ of finite complexes in \mathcal{K} has as objects the pairs (A, d)where A is an object of \mathcal{K}' and $d: A \to A$ is a map of degree -1 such that $d^2 = 0$. Hom ((A, d), (A', d')) is the subgroup of Hom₀ (A, A') consisting of maps $f: A \to A'$ such that d'f = fd. Again, $d\mathcal{K}$ is an abelian category.

In this situation, of course, Z, B, $H:d\mathcal{K} \to \mathcal{K}'$: the cycle, boundary, and homology functors are defined. These are related by natural exact sequences

$$0 \to Z(A, d) \to A \to B(A, d) \to 0$$
$$0 \to B(A, d) \to Z(A, d) \to H(A, d) \to 0$$

where all the maps are of degree 0 except $A \to B(A, d)$ which is of degree -1. Thus if ρ is a rank on \mathcal{K} , then $\chi_{\rho} A = \chi_{\rho} Z(A, d) - \chi_{\rho} B(A, d)$, and $\chi_{\rho} Z(A, d) = \chi_{\rho} H(A, d) + \chi_{\rho} B(A, d)$.

PROPOSITION 1. $\chi_{\rho} A = \chi_{\rho} H(A, d).$

COROLLARY 1. If $0 \to (A', d') \to (A, d) \to (A'', d'') \to 0$ is exact in dK, then $\chi_{\rho} H(A, d) = \chi_{\rho} H(A', d') + \chi_{\rho} H(A'', d'')$.

Of especial interest will be *twisted* ranks on \mathcal{K} , that is, ranks ρ such that $\rho X = 0$ whenever X is projective in \mathcal{K} . Then also $\chi_{\rho} X = 0$ if X is a projective of \mathcal{K}' , for then each X_i is projective in \mathcal{K} .

If (X, d) is an object of $d\mathcal{K}$ and X is projective in \mathcal{K}' , then (X, d) is a projective complex over \mathcal{K} . (It is not, however, necessarily projective in $d\mathcal{K}$.) If ρ is a twisted rank on \mathcal{K} , then $\chi_{\rho} H(X, d) = \chi_{\rho} X = 0$.

COROLLARY 2. If $0 \to (A', d') \to (A, d) \to (A'', d'') \to 0$ is exact in $d\mathcal{K}$, ρ is a twisted rank on \mathcal{K} , and A'' is projective in \mathcal{K}' , then $\chi_{\rho} H(A', d') = \chi_{\rho} H(A, d)$.

2. Existence of twisted ranks

If \mathcal{K} and \mathcal{L} are abelian categories and every object of \mathcal{K} is the epimorphic image of a projective, a covariant additive functor $T: \mathcal{K} \to \mathcal{L}$ is periodic of

period n if, for all k > 0, $S_{k+n} T = S_k T$, where $S_k T$ is the k'^{th} left satellite of T [1].

For example, suppose Q is a finite group and G a finite right Q-module, and that Q is an Artin-Tate group with respect to G (an ATG-group), i.e. that for every prime p dividing the order of G, the p-Sylow subgroup of Qis either cyclic or a generalized quaternion group. Then the tensor product $G \otimes_Q A$ is periodic of some even period on the category of left Q-modules.

PROPOSITION 2. If $T: \mathcal{K} \to \mathcal{L}$ is half-exact and periodic of period 2n, and if ρ is a rank on \mathcal{L} , then

$$\sigma A = \sum_{k}^{k+2n-1} (-1)^{i} \rho S_{i} T A$$

defines a twisted rank on K.

In any case it is clear that σ vanishes on projectives. But if $0 \to A' \to A \to A'' \to 0$ is exact in \mathcal{K} , then

$$\longrightarrow S_{k+2n-1}TA' \longrightarrow S_{k+2n-1}TA \longrightarrow S_{k+2n-1}TA'' \longrightarrow \cdots \longrightarrow S_kTA'' \longrightarrow$$

is exact. The proposition follows from Lemma 1.

In the example cited above, the functor, $G \otimes_{Q}$, is half-exact. If it is restricted to the category of finitely generated left Q-modules, the values of the satellites, $\operatorname{Tor}_{k}^{Q}(G, A)$, lie in the category of finite abelian groups. Thus if 2n is a period,

$$\sigma A = \sum_{k}^{k+2n-1} (-1)^{i} \mathfrak{o} \operatorname{Tor}_{i}^{Q}(G, A)$$

is a twisted rank on the category of finitely generated Q-modules.

All the above observations may, of course, be dualized in several ways.

3. A topological application

Suppose the ATG-group Q operates cellularly on the cell-complex \mathfrak{X} . Then the points of \mathfrak{X} fixed under some nontrivial element of Q form a subcomplex \mathfrak{a} . The integral chain complex of \mathfrak{X} is a finite complex in the finitely generated left Q-modules, and the chain complex of \mathfrak{a} a subcomplex. The quotient is free, thus a fortiori a projective complex.

THEOREM. If 2n is a period of $G \otimes_Q$, then

$$\sum_{i} \sum_{j=k}^{k+2n-1} (-1)^{i+j} \mathfrak{o} \operatorname{Tor}_{i}^{Q}(G, H_{i}(\mathfrak{a})) = \sum_{i} \sum_{j=k}^{k+2n-1} (-1)^{i+j} \mathfrak{o} \operatorname{Tor}_{i}^{Q}(G, H_{i}(\mathfrak{a})).$$

BIBLIOGRAPHY

- 1. H. CARTAN AND S. EILENBERG, Homological algebra, Princeton University Press, 1956.
- 2. A. HELLER, Homological resolutions of complexes with operators, Ann. of Math., vol. 60 (1954), pp. 283-303.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

564