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The completeness of the characteristic linear systems of algebraic families
is one of the important and interesting problems in algebraic geometry. Re-
cently it became clear that this is not true in general in the case of prime
characteristic [i], but it is still an interesting question to ask what conditions
are necessary or sufficient for the completeness of the characteristic systems.
O. Zariski proposed to me the problem of extending to the abstract case the
result that the vanishing of the geometric genus is sufficient for this purpose.
This paper contains the affirmative answer to his conjecture. We shall prove
in this paper the following: On the nonsingular surface we have an inequality
p _-> h’I q -> 0 where p, h0,1, and q denote respectively the geometric
genus, maximal deficiency, and the irregularity (the dimension of the Picard
variety) of the original surface. In i we shall introduce the notion of the
characteristic set of an algebraic family and prove the linearity of that set.
Then we shall show the inequality q -< h0, for the nonsingular variety of any
dimension (2). In 3 we shall prove an important property of an ample
linear system on the nonsingular variety, and then the final results can be
deduced from this property in the case of the nonsingular surfaces. The
author was inspired very much by the works of F. Severi during
these researches.
The author expresses his heartfelt gratitude to Professor O. Zariski who

recommended him to take up this problem and gave many valuable sugges-
tions during his stay in Iyoto and also to Professor Y. Akizuki for his kind
encouragement.

I. The characteristic linear systems

Let V be a proiective variety of dimension >- 2 which is irreducible and free
from singular subvarieties of codimension 1. Let 2: be a maximal algebraic
family of positive divisors on V, and let 1 be a common field of definition for
V and 2;. We shall assume in the following that the generic member C of
2: over 1 is an irreducible variety and that any subvariety of C of codimension 1
is simple, not only on C, but also on V. Let Co be a fixed generic member of
2 over , and C a generic member of 2: over (C0) k’. Since C : Co, we
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Cf. Zariski [14], pp. 82-84.
The term "variety" is used only for an irreducible variety, and the terms "irre-

ducible", "simple", and "normal" in this paper are used always in the absolute sense.
We shall mean by k(C) the smallest field containing k over which C is rational.

This is equivalent to the field generated over k by the Chow point of C, since C is a V-di-
visor and V is defined over
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can define the intersection product C.Co on V which is rational over k’(C).
Let F be a specialization of C. C0 over/’ extending the specialization C Co.
We shall denote by the set of all Co divisors r obtained in the way described
above. This set is called the characteristic set of the algebraic family
2 (on Co). Our obiect is to prove that the set is a linear system of dimension
r 1, where r is the dimension of Z.
Let Em be the complete linear system on V which contains the sections

of V with the hypersurfaces of order m. Let C be any member of 2, then
deg C is the same for all C in 2. We call it the degree of . We can see easily
that if m is not less than the degree of 2, then for any member C in 2 we can
find an element E in Em such that E :> C and E >t 2C [9]. We shall fix an
integer m to satisfy the above condition. Let C be a generic member of 2
over ; then the linear system Em C exists, and it is a complete linear
system defined over ]c(C). Let D be a generic member of lE I- C over
(C); then C -t- D is a member of lEm land k(C D) is a regular extension
of/c of dimension r d, where d dim Em C I. Let A be the set of all
positive divisors which are specializations of C - D over ; then A is an alge-
braic family on V, and any member of A can be written in the form C - Dr,
where C is a member of 2 and D’ is a member of Em C’.
Let n dim lE I. Then the members of lE are parametrized in

1-1 way by the points in a proiective space L, and the set of points corre-
sponding to the divisors in A is an irreducible subvariety W of L defined
over/c. Let Co be, as before, a generic member of 2 over ]; then we can find
a divisor Do in E Co such that Co -[- Do is a generic member of A over k.
Let to be the point on W corresponding to Co + Do. Then from the choice of
the integer m, we have Do ; Co. Let T be the tangent linear variety to W
at to, and H- a generic linear variety over l(to) containing the point to.
Then H is a generic linear variety over 1, and the intersection product Wo
W.H is defined. It is kaown that Wo is an irreducible variety, that to is a
simple point of Wo, and that Wo is defined over a field K which is a field of
definition containing k(to) [3], [6], [10]. We shall set To T.H. Then we
can see easily that To is the tangent linear variety to W0 at to. Let be a
generic point of Wo over K, and C -t- D the corresponding divisor in A. Then
is a generic point of W over k(to), and hence C -- D is a generic member of
A over h(to).
Next we consider the linear system Co -t- E C01. This linear system

is represented by a linear subvariety contained in W. Moreover So con-
tains to, hence it is contained in the tangent linear variety T to W at to.
Since So is defined over k(to), the intersection So a H is reduced to the point
to. Thus we see that any member in lE corresponding to a point s ( to)
on To does not contain Co as a component. We shall also remark here that
the linear variety S corresponding to the linear system C -- E C inter-
sects H in only one point, namely in the point t.

Concerning the theory of the specialization of cycles we refer to [7].
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Let E be the linear subsystem of E defined by the tangent linear variety
To to W0 at to. Then we can define the linear system TrCo E which is the set
of the intersections of Co with the members E of E such that E Co. Since
any member in E, except Co + Do, does not contain Co, we see that
dimTrcoE r- 1.
We shall show that Tr Co E has the fixed component Co. Do and consists of

the C0-divisors of the form I’ -t- Co. Do, where I’ is a member of the character-
istie set e.
We shall show first that I’ + C0.Do D Trco E. Let A0 be a member of

E, different from Co -- Do, and let a0 be the point on To corresponding to the
divisor Ao. Let Fo be the straight line connecting ao and to. Let K’ be a
field of definition for Fo, containing K, and let be a generic point of W0
over K’. Let Ft be the straight line connecting to and t. Then Ft -’+ Fo is
a specialization over the specialization -+ to with reference to K’. Let
C + D be the divisor corresponding to the point t. Then we can extend the
specialization (t, Ft) (to, Fo) to the specialization

(1) (t, Ft, C, (C + D).Co) -+ (to, Fo, Co, P + G),

where F is a specialization of C. Co (hence a member of e) and G is a specializa-
tion of D. Co. Since Co, Do is the uniquely determined specialization of C, D
over the specialization --+ to and Do Co, Co. Do is the uniquely determined
specialization of Co.D over the above specialization. Hence we have G
Co. Do. Since ao is a point of Fo, there exists a point a on Ft such that a --+ a0
is a specialization compatible with the specialization (1) [11]. Let A be the
divisor corresponding to the point a. Then since A is a member of the linear
pencil determined by the divisors Co Do and C D, we have A .Co
(C - D).Co. Thus we see that

(t, Ft C, (C -+- D).Co, A, A. Co) (to, Fo Co, [’ -[- Co. Do, Ao Ao. Co)

is a specialization over K. Since Ao Co, the intersection product Ao. Co is
defined, and this is the uniquely determined specialization of A-Co over the
specialization A -. Ao. On the other hand, r -[- Co. Do is also a specialization
of A. Co (C + D). Co over the specialization A -- Ao, hence we must have
F + Co. Do Ao. Co. Since Ao. Co is an arbitrary member of Trco E, the
above arguments show that F 27 Co.Do :=) Trco E.

Let, as before, be a generic point of Wo over K, and let C + D be the
divisor corresponding to t. Then C is also a generic member of 2; over K.
In fact assume that dimK K(C) < r; then, since dimK K(C + D) r, K(D)
has dimension >= 1 over K(C). Hence the set of divisors which are the speciali-
zations of D over K(C) form an algebraic system of dimension ->_ 1 contained
in H and S. This contradicts the remark mentioned before. Thus we see
that C is a generic member of 2, not only over k, but also over K.
We shall now proceed to the proof of the inverse inclusion relation. Let

F be an arbitrary member of the characteristic set . Then F is a specializa-
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tion of C.Co over the specialization C -+ Co with reference to K(Co). But
since C is also a generic member of 2 over K, F is a specialization of C. Co over
the specialization C -+ Co with reference to K. We shall extend this speciali-
zation to the specialization

(t, C, C. Co, D, D. Co) -+ (to, Co, F, Do, Do.Co)

over K. Let F be the straight line connecting to and t, and let F0 be a speciali-
zation of Ft over the above specialization with reference to K. Then F0 is a
straight line in To passing through to. We can see by the same reasoning as
before that 1 -{- Co. D0 Co. Ao, where A0 is the divisor corresponding to a
point in the straight line F0 different from to. This proves that F C0. D0 is
contained in the linear system Tr Co E. Thus we get the following

THEOREM 1. Let V be an irreducible variety of dimension 2, without
singular subvarieties of codimension 1, and let be an algebraic family of positive
divisors on V such that the generic member C of is an irreducible variety and
such that any subvariety of C of codimension 1 is simple, not only on C, but also
on V. Let r be the dimension of the algebraic family . Then the charteristic
set of the algebraic family on its generic member is a linear system of dimension

Note the following corollary"

2. The inequality q h’
Let V be a projective variety defined over . We shall assume that } is

algebraically closed and that V has no singular point. Let Z be a maximal
family of positive divisors on V, and W the set of Chow points of the members
in . The family Z is called a total family if satisfies the following condition"
Let X be an arbitrary divisor on V which is algebraically equivalent to zero.
Then there exists a divisor X in such that X X X0, where X0 is a
fixed member of and denotes the linear equivalence of divisors [4].
this case the associated variety W is birationally equivalent to the product of
the Picard variety of V and the linear space whose dimension is equal to
the dimension of the complete linear system C ], where C is a generic member
of [5]. We shall denote as before by E the section of V with the hyper-
sudace of order m. Then we have the

LEMMA 1. Let be a total family defined over , and let C be a generic member
of over k. Let be the maximal family containing C + E. Then is
again a total family, and a generic member C of over is linearly equivalent
to a divisor of the form C + E

Proof. It is easy to see that is total. Let C0, E0 be fixed members of
and E respectively, rational over . Then since C is algebraically equiva-
lent to C0 + E0, we can find a divisor C in such that C C0 E0
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C Co. Since C is a generic member of 2 over/c and 2 is total, the class
of C Co E0 is a generic point of over/c. Hence we can find such C
among the generic members of Z over/c.
Let 2 be a total family, and C a generic member of 2;. Let (C q- E) be

the sheaf of the germs of the rational functions on V such that
(f))- C- E. Then it is known that dim H(V, 2(C - E,,)) 0 for
sufficiently large m. Now as an immediate consequence of Lemma 1, to-
gether with Lemma 2 of [5], we get the following

LEMMA 2. On a nonsingular variety, there exists a total maximal family
such that (1) a generic member C of is a nonsingular variety, (2)
dim g (V, 2(C)) 0.

We shall call a total maximal algebraic family 2: satisfying the conditions
of Lemma 2 a typical family.
Let 2 be a typical family, and C a generic member of 2. We shall consider

the exact sequence of sheaves

0 --+ (C) --+ (C. C) O,

where t9 is the sheaf of local rings on V and 2(C.C) denotes the sheaf on 17
defined by the trace of CI on C. Then we have the exact sequence of
cohomology groups

0 H(V, O) ---+ If(V, 2(C)) ---+ H(C,
H(V, O) O,

since H(V, 2(C)) 0. From this we get

dim Tre CII dim C! -t- h’ 1,

where h’ dim H(V, 0).
Now we shall return to the characteristic linear system ( of 2 on C.

Since e is contained in Trc ]C[ (see corollary to Theorem 1), we have
dime =< dim lCI + h’ 1. On the other hand, dime dim2- 1
dim C + q 1 (where q stands for the dimension of the Picard variety of
V), since 2 is a total family. Combining these two we get the

TEOaEM 2. On the nonsingular projective variety we have the inequality
q <__ h’1. The equality holds if the characteristic linear system of some typical
family is complete, and only if the characteristic system of every typical family
is complete.

Remark. Theorem 2 does not hold in general when V has some singular
points, even though V is normal. For instance let V be a surface in a pro-
jective 3-space which is obtained by projecting a plane nonsingular cubic
curve from a point. Then it is readily seen that q 1, but h’1 0.

Concerning the sheaf theory, the reader is referred to papers [8] and [13].
I heard from J. Igusa that he already knew this inequality.
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3. A property of the ample linear systems
Let V be a nonsingular variety defined over/, belonging to the projective

space L, i.e. V is not contained in any hyperplane of L. Let E be the linear
system on V which is composed of hyperplane sections of V; then the generic
member C of E is also a nonsingular variety [6]. Let L’ be the dual space of
L;we shall denote by x, x’, the points of L’. Then a point x of L’ defines
uniquely a hyperplane (which will be denoted by the same letter) x in L,
and we get a member C of E (the intersection cycle of V and the hyperplane
x). We shall denote by the set of points of L such that the hyperplane
x either has at least d contacts with V (in this case the divisor C has at
least d multiple points), or else is a specialization of such a hyperplane over 1.

Let P be a generic point of V over ], and Tp the tangent linear variety to
V at P. Then the Plticker coordinates c(T,) are rational over It(P), and the
point c(Te) has a locus V* over/c. The variety V* is a subvariety of the
Grassmann variety @(r, n) which is the set of r-dimensional linear varieties
in Ln. We shall call this variety V* the dual variety of V. If is the rational
map from V onto V* defined over ]c by q(P) c(Te), then q is defined every-
where on V, since V is nonsingular.
We shall recall here that @(r, n) is an irreducible variety, defined over the

prime field k0, and that it is nonsingular variety of dimension (n r)(r -- 1).

LMMA 3. The point set is a bunch of subvarieties of L’, normally algebraic
over l. Moreover if the dual variety V* of V has the same dimension r as V,
then a component of 9 has a dimension >- n d provided a generic member
of that component has only a finite number of points of contact with V.

Proof. Let T be the correspondence between L’ and @(r, n) such that for
any point x in L, T(x) is the set of r-dimensional linear varieties contained in
the hyperplane x. Then T(x) is also a Grassmann variety of dimension
(r -- 1)(n r 1), and T is an irreducible correspondence of dimension
n + (r -t- 1)(n r 1) defined over k0. Let @() @(r, n) X X @(r, n)
and T() be the correspondence between L and @() such that

TC)(x) T(x) X... X T(x).

Then T() is an irreducible correspondence of dimension

n- (r-]- 1)(n- r- 1) d.

We shall now consider the intersection (L’ X V* X V*) n T(). Since
L X @() is a nonsingular variety, the components 2i (i 1, s) of this

We say that a hyperplane x has d contacts with V if x contains d different tangent
linear varieties to V. If the correspondence between V and the dual variety V* is 1 to
1 everywhere, then x has d contacts with V if and only if the divisor C has d multiple
points.

The nonsingularity of the Grassman variety follows from the fact that @(r, n) is an
algebraic homogeneous space.
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intersection have dimensions >= n d. Let proj, B ,9 and select
among the B’s those for which the hyperplane x, for the generic point
x of B, has at least d contacts with V. Let B (i 1, t) (t < s) be such
components. We shall show that U =1 B E. It is clear, by definition,
that U =1 B is contained in . Let x be a point of i), and assume that
x has d contacts P* ,... P’ with V. Then the point x X P X X P
is contained in (L’ X V* X X V*) n T(), where P**. is the Plticker coordi-
nates of the tangent linear variety to V. Let be the component of this
intersection containing the point x X P* X... X P, and let

be a generic point of 3 over/. Then

X/S X X/’--*x XP X’" XP
is a specialization over 1, and we see that P 15 for i j, since P,*. P
for i j. Hence the hyperplane . has at least d contacts with V and
proj, B must be one of B,(i 1, ..., t). This proves that
xeU= B, or equivalently lZ U i=l Bi

Let x be a generic point of one of B(1-< i <= t) over /. Since
projL, oct B, we can find the points P’, P’ such that

xXP X"" X P’
is a generic point of oC over . Now assume that the hyperplane x has only a
finite number of points of contact with V; then P* are all algebraic over k(x).
Hence we have dim B dim oCi _-> n d.
We see immediately that 9E is a bunch of varieties normally algebraic

over k. Thus the lemma is proved completely.
Let E be an ample linear system on a nonsingular variety V; then the

linear system E, defines a biregular birational transformation of V into a
variety I?, in which the linear system E is transformed into the linear system
of hyperplane sections of V. Let n dim E, and let L be the ambient space
of I?. Then V is not contained in any hyperplane of . Let * be the dual
variety of ?; we call this variety the dual variety of V with respect to the
linear system E. Then we have the

LEMMA 4. The dualvariety V* of V with respect to the linear system E has
the same dimension as V if E contains a member C such that C has at least one
but at most a finite number of multiple points.

Proof. Without loss of generality we can assume that E itself is the linear
system of hyperplane sections of V. Assume that dim V* < dim V. Let C
be a member of E, and P a multiple point of C. Let P* 9(P); then -t(P*)
has a component II of dimension >= 1. This means that any point of 1I is a
multiple point of C. This proves the lemma.

We mean by "proj" the geometric projection.
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Combining these two lemmas we get the following

TEOREW 3.1 Let E be an ample linear system of dimension n on a non-
singular variety V, and let t be a common field of definition for V and E. As-
sume that the correspondence between V and the dual variety of V with respect to
the linear system is everywhere 1 to 1. Let L’ be the parameter space of E, and
let 9d be the set of points of L’ corresponding to the members C of E such that
either (1) C has at least d multiple points,11 or else (2) C is a specialization, over
to, of a divisor having the property described in (1). Then 9 is a bunch of
varieities, normally algebraic over k. Moreover, if B is a component of 9 such
that the generic member of B has at most a finite number of multiple points, then
.dim B is not less than n d.

4. The theory on the nonsingular surfaces
In this section we shall restrict ourselves to a nonsingular surface V in a

projective space. Let 2 be a maximal algebraic family on V, and let C be a
generic member of Z over a field/ which is a common field of definition for
V and 2. We shall assume that C is a nonsingular variety. Let E[ be the
complete linear system on V which is composed of the sections of V with the
hypersurfaces of such an order m that the linear system E C is also
ample. Let D be a generic member of EI C over/(C); then D is also a
nonsingular curve. Let A be the set of all divisors which are the specializa-
tions of the divisor C + D over k, and put (C. D) d. Let W be the pa-
rameter variety of A; then W is an irreducible variety defined over/. When
m _>_ 2, EI satisfies the assumption of Theorem 3, hence W is contained in
the bunch, where is a bunch of varieties in the parameter space of the
linear system E defined as in Theorem 3. Since the divisor C d- D is a
member of E and since the number of multiple points in C -f- D is d, we can
apply Theorem 3 to this linear system E I, and we see that the component of

has dimension _>- n d if a generic member of this component contains
no multiple components.

LEMMA 5. The parameter variety W of A is a component of , and
dim W >- n d.

Proof. Let B be a component of 9, and assume that B W, B W.
Let x be a generic point of B over/, and X the divisor corresponding to the
point x. Then X must be an irreducible curve. In fact if X is reducible, it
must be of the form ( /). Since C -f- D is a specialization of C -}- Z, one
of them, say C, must have C as a specialization. Since 2 is maximal, it fol-
lows that is a member of 2. Hence/ is a member of E , and +/
is contained in A. Now assume that X is an irreducible curve; we shall de-

10 The corresponding results to Theorem 3 were obtained elementarily by the joint
effort of Akizuki and Matsumura just before I succeeded in proving this theorem (see
[151).

11 Cf. footzote 7.
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note by p(X) and r(X) the arithmetic genus and effective genus12 of X, re-
spectively. Since X has at least d multiple points, we must have (X) =<
p(X) d [2]. On the other hand, p(X) is invariant by algebraic equivalence,
whence

p(X) p(C + D) p(C) + p(D) + (C.D) 1 p(C) -+- p(D) + d- 1.

Since C and D are nonsingular curves, we have p(C) r(C), p(D) r(D),
and we haver(X) =< v(C) + r(D) 1. On the other hand, C + Dish
specialization of X, hence we must have (X) -> r(C) + (D) [2]. This is a
contradiction, and the first half of the lemma is proved. Since the generic
member of W is C + D and since it has no multiple component, the assertion
on the dimension follows from Theorem 3, Q.E.D.
We shall denote, as usual, by K the canonical divisor on V, and we shall

introduce a numerical character for the divisor Z on V by a(Z) -(K. Z).
Let Z be a divisor on V such that dim Hi(V, 2(Z)) 0; then the theorem
of Riemann-Roch on. the surface yields

dim lZ 1/2[(Z2) + a(Z)]- pa(V) i(Z),

where i(Z) is the speciality index and Pa is the arithmetic genus of V [12],
[13].
THEOREM 4. Let C be a nonsingular curve on V,. and 2; the maximal algebraic

family containing C. Then we have dim 2; >- (C) p(C) 1.

Proof. Let E, D, and A have the same meaning as before, and assume that
D is nonspecial and dim Hi(v, 2(D)) 0. Then we have

dim A dim 2; + dim lD dim 2 + 1/2[(D) + a(D)] + p.

By Lemma 5 we see that this number is not less than

dim lEvi (C.D) 1/2[(C) + (D) - () + a(D)]- p

since E C + D. Hence we get the inequality

dim Z >__ 1/2[(C) - a(C)].
Since (K - C).C is the canonical divisor on the nonsingular curve C, we
have a(C) (C2) 2p(C) - 2. Substituting this relation in the above
inequality we get the relation dim 2; __> (C) p(C) - 1.

THEOREM 5. Let V be a nonsingular surface, and assume that the geometric
genus p of V is O. Let 2; be a maximal algebraic family (not necessarily total)
such that the generic curve C of satisfies the conditions" (1) C is a nonsingular
curve, (2) dim HI(V, 2(K C)) O. Then the characteristic linear system
C of 2; is complete. Hence we have q h’.

Proof. Since dimH(V, 2(K C)) O, we have dim K.CI
1 The definition of the arithmetic genus of divisors on a normal variety will be found

in [12]. The effective genus of an irreducible curve X is the genus of the nonsingular .
which is birationally equivalent to X.
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dim K -1. This means that the characteristic linear system C. C on
C is nonspecial. Hence dim C.CI C p(C). By Theorems 1 and 4,
the dimension of the characteristic linear system a attains this number, and

is contained in C. C ]. Hence ( must be complete, Q.E.D.
As an application of Theorem 4 we have a slightly more precise result than

Theorem 5.

THEOREM 6. On a nonsingular surface we have the inequality q -+- Pa >= O,
orpg >= h’1- q >_- 0.

Proof. Since V is nonsingular, there exists a typical family 22. Let C be
a generic member of 22; then we have

dim 2; q -- dim lC q + 1/2[(C) + (C)] -t- pa.

By the Theorem 4, dim 2 => 1/2[(C2) -- z(C)], whence we get at once the rela-
tion q - pa >_- 0. The second inequality follows from the well known relation
h’1 p pa [12], [13] and the first one by applying Theorem 2.
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