SOME EXTREME VALUE RESULTS FOR INDEFINITE
HERMITIAN MATRICES!

BY M. Marcus, B. N. Movts, aAnp R. WEsTWICK

1. Introduction

Let A be an n-square complex Hermitian matrix, and let x;, -+, @ be
an orthonormal (o.n.) set of vectors in the unitary m-space V,. In this
paper we consider the following two functions:

(1.1) o@, -+, @) = I (4, 2)),

(12) ‘l/(xl y Ty xk) = E2((Aml ) .’131), Y (Axk ) xk))’ k = mn.
Ey(yr, - -+, yx) is the second elementary symmetric function of the indicated
variables. The problem is to determine the extreme values of the functions
¢ and ¥ as the vectors x; , - - - , 2 vary in V,, subject to the restriction

(x5, 25) = 835

To do this, we examine the structure of extremal sets ay , - - -, ) in terms of
invariance under A. We shall consistently use the term ‘“‘extremal set’” to
denote a set of extremal vectors, i.e., vectors for which the extreme values
of ¢ and ¢ occur. The problem of the minimum for ¢ when A4 is nonnegative
Hermitian has been solved by K. Fan [4] and later generalized by Amir-Moéz
[1]. The maxima for both ¢ and ¥ are contained in [7]. The minimum for
¥, again with A nonnegative Hermitian, has been solved by A. Ostrowski by
means of Schur-convex functions [8]. In this paper we will assume that 4
has both positive and negative eigenvalues. The usual techniques do not seem
to generalize readily from the case of positive matrices.

2. Invariance results

LemMma 1. If A is nonsingular, then an extremal set for ¢ spans a k-dimen-
sional tnvariant subspace of A.

Proof} By the continuity of the inner product it is clear that we may
select 41, « - -, Y satisfying (y:, y;) = 6;; such that

(2.1) mine = (Y1, -+, Yr)-
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If the subspace L(y:, - - -, y&) spanned by the y; is not invariant under 4,
then we may assume without loss of generality that there exists a unit vector
2 in the orthogonal complement L* of L such that

(2.2) (Ays,2) = p # 0.
Define the set 57,7 = 1, - -+, k, by

=0+ o) — tp2)

vi =i, i=2 -,k
where ¢ is a real number. It is clear that y; is an o.n. set. Set

(o) = —2|p|* ITi= (4y;, y)).
In view of (2.1) and (2.2), we conclude that

Then

min e = (Y1, +-+, yx) = O.

Let u;, -+, u, be a set of o.n. eigenvectors of A corresponding respectively
to the eigenvalues Ay, -+, N\,. Thenforl =4 < - < = n
1
¢(ui1 y Uigy Uigy, 7, uik+1) = Ny H;o:':" )‘ii > 0,
k-
‘P(uiz y Uiy 5y Uiy y ", uik+1) = Ni, H1:§ >\i,~ > 0.

Consequently A;, A;;, > O for any 4; and ¢, . This implies that A is definite,
completing the proof for min ¢. The argument for max ¢ is the same.

For ¢ it is not true that any extremal set spans an invariant subspace of
A ; however we have

LemMma 2. There exists an o.n. set Yy, « -+, Y Such that
@) Ly, -+, ys) s an tnvariant subspace of A;
Proof. Let i, -+, 2, be a minimizing set for y, and assume there exists
zeL*(x, -+, ) such that ||z|| = 1 and
(Ax17z) =p# 07
then set
o= (L4 o) @ — tp2)
’ .
L1 = Zj, i=2 -,k

for ¢ a real number. Then setting

we have

m(t) = (Axy, an) Djes (Azj, ;) + Bo((Axs, @), -+, (A, 2))
= (]- + t2 I p l 2)—1 ((Axl; xl) —2¢ l P | ? + t2 l p l Z(Az) z)) Z?=2 (A-xf’xi)
+ Ez((AiL'z ) .’L'2), Y (Axk ) xk))'
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Hence
m(o) = —2|p|* 2ie (Ax;, )).

If > s (Az;, x;) # 0, then, since min ¢ = ¢(z; , ***, &), we must conclude
that p = 0 and hence that L(x,, ---, a;) is invariant under A. If

Z?=2 (Ax} ) xi) = 0)

then if z is any unit vector in L¥(xs, - - - , ox),

‘l/(z) Lo, ", xk) = Ez((AQ?z, Cb'z), ] (Axk) ‘I;k))
Hence if L(z,, - - -, x) isinvariant under 4, we may choose z € L*(x, , - - - , 1)
to be a unit eigenvector of A, and hence L(z, xs, - - - , ;) is invariant under A.

Consequently we assume that
(Aze,v) = p1 # O,
where v e L*(x,, - - -, 2;) and v is a unit vector. Define
g = (14 ] p| " (2 — torv),
xr = (14 ] |*) ™ (tpr 2 + 0)
and note that x5, x5 , 5, - - - , & form an o.n. set. Define
K@ =@+ Clp D7 {2 pu [P+ 8o |” ((A2z, 22) — (Ao, 0))},
and we may readily verify that
(Axy, ) + (Azy , 27) = (1 + | pu | D)7 {(Alws —tpr 0], 22 —lp10)
+ (Altpy 22 + 0], thr 22 + v)}

= (Axs, x2) + (Av, v).
Also,

(Axg, ) = (1 4+ oo | D7 {(Ae, ) — 2t p1|* 4+ & o1 | (Ao, v)}

= (A.’L'z ) 1132) - K(t))
and

(Azg ,a3) = A4 |7 { [ oo | *(Ay, @) + 2t | pu | * + (4o, v))
= (Ao, v) + K();
thus
(Axzy , 22)(Axs , 23) = (Axy, 22)(Av, v) + K(t) (A2, 22) — (Av, v)) — K*(2).
Combining these results, we have
Y(@s, 23, @, v+, m) = Ex((Aay, an), (Aah , 23), (Azs, @), -+, (Aze, a1))
= (Axy, x2)(Axs , z5) + ((Axz, x3) + (Aas , 23)) Doves (Azj, x5)
+ By((Axs, x5), -+, (Axp, 1))
= (Axy, 1) (Av, v) + ((Azz, 2) + (Ao, v)) Sk (Azy, zy)
+ Ey((Axs, x5), -+, (Axi, ) + K@) ((Axz, 22) — (Ao, v)) — K*(8)
= miny + K@) ((A2s, 25) — (4w, v)) — K*(2).
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Now )
K@) =2]p, K@) =0,
and hence if (Ax,, x3) # (Av, v), we conclude that L(x,, - - - , xz) is invariant
under A. If (Az., x2) = (Av, v), then
Yo, @y, @, -, @) = ming — {2t | p0 /(L4 | o )}
< min ¢

for t ¢ 0. This completes the proof.

3. The extreme values

Let R; be the k-dimensional space of k-tuples over the reals. Let

A = -+ = N be any set of k real numbers, and let A = (A, -+, M) e Ry .
For y ¢ R;, we define the convex set M (\) as the totality of points y satisfying
(3.1) DY = DY

and

(2) Yy < Yaad, 1=4<--<4i =<k 1=r=k-1
LemMmA 3. The extreme values of the function

(3.3) gy) = Il

defined on M(N) occur in the set of numbers

(3.4) {ﬁ ()\kH_l + -+ )‘ki+1>kj+l_kj’ 0} ’

=0 kiya — k;

where the I ; are any integers satisfying

O=hk <k < - <ky=k.
Proof. First note that if y is such a point that
T e aA

Yi = k1 — ko s j=11"'yk1a
yjz)\k1+1+-..+)\k2 j=k1+1,"',]€2,
kz—-kl
A e A .
Yi = kq_l-l- + kq’ J = kq—1+ 13 "'7kq,

ky — kg

then y e M(A). Since g(y) is of the form (3.4), we see that these are achieva-
ble values on M (\). The remainder of the proof is an induction argument
on k. For k = 2 the result is clear. Assume the theorem for all integers
lessthan k. If z isan interior point of M (A) such that g(z) is an extreme value
of g, then there exists a multiplier u such that

dg

5!_/-;':”’ j=1y"',k
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fory = z. Thus
(3.5) IL';éj 2 = M, HLl Z; = uZj.
Summing on j and using (3.1), we have
iz = 2 ia N,
and substituting in (3.5), we have
Tlieize Coica N — kz3) = 0, j=1 -,k

Hence g(z) = 0 or g(z) = {(3 iz A5)/k}* and both of these types are in-
cluded in (3.4). Now suppose z is not an interior point of M(N). Then one

of the inequalities (3.2) is an equality. That is, for some w = {%;, -- -, %},
r < k, we have
(3.6) D Yi, = 2ia

for y = z. We consider the extreme values of g on the set defined by (3.1),
(3.2), and (3.6). Set
h(y) = 1< vs, »

where the indices 4;, ---, 4, are precisely those in w. For any subset
xl,"‘,.’l;t,létéT,Ofyi,,“',yi,,
(3.7) Doy £ Diahs.

Hence by (3.6), (3.7), and the induction hypothesis, A(y) has extreme values
of the form (3.4) with &k replaced by r and involving only Ay, -+, A.. On
the other hand, set

m(y) = [Liwvi,

Zi«w Y = ZI;‘.—_rH N

Letwvy, -+ ,v:,1 =t =<k — r, be any subset of {y;}j. Then
Dy, + g £ 255N,

Z;'=1 Vj é E;:lr+1 7\,’ .

Again, by the induction hypothesis, the extreme values of m(y) are of the
form (3.4) using Ary1, - -+, Ay and &k — 7 in place of k. It follows that num-
bers of the form (3.4) are bounds on the extreme values of ¢g(y) = m(y)h(y),
and since these are achievable values, the induction is complete.

and by (3.1) and (3.6)

and hence

Remark. Lemma 3 has an interesting geometric interpretation. The set
M(\) can be described as follows. Consider H()\), the convex hull of the
k! points P\ as P runs over all k-square permutation matrices. It is known
that HQA) = M(\) (see [9]). However, for completeness we recapitulate the
brief proof of this fact. For if y e M(\), there exists a permutation matrix P
for which (Py); = (Py)jp,5 =1, --- ,k — 1. Ttisclear that Py e M(\). By
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aresultin [5; p. 49], Py = S\, where S is a k-square doubly stochastic matrix.
Hence y = P~'S\, and P7'S is clearly doubly stochastic when S is. By a
result of G. Birkhoff [2], P7'S is a centroid of permutation matrices. It
follows that y e H(\). Conversely if y e H(A), then y is a centroid of the
points PA, and each PX e M(\). Thus H(\) = M()\).

Lemma 3 asserts that the maximum and minimum signed volumes of the
k-dimensional parallelopiped bounded by the planes x; = y; and the coor-
dinate planes x; = 0 as y varies over the polyhedron H(\) are of the form
(8.4). Tt seems interesting to ask the same question for a more general
elementary symmetric function than (3.3). Lemma 4 answers this for
Es(yy, -+, yr). Of course, if A\; > Oforj = 1, --- | k, then H(\) consists
of points all of whose coordinates are positive. In this case both Lemma 3
and Lemma 4 follow for the minimum at least by using the concavity of
E¥(yy, -, u),1 £ r £ Lk, where E, is the 7" symmetric function of the
indicated variables [6].

LeEMMA 4.
(3.8) mingerey Bo(yr, -+, ye) = oAy -+, M)
(3.9) maxyeoy Bo(yr, -, yi) = (5){ i ny) /)

Proof. Trom (3.1) we see that the right side of (3.9) is an achievable value
of Ex(ys, -+, yr). We need only show that

(3.10) BEs(y, -, ) = O { 5y /k}
This is known fory; =2 0, 7 =1, ---, k [5; p. 52]. Now
iy’ = 25y + 2Ba(yn, -+, w),
and hence (3.10) is equivalent to
(Ximyi)" S k25,

which follows from the convexity of ¢".
Now if the minimum value of E, is achieved at an interior point of M()\),
we conclude that

OE, .
. =2 = =1, -,k
(3 11) 3y, My J )
for y this interior point and u a constant multiplier. But (3.11) implies that
=1 = == (Tia\)/k
Hence assume that for some o = {41, -, 7.}, r < k, we have

D1 ¥i, = Dl

for y = 2z, the minimizing point. The proof now proceeds by induction on
k exactly as in Lemma 3. The essential part of the argument is contained
in the following sequence:
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By, -, a) = (ia12:,) (Xiw2s) + Balziy, -+, 25,) + Ea(z ;7 ¢w)
= (T5ang) (Ciaria N)) 4 Ea(zay, o+, 2i) + Bz ¢ )
2 (7)) (i N) + B, -, N)
+ By, 0 M)

= Ho\, -, M)
The inequality follows as before from the induction hypothesis.

4. Applications to matrices

TueorEM 1. For 1 £ k = n the extreme values of (w1, -+, ai) are of
the form
(4.1) ﬁ <)\ki+1 + -+ )\ki+1>ki+1—k,‘,
j=1 ki+1 - kj
where the k; are integers satisfying 0 = ko < ky < -+ <kg=kand \, ---, N\

18 a choice of k eigenvalues of the matrix A.

Proof. By a standard continuity argument we may assume A is non-
singular. By Lemma 1 an extremal set spans an invariant subspace L
under A. By a result of K. Fan [3: Theorem 1] and the invariance of L,
we conclude that

((Azy, ), -, (Aw, @) e M(N),

where A = (A1, -+, A\) and Ay, - -+, Ay is some choice of k& eigenvalues of A.
The theorem of Fan that we are applying here states that if B is any Her-
mitian n-square complex matrix and z;, - -+ , @ is an on. set (k < n), then

D b1 Baeiyt S Doima (Bry, ) S D5 B,

where 8; = -+ = B, are the eigenvalues of B. By Lemma 3 the extreme
values of ¢ are bounded above and below by expressions of the form (4.1)
or 0. However, the argument used in Lemma 1 excludes 0. Now a typical
value (4.1) can be obtained by choosing

i=ki‘+1 01 (t—kj)
J

u.

2 = L =T 1. - ks
(4 ) Xt Lt (]Cj+1 — kj)llz, % + ’ ) kj+1
forj = 0, ---, ¢ — 1, where 6; is a primitive (k;11 — k;) root of unity and
uy, + -+, up are on. eigenvectors of A corresponding to Ay, -+, Ay respec-

tively. It is a straightforward calculation to verify that the vectors z; are
o.n. and have the required property. For example, if j = 0 then (4.2) be-

comes
k1

_ S ' _
xt'—;(kl)lﬂa t—-l,..-’kl

and ’
(s, 20) = (k)™ MLes = 5,
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where s and ¢ are less than or equal to k;, and 6, is a primitive k* root of
unity. This completes the proof.

THEOREM 2. Forl £k =< n

(4.3) miny(x, -+, ) = By, -+, M)
(4.4) maxy(zr, - -, @) = k() {max (251 ey, | 2t aniia]) )
where oy = + -+ = an are the eigenvalues of A and A1, - -+, N\ 18 some choice of

koftheaj, j=1,--+,n.

Proof. The fact that ¢ is bounded above by the right side of (4.4) follows
immediately from (3.10) and Fan’s result [3]. This value is clearly achieved
by making a choice of vectors z; as in (4.2) with ¢ = 2. To establish (4.3),
we use Lemma 2 to conclude that there exists a minimizing set for v,

1, + -+, ¥, that spans an invariant subspace of A. Asin Theorem 1
((Ax1 , &), o0, (A, xk)) e M(N),

where A;, -+, A 1s a choice of k of the ;. Hence by Lemma 3

(4.5) Y@y, 0, @) = Ea(, o0, M)

The right side of (4.5) is clearly achievable by an appropriate choice of k&
o.n. eigenvectors of 4.

Remark. It would be of interest to determine the extreme values of

ET((Axl’ .’131), Tty (Axk ) xk))

for1 = r < k,r 2 3. The methods used here do not seem to generalize
readily except when 4 is nonnegative Hermitian.
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