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1. Introduction
Let A be an n-square complex Hermitian matrix, and let xl, ---, xk be

an orthonormal (o.n.) set of vectors in the unitary n-space V. In this
paper we consider the following two functions"

(1.1) (x, xk) I=1 (Axs, xs),

(1.2) (zl ,..., zk) E2((Axl, Xl), (Axe, xk)), k <= n.

E2(yl, y) is the second elementary symmetric function of the indicated
variables. The problem is to determine the extreme values of the functions
and k as the vectors Xl, xk vary in V subiect to the restriction

(x, x) .
To do this, we examine the structure of extremal sets x, x in terms of
invariance under A. We shall consistently use the term "extremal set" to
denote a set of extremal vectors, i.e., vectors for which the extreme values
of and occur. The problem of the minimum for when A is nonnegative
Hermitian has been solved by K. Fan [4] and later generalized by Amir-Moz
[1]. The maxima for both and are contained in [7]. The minimum for
k, again with A nonnegative Hermitian, has been solved by A. Ostrowski by
means of Schur-convex functions [8]. In this paper we will assume that A
has both positive and negative eigenvalues. The usual techniques do not seem
to generalize readily from the case of positive matrices.

2. Invariance results
LEMMA 1. If A is nonsingular, then an extremal set for spans a k-dimen-

sional invariant subspace of A.

Proof. By the continuity of the inner product it is clear that we may
select y, y satisfying (yi, y’) ij such that

(2.1) min (yl, y).
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If the subspace L(yl, yk) spanned by the y. is not invariant under A,
then we may assume without loss of generality that there exists a unit vector
z in the orthogonal complement L* of L such that

(2.2) (Ayl, z) o O.

Define the set y-, j 1, ..., k, by
2\--1/2

yl (1 + P (y tpz)

y. y-, j 2, ..., k,

where is a real number. It is clear that y- is an o.n. set. Set

 n(t) ...,
Then

h(o) -2 p II= (Aye, y).

In view of (2.1) and (2.2), we conclude that

min 9 9(yl, yk) 0.

Let ul, u be a set of o.n. eigenvectors of A corresponding respectively
to theeigenvaluesX, ...,X. Then forl <- i < <i+1-<_ n

y+l

(ui, ui, u., u+) X ii= X > 0.

Consequently )’1 h: > 0 for any il and i.. This implies that A is definite,
completing the proof for min q. The argument for max is the same.
For it is not true that any extremal set spans an invariant subspace of

A; however we have

LEMMA 2. There exists an o.n. set y y such that
(i) L(yl y) is an invariant subspace of A;
(ii) (yl, y) mine.

Let x, x be a minimizing set for , and assume there exists
---, x) such thatllzll 1 and

(Axe, z) p 0;
then set

+ t ,z)

Xl Xj

for a real number. Then setting

m(t) b(x, x),
we hve

re(t) (Axl, x) = (Axe, x) - E.((Ax., x), .., (Axe, xk))
(1 + t]pl:)-1 ((Axe, x) -2t[pl + t[pl(Az, z)) =. (Axe, x)

+ E:((Ax., x.),..., (Axe, x)).
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Hence
(Axe,

If _,=2 (Axe, x) O, then, since rain (x1, xk), we must conclude
that p 0 and hence that L(xl, xk) is invariant under A. If

=2 (Axe., x) 0,

then if z is any unit vector in L*(x., x),

(z, x,..., x) E‘2((Ax, x‘2), (Ax,, x,)).
Hence if L(x‘2, xk) is invariant under A, we may choose z e L*(x., x)
to be a unit eigenvector of A, and hence L(z, x‘2, xk) is invariant under A.
Consequently we assume that

(Ax2, v) pl z O,
where v L*(x2, x) and v is a unit vector. Define

X2 (1 -- t2[pl 2\-1/2
(x2 tpl v),

and note that x, x x, x form an o.n. set. Define

K(t) (1 + t‘21pl )- {2tip11‘2 -- t‘21pl ((Axe., x) (Av, v)) },

and we may readily verify that

(Ax’ x’) + (Axe’, x’) (1 + t21pl 1‘2)-1 {(A[x2 -tpl v], x2 --lpl v)
+(A[tl xg. "4- v], tl x‘2 +

(Axe, + (Av, v).
Also,

(Ax’, x.) (1 -+- t px I)- {(Axe, x) 2t p / t’ p 2(Av, v)}
(Axe., x2) K(t),

and

(Axe’, x’) (1 + t2 pl [‘2)-1 t21pl ‘2(Ax, x‘2) + 2tip1 -+- (Av, v)}
(Av, v) + K(t);

thus

(Ax2 x’2) x2 x2) (Ax‘2, x‘2)(Av, v) -4- K(t)((Ax, x) (Av, v)) K2(t)
Combining these results, we have

(( " ,, )(Ax2 x2), (Ax3 x3)... (Ax x)t(X2 " X) E2 Ax2, x2),X2 X3,
tt(Ax’, x)(Ax’’ x’) + ((Ax’, x’) + (Axe’, x. )) _z=’ (Axe, x)

+ E‘2((Ax,x), ..., (Axe, xk))
(Axe., x.)(Av, v) + ((Axe, x) + (Av, v)) =_ (Axe, x)

+ E.((Ax, x), (Axe, x)) + K(t)((Ax‘2, x‘2) (Av, v)) K2(t)
min k + K(t)((Ax‘2, x‘2) (Av, v)) K2(t).
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Now
/’((0) 21p [2, K(0) 0,

and hence if (Ax2 x2) (Av, v), we conclude that L(x. x) is invariant
under A. If (Ax2, x.) (Av, v), then

(x, x2 x, ..-, xk) mine 12tip1 I/(1 -t- t21m )12
< min

for 0., This eomplees he proof.

3. The extreme values
Let R be the /c-dimensional space of /c-tuples over the reals. Let

Xt => ->_ X be any set of lc real numbers, and let X (X, Xk) eR.
For y e R we define the convex set M(X) as the totality of points y satisfying

(3.1)
and
(3.2) =
LEMMA 3, The eztreme values of the function

(3.a) g(y)

defined on M() occur in the set of numbers

where the lci are any integers satisfying

Proof. First note that if y is such a point that

X0+l

Yi lcq- l%_i

l__<r_<_/c- 1.

j 1,

Og
=, j 1, .-.,/

Oyj

then y e M(X). Since g(y) is of the form (3.4), we see that these are achieva-
ble values on M(X). The remainder of the proof is an induction argument
on k. For lc 2 the result is clear. Assume the theorem for all integers
less than k. If z is an interior point of M(X) such that g(z) is an extreme value
of g, then there exists a multiplier such that
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fory- z. Thus

(3.5) Iz , II=l z uz.
Summing on j and using (3.1), we have

II= z E=I ,
and substituting in (3.5), we have

II,. z (E= ) 0,

Hence g(z) 0 or g(z) I(=1 hi)/lc} k and both of these types are in-
cluded in (3.4). Now suppose z is not an interior point of M(k). Then one
of the inequalities (3.2) is an equality. That is, for some
r < lc, we have

(3.6) :=1 Yi _.=1 j
for y z. We consider the extreme values bf g on the set defined by (3.1),
(3.2), and (3.6). Set

() IIy yi,,8=1

where the indices il,-.., ir are precisely those in .
xl xt 1 <= <= r, of yil "",Yr,

(.) E-- . --< E= -.
For any subset

Hence by (3.6), (3.7), and the induction hypothesis, h(y) has extreme values
of the form (3.4) with lc replaced by r and involving only M, "’-, hr. On
the other hand, set

and by (3.1) and (3.6) ,y _-+1 x.
Let Vl,

and hence

,v,, 1 -<_ t-< lc-- r, be any subset of {yj}j,. Then

E -r-l-

<5=1 Vj Z._jr-t-1 j

Again, by the induction hypothesis, the extreme values of m(y) are of the
form (3.4) using Xr+l, Xk and lc r in place of k. It follows that num-
bers of the form (3.4) re bounds on the extreme vMues of g(y) m(y)h(y),
and since these are achievable values, the induction is complete.

Remark. Lemma 3 hs an interesting geometric interpretation. The set
M(k) can be described s follows. Consider H(X), the convex hull of the
k! points PX as P runs over M1/c-square permutation matrices. It is known
that H(X) M(k) (see [9]). However, for completeness we recapitulate the
brief proof of this fact. For if y e M(),), there exists a permutation matrix P
for which (Py) >- (Py).+l, j 1, ,/c 1. It is clear that Py e M(X). By
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a result in [5; p. 49], Py S,, where S is a/c-square doubly stochastic matrix.
Hence y p-1SX, and p-1S is clearly doubly stochastic when S is. By a
result of G. Birkhoff [2], P-1S is a centroid of permutation matrices. It
follows that y e H(},). Conversely if y e H(h), then y is a centroid of the
points P),, and each PX e M(X). Thus H(X) M(X).
Lemma 3 asserts that the maximum and minimum signed volumes of the

/c-dimensional parallelopiped bounded by the planes x y and the coor-
dinate planes xi 0 as y varies over the polyhedron H(X) are of the form
(3.4). It seems interesting to ask the same question for more general
elementary symmetric function than (3.3). Lemma 4 answers this for
E:(y, y). Of course, if Xi > 0 for j 1, lc, then H(X) consists
of points all of whose coordinates are positive. In this case both Lemma 3
and Lemma 4 follow for the minimum at least by using the concavity of
E/(y y), 1 r k, where Er is the rtu symmetric function of the
indicated variables [6].

LEMMA

(3.8) minuM(X E(y, y) E(X, ..., )
(3.9) mXyeM(X) E2(Yl, "’’, Yk) (){ (E.=I X])/] }2.

Proof. From (3.1) we see that the right side of (3.9) is n achievable value
of E(y, y). We need only show that

...,
This is known for Yi 0, j 1, lc [5; p. 52]. Now

(E= Y) E= Y + 2E(y, ..., y),

and hence (3.10) is equivalent to

(E]= Y i= Y1

which follows from the convexity of .
Now if the minimum value of E is achieved at an interior point of M(),

we conclude that

(3.11) 0E , j 1, ...,
for y this interior point and a constant multiplier. But (3.11) implies that

(EL 
Hence assume that for some {i, i, r < lc, we have

E E
for y z, the minimizing point. The proof now proceeds by induction on
lz exactly as in Lemma 3. The essential par of the argument is contained
in the following sequence-
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E2(Zl

Zs’=r+l Xj) -4- E2(X1,

E2(Xl, ,)).

z,) q- E(z ;jtao)

.., z) q- E(z:j oo)

...,X)
q- E2(Xr+i X)

The inequality follows as before from the induction hypothesis.

4. Applications to matrices

THEOREM 1. For 1 <= lc <__ n the extreme values of q(x, xk) are of
the form

where the
is a choice of lc eigenvalues of the matrix A.

Proof. By standard continuity rgument we my ssume A is non-
singular. By Lemm 1 n extreml set spns n nwrint subspce L
under A. By result of K. Fn [3" Theorem 1] nd the inwrince of L,
we conclude that

((Axe, x), (Axe, x,)) e M(X),

where h (h, h) and h, is some choice of lc eigenvalues of A.
The theorem of Fan that we are applying here states thut if B is any Her-
mitian n-square complex mtrix and Xl, x is an o.n. set (k n), then

where fl fl re the eigenvalues of B. By Lemma 3 the extreme
values of re bounded above and below by expressions of the form (4.1)
or 0. However, the rgument used in Lemma 1 excludes 0. Now a typical
vlue (4.1) can be obtained by choosing

(4.2) xt
=+, (1+,- 1)*’

for j 0, q 1, where 0 is primitive (lc+ lc) root of unity nd
u, --., u are o.n. eigenvectors of A corresponding to , ..., respec-
tively. It is a straightforward calculation to verify that the vectors xt are
o.n. and have the required property. For example, if j 0 then (4.2) be-
comes

and
(,, (h-5 o-" ,.,
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where s and are less than or equal to kl, and 00 is a primitive /th root of
unity. This completes the proof.

THEOREM 2. For 1 <_ lc <_ n

(4.3) minb(xl,---,xk) E2(1,..-,

(4.4) max b(x, ..., x) /c-2(){max (IE= a. l, E= a,_-+ I)},
where a >.... >-_ a, are the eigenvalues of A and ) is some choice of
t of the a j- 1, n.

Proof. The fact that is bounded above by the right side of (4.4) follows
immediately from (3.10) and Fan’s result [3]. This value is clearly achieved
by making a choice of ectors xt as in (4.2) with q 2. To establish (4.3),
we use Lemma 2 to conclude that there exists a minimizing set for
xl, x, that spans an invariant subspace of A. As in Theorem 1

((Axe, Xl), (Axe, x)) e M(X),

where },1, Ak is a choice of lc of the aj. Hence by Lemmu 3

(4.5) (x ,..., ) _>_ E.(x ,..-, ).

The right side of (4.5) is clearly achievable by an appropriate choice of
o.n. eigenvectors of A.

Remark. It would be of interest to determine the extreme values of

Er((Ax, Xl), (Axk, xl))
for 1 -_< r < lc, r => 3. The methods used here do not seem to generalize
readily except when A is nonnegative Hermitian.
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