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Introduction

If E is a point set of the z-plane containing at least n points, a polynomial
g(z) Z "- glz

n-i -- gn is called an underpolynomial of f(z) =--- z’* -fi z"-1 + + f on E provided we have g(z) f(z) and

(1) g(z)] < f(z)l on E where f(z) O,

(2) g(z) f(z) on E where f(z) O.

The polynomial f(z) is called an infrapolynomial on E if it has no underpoly-
nomials on E, a concept due to Fekete and yon Neumann [1]. Infrapoly-
nomials as such have been studied also by Fekete [1] and the present writers
[3].
The importance of infrapolynomials lies primarily in the fact that a poly-

nomial of the form f(z) ---- z -f- which minimizes (among all polynomials
of that form) one of the classical norms (p > 0)

(3) sup [I f(z) I, z on El,

f, f(z) [" dz I,(4)

ff , If(z)(5)

must clearly be an infmpolynomial on E; of course for (4) or (5) to have a
meaning, E must be rectifiable or have positive area. The extremal poly-
nomials with norms (4) and (5), p 2, are orthogonal on E, hence particu-
larly important; they include the widely studied Legendre, Tchebycheff,
and Jacobi polynomials if suitable weight functions are introduced.

If a set E consists of n -k 2 points, an arbitrary function F(z) to be ap-
proximated on E by a polynomial of degree n can be replaced on E by an
equal polynomial P(z) of degree n -k 1, so the problem of best approxima-
tion to F(z) on E is essentially the problem of studying the polynomial z"+ -f-

of least norm on E [compare Motzkin and Walsh, 1, 8].
The object of the present paper is to investigate systematically the prop-

erties of the class of infrapolynomials of given degree on a bounded set. The
strong inequality is important in (1) in its effect on the norm (3) but not
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on the norms (4) and (if E is the closure of an open set) also (5), so in 1
we study the relation of (1) to the inequality

(6) z(z)] __< f(z) on E.

If f(z) =-- z + is given, a polynomial g(z) z + satisfying (6)
is called a wealc underpolynomial of f(z) on E;a weak underpolynomial is
not necessarily an underpolynomial. In 2 and 3 we show that the class
of infrapolynomials on a closed bounded set E is closed and connected. In
4 we study some special properties, and in 5 the finite generation (i.e. on
finite subsets of E) of such polynomials. Convexity of the class is proved in
6 whenever it exists, and faetorization is discussed in 7. Infrapolynomials
on a real set have special properties of separation (8), analogous to those
previously established by the present writers [2] for a finite set, and also of
finite generation (9).
We remark that in this paper we study the class of all infrapolynomials,

not excluding those which have zeros on the given point set; although the
admission of the latter makes some proofs considerably more complicated,
it is essential to a complete, rounded theory.

For frequent use in the sequel, we state several lemmas.

LEMMA 1. For fixed n the set of all polynomials f(z) z + whose
zeros z satisfy such a relation as zl <= M, is compact.

That is to say, any infinite sequence of such polynomials admits a subse-
quence which converges uniformly on any bounded point set of the plane to a
polynomial of the original set. If the polynomials are represented in real
space of 2n dimensions by the real and pure imaginary parts of their zeros,
they obviously form a compact set. The condition [z[ =< M is satisfied
automatically if the f(z) are infrapolynomials on a closed bounded set E
containing at least n points, for then (Fej6r; Fekete and yon Neumann)
the zeros of each f(z) lie in the convex hull of E. A similar result, similarly
proved but by Lagrange’s interpolation formula, is

Z
n--iLEMMA 2. The set of all polynomials f(z) ao -- a z -- satisfy-

ing f(z) <= M on a fixed set {z} consisting of at least n - 1 points, is com-
pact.

Use of Lagrange’s interpolation formula shows also that convergence on
the set {zk} of a sequence of the polynomials of Lemma 2 implies uniform
convergence on any closed bounded set of the plane.
Other lemma refer to easily proved results on infrapolynomials themselves.

LEMMA 3. Every factor of an infrapolynomial is also an infrapolynomial.
More explicitly, if f(z) g(z)h(z) is an infrapolynomial on a set E, f(z)
z - ..., h(z) z - ..., < n, so also is h(z).

If h(z) is not an infrapolynomial on E, we have for some hi(z) =- z +
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the relations h(z) < h(z) on E where h(z) O, and hi(z) h(z) 0
on E where h(z) O. Then we also have g(Z)hl(Z)l < Ig(z)h(z)! on E
where f(z) O, and g(z)h(z) g(z)h(z) 0 on E where f(z) O, so f(z)
has the underpolynomial g(z)h(z), contrary to hypothesis.

LEMMA 4. If f(z) Z " is an infrapolynomial on a set E, and if Zo
does not belong to E, then f(z)(z Zo) is an infrapolynomial on E’ E zo.

If f(z)(z Zo) has an underpolynomial F(z) on E’, then (z z0) is a factor
of F(z): F(z) f(z) (z z0). We have ].t’(z) (z z0) < f(z) (z z0) on
E’ where f(z)(z Zo) O, so we have f(z) < If(z) on Z where f(z) O.
We have f(z)(z Zo) f(z)(z z0) 0 on E’ wSere f(z)(z Zo) O, so
we have f(z) f(z) 0 on E where f(z) O.
Lemma 4 is false if we omit the requirement that zo shall not belong to E, for

if E consists of the vertices (z, z, z) of a triangle and we choose (Theorem
12) the infrapolynomial f(z) z , where a is an interior point of the
triangle, the polynomial (z a)(z z0) is not an infrapolynomial on E;
indeed (z ’)(z z0) is an underpolynomial, if ’ is the projection of a

on the side zl z.

LEMA 5. If f(Z)(Z Zo) Z + is an infrapolynomial on a set E,
and if zo is a point of E, then f(z) is an infrapolynomial on E’ E Zo.

We omit the proof of this converse of Lemma 4. It is a consequence of
Lemmas 4 and 5 that if g(z) =- z + has only simple zeros, constituting
the set E on E, then a necessary and sucient condition that f(z)g(z) =--- z" +
be an infrapolynomial on E is that f(z) be an infrapolynomial on E E.
We leave to the reader the proof of

LEMM 6. An infrapolynomial f(z) z + on a set E is also an infra-
polynomial on every set E E + E, where E is arbitrary.

If f(z) is an infrapolynomial on a set E and f.(z) an infrapolynomial on a
set E, then f(z)f(z) is not necessarily an infrapolynomial on E + E.. We
exhibit the counterexample E:(1 +/- i), E:(-1 i), f(z) z- 1, f(z)
z + 1; then f(z) and f.(z) are infrapolynomials on E and E. respectively,
yet z is an underpolynomial of f(z)f(z) on E + E.

1. Strong and weak infrapolynomials
Let us say that f(z) z + is a strong inrapolynomial on E if no

g(z) z" - f(z) exists such that (6) holds on E; by contrast the infra-
polynomial previously defined may be called a wea] infrapolynomial on E.
For closed bounded sets the distinction between strong and weak infrapoly-
nomials disappears"

THEOnE 1. On a closed bounded set E containing at least n points, a wea
infrapolynomial of degree n is also a strong infrapolynomial.
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We suppose, then, that f(z) =- z + is given, and no g(z) =- z" -Jr-
exists satisfying (1) and (2); we prove that no g(z)( f(z)) exists satisfying
(6), by assuming the contrary and reaching a contradiction.
In the case n 1, we take f(z) =-- z a, g(z) z b; then on E we have

[f(z) -t- g(z)]/21 < If(z) from (6) contrary to hypothesis, unless at some
point z0 of E we have g(zo) =f(zo). In the latter case z0- b z0- a,
whence g(z) --= f(z), contrary to hypothesis.

If n > 1 we use induction. We first assume that f(z) and g(z) have a com-
mon factor e(z). With f(z) f(z),(z), g(z) =- gl(z)e(z), where

(z) z + ...,
inequality (6) implies

(7) g(z)!

at every point of E other than the zeros of e(z) on E, so (7) holds, by the con-
tinuity of f(z) and g(z), at every point of E other than the isolated zeros of
e(z) on E, namely on the closed bounded set E containing at least n
points. The polynomials f(z) and gl(z) are of degree n /c, and Theorem 1
(assumed true for polynomials of this degree) asserts that there exists some
g(z) z -t- with

(z) < tfl(z)I, z on E,
except at the zeros of fl(z) on E, at which the equality sign holds. Then
also

for z on E except in the zeros of f(z), at which the equality sign holds. This
contradiction completes the proof for n > 1 if f(z) and g(z) have a common
factor.
With n > 1, if f(z) and g(z) have no common factor, we deduce from (6)

with g(z) =-- If(z) - g(z)]/2

(8) g.(z) f(z) O, z on E. in E,

(9) g_(z)[ < if(z)], z on E E.,

where the set E. thus defined contains at most n 1 points; if (8) holds in
more than n 1 points, we have g(z) f(z) =-- g(z).

There exists a polynomial h(z) =-- O. z ’t- for which h(z) f(z) on E..
At each point of E we have g(z) h(z) 0 < If(z)], so in some open
neighborhood E3 of E. likewise

g(z)

OnE.E3for0 < e =< lwehave

(10) [g(z) h(z)] / (1 )g(z) g(z) h(z)



410 T. S. MOTZKIN AND J. L. WALSH

On the closed set E E inequality (9) is wlid, whence for suitably chosen
,0 < <: 1,

(11) g(z)- h(z)I < If(z)I.
Then by (10), inequality (11) holds at every point of E; this contradiction
completes the proof of Theorem 1.
Although we have considered strong and weak infmpolynomials primarily

on a closed bounded set E, those restrictions on E are obviously not necessary.
We postpone to a later paper the consideration of unbounded sets, but now
formulate the

COnOLLnV. If E is a bounded infinite set, a polynomial f(z) z
is an infrapolynomial on E when and only when it is an infrapolynomial on the
closure E of E.

If f(z) has no underpolynomial on E, it has no underpolynomial on E, for
an underpolynomial g(z) on E would imply if(z)] >= g(z) on E and hence
on E, which contradicts Theorem 1. Conversely, if f(z) has an underpoly-
nomial on/, it has the same underpolynomial on E.

Henceforth for a closed bounded set E we iguore the distinction between
strong and weak infrapolynomials.

2. Closure of the set of infrapolynomials

By a zero of a polynomial f(z) of the third ]ind on a (closed) set E, we under-
stand a zero of f(z) at a nonisolated point of E. We prove

THEOnEM 2. Let f(z) z - be an infrapolynomial on a compact in-
finite set E. Set f(z) =-- g(z)h(z) where the zeros of g(z) - zq are pre-
cisely the zeros of f(z) of the third kind on E, with the same multiplicities. Then
h(z) is an infrapolynomial on E.

Conversely, if g(z) z - has q zeros of the third ]ind on E (not neces-
sarily distinct) and h(z) is an infrapoiynomial on E, then f(z) g(z)h(z) is
also an infrapolynomial on E.

The first part of Theorem 2 is immediate, by Lemma 3.
Conversely, suppose f(z) has an underpolynomial fl(z) on E; we reach a

contradiction. The polynomial fl(z) must vanish at all the zeros of g(z) on E,
and at each zero to an order at least as high as that of the zero of g(z); otherwise
f(z)/g(z) 1---> as z approaches such a zero of g(z). Then g(z) is a factor

of fl(z): f(z) g(z)h(z). On E we have Ifl(z) < If(z) except at the
zeros of f(z), where we have f(z) f(z); thus if E1 denotes the set of zeros
of g(z), on E E we have

(12) hl(z)[ =< h(z) I.
By allowing z on E E to approach an arbitrary point of E we have (12)
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also on E1 hence throughout E, so (by Theorem 1) h(z) is not an infrapoly-
nomial on E. This contradiction completes the proof.

It follows from Theorem 2 that any polynomial all of whose zeros are zeros

of the third lcind on E is an infrapolynomial on E.
We are now in a position to prove the main result of 2"
THEOREM 3. If E is a closed bounded set containing at least n points, the

set of infrapolynomials on E of degree n is closed.

We prove a rephrasing of Theorem 3" If the sequence of infrapolynomials
f(z) on E all of degree n converges uniformly to the polynomial fo(z) on E, then
fo(z) is an infrapolynomial on E.

Uniformity of convergence on every bounded set is a consequence of con-
vergence on E by Lemma 2. All zeros of the f(z) and of fo(z) lie in the convex
hull of E. The zeros of fo(z) are precisely the limit points of the zeros of the
f(z) (Hurvitz). The zeros of the f(z) can be separated into sequences ap-
proaching the respective distinct zeros of fo(z), whether the latter are simple
or not. The sequences of zeros of the f(z) approaching zeros of the third
kind of fo(z) can be suppressed by dividing out the corresponding factors
g(z) (with unity the coefficient of the highest power of z) of the polynomials
f(z) =--g(z)h(z); the remaining factors h(z) of the f(z) are infrapoly-
nomials on E (Lemm 3); to prove Theorem 3 it is, by the second part of
Theorem 2, sufficient to prove that ho(z) is an infrapolynomial on E, where
fo(z) go(z)ho(z) and ho(z), the (necessarily uniform) limit of the h(z) on
E, has no zeros of the third kind on E. Let E0 be the subset of E on which
ho(z) vanishes, so that E0 consists only of isoluted points of E.

If ho(z) is not an infrapolynomial on E, it has an underpolynomial po(z)"

]p0(z)] ,< h0(z)]onE E0, [p0(z) h0(z)[ 0 on E0.

The function iho(z) l-lp0(z) is continuous on the closed set E- E0,
so for a suitably chosen e(>0) we have

p0(z) <: h0(z) s on E E0.

Then for sufficiently large lc we hve

[po(z) <: [h(z) lonW E0,

p0(z)[ 0-< ]h(z)[onE0,
so po(z) is an underpolynomial of h(z) on E, contrary to hypothesis.

3. The set of infropolynomials is connected

To study connectedness we need several preliminary results. The poly-
nomial of best approximation in the sense of Tchebycheff with weight function
depends continuously on the weight function"

THEOREM 4. Let the function f(z) be continuous on the closed bounded set E,
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let w(z) (j 0, 1, 2,...) be a function nonnegative on E and positive in at
least n - 1 points of E, with limk wk(z) Wo(Z) uniformly on E. Let t(z)
be the (necessarily unique) polynomial of degree n of best approximation to f(z)
on E in the sense of Tchebycheff with weight function wj(z)"

(13) max [w(z)l f(z) t(z) ], z on E] t

is the minimum of the corresponding expression over all polynomials of degree n.
Then we have lim t(z) to(z) uniformly on eery compact set.

The polynomials t(z) are bounded in n + 1 points of E, so by Lemma 2
there exists a subsequence t(z) converging uniformly on E to some poly-
nomial t(z) also of degree n. We set max [Wo(Z)[f(z) t(z) , z on E],
and from the uniform convergence of the w(z) and t(z) on E there follows

lira p. 0

by the extremal property of to(z) we have

0 0.

If v (>0) is given, the extremal property of t(z) implies for ]c sufficiently
large

max [w(z)] f(z) to(z)], z on E]

max [w0(z) f(z) to(z) ], z on E]

+ max [I f(z) to(z) 1, z o. El. max [] w(z) Wo(Z) , z on ] ,0 + M,
where M (independent of ) is suitably chosen. Then we have

0 < P0

whence 0 0. The uniqueness of to(z) as extremal polynomial now ira-
plies t (z) to(z). Thus every subsequence of the t(z) admits a new sub-
sequence approaching to(z) uniformly on E, so the sequence t(z) approaches
to(z) uniformly on E, and on any compact set.
Theorem 4 applies at once to the choice f(z) z+, and we conclude

lim [f(z)- t(z)] If(z)- t0(z)] uniformly on E, namely that the ex-
tremal polynomial z"+ + ..-with Tchebycheff norm and weight function
w(z) on E approaches uniformly on E the extremal polynomial z"+ +
with Tchebycheff norm and weight function Wo(Z) on E.
Theorem 4 refers to uniform convergence of a continuous weight function

to another continuous weight function, whereas we shall need to consider
also a noncontinuous weight function as limit.

THEOnE 5. Let h(z) z + be an infrapolynomial on a closed bounded
set E containing at least n points, and for > 0 let h(z) z" + be the
polynomial z’+.., of least Tchebycheff norm on E with weight function
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we(z) =---1/{max [] h(z) ], e]}. Then we have lim_ohc(z)= h(z) uniformly
on E.

Theorem 5 is of interest as complementary to a remark due to Fekete [1],
namely that if the infrapolynomial h(z) has no zeros on E, it is the polynomial
of least Tchebycheff norm on E with weight function 1/I h(z) I; in Theorem 5,
where h(z) may have zeros on E, we have replaced this weight function by a
continuous truncated one, and we recover h(z) by a limiting process.
From the extremal property of h(z) we deduce for z on E

max < max < 1
max [] h(z) I, e] max [I h(z) I, e]

h(z) <= max [I h(z) [, 1.
If E contains but n points, we hve h(z) h(z) 0 on E;in ny other cse,
it follows by Lemm 2 that there exists subsequence h(z) of the poly-
nomiMs h(z) with e- 0, converging uniformly on E to some polynomial
ho(z) z" q- "’.

LetE denote the subset of E on which we hve h(z) <: e.; then on E E
we hve h(z) <-_ h(z) I, ho(z) <-- h(z) I. This last inequality is wlid
for z in E E, hence is vlid for every fixed z in E where h(z) O. If z
does not lie in ny E- E, we hve Ih(z) < , ho(z)= 0 h(z).
Then ho(z) is wek underpolynomil of h(z) on E nd therefore identical
with h(z). That is to sy, every subsequence of the polynomials h(z) dmits
subsequence converging to h(z) uniformly on E, so the theorem follows.
In this theorem we my replace the constant by positive function

r r,(z), provided mx [1 h(z) I, c(z)] is continuous nd r -+ 0 s - 0.
The principal result of 3 is

THEOnE 6. If E is a closed bounded set consisting of at least n q- 1 points,
the set of infrapolynomials on E of degree n is connected.

Any two weight functions w(z) nd w,.(z), positive nd continuous on E,
cn be connected continuously by one-prmeter fmily of weight functions
likewise positive nd continuous on E; we need merely consider

ttw(z) -+- (1 tt)w.(z), 0 <= t* <- 1.

Hence the polynomials z q- of least Tchebycheff norm on E with respec-
rive weight functions w(z) and w=(z) (the polynomials may be arbitrary infra-
polynomials not vanishing on E) can be connected continuously by one-
parameter family of polynomials each of least Tchebycheff norm on E and
hence an infrapolynomial. Since the weight function w(z) of Theorem 5 is
positive and continuous on E, and since Theorem 5 shows that the extremal
polynomial h(z) can be connected continuously with the given infrapoly-
nomiM h(z) by a one-parameter family of infrapolynomials, Theorem 6 fol-
lows. Indeed, we have shown that two given infrapolynomials can be con-
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nected to each other by a set of polynomials which depend continuously
(Theorems 4 nd 5) on one parameter, of which all polynomials but the first
and last are polynomials of least Tchebycheff norm with suitable positive and
continuous weight function on E.
Theorem 6 follows much more simply if n 1, und also if the set E con-

tains precisely n -t- i points, for in euch of these two cases the totality of infra-
polynomials is convex; see Theorems 12 and 13. However, in other cases
this totality is not convex (compare Theorem 14), and thus some supple-
mentary proof, such as the one given, is necessary.
Of course not every infrapolynomial f(z) on a set E is a polynomial of least

norm in the sense of Tchebycheff there; for instance f(z) z is not such a
polynomial on the set /z 0, z 1}, lthough obviously an infmpolynomial
there; see [Motzkin and Walsh, 1, 1].

In the discussion of connectedness we my admit weight functions which
are positive but which become infinite in an appropriate manner on E. For
instance if f(z) is an infrapolynomial of degree n on E, we may consider the
Tchebycheff problem of minimizing

(14) mx [] h(z)/f(z) I, z on E]

over all h(z) z ;here if f(z) has precisely the zeros a, a, a
on E, this condition is interpreted as requiring h(z) to vanish in the a- thus,
if we set h(z) h(z)(z a) (z o),f(z) f(z)(z- o) (z- o),
this problem is that of minimizing

mx [] hl(Z)/f(z)I, z on El,

and the new weight function 1/1 f(z) is continuous and different from zero
on E. Since fl(z) as a factor of an infrapolynomial is also an infrapolynomial
(Lemma 3), the unique solution is h(z) ------ f(z), and the unique solution of
the former problem is h(z) f(z); this remark is an extension of Fekete’s
remark to infrapolynomials which may have zeros on E. This extension is
entirely natural if E is dense in itself, but for instance if E is finite, the inter-
pretation of (14) is somewhat artificial; compare the counterexample given
after Theorem 7.

4. Miscellaneous properties

In this same circle of ideas belongs also the following

THEOREM 7. Let the closed bounded point set E be dense in itself, let

h(z) z --be an arbitrary polynomial, and let h*(z) z - and h(z) =-- z" --be respectively the polynomials of least Tchebycheff norm on E (cf. 3) with
weight functions 1/h(z) and w(z)-- 1//max [h(z), ]}. Then we have

lim_.0 h(z) h*(z)
uniformly on E.
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By Lemma 1 every sequence ( -- 0) of polynomials h(z) admits a subse-
quence converging uniformly on E to some polynomial ho(z) z" nt-

it is sufficient to prove, as we shall do, that every such ho(z) is identical with
h*(z).
We remark for z on E (all maxima are taken over E)

max
he(z) < max

h(z) <: 1.
max [I h(z) I, ] max [I h(z) ], ]

We proceed to establish for z on E

(15)

ho(z)
lim [we(z) he(z) I]
e-->0

=< lim sup [max w(z) lh.(z)l].

If E0 denotes the subset of E on which h(z) vanishes, (15) is immediate on
E E0 and consequently follows also at zeros of h(z) of the third kind on E;
there are no other zeros of h(z) on E. If g(z) =-- z" -t- is arbitrary, we
have by (15)

max
ho(z) -<- lim sup {max [w(z) Ih(z)l]

-< lim sup {max [w,(z) lg(z)]]

-< max g(z)/h(z)l,

the last inequality by virtue of w(z) <= 1/I h(z)I. Consequently ho(z)=---
h*(z).
Theorem 7 is false if we omit the restriction that E be dense in itself, as is

shown by the following counterexample. Let E consist of the three points
(0, 1, 2), and choose h(z) z2. We must have

max h*(z)/h(z)l <_N max h(z)/h(z)l 1,

whence h*(z) =-- z. The polynomial he(z) z - is an infrapolynomial,
whose zeros then lie in the convex hull of E and separate the points of E
(Theorem 21); the zeros of he(z) lie one in each of the intervals 0 _<_ x _-< 1,
1 ___< x _-< 2, so he(z) -- h*(z) is impossible.

Still another result of this nature is of interest"

THEOnE 8. Let E be a bounded point set containing at least n 1 points,
and let f(z) z not be an infrapolynomial on E; then f(z) has an under-
polynomial which is an infrapolynomial.

Let g(z) be an underpolynomial of f(z) on E, and let {Zl, z, z+} be
distinct points in E. The set {(z) z" - of all weak underpoly-
nomials of g(z) on E is compact. Let gi(z) Z -- be a weak under-
polynomial of g(z) on E such that gI(ZI) all [@(Zl)I. Generally, let
g(z) be a weak underpolynomial of g(z) on E such that g(zi) g.(z’)
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for j 1, 2, ,/c 1, and gk(zk) <= I’(Zk) for all (z) which are weak
underpolynomials of g(z) on E satisfying

for j 1, 2, ..., l 1,

We prove that g,+(z) is an infrapolynomial on E. Otherwise g,+(z) has an
underpolynomial h(z)--z+ on E, also an underpolynomial of g(z)
on E. The inequality h(zi) < g+(z) is impossible, by the definition of
n+(Z), SO h(zi) gn+(Z) O. Similarly we have h(z) h(z,+)
0, whence h(z) 0, a contradiction. This contradiction shows that g,+(z)
is an infrapolynomiM on E; g,+(z) is a weak underpolynomial of g(z), hence
an underpolynomiM of f(z) on E, as we were to prove.

This proof of Theorem 8 applies when suitably modified in more general
situations, for instance in the study of nearest polynomials approximating to a
given continuous function on E, and to the analogue of Theorem 8 in any
finite number of dimensions, replacing moduli of polynomials by products
of distances. For the sake of possible other generalizations we give a second
proof of Theorem 8.

Set f(z) =- g(z)t(z), where t(z) 0 on E and all zeros of g(z) =-- z -belong to E, forming a set E.
Define the polynomial t*(z) z-’ -t- as minimizing

max [I t*(z)/t(z)], z in E E];

then t*(z) is an infrapolynomial on E E, and either t*(z) t(z), or t*(z)
is an underpolynomial of t(z) on E- E. Correspondingly, for

f*(z) g(z)t*(z),

either f*(z) =--f(z), or f*(z) is an underpolynomial of f(z) on E. No under-
polynomial of f*(z) on E can be divisible by g(z). For if f(z) g(z)t](z)
were an underpolynomial of if(z) on E, then t(z) would be an underpoly-
nomiM of t*(z) on E E. If if(z) is not an infrapolynomial on E, choose
an underpolynomial f(z) of f*(z), and similarly define gi(z), f(z), f(z), g.(z),
f(z),..., where f+(z) is an underpolynomial of J(z), and f(z) an under-
polynomial of, or identical with, f(z). The g(z) are all different, for

g(z) - g(z), > ,
would imply that f* (z) has an underpolynomial f* (z) on E divisible by gt,(z).
Obviously Eg c Egl c "’. However only finitely many polynomials
g(z) of degree less than or equal to n have the same set of zeros (multiplicities
ignored) E; since Ek has at most n points, the procedure must break off,
that is, an infrapolynomial of if(z) and of f(z) must be reached.
Even though (Theorem 1) the existence of a weak underpolynomial of

given polynomial f(z) implies the existence of an underpolynomial in the sense
of (1) and (2), the totality of weak underpolynomials deserves some attention.
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THEOREM 9. If E is a closed bounded set consisting of at least n + 1 points,
and f(z) z + is a given polynomial, the weak underpolynomials (z) of
f(z) on E form, in the (2n-dimensional) vector space of all polynomials z +
determined by their coejcients, a closed bounded convex set. If f(z) is not an
infrapolynomial on E, then the underpolynomials b(z) of f(z) on E form a
bounded convex set, and every weak underpolynomial of f(z) is a limit of under-
polynomials bk(z). In particular f(z) itself is a limit of such underpolynomials.

The boundedness and closure of the set 9(z) follow by Lemma 2. To
establish convexity, we notice that ]q0(z)I =< lf(z) landlql(z)l<= If(z)
on E imply for 0(z) 01(z) + (1 O)qo(Z) the inequality 0(z) =< If(z) l.
We remark too that in this last inequality, the equality sign can hold in n
points of E only if it holds in both preceding inequalities at those same n
points; whence we have (z) f(z) unless both 0(z) - f(z) and ql(z) f(z).
The remainder of the theorem follows by the same method.

5. Finite generation
An infrapolynomial on a set E is said to be finitely generated on E if it is an

infrapolynomial on some finite subset of E. We prove

THEOREM 10. An infrapolynomial z- on a closed bounded set E,
with no zeros of the third tcind there, is finitely generated on E, namely, it is also
an infrapolynomial on some subset of E containing no more than 2n 1 points.

We use induction on the degree n (>__ 1) of the infrapolynomial f(z). If
f(z) has no zero on E, the conclusion is known [Fekete, 1]. If f(z) has at
least one zero on E, then for n 1 the polynomial f(z) is obviously an infra-
polynomial on {’}; for n > 1 the polynomial f(z)/(z- ) is by Lemma 5
an infrapolynomial on the closed set E i’, and by the induction hypothesis
is also an infrapolynomial on a finite subset E1 of E i* of at most 2n 1
points. But then by Lemma 4, f(z) is an infrapolynomial on the finite subset
E + of E.
We prove also the

COROLLARY. An infrapolynomial f(z) on an infinite closed bounded set E
is also an infrapolynomial on a closed bounded proper subset of E.
By Theorem 2 we write f(z) g(z)h(z), where the zeros of g(z) are the zeros

of f(z) of the third kind on E and h(z) is an infrapolynomial on E. By Theo-
rem 10, h(z) is an infrapolynomial on a finite subset E of E. Given s (>0),
let E: consist of E plus the points of E in the closed s-neighborhoods of the
zeros of the third kind of f(z) on E; we choose s so small that E’ E E.
Then h(z) is an infrapolynomial also on E’, by Lemma 6, so the conclusion
follows by the second part of Theorem 2.

One proves also that the set of underpolynomials of f(z) on E is whole-faced [Motz-
kin, 1, p. 16; Fenchel, 1].
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Theorem 10 is false if we omit the restriction that f(z) shall have no zeros
of the third kind on E, as is shown by the counterexample

f(z) =-- z E’O < z < 1

No infrapolynomial on a finite subset of E can have a multiple zero at z 0
(compare Theorem 21 below), so f(z) -- z is not an infrapolynomial on such
a subset.
Even if f(z) has zeros of the third kind on E, there is a result related to

Theorem 10"

THEOnEM 11. An infrapolynomial on a closed bounded set E is the limit of
finitely generated infrapolynomials on E.

We give the proof by induction on the degree n ( 1) of the given poly-
nomial f(z). If f(z) hs no zero of the third kind, Theorem 10 yields our con-
clusion. If f(z) has at least one zero which is nonisolated point of E, then
for n 1 the polynomial f(z) is au infmpolynomil on the set z ; for
n > 1 the polynomial f(z)/(z ) is u infmpolynomil on E (Lemmu 3),
and by the induction hypothesis is the limit on E of sequence f(z) of infm-
polynomials on the finite subsets E of E. If the sequence of points z in E
but not in E upproaches , the sequence of (Lemm 4) infrapolynomials
(z z)f(z) on the finite set E z approaches f(z) on E.
A consequence of Theorem 11 is that the given infrapolynomial f(z) on E

is the limit of a sequence of infrapolynomials f(z) on suitably chosen finite sub-
sets E of E which approach E. For to an rbitrary finite subset of E on
which f(z) is an infrapolynomil, we muy (Lemmu 6) djoin at pleasure
other points of E without altering the fact that f(z) is n infmpolynomial;
the enlarged subsets E may be chosen to approach E.
However, if a sequence of point sets E approaches a set E, it is not true that

the limit of a sequence f(z) of infrapolynomials on E is necessarily an in-
frapolynomial on E. As counterexample we exhibit f(z) f(z) z,
E" (] x < 1, 1, 2) with 0 as ] , E" (0, 1, 2); compare Theorem
21 below.

6. Cases of convexity of the class of infrapolynomials
Given a set E, a polynomial all of whose zeros, are simple and lie on E is

called fundamental; a polynomial none of whose zeros lies on E is called proper.
The relation of fundamental polynomials to infrapolynomials is close.

THEOREM 12. If E is an arbitrary set, the totality of infrapolynomials on E
of degree one is the set z , where lies in the convex hull H of E; this totality
is precisely the totality k(z- zk), >-. O, t 1, where the finitely
many points z1 belong to E and if E is finite may be talcen in the summation as
all the points of E.

We consider only the nontrivial case, that E contains more than one point.
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If z is an infrapolynomial on E, then lies in H. Conversely, if lies
in H and if z f has the underpolynomial z /", then/" , and by (1)
all points of E lie nearer to f’ than to , so E lies in the open half plane con-
raining -’ bounded by the perpendicular bisector of the segment ’, contrary
to the assumption that/" lies in H.
The set H consists precisely of those points /" such that /" tl: _-> 0,
k 1, zk in E, so the set of polynomials z is the corresponding set

z (z z).

THEOREM 13. A polynomial f(z) z - of degree n is an infrapoly-
nomial on a given set E consisting of n l distinct points z, z, Zn+
if and only if it can be expressed

f(z) h (z), >= O, 1,
(6)

(z) =- (z)/(z- z), () II( z).

Thus the class of infrapolynomials of degree n is identical, not only with the
class (16), but also with the extremal polynomials on E of degree n with unpre-
scribed weights and norm

+1f() 1, > o.
The identity of the class (16) with these extreml polynomiMs is known

[Motzkin nd WMsh, 2, Corollary to Theorem 8], so every polynomial repre-
sented by (16) is n infrpolynomil on E. Conversely, every infrpoly-
nomil f(z)=--z"-..., if proper, minimizes the norm [max lh(z)/f(z)],
z on E] over the class h(z) z + (]?ekete), hence [Motzkin and Walsh,
1, 1] is of form (16). However, if f(z) is improper, sy f(zi) 0, then by
Lemm 5 it follows that f(z)/(z zi) is an infrpolynomial on the set
(z., za, z+); Theorem 13 then follows by induction, since it is known to
be true (Theorem 12) for n 1.

COnOLhnY 1. A polynomial f(z) z + is a proper infrapolynomial
on the set E of Theorem 13 if and only if (16) holds with all O.

The polynomial h 0(z) vanishes for z z if and only if }, 0.

COnOLLhnY 2. The locus of all zeros of all proper infrapolynomials of degree
n on E: (Zl, z., z+) is the relative interior of the convex hull H of E less
the set E.

We use the term relative interior to distinguish the two cases, that H is a
line segment, or not. The fact that all zeros lie interior to H E follows
by (16) from [Walsh, 1, 1.3.2, Corollary]. The fact that any point in-
terior to H E is such a zero follows by remarking that there exist numbers

(>0) such that ( z) 0, where the summation extends over all
points of E; whence I zk I/( z) 0, which is f() 0, where
f(z) is given by (16) with h ]-zl> 0.
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It follows from Corollary 2 that if E is an arbitrary closed bounded set con-
taining at least n - 1 points, and if lies in the convex hull of E, then is a zero
of a suitably chosen infrapolynomial on E of degree n. If " lies on E, it is the
zero of the infrapolynomial z of degree one on the set /i’}; if i" does not
lie on E, it is either the zero of the proper infrapolynomial z i" of degree one
on a subset {z, z} of E, or a zero of a proper infrapolynomial of degree two
on a subset /z, z, z} of E. The conclusion now follows by adjoining, as
necessary, to this subset of E suitable new points of E, and simultaneously
adjoining the corresponding linear factors to the infrapolynomial (Lemma 4),
until we have an infrapolynomial of degree n on some subset of E; this poly-
nomial is also an infrapolynomial on E (Lemma 6). We cannot assume here
that E has merely n points (n > 1); a point not in E is not a zero of the only
infrapolynomial of degree n which must vanish in all points of E.

If E is finite and real, the class of infrapolynomials on E is the class of poly-
nomials of least pt power norm on E with p 1 [N[otzkin and Walsh, 2,
Theorem 5.3]. This conclusion is false for arbitrary finite nonreal E, as is
shown by the example E: {z, z., z}, where these three points are not col-
linear, und the infrapolynomial z is considered with on the segment
z z.. Infinitesimal motion of " toward the interior of the triangle perpendicu-
lar to zz increases z ’i nd z: 1 by infinitesimals of the second
order, yet decreases za- ’! by an infinitesimal of the first order, hence
decreases ’ l z i" I, > 0, so z (although un infrapolynomial on
E) is not extremal.
We turn now to the consideration of the convexity of the class of infra-

polynomials of given degree n on a given set E. In the cases n 0 and E
consisting of precisely n points, the class contains but a single element and is
trivially convex.
Theorems 12 and 13 express the fact, in the respective cases n 1, and n

urbitrry with E consisting of n -k 1 points, that the class of infrapolynomials
of degree n is the convex family having as basis the fundamental polynomials of
degree n. There exists no other case whatever where the cluss of infmpoly-
nomials of degree n is convex (without regard to the fundamental polynomials
as basis), no matter what the set E may be:

TEonn 14. Let E be a bounded set containing at least n q- 2 distinct
points. Then the class of infrapolynomials of degree n 1) on E is not convex.

We shall exhibit two fundamental polynomials f(z) and f(z) of degree n
(hence infrapolynomials) and a positively weighted mean

Xf(z) -b (1 X)f(z), 0 < < 1,

which has a zero outside the convex hull H of E and therefore is not an infra-
polynomial on E. It is sufficient to find such polynomials

f(z) =- (z z,)(z z), A(z) =- (z z.)(z z)
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of degree 2, and then to multiply them both by (z zh) (z zn+2), where
the zk are distinct points of E, to obtain the desired fundamental polyno-
mials of degree n.
We distinguish two cases, according to whether the boundary B of H con-

tains a line segment belonging to H, or not.
In case 1, choose zl and z3 in E so that their segment sl is part of B, and

choose z2 and z4 in E not on that segment; this is always possible. Let L
be a line separating z and z3, and z and z4, but not z and z this too is always
possible but may require a change of notation. Let L be half of L exterior
to H bounded by the intersection 0 of L with s3. We assume, as we may do,
that L1 is the negative real axis with zl and z in the upper half plane. We
consider the function a(’) arg [f()/f()] as " traces L. As " - -,a(’)-- 0; as increases monotonically from -, each of the expressions
arg (z- ’),arg (z2- ), -arg (z- ), -arg (z4- ) increases con-
tinuously and monotonically, so their sum a() does likewise, until reaches
’0; we have a(’0) > arg [(z o)/(z. ’0)] r. Hence for some (unique)
’1, oo < -1 < 0, we have a(l) r. As the positively weighted mean of
degree 2 we choose ),f(z) + (1 )f2(z), }, If()I/[If(’) + ](1)1],
which vanishes at the point exterior to H.

In case 2, B contains no line segment belonging to H, and E is infinite al-
though not necessarily closed. Let 0 be a point of B at which B has but a
single line of support L0, and choose L any other line through 0 on each side
of L lie an infinity of points of E, and in particular there lie on opposite sides
of L near ’0 two points, zl and z3, of E such that arg [(z’ o)/(z 0)]
is as near r as we please. Choose now z and z in E on the same side of L, z
and z4 in E on the opposite side, in such a way that a(0) defined as before
exceeds z. The proof can then be completed as in case 1.

7. Infrapolynomiais factored and as factors
We study in 7 primarily infrapolynomials as factors of other infrapoly-

nomials of various types.

THEOREM 15. A polynomial z’+ is a proper infrapolynomial on a
given closed bounded set E of n + 1 or more points if and only if it is proper and
a factor of some (proper) infrapolynomial of degree r on some subset of r + 1
points of E (n <= r <= 2n).

Theorem 15 is valid if these parentheses are or are not incorporated, wholly
or in part; but "(proper)" refers to the set of r -k 1 points, not to E; see below,
the discussion of Theorem 18.
The first part is a consequence of Lemmas 3 and 6. Conversely, Fekete

[1] has shown that the given polynomial is a factor of a polynomial of the
form

(17) 2 > 0, E 1..0(z) II (z-
k-----1
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where the zk lie in E; such a polynomial is known (Corollary 1 to Theorem 13)
to be a proper infrapolynomial on the set

COnOLLAnY. The zeros of a proper infrapolynomial f(z) z on a
closed bounded set E containing at least n - 1 points either all lie in the two-
dimensional interior of the convex hull H of E, or they are all simple and lie on a
line segment of the boundary of H, separating n - 1 points of E.

The set E’:{zk} of the proof of Theorem 15 either forms a noncollinear set,
in which case the zeros of f(z) lie interior to H, by Corollary 2 to Theorem 13,
or E’ forms a collinear set, in which case it is clear by (17) that the r zeros of
(17) separate the r - 1 points of E’, whence the zeros of f(z) separate n - 1
points of E’.

TInOEM 16. A polynomial f(z) z + is an infrapolynomial on a
closed bounded set E of at least n + 1 points and only if f(z) =-- fl(z)f2(z)f3(z),
where f3(z) is the product of all linear factors of f(z) vanishing at nonisolated
points of E, f(z) is the product of different linear factors vanishing at isolated
points orE, and (if E’ denotes the set of zeros off(z)),f.(z) has no zeros in E E’
and is a factor of some proper infrapolynomial of degree r on some set of r - 1
points of E E’.

By Theorem 2 and Lemma 3, f(z) is an infrapolynomial on E if and only if
f(z)/fa(z) is an infrapolynomial on E. By Lemmas 4 and 5, this is true if and
only if f(z) is an infrapolynomial on E- E’. The conclusion follows by
Theorem 15.

TIEOnEM 17. A polynomial f(z) z" - is an infrapolynomial on a

finite set E of m (> n) points if and only if it is a factor of an infrapolynomial of
degree m 1 on E.

The first part of Theorem 17 follows from Lemma 3. Conversely, in the
notation of Theorem 16 we write f(z) =- f(z)f:(z), where fi(z) is the product
of the different linear factors of f(z) vanishing in points of E. Let E’ denote
the set of zeros of f(z); then by I,emma 5, f(z) is a proper infrapolynomial
on E E’, hence by Theorem 15 a factor of an infrapolynomial :(z) of de-
gree r on subset E of E E containing r + 1 points. If l(z) denotes
the product of all different linear polynomials z z., z. in E E, then
(z) =--- q(z).(z) is a polynomial of degree m 1 which is divisible by f(z)
and by Lcmma 4 is also an infrapolynomial on E.
Under the conditions of Theorem 17 the infrapolynomial of degree m 1

on E of which f(z) is a factor is also (Theorem 13) an extremal polynomial of
least ptU powers, p 1.

THEOnn 18. A polynomial z - is an infrapolynomial on a closed
bounded set E of n 2 or more points if and only if it is a factor of an infra-
polynomial of degree n - 1 on E.
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The first part follows from Lemma 3. The second part follows from Theo-
rem 17 and Lemma 3 if E is finite, and if E is infinite from Theorem 2 by ad-
joining to f(z) a factor z Zo, where z0 is a limit point of E. The second part
follows alternately from the Corollary to Theorem i0 by similar adiunetion,
if E is infinite.

In connection with Theorem 18, we remark that if f(z) is an infrapolynomial
on a finite set E, it may be impossible to adjoin to f(z) a linear factor vanishing
on E such that the product is also an infrapolynomial on E; a necessary and
sufficient condition for possibility is that f(z) be an infrapolynomial on a
proper subset of E; compare Lemmas 4 and 5. For instance, if E consists of
the noncollinear points zl, z, z3, and if f(z) =- z , where is interior to
the convex hull of E, the polynomial f(z) (z )(z z) is not an infra-
polynomial on E; but if lies on the segment z2z3, then fl(z) is an infrapoly-
nomial on E.
On the other hand, we now discuss whether a factor not vanishing on E

can be adjoined to an infrapolynomial on E. We show that in the statement
of Theorem 15 the term "(proper)", and in the statement of Theorem 16 the
last "proper", cannot be altered to mean proper on E. In other words,
we exhibit a proper infrapolynomial f(z) on a set E which is not a factor of any
infrapolynomial f(z) of degree r on a subset of r -d- 1 points of E which is proper
forE. ChooseE:(zl,z,z,z4,zh),z x d-iy, x > y> O, z2= , z -zl,

z4 -z, z5 O, f(z) =-- z x -d- y’. Then f(z) is au infrapolynomial
by Lemma 3, since

z f(z) =- + + +
-= lI(z

The choice r 2 is impossible, for the zeros of f(z) do not lie in the convex
hull of any three points of E. With r > 2, f(z) must be, by Theorem 18,
identical with, or a factor of, an infrapolynomial f(z) on E of degree 4; the
choice f(z) zf(z) is not possible, as not yielding a suitable f(z). If f(z)
exists, say f(z) h.w.(z), },. => 0, . 1, there exists a (not neces-
sarily nonnegatively) weighted sum (, 5) of (, hs) and (-, ,-, 1/4, 0) with . 0, . 1, and at least one of the numbers t" (j < 5)
vanishing, say 1 0. Then o(z)/(z Zl) is (Lemm 5) an infra-
polynomial on z, zs, z4, zh, yet has g zero exterior to the convex hull of those
four points. This contradiction establishes the assertion.
As an application of our results on factorization we prove

THEOREM 19. An improper infrapolynomial f(z) - z d- on a finite
set E of n d- 1 or more points is the limit of proper infrapolynomials on E.

Let E contain precisely m points. If m n -4- 1, the conclusion is ob-
vious by Theorem 13 and its Corollary 1. If m > n d- 1, f(z) is by Theorem
17 a factor of an infrapolynomial f(z) of degree m 1, and the terms of a
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sequence of proper infrapolynomials of degree rn- 1 converging to fl(z)
admit factors (necessarily proper infrapolynomials) converging to f(z).
We note some other properties of the class of infrapolynomials of degree

n on a set E of rn (>n) points, which can be similarly deduced more or less
directly, via Theorem 17, from the same properties for m n -t- 1 (the latter
class is explicitly given in Theorem 13): closure and eonneetedness (inde-
pendently of 2 and 3), and the fact that every infrapolynomial is the limit
of other infrapolynomials having no zeros in common with it. For m n -t- 1,
this last property can be established by considering the polynomials in the
space of 2n real dimensions.
Theorem 19 is false if the restriction that E be finite is omitted. Indeed, a

compact infinite set E may even have no proper infrapolynomials; this latter
situation occurs if and only if E is convex.

8. Real sets; separation properties
A number of our previous results cn be mde more precise for real sets E, a

topic to which we now turn. Methods previously developed by the present
writers [2] for the study of infrapolynomials on a finite real set apply with
suitable modifications to an infinite real set, as we proceed to show.

THEOnE 20. Let E be a closed bounded real point set containing at least
n 1 points, let E* denote the set of limit points of E, and let f(z) z
be an infrapolynomial on E. If not in E* is a zero of f(z), then at least one
point of E at which f(z)/(z ) does not vanish lies in each of the intervals- < z <= and $ <= z < zr-. If and not in E* (with >- ) are two
zeros of f(z), then at least one point Zo of E at which f(z)/(z ()(z ) does
not vanish satisfies <-_ Zo <- .

Of course all zeros of f(z) are real, since they lie in the convex hull

of E. The first part of Theorem 20 is proved by considering the auxiliary
polynomial f(z)(z- -e)/(z- ), and the second part by considering
f(z)[(z- ()(z- v) e]/(z )(z r), > 0. Details are so similar
to a proof previously given [loc. cir., Theorem 2] that they are omitted.
Theorem 20 shows the impossibility of the following orderings of points

of E and the zeros of f(z), as well as of the reversed orderings. That Cases
I and II are impossible follows from the first part of Theorem 20, and the re-

mainde from the second part.
Case I. f() 0, ( not in E, all z (if any) in E with ( < z are zeros of f(z).
Case II. f(z) has multiple zero ( in E E*, all z (if any) with ( < z

are zeros of f(z).
Case III. f(z) has a zero of multiplicity greater than one at ( not in E.
Case IV. f(z) has a zero of multiplicity greater than two at in E E*.
Case V. f(z) has zeros at and (>) not in E; all points of E (if any)

between and are zeros of f(z).
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Case VI. f(z) has a multiple zero at in E E* and a zero at n not in E;
all points of E (if any) between and are zeros of f(z).

Case VII. f(z) has multiple zeros at ( and n (() in E E*; all points
of E (if any) between ( and are zeros of .f(z).
We add two remarks. Every multiple zero of f(z) lies on E and if of order

greater than two on E*. It is a consequence of Case II that 1 if not on E*
cannot be a double zero of f(z), and a consequence of Case I that f(z) can have
no zero in an interval (1 < z < which contains no point of E if f((1) 0.
With the aid of Theorem 20 we have

THEOREM 21. With the hypothesis of Theorem 20 on E and E*, a necessary
and sucient condition that f(z) =- z - be an infrapolynomial on E is
that the ordered zeros yl y. y off(z) not on E* separate a subset E’ of dis-
tinct points x, x2, ..., x,+ of E in the sense

(18) x -< y -< x2 -< -<_ x =< y, _-< x,+.

The first part of Theorem 21 is established by use of the cases of impos-
sibility already enumerated, by examining the number N(x) of zeros of
f(x) not in E* and not greater than x, and the number NE,(x) of points of E’
not greater than x, as x increases monotonically. For every x we have

(19) N](x) <= NE,(z) N](x) + 1.

As x increases monotonically from -, we always adjoin each new x in E
to E’ if and only if after adjunction the relation (19) holds. Thanks to the
closure of E, a first x in E succeeds each zero of f(z) in E E*. A simple
zero of f(z) at an isolated point of E is called a zero of the first kind; all other
zeros of f(z) not on E* are zeros of the second kind.
The proof of the first part of Theorem 21 is now practically identical with

a proof previously given [loc. cir., 7] if the phrase "zero of Tn+(x)" is re-
placed by "zero of f(z) not in E*." Details are left to the reader.
The second part of Theorem 21 is readily proved. From (18) it follows

[3, Theorem 5.3] that f(z) when deprived of its factors corresponding to zeros
of the third kind is an infrapolynomial on the set /x}, and hence (Lemma
6) also on the set E, so (Theorem 2) f(z) is an infrapolynomial on E.

It is a consequence of Theorem 21 that any line segment of the convex hull
of E containing no point of E can contain at most one (necessarily simple) zero

of f(z). This is an important fact for polynomials minimizing norms (3) and
(4), proved by Achyeser [1] for norm (4) on a set E consisting of two disjoint
closed segments,p 1.

9. Real sets; finite generation
The results of 5 can be somewhat sharpened for real sets.

THEOnE 22. If E is a closed bounded real set consisting of at least n 1
points, a polynomial f(z) z is a finitely generated infrapolynomial on
E if and only if its zeros separate a subset of E.
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If the zeros y. of f(z) satisfy (18), where n and the x lie on E, it fol-
lows from Theorem 21 that f(z) is an infrapolynomial on the set {x}, so f(z)
is finitely generated on E. On the other hand, if f(z) is an infrapolynomial
on some finite subset E1 of E, then also by Theorem 21 we have (18), where
the y are the zeros of f(z), n, and the x. lie on E1 and on E.

It is of interest to remark that for real E, Theorem 11 can be readily given
a constructive proof, by use of Theorem 21. If f(z) is an infrapolynomial
on E, we consider an auxiliary infrapolynomial fk(z), whose zeros are the
zeros of the first and second kinds of f(z), together with distinct zeros in
suitably chosen points of E approaching each -fold zero of the third kind

of f(z) on E; then f(z) is an infrapolynomial on a finite subset of E and ap-
proaches f(z).
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