
SMOOTHING METHODS FOR CONTOURS

BY L. CES_B,I AND R. t. FUT,T,ERTON

1. Introduction

The method of using contours in the investigations of problems involving
surface area and the calculus of variations was introduced by L. Cesari [3]
and has been used by both of the present authors in developing the theory of
surfaces from a point of view which differs in many respects from the classical
point of view in that it depends less on analytical techniques. The method
of contours uses chiefly topological ideas and hence would appear to be more
closely related to the true nature of a surface which is essentially topological.
We shall describe here how contours are defined and give several methods of
smoothing contours so that certain types of problems in surface theory can
be more conveniently treated.

Let J be a simply connected Jordan region in the plane, and let T’J -- Ebe a continuous map. T defines a surface S under the standard Frchet
definition. Although a theory of contours can be developed for multiply
connected regions or even 2-manifolds, we shall be concerned in this paper
only with simply connected Jordan regions. If [S] is the set of points in E
occupied by the surface, let f be any real valued continuous function defined
inE3, and if p T(w), we J, peE3, we defineF:J---*realsbyF(w)
f(T(w)). For any real value of t, m < < , define C(t) to be the subset
of J for which F(w) t, D-(t) {w e J IF(w) < t}, D+(t)
{w e J IF(w) > t}. (Some of these sets may be empty.) Evidently C(t)
is compact, and D-(t), D+(t) are open in J for all and have their boundaries
contained in C(t). For a fixed value of let {a} be the collection of all com-
ponents of D-(t) and for each a let /3’}, be the family of all components of
the set a a C. If we denote the union of all the3, for all a e la} by (t),
we say that (t) is the contour associated with the value for the mapping
T and the function f. Since for the same surface S, different representations
T and different functions f may be considered, it can be seen that a large
variety of types of contours can exist. R.E. Fullerton [6] has shown that
if S is nondegenerate, a representation T of S can be chosen in such a way
that a countable dense set of the contours are sums of arcs and simple closed
curves, provided that S has finite area. Other authors [1, 2, 3, 5, 8, 9] have
consistently used contours in questions arising from the calculus of variations
for surfaces. Cesari [3] has defined a generalized length for the image T()
in the following manner. Let -y e {,} for some a e {a}, and let A (% a) be
the set of all points w e J for which either w e a or w is separated from
by other components 3" e {3’} Let /v}., be the set of all ends of A
ending on % and let Ivy}, i 1, 2, n, be any finite set for which
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if i < j, except possibly that 71 s where the ordering on the ends is as
defined in [3]. If w, are the points of , corresponding to , consider the
sum i1[ T(w,,) T(w,_l) [. The length l(,) is defined to be the upper
bound of these sums for all such choices of the {n}, and the length l(t) of
T((t)) is defined as the upper bound of all finite sums of lengths l(,) taken
over all /which correspond to the sets [a}. If f is Lipschitzian on E3 and
if S has a finite area, it is known [3] that l(t) is finite for almost all t. Also
it is known that the length l(t) is a Fr(chet invariant of S. If is a prime
end of A with its terminal set E c /and if l(/) < , then E is a subset
of a continuum of constancy of T in J. These facts follow from the Cavalieri
type inequality proved in [3].
The contours K(t) may be of a rather complex topological nature, and it is

convenient in some cases to substitute for the contour a somewhat simpler
smoothed contour whose image does not exceed the original contour in length
and which has somewhat simpler properties. Several methods of smoothing
will be considered here, and the equivalence of the methods will be estab-
lished. We first consider the problem of smoothing a portion of a component, of the contour between two prime ends and 0.. The question of smooth-
ing an entire contour is then considered, and methods appiying to open and
closed type components will be considered. The first smoothing method
depends upon choosing an appropriate subset of the hyperspace of maximal
continua of constancy and defining the smoothed contour as the intersection
of the point set in J which this defines with the original component ,. The
second method involves consideration only of the original topology on J and
consists of eliminating certain inessential portions of the original contour.
A third method can be defined by consideririg the complementary domains
of the set A(a, ) and gives a smoothing for an entire component , of the
contour at one time.

L. Cesari, who has discussed in [4] the first of these smoothing methods for
contours, has announced applications of it to the representation problem for
surfaces.

2. The hyperspace :(T, J) and the first smoothing method

continuum of constancy for T in J is a continuum g c J such that
pl, p e g implies T(p) T(p). The set is a maximal continuum of con-
stancy for T in J if it is maximal with respect to this property. Let F(T, J)
be the set of all maximal continua of constancy g for T in J. Evidently
J (3,r g, and any two g are disjoint or coincident. Also it is known that
F forms an upper semicontinuous decomposition of J. This allows the
definition of a topology on r(T, J) (Whyburn[ll], Rado[7]) under which it
becomes a topological space which we shall denote by (T, J). Under
this topology, a point g e P is a limit point of a set A c 1 provided that
every open set G c J for which g c G also contains all points of some other
continuum g’ e A. Since F(T, J) is an upper semicontinuous collection, this
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topology is well defined and has the further property that if A c is a con-
nected subset of , then IJ g c J is a connected subset of J.

Let 1, o. be two prime ends of A (a, ,) with their terminal sets EI,E
subsets of % 1 < 2 Consider the set of all prime ends with 0 =< ___< o2,

and denote this set by [1, ]. Define q(ol, 2) to be the set of all g
such that for some e [, 2], g n E 0 in J. Let K Ug for g e (01, 2 ).
Evidently K n A 0, K c C c J, and K is a continuum including all points
of , which lie in terminal sets of prime ends between 0 and w2. Also
(1, 02) is a continuum in (T, J) under the hyperspace topology since other-
wise K itself would not be a continuum. Since it has been assumed that
l(,) < , each set E is contained in some g e F(T, J). Hence there exist
gl, g2 e F(T, J) such that EI g,E g2 (g may equal g.). By a result
of Cesari [4] there exist arcs (possibly indefinite) s, s2, defining ,
respectively, which intersect in A in only one point. Then s u s2 u , is the
boundary of an open set A’ A. Let Ko /(ol, o2) be an irreducible
continuum in F(T, J) joining g and g.. If g g2, then we have K0 gl.

If g g, then/0 is a nondegenerate continuum. Let K0 U g for g /0
ThenK0 K, K0 n A 0, andA is contained in a component A0 of
J- (K0 u K’) where K’ is the union of the g e 1 which intersect points of , other
than those which are terminal elements of e [o, 2]. We define the
smoothed contour/0(o, o2) to be the set B* n K0 where B* is the boundary
of the open set B bounded by s u s2 u K0, B A0 J. If we denote the
set of ends and prime ends of B ending on k0 by {}0, {}0, this set can be
ordered in the usual way to make o the first element and . the last, since
evidently by definition 0, o2 e {}0. Various properties of the smoothed
contour k0 have been developed by Cesari in [4]. For example it is proved that
if in the new open set A0, the prime ends 0 < 00 end on the same continuum
of constancy g e F, then all prime ends 0 e {}0 with 0 =< 0 =< 0 also end
on g. Also results are obtained concerning the relationships of generalized
lengths of the images of boundaries of complementary domains to A0. Such
results will be discussed later in the paper when other equivalent smoothing
definitions are given. In particular if , . in the above construction are the
first and last elements of the set of prime ends from A ending on % then the
smoothed contour between 1 and can be defined to be the contour obtained
by smoothing all of ,. As will be seen in section 6 this method of smoothing
all of , does not necessarily coincide with the third method which we shall
describe. Also in case and the contour , gives rise to a cyclic ordering
of {}, then the" definitions given above will yield E E. as a smoothed
contour, and hence the method of smoothing , will be difficult to define.
Simple examples show that it is not sufficient to choose two prime ends , w.

which are different in this case and to smooth first the interval from
and then from 0 to , since different choices of 1, w. may yield different
smoothed contours, and also the smoothing process will not yield the desired
set. Hence other definitions in the large seem necessary.
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3. The second method
Again as before let , be a component of a* a with l(,) < , let A (% a)

be defined as above, and let ol, 0. be two prime ends of A, ol < o2. If
EI n Eo 0, we define the smoothed contour k’0 to be the element g e r
for which EI u E2 c g. Thus for the nontriviM case assume E n Eo 0.
A second method of smoothing the contour , between Ol and . can be de-
scribed as follows. Let 3C(col, o) be the set of all elements of F which inter-
sect any E for which o =< o =< o. Let s, s2 be defined as in section 2. Let
0’, o" e {o} be such that ol < o’ < co" < co., and assume that E, n E,, 0.
Then there exists an element g C(o, o.) for which E, u E,, c g since
E,,, E,,, are continua of constancy for T in J. Delete from 5C(col, o) all
elements g’ g such that there exists co e o for which E,o g’ and for which

o" of the aboveo < o < o" Let this be done for all pairs of prime ends o’,
co" let H(o’, "type. For any such pair o’, ) be the subset of C( )

described above. Define (co, o) as the intersection in r of all the sets
H(o’, co"; o, o) described above. As in the first method, define
K; U , g J, and let lc; B* n K; where B is the component of the set
bounded by S u S u K0 whiehinterseetsA. It eanbe seen that /c C(t) J,
and if A’o is the component of J -lc which intersects A(a, ), then
A’o A J. We shall define lc’0 to be the smoothed contour corresponding
to , by the second method. The set of prime ends of A’o between o and o,
we denote by ft0.

THEOREM. 1CO k.
Proof. It must be shown that z(col, co) c ,(ol, ) in r and hence that

K0 H(o’, o’; o, co) for every pair o’, co" as defined above. Assume that
this is not the case. Then there exist prime ends ’, co < =< ,
such that E g K0 for some co between cJ and ’. Let E, u E,, g
and E g. Then either g’ e o-(col, co), or g’ q . If g’ t or, let ’, co" be de-
fined by two (possibly indefi’nite) arcs b, b. A such that b n b. n A is a
single point and b, b have their end points or end sets both on g’. Then
by definition of the order on {}, if b is an arc (possibly indefinite) defining
o, b n A is separated from E, E by bl u b u g’. Since k0 contains E
and E, we have lc0 separated by the set b u b u g’, since E is contained in
one component of its complement, and either E orE or both are contained
in another. Hence g’ e o-. However, if this is true, then if g is deleted from
K0, evidently K0 would still be a continuum since evidently it is connected
between g and g’ and between g and g, where EI c g, E. g.. Thus
z g is still connected in contrary to the fact that/0 is irreducible. IIenee,

4. The interval topology on z(et, e)
We shall show that on the set z(c0, c0.) described in section 3, it is possible

to define a linear ordering and a corresponding interval topology under which
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becomes an arc. In the next section it will be shown that this topology is
equivalent to the hyperspace topology on and hence that has the same
topological properties under either topology. We shall prove that a is an
arc under the order topology by a sequence of lemmas.

LEMMA 1. Let g e a(co o). Then in the set o there exists a first element
then E,o, g.and a last ending on g. Also if ’" o " ,

Proof. Let us first consider the existence of w. If is such thatE g,
rhea . If , we cn define cut in 0 s follows. In the lower
class we put 11 the elements of which precede every element with E g.
The second class will contain M1 other elements of ’0. This defines prime
end ’ 0’ by definition of prime end. Suppose that : g. Since g
und E; re closed in J, there exists n open set G J, E G, g G 0.
It is known [4, 10] that for ny v > 0, there exists cross cut c in A0 ending on
the boundary which is within r of E nd which defines two ends ’, ’ with

’ < < However sincec G, c does not end on g. Henceife0
has E c g, s’ separates from w. Hence < s’, and the cut defined
above does not determine , contrary to assumptions. Hence E; n g 0,
and E c g. By a similar argument, Eg c g.

tttIf ’" e 0 and < < then E,,, c g’ for some g’ e (, ). If
ttg’ g, g’ H(w’o, % , ), and hence g’ (, 2).. Thus E,,, c g.

In the above lemma it may happen that w
LEM 2. Let g e( ). If is the set of prime ends from A ending

on , there exist elements , e such that in the ordering on , is the

first prime end with E c g and is the last end with this property. Fur-
tt

thermore if are the prime ends dfined in Lemma 1, E nE O, and

E n E. O.

Proof. The existence of and is established by the same method as
tt

was used in Lemma 1 to establish the existence of and e
To prove the second part of the lemma, note that since g n k’0 D g n >,

E n > c g n c g n k’o O since E n7 0. Hence there must exist
" with E n E 0 This implies that if.elements ca0, ,

EnE 0, <foreveryea0withEnE$ 0. IfEnE3= 0,
there exists an indefinite arc c in A0 defining and an indefinite arc
c’ c A c A0 defining such that c n 0, since otherwise, for every two
such arcs, c n c’ would include a set of points converging to a point of E
and E n E 0. This implies that if c" is an indefinite are defining E.
which intersects c’ in a single point of A, then c’ u c" u g bound a subset B

Ct atof A’0 which does not include c. Let B be the component of A0 u
which contains c. By the way in which A, k were constructed,,
g n B c E u E., since % and were the st and last prime ends
ending on g, and if there were other points of g n B, there would have to,
be prime ends in {} A with E c g n B, contrary to the fact that e and
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are the first and last. Hence E a g 0, contrary to hypothesis. Thus
E E 0. Similarly, E E$o 0. Hence in the sense of the above
lemma there exists a correspondence between and and between and
g

Lemma 1 allows us to define a linear order on (, ) as follows"
If g, g’ e (, 2), g g, we say that g < g if there est prime ends ,
’ e , with < ’ and E g, E, g. This gives a determinate order-
ing since if ", ’ are any two elements of with E,, g, E,,, g’, then

" < ", since if ’’ < ", then either " < or < ’", and in the first
case E g’, and in the second E,,, g. Thus any two elements , ’with E g, E, g’, will deterne the same order on g, g’. The order is
evidently linear since the order on is, and for the same reason it is transitive.

LEMMA 3. In the order on a(, ), if gi < g there exists ga e (, )
such that gl ga g.

* be the last element {} ending on glProof. Let gl < g, and let
the first element on g. Then since the set {} is such that thereand g

exists an element between any two distinct elements in the ordering, there
* * Let E g. Then if , are theexists an element , < < .

* * let be the first ele-elements of corresponding to the elements ,
ment of {} with E E g, and let be the corresponding element of 0.
Then evidently < < by the proof of Lemma 2. Thus g < g < g
by definition.

LEMMA 4. The ordered set ( ) satisfies the Dedeind cut property.

Proof. Let L and R be a partition of the elements of (, ) with < ’ifE geL, E, g’eR nonvoid and Lu R (, ). It must be
shown that L contains a greatest element or R a least. There are two pos-
sible cases.

Case 1. There exist elements g e L, g e R such that in the smoothing
* and * where ** *process no elements of {} between , are as

defined in Lemma 2, were deleted. Thus the partition (L, R) defined be-
** and * defines a cut in the portion of {} and hence defines atween ,

prime end of the original set which also corresponds to an element of 0 of .
Also E g where g < g < g. By definition of the order, g is either the
first element of R or the last element of L.

Case 2. The situation in Case 1 does not hold. Then for any two elements
* * there exist elements e {},g e L, g e R and the corresponding w ,

** < < * for which g E is deleted in forming (, ). Choose
* * and consider all elements ofany such g, g with the corresponding ,

* and betweenthe interval [, ] E {} which lie between and 1
and . Take the union of all such sets for g e L, g e R. The union con-
sists of the entire interval [, ] since if e [, :], there exists a g e a(, )
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* ** * ** andsuch that oo. -< Ww7--< wo Also evidently if g L and wo -< w wo ,,*, w < w’. Hence a corresponding cut (L,g’ e R and wo, < =<
in {w} is also defined by (L, R), and a prime, end wo corresponds to the cut
(L’, R’). However E c g for some g e z(wl, w2), since if it did not, there, ** g,would exist a g ez(wl, w2) and elements wo, wo with E c e r and, **cog < w0 < wg Since g is in either L or R, w0 can be neither the largest ele-
ment in L’ nor the smallest in R’, and hence cannot be the prime end defined, ,,
by (L’,R’). Thus there can exist nogwithwo < w < wo in {w}, and

* ** for some go e z(wl, w), and go is the element cor-hence wo is either Woo or Woo
responding to the cut (L, R).

DEFINITION. The interval topology on z(wl, w) is the topology which has
all sets of the form {g e g < g < g} for all gl < g. in z as a basis for the
open subsets of z.

THEOREM. r(wl w.) is an arc in the interval topology.

Proof. It is known that any ordered set satisfying Lemmas 2 and 4 is an
arc in the interval topology.

5. The equivalence of the smoothing methods
We show that on the set (w, w) the hyperspace topology and the interval

topology are equivalent. Hence the two methods give the same smoothed
contour.

LEMMA. Let g r(w, w2), and let G J be an open subset with g G.
Let 2o 2 be the set of elements of 2o with E, g. Then there exist ends
7’, 7" e ’o 7’ < w’ < 7", for all w’ e 2o and such that E, G for all co with

Proof. Consider first the existence of 7". Assume that there exists no
end 7" for whichE c G if w’ < w < 7" for w’ c 2o. If w’ 2o, E, g 0,
and there exists an open set G D gwithE, G 0. InGA, there
exists a cross cut defining two ends, one on each side of g. Now let N be a
sequence of open sets containing g such that d(p, g) < 1/i for every p e N
and for each N n A, choose an end 7 with 7 > w for all w with E c g
and such thatw,eN. LetT > 72 > 7a > > wforeveryprimeend
in2g, andletw, c Gfor eachi. Thus if w’ > wforallwe2o(w >
there exists an 7 with w’ > 7. > 2o. Since it is assumed that there exists
no 7 > 2o with E c G for all w, 7 > w > 2o, and since the terminal points
of ends are dens on the boundary, by taking a properly chosen subsequence
of {7} if necessary, there will exist a second sequence of ends
7 > 7 > 7+x such that w,; G for each i. Since J is compact, there exists
a subsequence {7} c {7} with lim. w, w G, since J G is closed.
Now we define a prime end in 2 by constructing a cut in the following
ner. For the class L consider all ends 7 with wl v <: w for some o
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For the class R take all ends f with 7 < f/ < (22 for some i. This defines a
Dedekind cut in the set of ends in A’o and hence defines a prime end (2t. How-
ever E, n g 0 since lim. w, g. Also E, n (J G) 0
since lim. w, e J G. Since E, is a continuum of constancy for the
mapping T, E, g. This implies that g is not contained in G, contrary to
hypothesis, and hence that there must exist some end in the set {7i} for which
E G for all (2 with vi > (2 > fg A similar proof establishes the existence
of the

THEOREM. Let M (r((21, 0.). Then go r((21, (22) is a limit point of M
in the interval topology if and only if it is a limit point of M in the topology on

0-((2 (22) determined by the hyperspace topology on r.

Proof. Assume that go is a limit point of M in the order topology. Let
N r be an open subset of in the hyperspace topology with go e N. We
must prove thatNnM 0. LetG Ug,g’ J. G is an open subset
of J which includes go. By the lemma there exists an open interval
(7’, 7") f’osuchthatE GifT’ < (2 < 7t’andT’ < ft < 7". By the
definition ofGforT’ < < 7’,ifEo g,theng’ G. Thus ifw,,eg,
w,, g2andifI {g’e((2,co.)lg < g’ < g-},goeInN. Since go isa
limit of M in the interval topology, I n M 0, and hence N n M 0. This
is true for any open set N with go e N, and hence go is a limit point of
M in the hyperspace topology.
For the sufficiency of the condition, assume that go is a limit point of M

in the hyperspace topology. Let I (gl, g2) be any interval of ((2, (22)
which includes go, and construct an open set in J as follows. Let g, gt,,
g < go < g", be chosen in I so that there exist ends 7, 7 with w, e g, %,, gt.

c defining 7From a point p e Ao construct two rcs c’, 7’, respectively nd
with c’ c’ p in Ao. Let d ko be the set consisting of all points of Ao
except the points of E for 7’ < (2 < 7’. c’ c" u d is a closed subset of J
nd its complement contains the set go in one of its components Go. Let
N be the subset of consisting of all elements g e for which g Go.
N is open in F, since if it were not, there would exist a g e N which is a limit
point of the complement of N, and hence there would exist an open subset
G’ Go with g e G’ and such that G’ contains n element of the complement
of N, contrary to the definition of N. By the way in which N nd Go were
constructed, however, N a (, (2) I. Since M a N z(, (22) 0 by
hypothesis, we hve M I 0. Hence if go is limit point of M in the hy-
perspace topology, go is a limit point of M in the interval topology. Hence
the two topologies on (, (22) re equivalent.

COROLLARY 1.
k0

The two methods of smoothing contours are equivalent, i.e.,

Proof. z(wl, o2) D K0((2, o.) by a previous theorem. However, 0"((21, (22)
is irreducible, and since E, g implies E g2, gl, g2 are in both sets.
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Thus K0 o since the inclusion cannot be proper by the irreducibility of
Hence/Co k.
COROLLARY 2. There is only one smoothed contour between ol and

Proof. The second method gives a uniquely defined contour and hence so
also does the first method.

COROLLARY 3. If S is a nondegenerate surface, there exists a representation
T of S such that ko is an arc in J.

Proof. Let T be a light representation of S. Then all maximal continua
of constancy are points, and hence o(ol, 02) is an arc in J as well as in
In this case o, and/c0 is a simple arc.

6. The smoothing of an entire contour; the third method
The methods described in the preceding sections were applied only to cases

in which a portion of a contour between two prime ends 01 and 0. was con-
sidered. If 1, w are the first and last prime ends for a given component
of a contour, then the above method gives a reasonable definition of
smoothed contour. However, if a contour is smoothed between 1 and 0 and
between 0 and 0., the union of the two smoothed contours does not neces-
sarily give the smoothed contour between 01 are w.. This can be verified
by easily constructed examples.

Also difficulties arise in the case of a contour of "closed" type, i.e., the
ordering on {}A is cyclic. In this case even if one is careful in choosing two
intervals of prime ends in such a way that the above difficulties do not arise,
other difficulties may be present. Thus in the figure, (a) is the unsmoothed
contour, and (b) and (c) are both reasonable smoothed contours.

(a) (b) (c)

Situation (b) would arise if two appropriately chosen ends vl, v on the
portion cl of the contour were chosen and the contour smoothed from vl to w
and from w to w. Situation (c) would arise if the same procedure were fol-
lowed on c. Thus it appears that a reasonable definition of a smoothed
contour in this case would depend upon which complementary domain of /
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other than A were chosen. This leads to the following method of smoothing
contours which we shall call the third method.

DEFINITION. Let %" be a component of a contour and let X be the set of
all elementsgeF for whichgn/ 0. LetA0, D1, D2,... be the com-
plementary domains of K [J g for g e x. Let i be the set of all elements
of a: which intersect both A* and D* Let A D A be the component of
J t3 g which includes A. Then the smoothed contour ]i correspond-
ing to D is defined as A* n [3 g. The smoothed contour corresponding to
all of %" will be the set [3]. If there are no complementary domains of K
except A, we define the smoothed contour to be J*. The entire smoothed
contour corresponding to the value will be the union over %" e {%" and e a

of all the smoothed contours corresponding to each such

It will be noted that in case there exist first and last prime ends of A end-
ing on %’, the above definition does not necessarily give the smoothed contour
k0(, 02) but a subset of this smoothed contour which essentially is obtained
by leaving out of (, o), the elements g F for which g n D 0 for M1 i.
For such g, g n J* 0. However, the following theorem shows how the
above smoothed contour is related to the first and second types.

THEOREM. Let Ao, D, be defined ’as above. Let i be fixed, and let there
exist two prime ends o o such that E, g E, g g g and such
that are respectively the first and last prime ends of A for which E r g O,
g . Then (r(i o), and ko(ol o) l.

Proof. We shall prove that z a(, ), and from this it follows that
lc0(, ) k. If g e and if there exists g’ e and two elements ,
o" e {} , __< ’ < ’ __< , E, g’, E,, g", such that E g implies

C’ <= , then evidently g a D 0, since indefinite arcs c’, can be
c" define w" and such thatdrawn from A, c’ a c peA, where c’, w’,

c’ u c u g’ bound an open set in J including g and not intersecting D. Thus
g t . This proves that
To prove the inclusion z(,) z, it must be shown that if g e z(o, ),

then g e a. The contrary assumption would imply that there exists a
go e (, o) such that go a D 0. By the construction of a(, .), we
have D Ko(, .) is a connected set, where K0( ) (J (i.)g.
However, ifgaD 0, D a [K0(w,wt) go] D Ko(,). Thus
in the set of/o [ consisting of all elements g e (, ) go is a con-
tinuum containing g and g. However, it has already been proved that
z(, ) is an irreducible continuum. This proves then that go D 0,
gz(o, o.), and hence that go. Thus z(, ) z, and
/Co(w, o.) k. Hence in this case all three of the smoothing methods are
equivalent.

COnO,LAnV. If g g (r, g g and if are such that E g
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then the portions of at consisting of all g ai with E, c g,E g, <
<= o <= o2 is equal to o).
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