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HAUSDORFF DIMENSION OF RADIAL AND ESCAPING
POINTS FOR TRANSCENDENTAL MEROMORPHIC

FUNCTIONS

JANINA KOTUS AND MARIUSZ URBAŃSKI

Abstract. We consider a class of transcendental meromorphic
functions f : C �→ C with infinitely many poles. Under some reg-
ularity assumption on the location of poles and the behavior of

the function near the poles, we provide explicite lower bounds for

the hyperbolic dimension (Hausdorff dimension of radial points)

of the Julia set and upper bounds for the Hausdorff dimension

of the set of escaping points in the Julia set. In particular, the

Hausdorff dimension of the latter set is less than the Hausdorff
dimension of the former set. Consequently, the Hausdorff dimen-
sion of the set of escaping points is less than 2, and the area of

this set is equal to zero. The functions under consideration may

have infinitely many singular values, and we do not even assume

them to belong to the class B. We only require the distance be-
tween the set of poles and the set of finite singular values to be
positive.

1. Introduction and general preliminaries

The Fatou set F (f) of a meromorphic function f : C �→ C is defined in
exactly the same manner as for rational functions; F (f) is the set of points
z ∈ C such that all the iterates are defined and form a normal family on a
neighborhood of z. The Julia set J(f) is the complement of F (f) in C. Thus,
F (f) is open, J(f) is closed, F (f) is completely invariant while f −1(J(f)) ⊂
J(f) and f(J(f) \ {∞}) = J(f). For a general description of the dynamics

Received August 28, 2007; received in final form August 08, 2008.
The first author is partially supported by a grant Chaos, fraktale i dynamika kon-

foremna – N N201 0222 33 and by EU FTP6 Marie Curie Tok Spade2 and CODY at

IMPAN.
The research of the second author was supported in part by the NSF Grant INT-0306004.

2000 Mathematics Subject Classification. Primary 37F35. Secondary 37F10, 30D05.

1035

c©2009 University of Illinois

http://www.ams.org/msc/


1036 J. KOTUS AND M. URBAŃSKI

of meromorphic functions, see e.g., [3]. It follows from Montel’s criterion of
normality that if f : C �→ C has at least one pole which is not an omitted
value then

(1) J(f) =
⋃
n≥0

f −n(∞)

(cf. [2]). By Sing(f −1), we denote the set of singular values of f i.e., c ∈
Sing(f −1) if c ∈ C and c is a critical or an asymptotic value of f . We want to
point out that we do not consider multiple poles as critical points. We also
recall that f ∈ B if Sing(f −1) is bounded. Let

I∞(f) :=
{

z ∈ J(f) : lim
n→∞

fn(z) = ∞
}

be the subset of the Julia set consisting in the points escaping to infinity under
iterates of f . We also define the radial Julia set Jr(f) as the set of points z in
J(f) for which there exists a family of neighborhoods B(z, rj), rj → 0, which
can be mapped by f with bounded distortion until the diameter of the image
reaches a fixed size. The Hausdorff dimension of Jr(f) is called the hyperbolic
dimension of the Julia set J(f), which we denote by HypDim(f). Let Hh

and l2 denote the h-dimensional Hausdorff measure and the 2-dimensional
Lebesgue measure, respectively, HD(X) denote the Hausdorff dimension of
the set X .

It was shown by Baker [1] that, if f is a transcendental entire function, then
J(f) must contain continua and so the Hausdorff dimension of J(f) satisfies
1 ≤ HD(J(f)) ≤ 2. The result of Baker was extended recently by Stallard
and Rippon to the class MF of meromorphic functions with finitely many
poles. In [8], they showed that if f ∈ MF then J(f) contains continua, so
1 ≤ HD(J(f)) ≤ 2. Note that, for transcendental meromorphic functions with
infinitely many poles, the Hausdorff dimension of the Julia set is positive but
can be arbitrarily small, see [12]. If f is in the class B, then one can get a
better estimate on the lower bound of the Hausdorff dimension of the Julia
set. First, in [11], Stallard proved that for entire f ∈ B one has HD(J(f)) > 1,
next Stallard and Rippon proved the same for f ∈ MF ∩ B (see [9]).

Restricting the class of functions considered, further progress has been done
in [4], [5], and in [6]. In [4] and [5], explicite estimates for lower bounds of
HypDim(f), the hyperbolic dimension of the Julia set and upper bounds for
the Hausdorff dimension of I∞(f), the set of escaping points in the Julia
set, have been obtained for the class of elliptic functions. Mayer in [6] has
also obtained the explicite lower bound for HypDim(f). In the present paper,
developing the methods from [5] and getting rid of periodicity assumptions, we
provide explicite bounds for a much wider class of meromorphic functions. It
follows as an immediate corollary that for this class of meromorphic functions
HD(I∞(f)) < 2, which in turn readily implies that ∞ is not a metric attractor,
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meaning that the area of I∞(f) vanishes. Let

P := f −1(∞)

be the set of poles. For every pole a of f , by b(a), we denote the residuum of
f at a. The following theorems are the main results of our paper.

Theorem A. Let f : C �→ C be a transcendental meromorphic function of
finite order ρ > 0 satisfying the following.

(a) ∞ is not an asymptotic value of f , P is infinite and
(i) there exist α ≥ 0 such that for a ∈ P one has |b(a)| 
 |a| −α,
(ii) there exist M ∈ N and κ ∈ [0, α/M ] such that for all a ∈ P ,

|f ′(z)| 
 m(a)|b(a)|
|z − a|m(a)+1

and |f(z)| 
 |b(a)|
|z − a|m(a)

for z ∈ B(a, r(a)), where m(a) ∈ N, 1 ≤ m(a) ≤ M and r(a) � |a| −κ.
(b) dist(Sing(f −1), a) > 2r(a) for all but finitely many poles a ∈ P .

Then

HD(I∞(f)) ≤ ρM

α + M + 1
.

The comparability sign e.g., |b(a)| 
 |a| −α means that

C−1 ≤ |b(a)|/|a| −α ≤ C

for some constant C > 0 and all a ∈ P . The signs � and � have analogous
one-sided meaning. Roughly speaking, the condition (ii) enables us to replace
f ′ by its principal part in the r(a)-neighborhood of a pole a uniformly with
respect to a ∈ P . The condition on f given in (ii) implies that

f(z) 
 c(a) + b(a)(z − a)−m(a) + · · ·

in B(a, r(a)) with c(a) bounded uniformly in a. It says that when we re-
construct f from f ′ in B(a, r(a)) the ‘constants of integration’ are not too
large. Recall that m : P → {1,2, . . .} is the function which assigns to each
pole a, its multiplicity m(a). In particular, for every k = 1,2, . . . , m−1(k) =
{a ∈ P : m(a) = k}. For any t ≥ 0, consider the series

Σ(t) =
∑
a∈P

(1 + |a|)−t.

Borel’s theorem states that ρ, the order of the meromorphic function f , coin-
cides with the exponent of convergence of this series, i.e.,

Σ(t)

{
< +∞ if t > ρ,

= +∞ if t < ρ,
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provided ∞ is not a Picard exceptional value. Since the function m : P →
{1,2, . . .} takes in fact only finitely many (at most M ) values, there thus exists
a largest 1 ≤ M ∗ ≤ M such that

Σ∗(t) =
∑

a∈m−1(M ∗)

(1 + |a|)−t

{
< +∞ if t > ρ,

= +∞ if t < ρ.

We call the function f of maximal divergence type if Σ∗(ρ) = +∞.
Now, we give the lower bound on the hyperbolic dimension of Julia set for

the functions under consideration.

Theorem B. Let f : C �→ C be a transcendental meromorphic function
satisfying the assumptions of Theorem A except for that concerning ∞. Then

HypDim(f) ≥ ρM ∗

α + M ∗ + 1
.

If, in addition, the function f is of maximal divergent type, then this inequality
becomes strict.

The proof of Theorem B does not depend on the assumption that ∞ is
or not an asymptotic value of f . Theorems A and B imply the following
corollary.

Corollary. Let f : C �→ C be a transcendental meromorphic function sat-
isfying the assumptions of Theorem A, and let h := HD(J(f)). If f is of
maximal divergence type and M ∗ = M , then Hh(I∞(f)) = 0, and consequently
l2(I∞(f)) = 0.

The transcendental meromorphic functions considered in Theorem A are
not entire nor have finitely many poles. In those cases, ∞ is an asymptotic
value, so there is an asymptotic tract associated with ∞. Therefore, if z es-
capes to infinity, its forward trajectory stays in that tract. In our case, the es-
caping points must come arbitrarily close to poles. This difference is reflected
in the estimates of the Hausdorff dimension of escaping points. For entire func-
tions of finite order, e.g., the exponential or cosine family, McMullen proved
HD(I∞(f)) = HD(J(f)) = 2, while in our case, HD(I∞(f)) < HD(J(f)) ≤ 2.

In Section 2, we prove Theorem A. In Section 3, we prove Theorem B. In
Section 4, we provide some examples of nonperiodic functions for which the
assumptions of Theorems A and B are satisfied.

In the sequel, f � and diams denote the derivatives and diameters defined
by means of the spherical metric. By B(x, r) and Bs(x, r), respectively, we
mean the open ball centered at x and with the Euclidean (resp. spherical)
radius r.
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2. Proof of Theorem A

Let BR = {z ∈ C : |z| > R}. Take R0 such that

(2) R0 > 2max{r(a) : a ∈ P }.

The hypothesis (ii) implies that the sets B(a, r(a)) are mutually disjoint. Let
a ∈ P and z ∈ B(a, r(a)), then

(3) |f(z)| 
 |b(a)|
|z − a|m(a)

and |f ′(z)| 
 m(a)|b(a)|
|z − a|m(a)+1

,

where m(a) ≤ M , b(a) 
 |a| −α and r(a) 
 |a| −κ for all a ∈ P . A straight-
forward calculation based on (3) shows that f(B(a, r(a)) ⊃ BR for all ex-
cept finitely many poles. Indeed, since κ ≤ α/M , we have |b(a)| |r(a)|−m(a) 

|a|κm(a)−α � R0. Thus, there exists R1 > R0 such that dist(Sing(f −1), a) >
2r(a) and f(B(a, r(a))) ⊃ BR0 for all a ∈ P ∩ BR1 . For every a ∈ P , denote by
Ba(R) the connected component of f −1(BR) containing a. Thus, if R ≥ R1,
then for all a with |a| > R1, we have

(4) Ba(R) ⊂ B(a, r(a)).

Also, (3) implies that there is a constant L ≥ 1 such that for all poles a and
all R ≥ R0, we have

diam(Ba(R)) ≤ LR− 1
m(a) |a| −α/m(a),

(5)
diams(Ba(R)) ≤ LR− 1

m(a) |a| −2−α/m(a).

If
U ⊂ BR \ { ∞} ∩

⋃
a∈P

B(a,2r(a))

is an open simply-connected set, then all holomorphic inverse branches f −1
a,U,1,

. . . , f −1
a,U,m(a) of f are well-defined on U . For every 1 ≤ j ≤ m(a) and all z ∈ U ,

we have

(6) |(f −1
a,U,j)

′(z)| 
 |z|− m(a)+1
m(a) |a| − α

m(a) .

Therefore,

(7) |(f −1
a,U,j)

�(z)| 
 |z|− m(a)+1
m(a) |a| − α

m(a)
1 + |z|2

1 + |(f −1
a,U,j)(z)|2


 |z|(m(a)−1)/m(a)

|a|2+α/m(a)
,

where the second comparability sign we wrote assuming, in addition, that |a|
is large enough, say |a| ≥ R2 > R1. Let K be an upper bound of the ratios of

|(f −1
a,U,j)

�(z)| and |z|
m(a)−1

m(a) /|a|2+α/m(a) with a,U, j as above. Given two poles
a1, a2 ∈ B2R2 , we denote by f −1

a1,a2,j : B(a2,2r(a2)) �→ C, j = 1, . . . ,m(a1), all
holomorphic inverse branches of f . It follows from (2) and (4) that

(8) f −1
a2,a1,j(B(a1, r(a1))) ⊂ Ba2

(
2R2 − r(a1)

)
⊂ Ba2(R2) ⊂ B(a2, r(a2))
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for j = 1, . . . ,m(a1). Set

IR(f) = {z ∈ C : ∀n≥0|fn(z)| > R}.

Since the series ∑
a∈P

|a| −u

converges for all u > ρ, given t > ρM
α+M+1 , there exists R3 > R2 such that

(9) MKt
∑

a∈P ∩BR3

|a| −t( α+M+1
M ) ≤ 1,

where a constant K > 0 comes from the comparability signs in (7). Consider
R4 > 4R3. Define I = P ∩ BR3 . It follows from (4) and (8) that for every
l ≥ 1, and R > 2R4 the family of sets

Wl :=
{
f −1

al,al−1,jl
◦ f −1

al−1,al−2,jl−1
◦ · · · ◦ f −1

a2,a1,j2
◦ f −1

a1,a0,j1

(
Ba0(R/2)

)
:

ai ∈ I,1 ≤ ji ≤ m(ai), i = 0,1, . . . , l
}

is well-defined and covers IR(f). Applying (7) and (5), we may now estimate
as follows.

Σl =

=
∑
al ∈I

m(al)∑
jl=1

· · ·
∑
a1∈I

m(a1)∑
j1=1

∑
a0∈I

diamt
s

(
f −1

al,al−1,jl
◦ f −1

al−1,al−2,jl−1
◦ · · ·

◦ f −1
a2,a1,j2

◦ f −1
a1,a0,j1

(
Ba0(R/2)

))
≤

∑
al ∈I

m(al)∑
jl=1

· · ·
∑
a1∈I

m(a1)∑
j1=1

∑
a0∈I

∥∥(f −1
al,al−1,jl

◦ f −1
al−1,al−2,jl−1

◦ · · ·

◦ f −1
a2,a1,j2

◦ f −1
a1,a0,j1

)�
|Ba0 (R/2)

∥∥t

∞ · diamt
s

(
Ba0(R/2)

)

≤
∑
al ∈I

m(al)∑
jl=1

· · ·
∑
a1∈I

m(a1)∑
j1=1

∑
a0∈I

Klt

(
|al−1|(m(al)−1)/m(al)

|al|2+α/m(al)

)t

×
(

|al−2|(m(al−1)−1)/m(al−1)

|al−1|2+α/m(al−1)

)t

· · ·

×
(

|a0|(m(a1)−1)/m(a1)

|a1|2+α/m(a1)

)t

Lt

(
R

2

)− t
m(a0) 1

|a0|(2+α/m(a0))t

≤ Lt

(
2
R

) t
M

Klt
∑
al ∈I

m(al)∑
jl=1

· · ·
∑
a1∈I

m(a1)∑
j1=1

∑
a0∈I

|al| −t(2+α/M)

×
(

|al−1| −t α+M+1
M · · · |a0| −t α+M+1

M

)
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= Lt

(
2
R

) t
M

Klt

×
∑
al ∈I

m(al)∑
jl=1

· · ·
∑
a1∈I

m(a1)∑
j1=1

∑
a0∈I

(
|al| −t α+M+1

M |al−1| −t α+M+1
M · · · |a0| −t α+M+1

M

)

≤ Lt

(
2
R

) t
M

Klt

(∑
a∈I

|a| −t α+M+1
M

)l

M l

≤ Lt

(
2
R

) t
M

(
MKt

∑
a∈I

|a| −t α+M+1
M

)l

.

Applying (9), we, therefore, get Σl ≤ Lt(2/R)t/M . Since the diameters (in the
spherical metric) of the sets of the covers Wl converge uniformly to 0 when
l ↘ ∞, we infer that Ht

s(IR(f)) ≤ Lt(2/R)t/M , where the subscript s indicates
that the Hausdorff measure is defined with respect to the spherical metric.
Consequently HD(IR(f)) ≤ t, and if we put

IR,e(f) :=
{

z ∈ C : lim inf
n 	→∞

|fn(z)| > R
}

=
⋃
k≥1

f −k(IR(f)),

then also HD(I∞(f)) ≤ HD(IR,e(f)) = HD(IR(f)) ≤ t. Letting now t ↘
ρM

α+M+1 finishes the proof.

3. Proof of Theorem B

Let R2 be a constant defined above. Set

I = BR2 ∩ m−1(M ∗).

Fix a pole a0 ∈ I . For every a ∈ I , fix inverse branches of f :

f −1
a,a0,1 : B(a, r(a)) �→ C and f −1

a0,a,1 : B(a, r(a)) �→ C.

In view of (8), we have

f −1
a,a0,1(B(a, r(a))) ⊂ B(a0, r(a0)) and f −1

a0,a,1(B(a0, r(a0))) ⊂ B(a, r(a)).

The family

S = {f −k
a0,a,1 ◦ f −1

a,a0,1 : B(a0, r(a0)) �→ B(a0, r(a0));a ∈ I}

forms a conformal infinite iterated function system in the sense of [7]. We set

φa = f −1
a0,a,1 ◦ f −1

a,a0,1

and, given ω ∈ In, n ≥ 1, we write |ω| = n, and refer to |ω| as the length of ω.
We put

φω = φω1 ◦ φω2 ◦ · · · ◦ φωn .
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The set
JS =

⋂
n≥0

∑
|ω|=n

φω(B(a0, r(a0)))

is called the limit set of the iterated function system S. It was proved in
[7] that JS is contained in the closure of all fixed points of φω , where ω ∈⋃

n≥1(P ∩ B2R2)
n. Since these periodic points are repulsive, we conclude that

JS ⊂ J(f). Given t ≥ 0, we consider the Poincaré series associated to the
system S,

ψ(t) =
∑
a∈I

‖(φa)�‖t
∞,

where ‖(φn)�‖ ∞ = sup{ |(φn)�(z)| : z ∈ B(a0, r(a0))} and the number

θS = inf{t ≥ 0 : ψ(t) < ∞}.

We shall prove that θS < ρM ∗

αM ∗+1 and ψ(θS) = ∞. In view of (7), we can write

ψ(t) 

∑
a∈I

(
|a|(M ∗ −1)/M ∗

|a0|2+α/M ∗

)t( |a0|(M ∗ −1)/M ∗

|a|2+α/M ∗

)t



∑
a∈I

|a| −t(α+M ∗+1)/M ∗
.

It follows from the definition of ρ that the series
∑

a∈I |a| −t α+M ∗+1
M ∗ con-

verges whenever tα+M ∗+1
M ∗ > ρ. Therefore, the equalities θS < ρM ∗

α+M ∗+1 and
ψ(θS) = ∞ are proved. It follows from Theorem 3.20 in [7] that HD(JS) ≥

ρM ∗

α+M ∗+1 . Since JS ⊂ J(f), we are done. If, in addition, f is of divergent type,

then for tα+M ∗+1
M ∗ = ρ the series

∑
a∈I |a| −t α+M ∗+1

M ∗ diverges. It implies that
θS = ρM ∗

α+M ∗+1 and ψ(θS) = ∞. Therefore, invoking again Theorem 3.20 in [7],
we obtain that HD(JS) > ρM ∗

α+M ∗+1 .

4. Examples

Example 1. Let
f(z) =

1
z sin z

.

So, f is a meromorphic function with infinitely many poles

P = {0} ∪ {nπ : n ∈ Z
∗ },

where all of them except for 0 are simple. Notice that ∞ is not an asymptotic
value of f . Thus, we have κ = 0, m identically equal to 1, α = 1, ρ = 1.
Sing(f −1) consists of one asymptotic value 0 and infinitely many critical values
cn 
 ±((n + 1

2 )π)−1, n ∈ Z. So f ∈ B and satisfies the hypothesis (b) of
Theorem A. Consequently,

HD(I∞(f)) ≤ 1
3

< HypDim(f).
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Example 2. Let
f(z) =

1
z cos

√
z
.

So, f is a meromorphic function with infinitely many poles

P = {0} ∪
{(

n +
1
2

)2

π2;n ∈ N

}
,

where all of them are simple. Notice that ∞ is not an asymptotic value of f .
Thus, we have κ = 0, m identically equal to 1, α = 1

2 , ρ = 1
2 . Sing(f −1)

consists of one asymptotic value 0 and infinitely many critical values |cn| =
| 1
zl cos(zl)

| 
 | 1
zl

| → 0, where zl = lπ + 1
lπ , l ∈ Z. So f ∈ B and satisfies the

hypothesis (b) of Theorem A. Consequently,

HD(I∞(f)) ≤ 1
5

< HypDim(f).

Example 3. Let
f(z) = R(ez),

where R is a rational function such that R(0) �= ∞ and R(∞) �= ∞. So, f(z) is
a simply-periodic meromorphic function with finitely many poles at each strip
of periodicity. This class of functions contains for example, the tangent family
λ tan(z), λ ∈ C

∗. Since Sing(f −1) is finite, the hypothesis (b) of Theorem A
is always satisfied. It is easy to see that κ = 0, ρ = 1, and α = 0, so

HD(I∞(f)) ≤ M

M + 1
and HypDim(f) >

M ∗

M ∗ + 1
.

In this case, one can get a better estimate on HypDim(f). It follows from [10]
that HypDim(f) > 1.

Example 4. As we mentioned before, Theorems A and B can be applied
to elliptic fictions (κ = 0, α = 0) (see [5]).
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