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FROM DYADIC Λα TO Λα

WAEL ABU-SHAMMALA AND ALBERTO TORCHINSKY

Abstract. In this paper, we show how to compute the Λα norm,
α ≥ 0, using the dyadic grid. This result is a consequence of the

description of the Hardy spaces Hp(RN ) in terms of dyadic and
special atoms.

1. Introduction

Recently, several novel methods for computing the BMO norm of a func-
tion f in two dimensions were discussed in [9]. Given its importance, it is also
of interest to explore the possibility of computing the norm of a BMO func-
tion, or more generally, a function in the Lipschitz class Λα, using the dyadic
grid in R

N . It turns out that the BMO question is closely related to that
of approximating functions in the Hardy space H1(RN ) by the Haar system.
The approximation in H1(RN ) by affine systems was proved in [2], but this
result does not apply to the Haar system. Now, if HA(R) denotes the closure
of the Haar system in H1(R), it is not hard to see that the distance d(f,HA)
of f ∈ H1(R) to HA is ∼ |

∫ ∞
0

f(x)dx|, see [1]. Thus, neither dyadic atoms
suffice to describe the Hardy spaces, nor the evaluation of the norm in BMO
can be reduced to a straightforward computation using the dyadic intervals.
In this paper we address both of these issues. First, we give a characterization
of the Hardy spaces Hp(RN ) in terms of dyadic and special atoms, and then
by a duality argument, we show how to compute the norm in Λα(RN ), α ≥ 0,
using the dyadic grid.

We begin by introducing some notations. Let J denote a family of cubes Q
in R

N , and Pd the collection of polynomials in R
N of degree less than or equal

to d. Given α ≥ 0, Q ∈ J , and a locally integrable function g, let pQ(g) denote
the unique polynomial in P[α] such that [g − pQ(g)]χQ has vanishing moments
up to order [α].
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For a locally square-integrable function g, we consider the maximal function
M �,2

α,J g(x) given by

M �,2
α,J g(x) = sup

x∈Q,Q∈J

1
|Q|α/N

(
1

|Q|

∫
Q

|g(y) − pQ(g)(y)|2 dy

)1/2

.

The Lipschitz space Λα,J consists of those functions g such that M �,2
α,J g is

in L∞, ‖g‖Λα,J = ‖M �,2
α,J g‖ ∞; when the family in question contains all cubes

in R
N , we simply omit the subscript J . Of course, Λ0 = BMO.

Two other families, of dyadic nature, are of interest to us. Intervals in R of
the form In,k = [(k − 1)2n, k2n], where k and n are arbitrary integers, positive,
negative, or 0 are said to be dyadic. In R

N , cubes which are the product of
dyadic intervals of the same length, i.e., of the form Qn,k = In,k1 × · · · × In,kN

,
are called dyadic, and the collection of all such cubes is denoted D.

There is also the family D0. Let I ′
n,k = [(k − 1)2n, (k+1)2n], where k and n

are arbitrary integers. Clearly, I ′
n,k is dyadic if k is odd, but not if k is even.

Now, the collection {I ′
n,k : n,k integers} contains all dyadic intervals as well

as the shifts [(k − 1)2n +2n−1, k2n +2n−1] of the dyadic intervals by their half
length. In R

N , put D0 = {Q′
n,k : Q′

n,k = I ′
n,k1

× · · · × I ′
n,kN

}; Q′
n,k is called a

special cube. Note that D0 contains D properly.
Finally, given I ′

n,k, let I
′L
n,k = [(k − 1)2n, k2n], and I

′R
n,k = [k2n, (k + 1)2n].

The 2N subcubes of Q′
n,k = I ′

n,k1
× · · · × I ′

n,kN
of the form I

′S1
n,k1

× · · · × I
′SN

n,kN
,

Sj = L or R, 1 ≤ j ≤ N , are called the dyadic subcubes of Q′
n,k.

Let Q0 denote the special cube [−1,1]N . Given α ≥ 0, we construct a family
Sα of piecewise polynomial splines in L2(Q0) that will be useful in character-
izing Λα. Let A be the subspace of L2(Q0) consisting of all functions with
vanishing moments up to order [α] which coincide with a polynomial in P[α]

on each of the 2N dyadic subcubes of Q0. A is a finite dimensional subspace
of L2(Q0), and, therefore, by the Graham–Schmidt orthogonalization process,
say, A has an orthonormal basis in L2(Q0) consisting of functions p1, . . . , pM

with vanishing moments up to order [α], which coincide with a polynomial
in P[α] on each dyadic subinterval of Q0. Together with each pL, we also
consider all dyadic dilations and integer translations given by

pL
n,k,α(x) = 2n(N+α)pL(2nx1 + k1, . . . ,2nxN + kN ), 1 ≤ L ≤ M,

and let

Sα = {pL
n,k,α : n,k integers,1 ≤ L ≤ M }.

Our first result shows how the dyadic grid can be used to compute the
norm in Λα.
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Theorem A. Let g be a locally square-integrable function and α ≥ 0. Then
g ∈ Λα if and only if g ∈ Λα,D and Aα(g) = supp∈Sα

| 〈g, p〉 | < ∞. Moreover,

‖g‖Λα ∼ ‖g‖Λα,D + Aα(g).

Furthermore, it is also true and the proof is given in Proposition 3.1 be-
low that ‖g‖Λα ∼ ‖g‖Λα,D0

. However, in this simpler formulation, the tree
structure of the cubes in D has been lost.

The proof of Theorem A relies on a close investigation of the predual of
Λα, namely, the Hardy space Hp(RN ) with 0 < p = (α + N)/N ≤ 1. In the
process, we characterize Hp in terms of simpler subspaces: Hp

D, or dyadic
Hp, and Hp

Sα
, the space generated by the special atoms in Sα. Specifically,

we have the following theorem.

Theorem B. Let 0 < p ≤ 1, and α = N(1/p − 1). We then have

Hp = Hp
D + Hp

Sα
,

where the sum is understood in the sense of quasinormed Banach spaces.

The paper is organized as follows. In Section 2, we show that individual
Hp atoms can be written as a superposition of dyadic and special atoms.
This fact may be thought of as an extension of the one-dimensional result of
Fridli concerning L∞1- atoms, see [5] and [1]. Then we prove Theorem B.
In Section 3, we discuss how to pass from Λα,D and Λα,D0 , to the Lipschitz
space Λα.

2. Characterization of the Hardy spaces Hp

We adopt the atomic definition of the Hardy spaces Hp, 0 < p ≤ 1, see [6]
and [10]. Recall that a compactly supported function a with [N(1/p − 1)]
vanishing moments is an L2 p-atom with defining cube Q if supp(a) ⊆ Q, and

|Q|1/p

(
1

|Q|

∫
Q

|a(x)|2 dx

)1/2

≤ 1.

The Hardy space Hp(RN ) = Hp consists of those distributions f that can be
written as f =

∑
λjaj , where the aj ’s are Hp atoms,

∑
|λj |p < ∞, and the

convergence is in the sense of distributions. Furthermore,

‖f ‖Hp ∼ inf
(∑

|λj |p
)1/p

,

where the infimum is taken over all possible atomic decompositions of f . This
last expression has traditionally been called the atomic Hp norm of f .

Collections of atoms with special properties can be used to gain a better
understanding of the Hardy spaces. Formally, let A be a nonempty subset
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of L2 p-atoms in the unit ball of Hp. The atomic space Hp
A spanned by A

consists of those ϕ in Hp of the form

ϕ =
∑

λjaj , aj ∈ A,
∑

|λj |p < ∞.

It is readily seen that endowed with the atomic norm

‖ϕ‖Hp
A

= inf
{(∑

|λj |p
)1/p

: ϕ =
∑

λjaj , aj ∈ A
}

,

Hp
A becomes a complete quasinormed space. Clearly, Hp

A ⊆ Hp, and for f ∈
Hp

A, ‖f ‖Hp ≤ ‖f ‖Hp
A

.
Two families are of particular interest to us. When A is the collection

of all L2 p-atoms whose defining cube is dyadic, the resulting space is Hp
D,

or dyadic Hp. Now, although ‖f ‖Hp ≤ ‖f ‖Hp
D

, the two quasinorms are not
equivalent on Hp

D. Indeed, for p = 1 and N = 1, the functions

fn(x) = 2n−1
[
χ[1−2−n,1](x) − χ[1,1+2−n](x)

]
,

satisfy ‖fn‖H1 = 1, while, on the other hand, with ϕ(x) = χ[1,∞)(x) ln(x − 1),

‖fn‖H1
D

= sup
ψ∈BMOD

| 〈fn, ψ〉|
‖ψ‖BMOD

≥
2n−1|

∫ 1+2−n

1
ϕ(x)dx|

‖ϕ‖BMOD

∼ n,

tends to infinity with n.
Next, when Sα is the family of piecewise polynomial splines constructed

above with α = N(1/p − 1), in analogy with the one-dimensional results in [4]
and [1], Hp

Sα
is referred to as the space generated by special atoms.

We are now ready to describe Hp atoms as a superposition of dyadic and
special atoms.

Lemma 2.1. Let a be an L2 p-atom with defining cube Q, 0 < p ≤ 1, and
α = N(1/p − 1). Then a can be written as a linear combination of 2N dyadic
atoms ai, each supported in one of the dyadic subcubes of the smallest special
cube Qn,k containing Q, and a special atom b in Sα. More precisely,

a(x) =
2N∑
i=1

diai(x) +
M∑

L=1

cLpL
−n,−k,α(x), |di|, |cL| ≤ c.

Proof. Suppose first that the defining cube of a is Q0, and let Q1, . . . ,Q2N

denote the dyadic subcubes of Q0. Furthermore, let {e1
i , . . . , e

M
i } denote an

orthonormal basis of the subspace Ai of L2(Qi) consisting of polynomials in
P[α], 1 ≤ i ≤ 2N . Put

αi(x) = a(x)χQi(x) −
M∑

j=1

〈aχQi , e
i
j 〉ei

j(x), 1 ≤ i ≤ 2N ,
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and observe that 〈αi, e
i
j 〉 = 0 for 1 ≤ j ≤ M . Therefore, αi has [α] vanishing

moments, is supported in Qi, and

‖αi‖2 ≤ ‖aχQi ‖2 +
M∑

j=1

‖aχQi ‖2 ≤ (M + 1)‖aχQi ‖2.

So,

ai(x) =
2N(1/2−1/p)

M + 1
αi(x), 1 ≤ i ≤ N,

is an L2 p-dyadic atom. Finally, put

b(x) = a(x) − M + 1
2N(1/2−1/p)

2N∑
i=1

ai(x).

Clearly, b has [α] vanishing moments, is supported in Q0, coincides with a
polynomial in P[α] on each dyadic subcube of Q0, and

‖b‖2
2 ≤

2N∑
i=1

M∑
j=1

| 〈aχQi , e
i
j 〉|2 ≤ M ‖a‖2

2.

So, b ∈ A, and consequently b(x) =
∑M

L=1 cLpL(x), where

|cL| = | 〈b, pL〉| ≤ c, 1 ≤ L ≤ M.

In the general case, let Q be the defining cube of a, side-length Q = �, and
let n and k = (k1, . . . , kN ) be chosen so that 2n−1 ≤ � < 2n, and

Q ⊂ [(k1 − 1)2n, (k1 + 1)2n] × · · · × [(kN − 1)2n, (kN + 1)2n].

Then (1/2)N ≤ |Q|/2nN < 1.
Now, given x ∈ Q0, let a′ be the translation and dilation of a given by

a′(x) = 2nN/pa(2nx1 − k1, . . . ,2nxN − kN ).

Clearly, [α] moments of a′ vanish, and

‖a′ ‖2 = 2nN/p2−nN/2‖a‖2 ≤ c|Q|1/p|Q| −1/2‖a‖2 ≤ c.

Thus, a′ is a multiple of an atom with defining cube Q0. By the first part of
the proof,

a′(x) =
2N∑
i=1

dia
′
i(x) +

M∑
L=1

cLpL(x), x ∈ Q0.

The support of each a′
i is contained in one of the dyadic subcubes of Q0, and

consequently there is a k such that

ai(x) = 2−nN/pa′
i(2

−nx1 − k1, . . . ,2−nxN − kN )
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ai is an L2p -atom supported in one of the dyadic subcubes of Q. Similarly,
for the pL’s. Thus,

a(x) =
∑

i

diai(x) +
M∑

L=1

cLpL
−n,−k,N(1/p−1)(x),

and we have finished. �

Theorem B follows readily from Lemma 2.1. Clearly, Hp
D + Hp

Sα
↪→ Hp.

Conversely, let f =
∑

j λjaj be in Hp. By Lemma 2.1, each aj can be written
as a sum of dyadic and special atoms, and by distributing the sum, we can
write f = fd + fs, with fd in Hp

D, fs in Hp
Sα

, and

‖fd‖Hp
D
, ‖fs‖Hp

Sα
≤ c

(∑
|λj |p

)1/p

.

Taking the infimum over the decompositions of f , we get ‖f ‖Hp
D+Hp

Sα
≤

c‖f ‖Hp , and Hp ↪→ Hp
D + Hp

Sα
. This completes the proof.

The meaning of this decomposition is the following. Cubes in D are con-
tained in one of the 2N nonoverlapping quadrants of R

N . To allow for the
information carried by a dyadic cube to be transmitted to an adjacent dyadic
cube, they must be connected. The pL

n,k,α channel information across adja-
cent dyadic cubes which would otherwise remain disconnected. The reader
will have no difficulty in proving the quantitative version of this observation.
Let T be a linear mapping defined on Hp, 0 < p ≤ 1, that assumes values
in a quasinormed Banach space X . Then T is continuous if and only if the
restrictions of T to Hp

D and Hp
Sα

are continuous.

3. Characterizations of Λα

Theorem A describes how to pass from Λα,D to Λα, and we prove it next.
Since (Hp)∗ = Λα and (Hp

D)∗ = Λα,D, from Theorem B, it follows readily that
Λα = Λα,D ∩ (Hp

Sα
)∗, so it only remains to show that (Hp

Sα
)∗ is characterized

by the condition Aα(g) < ∞.
First note that if g is a locally square-integrable function with Aα(g) < ∞

and f =
∑

j,L cj,LpL
nj ,kj ,α, since 0 < p ≤ 1,

| 〈g, f 〉| ≤
∑
j,L

|cj,L| | 〈g, pL
nj ,kj ,α〉 |

≤ Aα(g)
[∑

j,L

|cj,L|p
]1/p

,

and consequently taking the infimum over all atomic decompositions of f in
Hp

Sα
, we get g ∈ (Hp

Sα
)∗ and ‖g‖(Hp

Sα
)∗ ≤ Aα(g).

To prove the converse, we proceed as in [3]. Let Qn = [−2n,2n]N . We begin
by observing that functions f in L2(Qn) that have vanishing moments up to
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order [α] and coincide with polynomials of degree [α] on the dyadic subcubes
of Qn belong to Hp

Sα
and

‖f ‖Hp
Sα

≤ |Qn|1/p−1/2‖f ‖2.

Given � ∈ (Hp
Sα

)∗, for a fixed n let us consider the restriction of � to the space
of L2 functions f with [α] vanishing moments that are supported in Qn. Since

|�(f)| ≤ ‖�‖ ‖f ‖Hp
Sα

≤ ‖�‖ |Qn|1/p−1/2‖f ‖2,

this restriction is continuous with respect to the norm in L2, and consequently
it can be extended to a continuous linear functional in L2 and represented as

�(f) =
∫

Qn

f(x)gn(x)dx,

where gn ∈ L2(Qn) and satisfies ‖gn‖2 ≤ ‖�‖ |Qn|1/p−1/2. Clearly, gn is unique-
ly determined in Qn up to a polynomial pn in P[α]. Therefore,

gn(x) − pn(x) = gm(x) − pm(x), a.e. x ∈ Qmin(n,m).

Consequently, if
g(x) = gn(x) − pn(x), x ∈ Qn,

g(x) is well defined a.e. and if f ∈ L2 has [α] vanishing moments and is
supported in Qn, we have

�(f) =
∫

RN

f(x)gn(x)dx

=
∫

RN

f(x)[gn(x) − pn(x)]dx

=
∫

RN

f(x)g(x)dx.

Moreover, since each 2nN/ppL(2n · +k) is an L2 p-atom, 1 ≤ L ≤ M , it readily
follows that

Aα(g) = sup
1≤L≤M

sup
n,k∈Z

| 〈g,2−n/ppL(2n · +k)〉 |

≤ ‖�‖ sup
L

‖pL‖Hp ≤ ‖�‖,

and consequently Aα(g) ≤ ‖�‖, and (Hp
Sα

)∗ is the desired space.
The reader will have no difficulty in showing that this result implies the

following. Let T be a bounded linear operator from a quasinormed space X
into Λα,D. Then T is bounded from X into Λα if and only if Aα(Tx) ≤ c‖x‖X

for every x ∈ X .
The process of averaging the translates of dyadic BMO functions leads to

BMO, and is an important tool in obtaining results in BMO once they are
known to be true in its dyadic counterpart, BMOd, see [7]. It is also known
that BMO can be obtained as the intersection of BMOd and one of its shifted
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counterparts, see [8]. These results motivate our next proposition, which
essentially says that g ∈ Λα if and only if g ∈ Λα,D and g is in the Lipschitz
class obtained from the shifted dyadic grid. Note that the shifts involved in
this class are in all directions parallel to the coordinate axis and depend on
the side-length of the cube.

Proposition 3.1. Λα = Λα,D0 , and ‖g‖Λα ∼ ‖g‖Λα,D0
.

Proof. It is obvious that ‖g‖Λα,D0
≤ ‖g‖Λα . To show the other inequality

we invoke Theorem A. Since D ⊂ D0, it suffices to estimate Aα(g), or, equiv-
alently, | 〈g, p〉| for p ∈ Sα, α = N(1/p − 1). So, pick p = pL

n,k,α in Sα. The
defining cube Q of pL

n,k,α is in D0, and since pL
n,k,α has [α] vanishing moments,

〈pL
n,k,α, pQ(g)〉 = 0. Therefore,

| 〈g, pL
n,k,α〉| = | 〈g − pQ(g), pL

n,k,α〉 |
≤ ‖pL

n,k,α‖2‖g − pQ(g)‖L2(Q)

≤ |Q|α/N |Q|1/2‖pL
n,k,α‖2‖g‖Λα,D0

.

Now, a simple change of variables gives |Q|α/N |Q|1/2‖pL
n,k,α‖2 ≤ 1, and con-

sequently also Aα(g) ≤ ‖g‖Λα,D0
. �
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Acad. Paedagog. Niházi (N.S.) 16 (2000), 1–8 (electronic). MR 1796256
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topics, Notas de Matemática, vol. 116, North Holland, Amsterdam, 1985. MR 0807149

[7] J. Garnett and P. Jones, BMO from dyadic BMO, Pacific J. Math. 99 (1982), 351–371.
MR 0658065

[8] T. Mei, BMO is the intersection of two translates of dyadic BMO, C. R. Math. Acad.
Sci. Paris 336 (2003), 1003–1006. MR 1993970

[9] T. M. Le and L. A. Vese, Image decomposition using total variation and div(BMO)∗,

Multiscale Model. Simul. 4 (2005), 390–423. MR 2162861

[10] A. Torchinsky, Real-variable methods in harmonic analysis, Dover Publications, Inc.,
Mineola, NY, 2004. MR 2059284

Wael Abu-Shammala, Department of Mathematics, Indiana University, Bloom-

ington, IN 47405, USA

E-mail address: wabusham@indiana.edu

http://arXiv.org/abs/math/0510280v2
http://www.ams.org/mathscinet-getitem?mr=2358390
http://www.ams.org/mathscinet-getitem?mr=0450888
http://www.ams.org/mathscinet-getitem?mr=0747289
http://www.ams.org/mathscinet-getitem?mr=1796256
http://www.ams.org/mathscinet-getitem?mr=0807149
http://www.ams.org/mathscinet-getitem?mr=0658065
http://www.ams.org/mathscinet-getitem?mr=1993970
http://www.ams.org/mathscinet-getitem?mr=2162861
http://www.ams.org/mathscinet-getitem?mr=2059284
mailto:wabusham@indiana.edu


FROM DYADIC Λα TO Λα 689

Alberto Torchinsky, Department of Mathematics, Indiana University, Bloom-

ington, IN 47405, USA

E-mail address: torchins@indiana.edu

mailto:torchins@indiana.edu

	Introduction
	Characterization of the Hardy spaces Hp
	Characterizations of Lambdaalpha
	References
	Author's Addresses

