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SCATTERING LENGTH FOR STABLE PROCESSES

BART�LOMIEJ SIUDEJA

Abstract. Let 0 < α < 2 and Xt be the isotropic α-stable Lévy
process. We define scattering length Γ(v) of a positive poten-
tial v. We use the scattering length to find estimates for the

first eigenvalue of the Schrödinger operator of the “Neumann”
fractional Laplacian in a cube with a potential v.

1. Introduction

The scattering length has been studied for the Brownian motion and the
classical Laplacian by many authors, see [7], [8], [12], [13]. The last two
papers contain applications, for example, a bound for the first eigenvalue of
the Schrödinger operator of the Neumann Laplacian in a cube. Scattering
length is also important in mathematical physics where it arises in many
situations, including the study of neutron scattering and general few-body
systems (see, for example [11] and [1]).

This paper is the first attempt to define and study scattering length for
processes different than the Brownian motion. As an application, we prove es-
timates for the first eigenvalue of the Schrödinger operator of the “Neumann”
fractional Laplacian in a cube. This result is similar to the one obtained in
[12] for the Laplacian.

Let Xt be the isotropic α-stable Lévy process in R
d with the characteristic

function

(1.1) E0(exp(iξXt)) = exp(−t|ξ|α).

For simplicity, we assume that d > α. It is well known that this process has
the generator Δα/2 = −(−Δ)α/2, where Δ is the classical Laplacian on R

d.
For an overview of results, for the potential theory of this process, we refer
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the reader to [4]. The Dirichlet form for this process is given by

(1.2) EX(u,u) = C

∫
Rd

∫
Rd

(u(x) − u(y))2

|x − y|d+α
dxdy

and its domain is Wα/2,2(Rd), the fractional Sobolev space. See [3] for details
about Dirichlet forms and domains for the generators of stable processes.

The constant in front of the double integral depends on α and d, as do all
other constants in this paper. Dependence on any other parameter will be
indicated explicitly. We also adopt the convention that constants may change
their values from line to line as long as they stay positive.

We can also define the “Neumann” fractional Laplacian Δα/2
N on an open

set Ω as the operator with the Dirichlet form

(1.3) EY (u,u) = C

∫
Ω

∫
Ω

(u(x) − u(y))2

|x − y|d+α
dxdy

and the domain Wα/2,2(Ω). Here, we also refer the reader to [3] for details
about the definition of Δα/2

N . The stochastic process Yt associated with this
operator is the reflected stable process in Ω studied in [3].

Let v be a positive function and let Uv be the capacitory potential of v

(1.4) Uv(x) = 1 − Ex exp
(

−
∫ ∞

0

v(Xs)ds

)
.

Let μv be the capacitory measure of v

(1.5) μv = −Δα/2Uv.

We define the scattering length Γ(v) by

(1.6) Γ(v) =
∫

Rd

dμv(x).

The product of d intervals (−1,1)d will be called the cube in R
d. The main

result of the paper is the following.

Theorem 1.1. Let Ω be the cube in R
d, 0 ≤ v ∈ L1(Ω), and let λ1(v) be

the first eigenvalue of the operator −Δα/2
N + v in Ω (the Schrödinger operator

of the “Neumann” fractional Laplacian on Ω). Then there exists a constant
C1(Ω), such that

(1.7) C1(Ω)Γ(v) ≤ λ1(v).

Furthermore, there exists a constant β = β(Ω) > 0, such that whenever
Γ(v) ≤ β, then

(1.8) λ1(v) ≤ C2(Ω)Γ(v).

Remark 1.2. The second bound is valid for any bounded domain Ω.



SCATTERING LENGTH FOR STABLE PROCESSES 669

Remarks 3.6, 3.7, and 3.9 give applications of this result. The idea of the
proof is the following. We choose an appropriate representative of stable-like
processes (see [2] and the definition in Section 4) for which the proof is similar
to the Brownian case. The main result follows from the fact that all stable-like
processes have the same bounds for eigenvalues.

The rest of the paper is organized as follows. In Section 2, we give the
precise definition of scattering length. In Section 3, we prove some properties
of capacitory potential and scattering length. The proofs in this section are
easy and they carry over from the Brownian case to the stable case with min-
imal changes. We present them here for the sake of completeness. Section 4
contains the proof of Theorem 1.1.

2. Definitions

We start with the definition of the potential operator U .

Definition 2.1. For any nonnegative function f define U by

(2.1) U [f ](x) = Ex

(∫ ∞

0

f(Xs)ds

)
.

Note that the definition of this operator can be naturally extended to pos-
itive measures on R

d.
It is well known that for the symmetric stable processes this potential

operator is given by the Riesz kernel (see e.g., [2])

(2.2) U [f ](x) = C

∫
Rd

f(y)
|x − y|d−α

dy.

We have

Lemma 2.2. If f ∈ L1(Rd), then U [f ](x) is finite for almost all x ∈ R
d. If

f is in L∞, then U [f ](x) is finite everywhere.

Proof. Set g(x) = C/|x|d−α.

(2.3) U [f ](x) = (f ∗ g)(x) =
(
f ∗

(
g1B(0,1)

))
(x) +

(
f ∗

(
g1Bc(0,1)

))
(x).

The first term is the convolution of two L1 functions, hence, also in L1. The
second term is bounded above by ‖f ‖1 since g ≤ C outside of the ball B(0,1).
The result follows. �

Let v ∈ L1(Rd) be positive, and

(2.4) 1 − U t
v(x) = et(Δα/2−v)1(x) = Ex

(
e−

∫ t
0 v(Xs)ds

)
.

Using U t
v , we can define the capacitory potential of v by

(2.5) Uv(x) = lim
t−→∞

U t
v(x) = Ex

(
1 − e−

∫ ∞
0 v(Xs)ds

)
.
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Let the capacitory measure of v equal

(2.6) μv(x)dx = v(x)
(
1 − Uv(x)

)
dx.

We want to show that Uv(x) = U [μv](x). We have

U [μv](x) = Ex

(∫ ∞

0

v(Xs)EXs
(
e−

∫ ∞
0 v(Xr)dr

)
ds

)
(2.7)

= Ex

(∫ ∞

0

v(Xs)E
(
e−

∫ ∞
0 v(Xr)dr ◦ θs| Fs

))

=
∫ ∞

0

ExE
(
v(Xs)e−

∫ ∞
0 v(Xr)dr ◦ θs| Fs

)
ds.

The last equality follows from Fubini theorem and the fact that v(Xs) is Fs

measurable. Hence,

(2.8) U [μv](x) = Ex

(∫ ∞

0

v(Xs)e−
∫ ∞
s

v(Xr)dr ds

)
.

By Definition 2.1 and Lemma 2.2, we have

(2.9)
∫ ∞

0

v(Xs)ds < ∞ a.s.

for almost every starting points x ∈ R
d. Therefore, the function

(2.10) f(s) =
∫ ∞

s

v(Xr)dr

is absolutely continuous for almost all paths of the process Xs and so is e−f(s).
By the fundamental theorem of calculus,

U [μv](x) = Ex

(∫ ∞

0

d

ds
e−

∫ ∞
s

v(Xr)dr ds

)
(2.11)

= Ex
(
1 − e−

∫ ∞
0 v(Xr)dr

)
= Uv(x),

for almost every x ∈ R
d.

Note that if v is also bounded than by the second part of the Lemma 2.2
the last equality holds for all x. Since e−f(s) is nondecreasing, its derivative
exists almost everywhere and Uv(x) = U [μv](x) for all x ∈ R

d.
Finally, we define the scattering length of v as

(2.12) Γ(v) =
∫

Rd

μv(x)dx =
∫

Rd

v(x)
(
1 − Uv(x)

)
dx.

If we assume that the potential v(x) is in L1(Rd) ∩ L2(Rd), then μv(x) is
also in L2(Rd). In such a case, we get

(2.13) −Δα/2Uv = μv.

The notion of the scattering length generalizes the capacity of sets. Let K
be a Kac regular set (see [10] for details). Informally, the set K is Kac regular
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if after entering the set K the process will stay there for a positive amount of
time. Put

(2.14) vK = ∞ on K, and 0 outside.

Under the assumption of Kac regularity, the notion of the capacitory potential
UvK

coincides with the capacitory potential U [μK ] of the set K, where μK is
the equilibrium measure on K (see [10]). Analogously to (2.11)

(2.15) UK(x) := UvK
(x) = U [μK ](x).

In such a case, this potential is also equal to the probability that the process
Xt starting from x ever hits K.

Similarly to (2.13), we also have

(2.16) −Δα/2UK = μK .

The total mass of the equilibrium measure is called the capacity of the
set K

(2.17) Cap(K) =
∫

dμK .

We see that Cap(K) = Γ(vK). Proposition 3.8 shows that the capacity is also
a limit of scattering lengths.

3. Properties of scattering length

In this section, we prove several useful properties of the scattering length
and the capacitory potential. We start with upper bounds for Uv and Γ(v).

Proposition 3.1. Let v ∈ L1(Rd). Then
(1) Γ(v) ≤ ‖v‖1,
(2) if B ⊂ R

d is bounded, then∫
B

Uv(x)dx ≤ C(B)Γ(v).

Proof. The first inequality follows from (2.6) and Uv ≤ 1. For the second,
we have ∫

B

Uv(x)dx = C

∫
B

∫
Rd

dμv(y)
|x − y|d−α

dx

≤ C

(
sup

y

∫
B

dx

|x − y|d−α

)
Γ(v)

= C(B)Γ(v). �
Next, we prove some monotonicity and convergence properties of the scat-

tering length.

Proposition 3.2. Let v, vn,w ∈ L1(Rd) be positive. Then
(1) if v ≤ w a.e. then Uv ≤ Uw a.e. and Γ(v) ≤ Γ(w),
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(2) if vn(x) is a.e. nondecreasing and converges a.e. to v then Uvn is a.e.
nondecreasing and converges a.e. to Uv, and Γ(vn) is nondecreasing and
converges to Γ(v).

Proof. The monotonicity and convergence of capacitory potentials follow
directly from (2.5).

To prove the results about the scattering length, we need another for-
mula for Γ(v) if suppv is bounded. Consider a compact set K such that
v ⊂⊂ K. Let UK be its capacitory potential and μK its equilibrium measure
(see (2.15)). Note, that UK = 1 on suppv, and

(3.1) Γ(v) =
∫

UK(x)μv(dx) =
∫

U [μK ](x)μv(dx) =
∫

U [μv](x)dμK(x).

If we take K large enough to have (suppv) ∪ (suppw) ⊂⊂ K, the monotonic-
ity of the scattering length follows from the monotonicity of the capacitory
potentials.

Now, suppose that v is any positive L1(Rd) function. Let vn be a.e. nonde-
creasing sequence of functions with bounded supports such that vn converges
a.e. to v ∈ L1(Rd). Suppose that w ≤ v a.e., and let wn = min{vn,w}. We
have ∫

Rd

vn(x)
(
1 − Uvn(x)

)
dx = Γ(vn) ≥ Γ(wn)(3.2)

=
∫

Rd

wn(x)
(
1 − Uwn(x)

)
dx.

Both integrands are bounded above by v, hence, by the dominated conver-
gence theorem

(3.3) Γ(v) =
∫

Rd

v(x)
(
1 − Uv(x)

)
dx ≥

∫
Rd

w(x)
(
1 − Uw(x)

)
dx = Γ(w).

The second part of the proposition follows from the first one, and the
dominated convergence theorem. �

Proposition 3.3. For r > 0 and nonnegative v,w ∈ L1(Rd) we have
(1) Uv+w ≤ Uv + Uw and Γ(v + w) ≤ Γ(v) + Γ(w) and
(2) if w(x) = rαv(rx), then Uw(x) = Uv(rx) and Γ(w) = rα−dΓ(v).

Proof. The first inequality follows from the inequality 1 − e−a−b ≤ (1 −
e−a) + (1 − e−b) which is valid for any nonnegative numbers a and b. The
second inequality follows from the first one and the monotonicity of the po-
tentials.

The second part of the proposition can be easily verified by a direct calcu-
lations. �

It is interesting to see what is the behavior of the scattering length for very
small and very large potentials.



SCATTERING LENGTH FOR STABLE PROCESSES 673

Proposition 3.4. Let 1 < p < ∞ and p−1 + q−1 = 1. Assume that v ∈
Lp(Rd) and suppv ⊂ B bounded. For any ε > 0,

Γ(εv) = ε‖v‖1 − O(ε1+1/q ‖v‖p‖v‖1/q
1 ).

Proof. By Proposition 3.1 and by definition, we have

‖Uv ‖L1(B) ≤ C(B)Γ(v),(3.4)
‖Uv ‖ ∞ ≤ 1.(3.5)

Hence,

‖Uv ‖Lq(B) =
(∫

B

|Uv |q
)1/q

≤
(∫

B

|Uv |
)1/q

≤ C(B)Γ(v)1/q.

But, ∫
vUv dx ≤ ‖v‖p‖Uv ‖Lq(B)

≤ C(B)‖v‖pΓ(v)1/q

≤ C(B)‖v‖p‖v‖1/q
1 .

Hence,

Γ(εv) =
∫

εv(1 − Uεv)dx = ε‖v‖1 − O(ε1+1/q ‖v‖p‖v‖1/q
1 ). �

Proposition 3.5. If v ∈ L1(Rd), then

lim
ε↘0

1
ε
Γ(εv) = ‖v‖1.

Proof. By the definition of scattering length, we have

(3.6) ‖v‖1 − 1
ε
Γ(εv) =

∫
vUεv dx.

By Proposition 3.1, ‖Uεv ‖L1(B) ≤ C(B)‖v‖1ε. Therefore, Uεv → 0 in mea-
sure, and the same is true for vUεv . Since 0 ≤ Uεv ≤ 1,

∫
vUεv → 0 and this

completes the proof. �

The last two propositions together with the main result give an asymp-
totic formula for the first eigenvalue of the Neumann Laplacian with a small
perturbation.

Remark 3.6. Let v ∈ L1(Ω) be positive. We have

(3.7) C1(Ω) ≤ lim
ε→0

λ1(εv)
ε‖v‖1

≤ C2(Ω).

Remark 3.7. Proposition 3.4 can be used to improve the above if v ∈
Lp(Ω).
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If the potential v is large on its support, the scattering length is close to
the capacity of the support of v.

Proposition 3.8. Consider v ≥ 0 with compact support K. Let us also
assume that K is Kac regular. Then

Γ(v) ≤ CapK.

If vi(x) ↗ vK(x) (see (2.14)), then

Γ(vi) ↗ CapK.

Proof. Suppose that v ≥ 0 is supported in K, where K is Kac regular. Let
B be a ball such that K is contained in the interior of B. By (3.1)

Γ(v) =
∫

Uv(x)dμB(x),

and

CapK =
∫

UK(x)dμB(x).

But Uv ≤ UK , so Γ(v) ≤ CapK. The second part of the proposition follows
from monotone convergence theorem and from the first part. �

The main result combined with the properties of the scattering length gives
the dependence of the first eigenvalue on the scaling of the potential.

Remark 3.9. Let v be a positive L1(Ω) function. Suppose that wβ(x) =
rβv(rx). We have

(3.8) C1(Ω) ≤ lim
r→∞

λ1(wα)
rα−dΓ(v)

≤ C2(Ω).

Moreover, if β > α,

(3.9) C1(Ω) ≤ lim
r→∞

λ1(wβ)
rα−d Cap(suppv)

≤ C2(Ω),

and if β < α

(3.10) C1(Ω) ≤ lim
r→∞

λ1(wβ)
rβ−d‖v‖1

≤ C2(Ω).

Proof. Follows from Propositions 3.3, 3.5, and 3.8. �

4. Proof of Theorem 1.1

First we prove the upper bound (1.8) by using a variational characterization
of eigenvalues. The first eigenvalue λ1(v) can be calculated using Rayleigh
quotient

(4.1) λ1(v) = inf
ϕ∈W α/2,2(Ω)

EY (ϕ,ϕ) +
∫
Ω

vϕ2∫
Ω

ϕ2
.
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Our strategy is to choose a function ϕ which will give a desired bound. We
claim that ϕ = 1 − Uv will do the job. The space Wα/2,2(Ω) is the subspace
of L2(Ω) consisting of all functions f for which the Dirichlet form EY (f, f) is
finite. Therefore, the infimum may be taken over the whole L2(Ω). Since ϕ
is bounded and Ω is also bounded, this function belongs to L2(Ω). We get

λ1(v)
∫

Ω

ϕ2 ≤ EY (ϕ,ϕ) +
∫

Ω

vϕ2 = C

∫
Ω×Ω

(Uv(x) − Uv(y))2

|x − y|d+α
dxdy +

∫
Ω

vϕ2

≤ C

∫
Rd ×Rd

(Uv(x) − Uv(y))2

|x − y|d+α
dxdy +

∫
Ω

vϕ2.

Let
vn(x) = 1B(0,n)(x)min(v(x), n).

The sequence vn is nondecreasing and converges to v. By Proposition 3.2, we
get Uvn ↗ Uv and Γ(vn) ↗ Γ(v). The sequence vn belongs to L2(Rd), hence,
−Δα/2

N Uvn = μvn . Therefore,

λ1(v)
∫

Ω

ϕ2 ≤ C

∫
Rd ×Rd

lim inf
n→∞

(Uvn(x) − Uvn(y))2

|x − y|d+α
dxdy

+
∫

Ω

lim
n→∞

vn(1 − Uvn)2

≤ C lim inf
n→∞

∫
Rd ×Rd

(Uvn(x) − Uvn(y))2

|x − y|d+α
dxdy

+ lim
n→∞

∫
Ω

vn(1 − Uvn)2

= lim inf
n→∞

(
EX(Uvn ,Uvn) +

∫
Ω

vn(1 − Uvn)2
)

= lim inf
n→∞

∫
Rd

(
−UvnΔα/2Uvn + vn(1 − Uvn)2

)
= lim inf

n→∞

∫
Rd

(
vnUvn(1 − Uvn) + vnUvn(Uvn − 1) − vn(Uvn − 1)

)
= lim inf

n→∞
Γ(vn) = Γ(v).

On the other hand,

(4.2)
∫

Ω

ϕ2 ≥ |Ω| − 2C(Ω)Γ(v).

Hence, if Γ(v) ≤ |Ω|/(4C(Ω)) = β(Ω) the last expression is comparable to the
volume of Ω. This completes the proof of (1.8).

Let Bt be a Brownian motion running at twice the usual speed, and Ut

be a reflected Brownian motion in the cube Ω. That is, Ut is the process
generated by the Laplacian with Neumann boundary conditions in the cube.
We will use a subordination technique (see [9]) to obtain stable processes from
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these processes. Let At be a positive α/2-stable subordinator independent
of Bt and Ut. If we subordinate a Brownian motion with At we get an
isotropic α-stable process. In other words, Xt = BAt . Let Vt be the process
Ut subordinated with the same subordinator At. The resulting process is a
stable-like process (see [5]). However, it is not the same as a the reflected
stable process Yt (see [3]).

The following lemma gives a comparison between expected values of the
multiplicative potentials of Xt and Vt.

Lemma 4.1. Let supp(v) ⊂ Ω, where Ω is a cube. Then

(4.3) Ex

{
exp

(
−

∫ t

0

v(Vs)ds

)}
≤ Ex

{
exp

(
−

∫ t

0

v(Xs)ds

)}
.

Proof. Define g as follows:

(4.4) g(x) =

{
x − 2n, if x ∈ [2n,2n + 1), n ∈ Z,
2n − x, if x ∈ [2n − 1,2n), n ∈ Z.

One can think about g as a function that continuously folds a real line into a
unit interval. Using a tensor product, we can define

f(x1, x2, . . . , xd) = g(x1) ⊗ g(x2) ⊗ · · · ⊗ g(xd).

We have Ut = f(Bt) for a reflected Brownian motion Ut on [0,1]d. Since 1-
dimensional components of Bt (and Ut on a cube) are independent of each
other and are transition invariant, we have

(4.5) Ut = f(Bt).

This gives
Vt = UAt = f(BAt) = f(Xt).

Now, we can define ṽ(x) = v(f(x)) so that ṽ = v on supp(v). We have:

Ex

{
exp

(
−

∫ t

0

v(Vs)ds

)}
= Ex

{
exp

(
−

∫ t

0

v(f(Xs))ds

)}

= Ex

{
exp

(
−

∫ t

0

ṽ(Xs)ds

)}

≤ Ex

{
exp

(
−

∫ t

0

v(Xs)ds

)}
. �

The processes Xt and Yt are examples of a larger class of processes defined
in [5], called stable-like processes Zt. These processes have generators with
quadratic forms

(4.6) EZ(u,u) =
∫

Ω

∫
Ω

c(x, y)
(u(x) − u(y))2

|x − y|d+α
dxdy.
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Here, c(x, y) is a symmetric function satisfying 0 < c ≤ c(x, y) ≤ C < ∞ for all
x, y where c and C are constants independent of x and y. The domain of
this form is the same as the domain of the “Neumann” fractional Laplacian,
namely Wα/2,2(Ω). For more detail about this class, we refer the reader
to [5]. The first eigenvalues of the Schrödinger operators of the generators of
two arbitrary stable-like processes are comparable. In particular, we have

Lemma 4.2. Let λV
1 be the first eigenvalue of the operator −A + v, where

A is the generator of Vt. Let also λ1(v) be as in Theorem 1.1, i.e., the first
eigenvalue of the Schrödinger operator for the “Neumann” fractional Lapla-
cian. Then

(4.7) cλV
1 ≤ λ1(v) ≤ CλV

1 ,

where c and C are positive constants.

Proof. Process Vt is a stable-like process, hence,

(4.8) EV (u,u) =
∫

Ω

∫
Ω

cV (x, y)
(u(x) − u(y))2

|x − y|d+α
dxdy

and c ≤ cV (x, y) ≤ C for some constants c and C. We can assume that c ≤ 1
and C ≥ 1. Given any positive potential v,

(4.9)
1
C

(
EV (u,u) +

∫
vu2

)
≤ EY (u,u) +

∫
vu2 ≤ 1

c

(
EV (u,u) +

∫
vu2

)
.

By (4.1), we get the inequality between the eigenvalues. �

Now, we are ready to prove the lower bound (1.7). By Lemma 4.2, it is
enough to prove the lower bound for the process Vt. Let A be its generator.
It is enough to prove that there exists t, such that

(4.10)
∥∥et(A−v)

∥∥
2

≤ e−CΓ(v).

There exists a kernel function uA(t, x, y), such that

(4.11) et(A−v)f(x) =
∫

Ω

uA(t, x, y)f(y)dy,

for every bounded f (see [6] for existence and properties of such kernels).
Using the Feynman–Kac formula we get

(4.12)
∫

Ω

uA(t, x, y)dy = Ex
(
e−

∫ ∞
0 v(Vs)ds

)
.

Let u(t, x, y) be a heat kernel associated with the Schrödinger operator of the
fractional Laplacian. Then

(4.13)
∫

Rd

u(t, x, y)dy = Ex
(
e−

∫ ∞
0 v(Xs)ds

)
.
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By Lemma 4.1, it is now enough to prove that

1 − U t
v(x) =

∫
Rd

u(t, x, y)dy ≤ e−CΓ(v).

First, we need an upper bound for the capacitory potential

(4.14) Uv(x) ≥ C

∫
dμv(y)

|x − y|d−α
≥ CΓ(v)(diam(Ω))α−d.

Using the semigroup property of u(t, x, y),∫
u(t, x, y)Us

v (y)dy =
∫

u(t, x, y)
(

1 −
∫

u(y, z, s)dz

)
dy

=
∫

u(t, x, y)dy −
∫

u(t + s,x, z)dz

= U t+s
v (x) − U t

v(x).

If we let s tend to ∞, we get

(4.15) Uv(x) − U t
v(x) =

∫
u(t, x, y)Uv(y)dy.

Let p(t, x, y) be a heat kernel associated with the process Xt. Since our
potentials v are nonnegative, we have

(4.16) u(t, x, y) ≤ p(t, x, y).

Using this inequality, we obtain

Uv(x) − U t
v(x) =

∫
u(t, x, y)Uv(y)dy ≤

∫
p(t, x, y)Uv(y)dy

= C

∫ ∫
dμv(z)

|z − y|d−α
p(t, x, y)dy

= C

∫ ∫
p(t, x, y)

|z − y|d−α
dy dμv(z)

≤ CΓ(v) sup
z∈Ω,x∈Rd

∫
p(t, x, y)

|z − y|d−α
dy.

We need to show that the supremum tends to 0 as t tends to ∞. Then we
can take t0 large enough so that

(4.17) Uv − U t0
v ≤ Uv/2.

And, using (4.14)

1 − U t0
v (x) ≤ 1 − Uv(x)/2 ≤ 1 − C/2Γ(v)(diamΩ)α−d = e−CΓ(v).

The only thing left to prove is the following.
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Lemma 4.3. Let p(t, x, y) be the heat kernel associated with the process Xt.
Then

lim
t−→∞

sup
z,x∈Rd

∫
Rd

p(t, x, y)
|y − z|d−α

dy = 0.

Proof. The Riesz kernel (see (2.2)) satisfies
C

|z − y|d−α
=

∫ ∞

0

p(t, y, z)dt.

By the semigroup property,∫
Rd

p(t, x, y)
|y − z|d−α

dy = C

∫
Rd

∫ ∞

0

p(t, x, y)p(s, y, z)dsdy

= C

∫ ∞

0

p(t + s,x, z)ds = C

∫ ∞

t

p(s,x, z)ds

≤ C

∫ ∞

t

s−d/α ds = Ct−d/α+1 → 0. �
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