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ON SOME WEIGHTED NORM INEQUALITIES FOR
LITTLEWOOD–PALEY OPERATORS

ANDREI K. LERNER

Abstract. It is shown that the Lp
w,1 < p < ∞, operator norms of

Littlewood–Paley operators are bounded by a multiple of ‖w‖γp

Ap
,

where γp = max{1, p/2} 1
p−1

. This improves previously known

bounds for all p > 2. As a corollary, a new estimate in terms of

‖w‖Ap is obtained for the class of Calderón–Zygmund singular
integrals commuting with dilations.

1. Introduction

It is well known that many classical operators in Harmonic Analysis are
bounded on the weighted space Lp

w,1 < p < ∞, provided a weight w satisfies
the Ap condition. However, the sharp dependence of the corresponding Lp

w

operator norms in terms of the Ap characteristic of w is known only for few
operators. In this paper, we obtain several new estimates for Littlewood–Paley
and Calderón–Zygmund operators.

Throughout the paper, all functions considered are real-valued. We recall
that Lp

w denotes the space of all measurable functions f on R
n with norm

‖f ‖Lp
w

=
(∫

Rn

|f(x)|pw(x)dx

)1/p

,

where a weight w is supposed to be a non-negative locally integrable function.
A weight w satisfies the Ap,1 < p < ∞, Muckenhoupt condition [10] if

‖w‖Ap = sup
Q

(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)−1/(p−1) dx

)p−1

< ∞,

Received March 20, 2007; received in final form July 13, 2007.

Supported by research grant SB2004-0169 from the Ministerio de Educación y Ciencia

(Spain).

2000 Mathematics Subject Classification. 42B20, 42B25.

653

c©2009 University of Illinois

http://www.ams.org/msc/


654 A. K. LERNER

where the supremum is taken over all cubes Q in R
n with sides parallel to the

axes. We call ‖w‖Ap the Ap characteristic of w. Given a bounded operator T
on a Banach space X , ‖T ‖X is the standard operator norm of T defined by
sup‖f ‖X ≤1 ‖Tf ‖X .

In [1], Buckley proved that for the Hardy–Littlewood maximal operator M ,

(1.1) ‖M ‖Lp
w

≤ c‖w‖
1

p−1
Ap

(1 < p < ∞),

and this result is sharp in the sense that the right-hand side of (1.1) cannot
be replaced by ϕ(‖w‖Ap) for any positive nondecreasing function ϕ growing
more slowly than t1/(p−1).

For 1 < p < ∞, denote αp = max{1,1/(p − 1)}. It was also shown in [1]
that for the convolution Calderón–Zygmund singular integral operators T ,

(1.2) ‖T ‖Lp
w

≤ c‖w‖
p

p−1
Ap

(1 < p < ∞),

and the best power of ‖w‖Ap is at least αp. In the case when p = 2 and
T = H is the Hilbert transform, Petermichl and Pott [13] improved the power
of ‖w‖A2 from 2 to 3/2, which in turn was improved by Petermichl [11] to the
best possible linear dependence on ‖w‖A2 . Then the same dependence was
obtained for the Riesz transforms [12].

In a recent paper by Dragičević et al. [5], sharp Lp
w estimates in terms of

‖w‖Ap in the Rubio de Francia extrapolation theorem have been established.
In particular, the main result of [5] shows that if a sublinear operator T is
bounded on L2

w with the linear bound for ‖T ‖L2
w

in terms of ‖w‖A2 , then T

is bounded on Lp
w,1 < p < ∞, and ‖T ‖Lp

w
is at most a multiple of ‖w‖αp

Ap
.

Therefore, the sharp L2
w bound for the Hilbert and Riesz transforms along

with extrapolation shows that for these operators the exponent p/(p − 1) can
be improved to the best possible exponent αp for all p > 1. For more general
singular integrals, the question about the best power of ‖w‖Ap in (1.2) is still
open.

Denote by D, the set of all dyadic cubes in R
n. Define the dyadic square

function Sd(f) by

Sd(f)2(x) =
∑
Q∈D

(fQ − fQ̃)2χQ(x),

where fQ = |Q| −1
∫

Q
f and Q̃ denotes the smallest dyadic cube containing Q.

Let ϕ ∈ C∞(Rn), suppϕ ⊂ {|x| ≤ 1}, and
∫

ϕ = 0. Let R
n+1
+ = R

n × R+ and
Γα(x) = {(y, t) ∈ R

n+1
+ : |y − x| < αt}, α > 0. The continuous square function

Sϕ,α(f) is defined by

Sϕ,α(f)2(x) =
∫∫

Γα(x)

|f ∗ ϕt(y)|2 dy dt

tn+1
(α > 0),

where ϕt(y) = t−nϕ(y/t). We drop the subscript α if α = 1.
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It was shown independently by Hukovic, Treil and Volberg [7], and Wit-
twer [18] that the L2

w operator norm of Sd(f) (in the case n = 1) is bounded
linearly by ‖w‖A2 , and this is best possible. The same was proved by Wittwer
[19] regarding Sϕ(f) defined by means of the wavelet-type kernel ϕ. There-
fore, setting S for any of these square functions, we obtain by the above
extrapolation argument that

(1.3) ‖S‖Lp
w

≤ c‖w‖αp

Ap
(1 < p < ∞).

Unlike singular integrals, this estimate is known to be sharp only for 1 < p ≤ 2
(see [5]). It was mentioned in [5] that it is unclear whether (1.3) is sharp for
p > 2. In a recent paper [9], it was observed that for Sϕ,α(f) the linear

dependence on ‖w‖Ap in (1.3) can be improved to ‖w‖
1
2+ 1

p−1
Ap

for all p > 3.
In this paper, we improve (1.3) for all p > 2. Our new bound improves also

the exponent 1
2 + 1

p−1 . As in [9], instead of Sϕ,α(f) we consider its pointwise
majorant, the Littlewood–Paley function g∗

ϕ,μ(f) defined by

g∗
ϕ,μ(f)2(x) =

∫∫
R

n+1
+

|f ∗ ϕt(y)|2
(

t

t + |x − y|

)μn
dy dt

tn+1
(μ > 0).

It is easy to see that Sϕ,α(f)(x) ≤ cα,μ,ng∗
ϕ,μ(f)(x).

Denote by S(f) either Sd(f) or g∗
ϕ,μ(f). Although the linear bound for

‖S‖L2
w

in terms of ‖w‖A2 is best possible, we obtain a straightened form of
this result through the two-weighted L2 norm inequality. Given two weights
w and v, define their A2 characteristic by

‖(w,v)‖A2 = sup
Q

(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

v−1

)
.

Next, by ‖w‖A∞ we denote the characteristic of w with the property ‖w‖A∞ ≤
cr,n‖w‖Ar for any r ≥ 1 (its precise definition is given in Section 2; actually it
will be important for us only that this property holds for some fixed r > 2).

Theorem 1.1. Let S(f) be either Sd(f) or g∗
ϕ,μ(f) for μ > 2. Then for

any weights w and v, and for any measurable function f ,

(1.4) ‖S(f)‖L2
w

≤ c
√

‖v−1‖A∞ ‖(w,v)‖A2 ‖f ‖L2
v
,

where c = cn if S(f) = Sd(f) and c = cϕ,μ,n if S(f) = g∗
ϕ,μ(f).

We should mention that the proof of this theorem is based essentially on
weighted Littlewood–Paley theory developed in the works by Wilson [16],
Wheeden and Wilson [15].

Since ‖v−1‖A∞ ≤ c‖v−1‖A2 = c‖v‖A2 , in the case of equal weights we clearly
obtain from (1.4) the linear dependence on ‖w‖A2 which yields (1.3) by ex-
trapolation. This gives the best possible result only for 1 < p ≤ 2. However,
inequality (1.4) contains much more information than the one with w = v.
The following extrapolation result clarifies this point.
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Theorem 1.2. Suppose that for two measurable functions f and g,

(1.5) ‖f ‖L2
w

≤ c
√

‖v−1‖A∞ ‖(w,v)‖A2 ‖g‖L2
v

for all weights w and v, where c is some absolute constant. Then for any
p > 1 and for any weight w ∈ Ap,

(1.6) ‖f ‖Lp
w

≤ c‖w‖max{1,p/2} 1
p−1

Ap
‖g‖Lp

w
,

where a constant c depends only on p and n.

As an immediate consequence of Theorems 1.1 and 1.2, we have the fol-
lowing.

Corollary 1.3. Let S be as in Theorem 1.1. For any 1 < p < ∞,

‖S‖Lp
w

≤ c‖w‖max{1,p/2} 1
p−1

Ap
,

where c = cp,n if S(f) = Sd(f) and c = cϕ,μ,p,n if S(f) = g∗
ϕ,μ(f).

Let Ω be homogeneous of degree zero, infinitely differentiable on the unit
sphere Sn−1, and

∫
Sn−1 Ω = 0. Set K(x) = Ω(x)

|x|n and Kε(x) = K(x)χ{ |x|>ε}.
Consider the following Calderón–Zygmund singular integral operators

Tf(x) = lim
ε→0

f ∗ Kε(x) and T∗f(x) = sup
ε>0

|f ∗ Kε(x)|.

Corollary 1.4. For any 1 < p < ∞, we have

(1.7) ‖T∗ ‖Lp
w

≤ c‖w‖
1
2+max{1,p/2} 1

p−1
Ap

,

where a constant c depends only on p,n and Ω.

Several remarks about this result are in order. First, we do not know
whether the best bounds for T and T∗ are necessarily the same. As we men-
tioned above, for the Hilbert or Riesz transforms instead of T∗ in (1.7) a better
Lp

w bound is known. However, estimate (1.7) with the corresponding maximal
transforms seems to be new. Next, even for T instead of T∗, Corollary 1.4
represents an improvement of (1.2) for the class of singular integrals that we
consider.

The paper is organized as follows. Section 2 contains some necessary pre-
liminary information. In Section 3, we prove Theorems 1.1, 1.2, and Corol-
lary 1.4. Section 4 contains a further discussion of the best possible exponents
for Littlewood–Paley operators and maximal singular integrals.

2. Preliminaries

We recall that the Hardy–Littlewood maximal operator is defined by

Mf(x) = sup
Q�x

1
|Q|

∫
Q

|f(y)| dy,
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where the supremum is taken over all cubes Q containing a point x.
A weight w satisfies the A1 condition if there exists c > 0, such that

(2.1) Mw(x) ≤ cw(x) a.e.

The smallest possible c in (2.1) is denoted by ‖w‖A1 . We shall use the well-
known fact (see [4]) saying that if Mf < ∞ a.e., then (Mf)α satisfies the A1

condition for all 0 < α < 1, or, in other words, for any cube Q,

(2.2)
1

|Q|

∫
Q

(Mf)α dx ≤ cα,n inf
Q

(Mf)α (0 < α < 1).

Given a weight w and a cube Q, set w(Q) =
∫

Q
w, and define

‖w‖A∞ = sup
Q

1
w(Q)

∫
Q

M(wχQ)(x)dx.

Using Buckley’s result (1.1), one can easily show (see, e.g., [6, p. 359] or [9,
Lemma 3.5]) that

(2.3) ‖w‖A∞ ≤ cr,n‖w‖Ar (1 ≤ r < ∞).

We say that I ⊂ R is a dyadic interval if I is of the form ( j
2k , j+1

2k ) for some
integers j and k. We say that Q ⊂ R

n is a dyadic cube if Q is a Cartesian
product of n dyadic intervals of equal lengths. The side length of Q we denote
by �Q. If Q is a dyadic cube with �Q = 2m, then by Q̃ we denote the unique
dyadic cube containing Q such that �Q̃ = 2m+1.

Following [15], we say that a measurable function f is in standard form if

f(x) =
∑
Q∈D

λQbQ(x),

where λQ are some constants such that λQ 	= 0 only for a finite number
of Q, and the functions bQ satisfy ‖ ∇bQ‖ ∞ ≤ �−1

Q |Q| −1/2, supp bQ ⊂ 3Q, and∫
bQ = 0. Here, rQ denotes the cube with the same center as Q such that

�rQ = r�Q. For a function f in standard form, set [16, p. 666]

S̃(f)(x) =
( ∑

Q∈D

|λQ|2
|Q| χ3Q(x)

)1/2

.

The following several results are based essentially on the deep Chang–
Wilson–Wolff theorem [2] saying that the boundedness of the square function
S(f) implies the exponential square integrability of f .

Proposition 2.1. Suppose that f is in standard form. Then for any
weight w,

(2.4) ‖f ‖Lp
w

≤ c‖w‖1/2
A∞

‖S̃(f)‖Lp
w

(0 < p < ∞),

where a constant c depends only on p and n.
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This proposition is contained in [15, Result 3], [16, Lemma 2.3].

Proposition 2.2. For any weight w and for any f ∈ Lp
w,

(2.5) ‖f ‖Lp
w

≤ c‖w‖1/2
A∞

‖Sd(f)‖Lp
w

(0 < p < ∞),

where a constant c depends only on p and n.

In the case p = 2, inequality (2.5) was proved in [6, p. 358] with ‖w‖A1

instead of ‖w‖A∞ on the right-hand side, and in the same paper it was men-
tioned on page 359 that actually ‖w‖A1 can be replaced by any ‖w‖Ar , r > 1.
Exactly the same arguments work for ‖w‖A∞ and for any p > 0. Note that
the fact that inequality (2.4) holds also for the dyadic square function Sd(f)
was already mentioned in [16, p. 668].

Given a natural N , let AN denote the set of all functions η ∈ C∞(Rn)
with suppη ⊂ {|x| ≤ 1} and ‖

∑
|β|≤N |Dβη| ‖ ∞ ≤ 1, where β = (β1, . . . , βn) is

a multi-index, and |β| =
∑

i βi. Consider the grand maximal function GN (f)
defined by

GN (f)(x) = sup
η∈AN ,t>0

|f ∗ ηt(x)|.

Next, assume that ϕ satisfies the same conditions as in the Introduction, and
additionally, that ϕ is radial and rough enough. The last property means that
there are positive constants c and ξ such that

(2.6)
∫ ∞

s

|ϕ̂(t,0, . . . ,0)|2 dt

t
≥ c(1 + s)−ξ (s > 0).

Proposition 2.3. Let ϕ be as above. Then there exist N depending on ξ
and n and α depending on n such that for any weight w and for any f with
GN (f) ∈ Lp

w,

(2.7) ‖GN (f)‖Lp
w

≤ c‖w‖1/2
A∞

‖Sϕ,α(f)‖Lp
w

(0 < p < ∞),

where a constant c does not depend on f and w.

This result is contained in [16], although it does not appear there in such an
explicit form. Inequality (2.7) with f instead of GN (f) is just an immediate
combination of Lemma 2.3 and an argument on page 671 from [16]. An
explanation how to replace f by GN (f) is given in [16] on pages 672–674.

3. Proofs of main results

Proof of Theorem 1.1 for S(f) = g∗
ϕ,μ(f). By Fubini’s theorem,

(3.1)
∫

Rn

g∗
ϕ,μ(f)(x)2w(x)dx =

∫∫
R

n+1
+

|f ∗ ϕt(y)|2F (y, t)
dy dt

t
,
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where

F (y, t) =
1
tn

∫
Rn

w(ξ)
(

t

t + |ξ − y|

)nμ

dξ.

Now, arguing exactly as in [15, Proof of Theorem 2], for a bounded, measur-
able, and compactly supported function h : R

n+1
+ → R, such that h(y, t) = 0

for small t independently of y, set

L(h)(x) =
∫∫

R
n+1
+

h(y, t)ϕt(y − x)F (y, t)dy dt.

By (3.1), and by duality, we have that

‖g∗
ϕ,μ(f)‖L2

w
≤ A‖f ‖L2

v

if and only if

(3.2) ‖L(h)‖L2
v−1

≤ A

(∫∫
R

n+1
+

h(y, t)2F (y, t)t dy dt

)1/2

for all such h. Given a dyadic cube Q, set

T (Q) = {(y, t) : y ∈ Q,�Q/2 ≤ t < �Q}.

Since R
n+1
+ =

⋃
Q∈D T (Q), and the T (Q)’s are pairwise disjoint, we can write

L(h)(x) =
∑
Q∈D

λQbQ(x),

where bQ(x) = 1
λQ

∫∫
T (Q)

h(y, t)ϕt(y − x)F (y, t)dy dt. In particular, setting

(3.3) λQ = c

∫∫
T (Q)

|h(y, t)|F (y, t)
dy dt

tn/2
,

where a constant c depends only on ϕ and n, one can easily show (using
properties of functions ϕ and h) that L(h) is in standard form (see [15, Proof
of Theorem 2] for details). Applying Proposition 2.1, yields

‖L(h)‖L2
v−1

≤ c‖v−1‖1/2
A∞

‖S̃(L(h))‖L2
v−1

(3.4)

= c‖v−1‖1/2
A∞

( ∑
Q∈D

|λQ|2
|Q| v−1(3Q)

)1/2

.

By (3.3) and Hölder’s inequality, we have

|λQ|2 ≤ c

(∫∫
T (Q)

h(y, t)2F (y, t)t dy dt

)(∫∫
T (Q)

F (y, t)
dy dt

tn+1

)
.

Next, it is easy to see that for (y, t) ∈ T (Q),

F (y, t) ≤ c
∞∑

k=0

w(2kQ)
2knμ|Q| .
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Therefore, since μ > 2,

v−1(3Q)
|Q|

∫∫
T (Q)

F (y, t)
dy dt

tn+1
≤ c

∞∑
k=0

w(2kQ)v−1(3Q)
2knμ|Q|2

≤ c

∞∑
k=0

‖(w,v)‖A2

2kn(μ−2)
≤ c‖(w,v)‖A2 ,

and thus,

∑
Q∈D

|λQ|2
|Q| v−1(3Q) ≤ c‖(w,v)‖A2

∑
Q∈D

∫∫
T (Q)

h(y, t)2F (y, t)t dy dt

= c‖(w,v)‖A2

∫∫
R

n+1
+

h(y, t)2F (y, t)t dy dt.

Combining this with (3.4), we get (3.2) with A = c‖v−1‖1/2
A∞

‖(w,v)‖1/2
A2

, which
completes the proof. �

Proof of Theorem 1.1 for S(f) = Sd(f). We follow similar ideas as in the
previous proof. For a sequence μ = {μQ}Q∈D, set

L(μ)(x) =
∑
Q∈D

μQw(Q)hQ(x),

where hQ(x) = |Q| −1χQ(x) − |Q̃| −1χQ̃(x). By duality, we have that

‖Sd(f)‖L2
w

≤ A‖f ‖L2
v

if and only if

(3.5) ‖L(μ)‖L2
v−1

≤ A

( ∑
Q∈D

μ2
Qw(Q)

)1/2

.

It suffices to check (3.5) for all {μQ} such that μQ 	= 0 for a finite number
of Q. In this case L(μ) ∈ L2

v−1 , and by Proposition 2.2, we obtain

‖L(μ)‖L2
v−1

≤ c‖v−1‖1/2
A∞

‖Sd(L(μ))‖L2
v−1

(3.6)

= c‖v−1‖1/2
A∞

( ∑
Q∈D

(
L(μ)Q − L(μ)Q̃

)2
v−1(Q)

)1/2

.

Let Q,Q′ ∈ D. We have∫
Q

hQ′ =
|Q ∩ Q′ |

|Q′ | − |Q ∩ Q̃′ |
|Q̃′ |

.
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Suppose that Q′ ∩ Q 	= ∅. If Q′ ⊂ Q, then Q̃′ ⊆ Q, and we clearly get
(hQ′ )Q = 0. If Q ⊆ Q′, then (hQ′ )Q = (1 − 1/2n)/|Q′ |. Assume now that
Q′ ∩ Q = ∅. If Q ∩ Q̃′ = ∅, then (hQ′ )Q = 0. It remains only the case when
Q ⊂ Q̃′. Then we get (hQ′ )Q = −1/2n|Q′ |. Therefore, setting D1(Q) = {Q′ ∈
D : Q ⊆ Q′ } and

D2(Q) = {Q′ ∈ D : Q ∩ Q′ = ∅ and Q ⊂ Q̃′ },

we get

L(μ)Q =
∑

Q′ ∈D
μQ′ w(Q′)(hQ′ )Q

=
(

1 − 1
2n

) ∑
Q′ ∈D1(Q)

μQ′ w(Q′)
|Q′ | − 1

2n

∑
Q′ ∈D2(Q)

μQ′ w(Q′)
|Q′ | .

Denote D3(Q) = {Qi ∈ D : Qi ⊂ Q̃, |Qi| = |Q|, i = 1, . . . ,2n}. It is easy to see
that D1(Q) \ D1(Q̃) = {Q}, and D2(Q) \ D2(Q̃) = D3(Q) \ {Q}. Hence,

|L(μ)Q − L(μ)Q̃| =
∣∣∣∣μQw(Q)

|Q| − 1
2n|Q|

∑
Qi ∈D3(Q)

μQiw(Qi)
∣∣∣∣

≤ 2
|Q| max

Qi ∈D3(Q)
|μQiw(Qi)|,

which along with (3.6) yields

‖L(μ)‖L2
v−1

≤ c‖v−1‖1/2
A∞

( ∑
Q∈D

(
max

Qi ∈D3(Q)
μ2

Qi
w2(Qi)

)
v−1(Q)

/
|Q|2

)1/2

≤ 2nc‖v−1‖1/2
A∞

‖(w,v)‖1/2
A2

( ∑
Q∈D

max
Qi ∈D3(Q)

μ2
Qi

w(Qi)
)1/2

≤ 2nc‖v−1‖1/2
A∞

‖(w,v)‖1/2
A2

(
2n

∑
Q∈D

μ2
Qw(Q)

)1/2

.

Thus, we have obtained (3.5) with A = c‖v−1‖1/2
A∞

‖(w,v)‖1/2
A2

, which finishes
the proof. �

Proof of Theorem 1.2. Consider first the case 1 < p ≤ 2. As we mentioned
in the Introduction, in this case one can simply reduce (1.5) to the one
weighted inequality and then use the sharp form of the Rubio de Francia
extrapolation theorem proved in [5, Theorem 1]. Namely, setting in (1.5)
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v = w, and using (2.3), we get

‖f ‖L2
w

≤ c‖w‖A2 ‖g‖L2
w
.

Applying to this inequality Theorem 1 from [5], we obtain (1.6) when 1 <
p ≤ 2.

Suppose that p > 2. Take an arbitrary function u with ‖u‖
L

(p/2)′
w

= 1 (here,
as usual, q′ = q/(q − 1), q > 1), and set

S(u) =
{
w−1M

(
|u|

p−1
p−2 w

)} p−2
p−1 .

Applying (1.5) and Hölder’s inequality, we obtain∫
Rn

|f |2uw ≤ c‖(wS(u))−1‖A∞ ‖(uw, S(u)w)‖A2

∫
Rn

|g|2S(u)w

≤ c‖(wS(u))−1‖A∞ ‖(uw, S(u)w)‖A2 ‖S(u)‖
L

(p/2)′
w

‖g‖2
Lp

w
.

To estimate ‖(wS(u))−1‖A∞ , we use (2.3) with some r > 2. We have triv-
ially (

1
|Q|

∫
Q

(wS(u))−1

)
≤

(
inf
Q

M
(

|u|
p−1
p−2 w

))− p−2
p−1 1

|Q|

∫
Q

w− 1
p−1 .

Next, by Hölder’s inequality,(
1

|Q|

∫
Q

(wS(u))
1

r−1

)r−1

≤
(

1
|Q|

∫
Q

w

) 1
p−1

(
1

|Q|

∫
Q

M
(

|u|
p−1
p−2 w

) p−2
(p−1)(r−1)−1

) (p−1)(r−1)−1
p−1

.

If r > 2, then p − 2 < (p − 1)(r − 1) − 1, and hence, by (2.2),

1
|Q|

∫
Q

M
(

|u|
p−1
p−2 w

) p−2
(p−1)(r−1)−1 ≤ cp,r,n inf

Q
M

(
|u|

p−1
p−2 w

) p−2
(p−1)(r−1)−1 .

Combining three latter estimates yields(
1

|Q|

∫
Q

(wS(u))−1

)(
1

|Q|

∫
Q

(wS(u))
1

r−1

)r−1

≤ c

(
1

|Q|

∫
Q

w

) 1
p−1

(
1

|Q|

∫
Q

w− 1
p−1

)
≤ c‖w‖

1
p−1
Ap

.

Therefore,

(3.7) ‖(wS(u))−1‖A∞ ≤ c‖(wS(u))−1‖Ar ≤ c‖w‖
1

p−1
Ap

.
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To estimate ‖(uw, S(u)w)‖A2 and ‖ S(u)‖
L

(p/2)′
w

, we follow the same argu-
ment as in [5, Lemma 1]. By Hölder’s inequality,(

1
|Q|

∫
Q

uw

)(
1

|Q|

∫
Q

1
S(u)w

)

≤
(

1
|Q|

∫
Q

|u|
p−1
p−2 w

) p−2
p−1

(
1

|Q|

∫
Q

w

) 1
p−1

(
1

|Q|

∫
Q

1
S(u)w

)

≤
(

1
|Q|

∫
Q

w

) 1
p−1

(
1

|Q|

∫
Q

w− 1
p−1

)
≤ ‖w‖

1
p−1
Ap

.

Therefore,

(3.8) ‖(uw, S(u)w)‖A2 ≤ ‖w‖
1

p−1
Ap

.

Finally, using Buckley’s inequality (1.1), and the fact that ‖w−1/(p−1)‖Ap′ =

‖w‖p′ −1
Ap

, we have

‖S(u)‖
L

(p/2)′
w

=
(∫

Rn

M
(

|u|
p−1
p−2 w

)p′
w− 1

p−1

) p−2
p

≤ c
∥∥w− 1

p−1
∥∥ 1

p′ −1
p−2
p−1

Ap′ = c‖w‖
p−2
p−1
Ap

.

Unifying the latter estimate with (3.7) and (3.8) gives∫
Rn

|f |2uw ≤ c‖w‖
p

p−1
Ap

‖g‖2
Lp

w
.

Taking the supremum over all u with ‖u‖
L

(p/2)′
w

= 1, we get

‖f ‖2
Lp

w
≤ c‖w‖

p
p−1
Ap

‖g‖2
Lp

w
,

which proves (1.6) for p > 2. �

Proof of Corollary 1.4. We just combine arguments from [16]. Let ϕ ∈ C∞

be radial, suppϕ ⊂ {|x| ≤ 1/2}, ϕ satisfies (2.6) and
∫

ϕ(x)P (x)dx = 0 for
every polynomial P of degree ≤ 2n. Let ψ = ϕ ∗ ϕ. For singular integrals T
as in the introduction we have

(3.9) Sψ,α(Tf)(x) ≤ cα,ϕ,Ωg∗
ϕ,3(f)(x) (α > 0).

The proof of (3.9) can be found in [16, p. 677]. Observe that inequalities of
such type were known long ago (see, e.g. [14, p. 233]). Next, it is well known
[14, pp. 67–68] that for all x ∈ R

n,

(3.10) T∗f(x) ≤ c
(
GN (Tf) + Mf(x)

)
.
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Note that ψ satisfies conditions of Proposition 2.3. Also, f ∈ Lp
w implies

GN (Tf) ∈ Lp
w for w ∈ Ap. Hence, combining Proposition 2.3 and Corollary 1.3

with inequalities (3.9), (3.10), and with Buckley’s result (1.1), we get

‖T∗f ‖Lp
w

≤ c
(

‖GN (Tf)‖Lp
w

+ ‖Mf ‖Lp
w

)
≤ c‖w‖

1
2
Ap

‖Sψ,α(Tf)‖Lp
w

+ c‖w‖
1

p−1
Ap

‖f ‖Ap

≤ ‖w‖
1
2
Ap

‖g∗
ϕ,3(f)‖Lp

w
+ c‖w‖

1
p−1
Ap

‖f ‖Ap

≤ c‖w‖
1
2+max{1,p/2} 1

p−1
Ap

‖f ‖Lp
w
,

proving Corollary 1.4. �

4. Concluding remarks

Remark 4.1. Let S denote any one of Littlewood–Paley operators consid-
ered in this paper. Denote by νp the best possible exponent in the inequality

(4.1) ‖S‖Lp
w

≤ c‖w‖νp

Ap
.

Let βp = max{ 1
2 , 1

p−1 }. It was conjectured in [9] that νp = βp. This was
motivated by the fact that

(4.2) ‖M(g∗
ϕ,μ(f))‖Lp

w
≤ c‖w‖βp

Ap
‖Mf ‖Lp

w
(μ > 3,1 < p < ∞),

and the exponent βp is sharp for all p > 1. We observe here that essentially the
same argument establishing the lower bound in (4.2) proves the same lower
bound in (4.1). This along with the main results of this paper shows that
νp = 1

p−1 for 1 < p ≤ 2 (for the dyadic square function this was proved in [5])
and

βp ≤ νp ≤ p

2(p − 1)
(p > 2).

So, the question about the exact value of νp for p > 2 is still open.

Remark 4.2. Given a measurable function f , define the local maximal
operator m1/2f by

m1/2f(x) = sup
Q�x

(fχQ)∗(|Q|/2).

Here f ∗ denotes the non-increasing rearrangement of f . It was proved in [8]
that for Calderón–Zygmund operators we have

T∗(f)(x) ≤ cMf(x) + m1/2(Tf)(x)

and
m1/2(Tf)(x) ≤ cMf(x) + T∗(f)(x).

This shows that the best bounds for T∗ and m1/2(T ) coincide. However, using
this idea and assuming that the best bound for T is equal to αp = max{1, 1

p−1 }
(which, as we mentioned in the Introduction, is currently known only for the
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Hilbert and Riesz transforms), we can recover estimate (1.7) only for p = 2.
Indeed, it is easy to show that

(4.3) ‖m1/2f ‖Lp
w

≤ c‖w‖1/p
Ap

‖f ‖Lp
w

(1 ≤ p < ∞),

and the exponent 1/p is best possible. Hence,

‖m1/2(Tf)‖Lp
w

≤ c‖w‖αp+ 1
p

Ap
‖f ‖Lp

w
(1 < p < ∞),

proving the same bound for T∗. But αp +1/p > 1/2+max{1, p/2} 1
p−1 except

the case p = 2. These observations lead naturally to a question whether the
estimate

‖H∗ ‖L2
w

≤ c‖w‖3/2
A2

can be improved (H∗ denotes the maximal Hilbert transform).
We outline briefly the proof of (4.3). First, we observe that (4.3) is equiv-

alent to

(4.4) w{MχE > 1/2} ≤ c‖w‖Apw(E) (p ≥ 1)

for any measurable set E. Indeed, setting in (4.3) f = χE , we get (4.4). Next,
applying (4.4) to Eα = { |f | > α}, α > 0, and using the fact that {MχEα >
1/2} = {m1/2f > α}, we easily obtain (4.3).

Now, (4.4) follows immediately from the inequality

w{Mf > α} ≤ c‖w‖Ap(‖f ‖Lp
w
/α)p

proved in [1, p. 256]. To show the sharpness of (4.4), take w(x) = |x|δ−1 and
E = [1/2,2]. Then (0,2) ⊂ {MχE > 1/2}, and hence

w{MχE > 1/2}/w(E) ≥ c/δ ≥ c‖w‖Ap .

Remark 4.3. Note that Theorem 1.1 implies easily that for any locally
integrable function w,

(4.5) ‖S(f)‖L2
w

≤ c‖f ‖L2
Mw

.

For different S, this result was proved in [2, 3, 17].
To prove (4.5), set in (1.4) v = Mw. Then ‖(w,Mw)‖A2 ≤ 1. Now (4.5)

follows immediately from the fact that ‖(Mw)−1‖A∞ ≤ c, where c does not
depend on w. To prove the latter fact, we use (2.3) with any r > 2. Applying
(2.2), we easily have(

1
|Q|

∫
Q

(Mw)−1

)(
1

|Q|

∫
Q

(Mw)
1

r−1

)r−1

≤ cr,n,

which yields
‖(Mw)−1‖A∞ ≤ c‖(Mw)−1‖Ar ≤ c.
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