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We consider in this paper an abstract parabolic backward Cauchy problem associated with an
unbounded linear operator in a Hilbert space H, where the coefficient operator in the equation
is an unbounded self-adjoint positive operator which has a continuous spectrum and the data is
given at the final time t = T and a solution for 0 ≤ t < T is sought. It is well known that this problem
is illposed in the sense that the solution (if it exists) does not depend continuously on the given
data. The method of regularization used here consists of perturbing both the equation and the
final condition to obtain an approximate nonlocal problem depending on two small parameters.
We give some estimates for the solution of the regularized problem, and we also show that the
modified problem is stable and its solution is an approximation of the exact solution of the original
problem. Finally, some other convergence results including some explicit convergence rates are
also provided.

1. Introduction

Let A be a positive (we suppose that A ≥ η > 0), self-adjoint unbounded linear operator
which has a continuous spectrum on a Hilbert space H such that −A generates a contraction
C0-semigroup on H. Let T be a positive real number. We consider the final value problem
(FVP) of finding u : [0, T] → H such that

u′(t) +Au(t) = 0, 0 ≤ t < T, (1.1)

u(T) = φ, (1.2)
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for some prescribed final value φ in H. Such problems are not well posed; that is, even if a
unique solution exists on [0, T], it need not depend continuously on the finial value φ.

This type of problems, in the case where A has a discrete spectrum, has been con-
sidered by many authors using different approaches. Such authors as Lattès and Lions [1],
Lavrentiev [2], Miller [3], Payne [4], and Showalter [5] have approximated the final value
problem (FVP) (1.1), (1.2) by perturbing the operator A.

A similar problem is treated in a different way; see [6–8]. By perturbing the final value
condition, they approximated the problem (1.1), (1.2) with

u′(t) +Au(t) = 0, 0 ≤ t < T.

αu(0) + u(T) = φ.
(1.3)

A similar approach known as the method of auxiliary boundary conditions was given
in [9–11]. Also, the nonstandard conditions of the form (1.3) for parabolic equations have
been considered in some recent papers [12, 13]. For further results related to these type of
problems, we can also see [14, 15]. It is also worth reading the recent paper by Campbell
Hetrick and Hunhes [16] dealing with inhomogeneous ill-posed problems in Banach space.
We also mention the very recent papers by Tuan [17] and Tuan et al. [18] which deal
with similar ill-posed problems using different approaches. For some comments on the
results presented in paper [17] using a different regularization approach (the truncation
regularization method), see Remark 3.6 at the end of this paper.

In this paper, we perturb both (1.1) and the final condition (1.2) to form an ap-
proximate nonlocal problem depending on two small parameters α and β, with boundary
condition containing a derivative of the same order than the equation as follows:

v′
σ(t) +Aαvσ(t) = 0, 0 ≤ t < T,

vσ(T) + β
(
vσ(0) − v′

σ(0)
)
= φ,

(1.4)

where the operator A is replaced by the operator Aα = A(I + αA)−1 and u(T) = φ by uσ(T) +
β(uσ(0) − u′

σ(0)) = φ, and σ = (α, β), where α > 0, β > 0.
We show that the approximate problems are well posed and that their solutions vσ

converge if and only if the original problem has a classical solution. We also show that this
method gives a better approximation than many other quasireversibility and quasiboundary
type methods, for example, [1, 6, 7, 19–21]. Finally, we obtain several other results, including
some explicit convergence rates.

Throughout this paper, we will denote by H a Hilbert space, {Eλ, λ ≥ η > 0} the
resolution of the identity associated with the positive unbounded self-adjoint operator A. So
the spectral representation of C0 semigroup S(t) = e−tA (resp., A) is given by S(t) = e−tA =∫+∞
η e−tλdEλ (resp., A =

∫+∞
η λdEλ), and so for all u ∈ D(A), Au =

∫+∞
η λ dEλu, and this is

characterized by

u ∈ D(A) iff ‖Au‖2 =
∫+∞

η

λ2d ‖Eλu‖2 < ∞. (1.5)
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Also, throughout this work, we mean by a solution of problem (1.1), (1.2) on the interval
[0, T] a function u ∈ C([0, T];H) ∩ C1(]0, T[;H) such that, for all t ∈ ]0, T[, u(t) ∈ D(A)
and (1.1), (1.2) hold. A useful characterization of the admissible set for which problem
(1.1), (1.2) has a solution is as follows: Problem (1.1), (1.2) has a solution u if and only if∫+∞
η e2λTd‖Eλφ‖2 < ∞, and this unique solution is represented by u(t) =

∫+∞
η e(T−t)λdEλφ < ∞

(see [19], Lemma 1]).

2. The Approximate Problem

We approximate the final value problem (1.1), (1.2), by the following perturbed problem:

v′
σ(t) +Aαvσ(t) = 0, 0 � t < T,

vσ(T) + β
(
vσ(0) − v′

σ(0)
)
= φ,

(2.1)

where A is as above and Aα is the Yosida approximation of operator A, and σ = (α, β) where
α > 0, β > 0.

Definition 2.1. Define the function

vσ(t) = Sα(t)
(
β(I +Aα) + Sα(T)

)−1
φ, (2.2)

for φ ∈ H,σ = (α, β) and α > 0, β > 0, t ∈ [0, T], where Sα(t) is the semigroup generated by
−Aα.

Now, we give the following theorem where the proof is based on the semigroups
theory [22].

Theorem 2.2. The function vσ(t) is the unique solution of the perturbed problem (2.1), and it depends
continuously on φ.

Proof. We consider the following classical Cauchy problem:

v′
σ(t) +Aαvσ(t) = 0, 0 < t < T,

vσ(0) =
(
β(I +Aα) + Sα(T)

)−1
φ.

(2.3)

It is clear that vσ(t) is the unique solution and

vσ(T) + β
(
vσ(0) − v′

σ(0)
)
= Sα(T)

(
β(I +Aα) + Sα(T)

)−1
φ

+ β(I +Aα)
(
β(I +Aα) + Sα(T)

)−1
φ

=
(
β(I +Aα) + Sα(T)

)(
β(I +Aα) + Sα(T)

)−1
φ = φ.

(2.4)
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The continuous dependence of vσ on φ is obtained by showing that

‖vσ(t)‖ =
∥
∥
∥Sα(t)

(
β(I +Aα) + Sα(T)

)−1
φ
∥
∥
∥

�
∥
∥
∥
(
β(I +Aα) + Sα(T)

)−1
φ
∥
∥
∥

� 1
β +
(
βη/
(
1 + αη

))
+ e−T/α

∥
∥φ
∥
∥.

(2.5)

Now, we consider the following problem:

u′
σ(t) +Auσ(t) = 0,

uσ(0) = φσ =
(
β(I +Aα) + Sα(T)

)−1
φ.

(2.6)

Theorem 2.3. The problem (2.6) is well posed, and its solution is given by

uσ(t) = S(t)
(
β(I +Aα) + Sα(T)

)−1
φ, (2.7)

furthermore,

‖uσ(t)‖ � 1
(
β
(
1 +
(
η/
(
1 + αη

)))
+ e−T/α

)(T−t)/T
∥∥φ
∥∥. (2.8)

Proof. Since

‖uσ(t)‖2 =
∫+∞

η

e−2λT
(
β(1 + (λ/(1 + αλ))) + e−(λT)/(1+αλ)

)2d
∥∥Eλφ

∥∥2

≤
∫+∞

η

[
1

(
β
(
1 +
(
η/
(
1 + αη

)))
+ e−T/α

)2

]T−t/T
d
∥∥Eλφ

∥∥2,

(2.9)

then,

‖uσ(t)‖ �
[

1
(
β
(
1 +
(
η/
(
1 + αη

)))
+ e−T/α

)

]T−t/T
∥∥φ
∥∥. (2.10)

Now we give some convergence results.

3. The Convergence Results

Theorem 3.1. For all φ ∈ H, ‖uσ(T) − φ‖ → 0, as |σ| → 0.
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Proof. We have

∥
∥uσ(T) − φ

∥
∥2 =

∫+∞

η

(
e−λT

β(1 + (λ/(1 + αλ))) + e−(λT)/(1+αλ)
− 1

)2

d
∥
∥Eλφ

∥
∥2

=
∫+∞

η

(
β(1+(λ/(1+αλ)))

β(1+(λ/(1+αλ)))+e−(λT/(1+αλ))
+

e−(λT/(1+αλ))−e−λT
β(1+(λ/(1+αλ)))+e−(λT/(1+αλ))

)2

d
∥
∥Eλφ

∥
∥2.

(3.1)

Putting

Mσ(λ) =
β(1 + (λ/(1 + αλ)))

β(1 + (λ/(1 + αλ))) + e−(λT/(1+αλ))
,

Nσ(λ) =
e−(λT/(1+αλ)) − e−λT

β(1 + (λ/(1 + αλ))) + e−(λT/(1+αλ))
,

(3.2)

and if we put

Pσ(λ) = Mσ(λ) +Nσ(λ), (3.3)

then we get

∥∥uσ(T) − φ
∥∥2 =

∫+∞

η

(Pσ(λ))
2d
∥∥Eλφ

∥∥2

� 2
∫+∞

η

(
M2

σ(λ) +N2
σ(λ)

)
d
∥∥Eλφ

∥∥2.

(3.4)

It is clear that, for all ε > 0, there exists k ∈ N
∗/
∫+∞
k d‖Eλφ‖2 < ε/8 andMσ(λ) ≤ 1,Nσ(λ) � 1.

If we put

Iσ =
∫k

η

M2
σ(λ)d

∥∥Eλφ
∥∥2 +

∫+∞

k

M2
σ(λ)d

∥∥Eλφ
∥∥2,

Jσ =
∫k

η

N2
σ(λ)d

∥∥Eλφ
∥∥2 +

∫+∞

k

N2
σ(λ)d

∥∥Eλφ
∥∥2.

(3.5)

then we have

Iσ � ε

8
+ β2
(
1 +

1
α

)2

e2kT
∥∥φ
∥∥2,

Jσ � ε

8
+ α2T2k4∥∥φ

∥∥2.

(3.6)
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Finally, choosing σ such that |σ|2 = α2 + β2 � (1/‖φ‖2)(1/T2k4 + 1/e2kT )(ε/8), we obtain the
following estimate

∥
∥uσ(T) − φ

∥
∥2 �

(
ε

2
+ 2

(

β2
(
1 +

1
α

)2

e2kT + α2T2k4

))
∥
∥φ
∥
∥2, (3.7)

which gives the desired result.

Let us denote by Cθ(A), θ ≥ 0 the following set:

Cθ(A) =

{

h ∈ H : ‖h‖2Cθ
=
∫+∞

η

e2Tθλd
∥
∥Eλφ

∥
∥2 < +∞

}

. (3.8)

It is clear that the following proprieties hold

Cθ1(A) ⊆ Cθ2(A), θ2 � θ1,

Cθ(A) ⊂ H, θ > 0.
(3.9)

Now, we give some convergence results with explicit convergence rates.

Theorem 3.2. If φ ∈ Cθ(A), then one has

∥∥uσ(T) − φ
∥∥2 � 2

(

C2
1(θ)

β2θ

α2

(
η

1 + αη

)2(θ−1)
+ C2

2(θ, T)α
2

)
∥∥φ
∥∥2
Cθ
, (3.10)

for 0 < θ < 1 and

∥∥uσ(T) − φ
∥∥2 � 2

(
β2

α2
+ C2

2(θ, T)α
2

)
∥∥φ
∥∥2
Cθ
, for θ � 1, (3.11)

such that

C1(θ) = (1 − θ)1−θθθ � 1, C2(θ, T) =
1

Tθ2
. (3.12)

Proof. Using the proof of the previous theorem, we have

∥∥uσ(T) − φ
∥∥2 =

∫+∞

η

P 2
σ(λ)d

∥∥Eλφ
∥∥2

=
∫+∞

η

P 2
σ(λ)e

−2Tθλe2Tθλd
∥∥Eλφ

∥∥2

� 2
(
M2

σ,θ,∞ +N2
σ,θ,∞

)∥∥ϕ
∥∥2
Cθ
,

(3.13)
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where

Mσ,θ,∞ = sup
λ�η

Mσe
−Tθλ, Nσ,θ,∞ = sup

λ�η

Nσe
−Tθλ. (3.14)

If 0 < θ < 1, then we have

Mσ,θ,∞ ≤ 2
α
βθC1(θ). (3.15)

And, for θ � 1, we have

Mσ,θ,∞ ≤ 2
β

α
. (3.16)

We also have

Nσ,θ,∞ � 4α
Tθ2e2

� α

Tθ2
, ∀θ > 0. (3.17)

Then, using the above estimates, we get the desired results.

Now, let F be the function defined by

F : R
+ × R

+ −→ H,

σ =
(
α, β
) −→ F(σ) =

⎧
⎨

⎩

uσ(0) = φσ, σ /= (0, 0),

u(0) = φ0, σ = (0, 0).

(3.18)

Theorem 3.3. For all φ ∈ H, the problem (1.1), (1.2) has a solution u(t) if and only if the function
F is continious at (0, 0). Furthermore, uσ(t) → u(t), as |σ| → 0, uniformly in t.

Proof. We assume that lim|σ|→ 0 φσ = φ0 and ‖φ0‖ < ∞. Let w(t) = S(t)φ0. So, we have

‖w(t) − uσ(t)‖ �
∥∥φ0 − φσ

∥∥. (3.19)

Hence,

sup
0�t�T

‖w(t) − uσ(t)‖ �
∥∥φ0 − φσ

∥∥ −→
|σ|→ 0

0. (3.20)

Since lim|σ|→ 0 uσ(T) = φ and lim|σ|→ 0 uσ(T) = w(T) and so by the unicity of the limit, we
obtain that w(t) is a solution to problem (1.1), (1.2).
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Now, we suppose that u(t) =
∫+∞
η e(T−t)λdEλφ is a solution to problem (1.1), (1.2). Since

u(0) = S(−T)φ ∈ H (see [19], Lemma 1), then we have

‖u(0)‖2 = ∥∥φ∥∥2C1
=
∫+∞

η

e2Tλd
∥
∥Eλφ

∥
∥2 < ∞. (3.21)

Let k > 0 and ε > 0, such that
∫+∞
k e2Tλd‖Eλφ‖2 < ε/8. If σ1 = (α1, β1) and σ2 = (α2, β2). Then,

‖uσ1(0) − uσ2(0)‖2

=
∫+∞

η

(
1

β1(1 + (λ/(1 + α1λ))) +e−(λT/(1+α1λ))
− 1
β2(1 + (λ/(1 +α2λ))) + e−(λT/1+α2λ))

)2

d
∥
∥Eλφ

∥
∥2

≤ 2
∫+∞

η

[
β1(1 + (λ/(1 + α2λ))) − β2(1 + (λ/(1 + α1λ)))

(
β1(1 + (λ/(1 + α1λ))) + e−(λT/(1+α1λ))

)(
β2(1 + λ/1 + α2λ) + e−(λT/(1+α2λ))

)

]2
d
∥∥Eλφ

∥∥2

+2
∫+∞

η

[
e−λT/1+α1λ−e−λT/1+α2λ

(
β1(1 + λ/(1 + α1λ)) +e−(λT/(1+α1λ))

)(
β2(1 + λ/(1 +α2λ)) + e−(λT/(1+α2λ))

)

]2
d
∥∥Eλφ

∥∥2.

(3.22)

If we put

Mσ1,σ2 =

∣∣β1(1 + (λ/(1 + α2λ))) − β2(1 + (λ/(1 + α1λ)))
∣∣

(
β1(1 + λ/(1 + α1λ)) + e−λT/1+α1λ

)(
β2(1 + (λ/(1 + α2λ))) + e−λT/1+α2λ

) ,

Nσ1,σ2 =

∣∣e−(λT/(1+α1λ)) − e−(λT/(1+α2λ))
∣∣

(
β1(1 + λ/(1 + α1λ)) + e−(λT/(1+α1λ))

)(
β2(1 + (λ/(1 + α2λ))) + e−(λT/(1+α2λ))

) ,

(3.23)

then we have

‖uσ1(0) − uσ2(0)‖2 � 2
∫+∞

η

M2
σ1,σ2

(λ)d
∥∥Eλφ

∥∥2 + 2
∫+∞

η

N2
σ1,σ2

(λ)d
∥∥Eλφ

∥∥2. (3.24)

Using analogous calculations as in the proof of Theorem 3.1, we obtain

‖uσ1(0) − uσ2(0)‖2 � ε

2
+ 2e2kT

∥∥φ
∥∥2
C1

×
[[

β2

(
1 +

k

1 + α2k

)
− β1

(
1 +

k

1 + α1k

)]2
+ T2k4(α1 − α2)2

]
.

(3.25)

Now, if σ0 = (0, 0), then by choosing σ = (α, β) such that

|σ|2 = α2 + β2 � 1
∥∥φ
∥∥2
C1

1
e2kT

(
1 +

1
T2k4

)
ε

8
, (3.26)
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we find that ‖uσ(0) − uσ0(0)‖2 = ‖φσ − φ0‖2 ≤ ε. This means that the function F is continuous
at (0, 0).

We note that we can easily show that

‖uσ(0) − u(0)‖2 = ∥∥uσ(T) − φ
∥
∥2
C1
, (3.27)

for φ ∈ C1(A). And by using Theorem 3.1 again, we see that

‖uσ(0) − u(0)‖2 −→ 0 as |σ| −→ 0. (3.28)

Theorem 3.4. If φ ∈ Cθ+1(A), then one has

‖uσ(0) − u(0)‖2 � 2
(

4
α2

C2
1(θ)β

2θ + C2
2(θ, T)α

2
)∥∥φ

∥∥2
Cθ+1

, (3.29)

for 0 < θ < 1. And

‖uσ(0) − u(0)‖2 � 2

(
4β2

α2
+ C2

2(θ, T)α
2

)
∥∥φ
∥∥2
Cθ+1

, for θ � 1 (3.30)

such that

C1(θ) = (1 − θ)1−θθθ ≤ 1, C2(θ, T) =
1

Tθ2
. (3.31)

Proof. Since

‖uσ(0) − u(0)‖2 = ∥∥uσ(T) − φ
∥∥2
C1

=
∫+∞

η

P 2
σ(λ)e

2(1+θ)Tλe−2Tλθd
∥∥Eλφ

∥∥2,

� 2
(
M2

σ,θ,∞ +N2
σ,θ,∞

)∥∥φ
∥∥2
Cθ+1

,

(3.32)

then using Theorem 3.2, we get the required result.

Corollary 3.5. If φ ∈ Cθ+1(A), then one has

sup
0�t�T

‖uσ(t) − u(t)‖2 � ‖uσ(0) − u(0)‖2

� 2
(

4
α2

C2
1(θ)β

2θ + C2
2(θ, T)α

2
)∥∥φ

∥∥2
Cθ+1

,

(3.33)
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for 0 < θ < 1. And

sup
0�t�T

‖uσ(t) − u(t)‖2 � ‖uσ(0) − u(0)‖2

� 2

(
4β2

α2
+ C2

2(θ, T)α
2

)
∥
∥φ
∥
∥2
Cθ+1

, for θ � 1.

(3.34)

Proof. Using Theorem 3.3, we have

sup
0�t�T

‖uσ(t) − u(t)‖2 � ‖uσ(0) − u(0)‖2. (3.35)

And, by Theorem 3.4, we obtain the desired result.

Remark 3.6. We note that in a very recent paper by Tuan [17] a new use of a different
regularization method (the truncation method) is introduced for dealing with a similar class
of problems. This truncation method consists in eliminating all high frequencies from the
solution of the considered ill-posed problem to get an approximate regularized solution
together with some stability and error estimates that he indicates to be of Holder type. In
particular, the author gives some estimates which hold at t = 0 and so he gets the convergence
of the approximate solution at t = 0. For a significant comparison with these results obtained
by this truncation regularization method, one needs the determination and selection, for
each case, of a possible appropriate regularization parameter β(ε). However, the method
of regularization presented in our work still gives a better approximation than many other
quasireversibility and quasi-boundary type methods, for example, [1, 6, 7, 19–21].

Conclusion 1. (1)Note that, in this work, the error factor ε(σ) introduced by small changes in
the final value is of order 1/(β(1 + (η/(1 + αη))) + e−T/α) and in a recent work [21], by the
same authors, the error factor given was of order 1/(βη/(1 + αη) + e−T/α) ≥ 1/(β(1 + (η/(1 +
αη))) + e−T/α).

(2)We also note that the error factor e(β) given in [7] (resp. e(α) in [1]) is of order 1/β
(resp., eT/α) and so 1/(βη/(1 + αη) + e−T/α) ≤ 1/β and 1/(βη/(1 + αη) + e−T/α) ≤ eT/α.

(3) Also the error factor e(σ) given in Boussetila and Rebbani [19] is of order 1/(β +
e−T/α) and since 1/(β(1 + (η/(1 + αη))) + e−T/α) ≤ 1/(β + e−T/α), for 0 < α ≤ 1 − 1/η, η > 1
and so for all operators A(A ≥ η > 1), considered above, our method of approximation gives
a better approximation than the methods given by Boussetila and Rebbani in [19] and other
authors, for example, [1, 7].
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