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In this paper, we construct and verify the asymptotic expansion for the spectrum of a boundary-
value problem in a unit circle periodically perforated along the boundary. It is assumed that the
size of perforation and the distance to the boundary of the circle are of the same smallness. As an
application of the obtained results, the asymptotic behavior of the best constant in a Friedrichs-type
inequality is investigated.

1. Introduction

We study a two-dimensional eigenvalue problem for the Laplace operator in a unit circle per-
iodically perforated along the boundary. It is assumed that the size of perforation and the dis-
tance to the boundary of the circle are of the same smallness. The asymptotic behavior of the
spectrum of the considered boundary-value problem is investigated in this paper. We con-
struct and verify the asymptotic expansion for the eigenvalues with respect to the small para-
meter describing the microinhomogeneous structure of the domain. A similar problem was
considered in [1] for the case of perforation located along the plane part of the boundary. The
case studied in this paper is much more complicated since the eigenvalues of multiplicity
more than one can appear. The technique for asymptotic analysis of such kind of problem can
be found, for example, in [2, 3].
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The obtained results are used for asymptotic expansion of the best constant in a Fried-
richs-type inequality for functions from the space H1, vanishing on the boundary of the per-
foration and satisfying homogeneous Neuman condition on the boundary of the circle. Anal-
ogous questions concerning the asymptotic behavior of the best constant in Friedrichs-type
inequality in domains having microinhomogeneous structure in a neighborhood of the boun-
dary were studied in [1, 4–11]. In the remaining part of this introduction, we will give a short
description of some of the most important results in these papers to put the results obtained
in this paper into a more general frame.

In paper [4], the authors proved a Friedrichs-type inequality for functions, having
zero trace on the small periodically alternating pieces of the boundary of a two-dimensional
domain. The total measure of the set, where the function vanishes, tends to zero. It turns out
that for this case the constant in the Friedrichs-type inequality is bounded. Moreover, the pre-
cise asymptotics of the constant in the derived Friedrichs-type inequality is described as the
small parameter characterizing the microinhomogeneous structure of the boundary, tends to
zero.

Paper [5] is devoted to the asymptotic analysis of functions depending on the small
parameter, which characterizes the microinhomogeneous structure of the domain where the
functions are defined. The authors considered a boundary-value problem in a two-dimen-
sional domain perforated nonperiodically along the boundary in the case when the diameter
of circles and the distance between them have the same order. In particular, it was proved that
the Dirichlet problem is the limit for the original problem. Moreover, some numerical simu-
lations were used to illustrate the results. As an application, a Friedrichs-type inequality was
derived for functions vanishing on the boundary of the cavities. It was proved that the con-
stant in the obtained inequality is close to the constant in the inequality for functions from
◦

H1. The three-dimensional case of the same problem is considered in [8].
In paper [9], the author considered a three-dimensional domain, which is aperiodically

perforated along the boundary in the case when the diameter of the holes and the distance
between them have the same order. A Friedrichs-type inequality was derived for functions
from the spaceH1 vanishing on the boundaries of cavities. In particular, it was shown that the
constant in the derived inequality tends to the constant of the classical inequality for functions

from
◦

H1 when the small parameter describing the size of perforation tends to zero.
Paper [1] (see also [7]) deals with the construction of the asymptotic expansion for the

first eigenvalue of a boundary-value problem for the Laplacian in a perforated domain. This
asymptotics gives an asymptotic expansion for the best constant in a corresponding Fried-
richs-type inequality.

Paper [11], is devoted to the Friedrichs-type inequality, where the domain is period-
ically and rarely perforated along the boundary. It is assumed that the functions satisfy homo-
geneous Neumann boundary conditions on the outer boundary and that they vanish on the
perforation. In particular, it is proved that the best constant in the inequality converges to the
best constant in a Friedrichs-type inequality as the size of the perforation goes to zero much
faster than the period of perforation. The limit Friedrichs-type inequality is valid for functions
in the Sobolev space H1.

Some generalizations of Friedrichs-type inequalities areHardy-type inequalities. There
exist several books devoted to this topic, see [12–16]. The first attempts to generalize the clas-
sical results concerning Hardy-type inequalities in fixed domains to domains with micro-
inhomogeneous structure one can find in [6, 10].
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Paper [6] deals with a three-dimensional weighted Hardy-type inequality in the case
when the domain Ω is bounded and has nontrivial microstructure. It is assumed that the
small holes are distributed periodically along the boundary. The main result is the validity of
a weightedHardy-type inequality for the class of functions from the Sobolev spaceH1 having
zero trace on the small holes under the assumption that a weight function decreases to zero
in a neighborhood of the microinhomogenity on the boundary.

In paper [10], the author derived a new two-dimensional weighted Hardy-type in-
equality in a rectangle for the class of functions from the Sobolev spaceH1 vanishing on small
alternating pieces of the boundary. The dependence of the best constant in the derived in-
equality on the small parameter describing the size of microinhomogenity was established.

This paper is organized as follows: in Section 2 we give all necessary definitions and
state the spectral problem. Section 3 is devoted to the construction of the leading terms of
asymptotic expansion, while the complete expansions for the simple and multiple eigenval-
ues are constructed in Sections 4 and 5, respectively. The verification of the constructed asym-
ptotics is given in Section 6. Finally, in Section 7, the obtained results are applied to describe
the asymptotic behavior for the best constant in a Friederichs-type inequality considered in a
perforated domain.

2. Preliminaries

Consider a unit circle Ω centered at the origin. We introduce the polar system of coordinates
(θ, r) inΩ. Introduce a small parameter ε = 2/N, N � 1, and consider the open set Bε which
is the union of small sets periodically distributed along the boundary. Each of these small sets
can be obtained from the neighboring one by rotation about the origin through the angle επ .
Finally, we define Ωε = Ω \ Bε and ∂Bε = Γε, see Figure 1. Let us describe the geometry of Bε

in details. Consider the semi-strip:

Π =
{
ξ : −π

2
< ξ1 <

π

2
, ξ2 > 0

}
, Γ :=

{
ξ : −π

2
< ξ1 <

π

2
, ξ2 = 0

}
. (2.1)

Let B be an arbitrary two-dimensional open domain with a smooth boundary that is symmet-
ric the vertical axis and lies in a disk of a fixed radius a < 1 centered at the point (0, 1), see
Figure 2. Let Ba be the union of the π-integer translations of B along the axis ξ1. Then we de-
fine Bε as the image of Ba under the mapping θ = εξ1, r = 1 − εξ2.

Consider the following spectral problem:

−Δuε = λεuε in Ωε,

uε = 0 on Γε,

∂uε

∂r
= 0 on ∂Ω.

(2.2)

The problem,

−Δu0 = λ0u0 in Ω,

u0 = 0 on ∂Ω,
(2.3)
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Figure 1: Perforated circle.
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Figure 2: Cell of periodicity.

is the limit one for (2.2). This fact can be established analogously as in [17, 18], by using the
same technique.

Remark 2.1. In particular, it can be proved that the number of eigenvalues (bearing in mind
the multiplicities) of the original problem converging to the eigenvalue of the limit (homo-
genized) problem is equal to the multiplicity of the mentioned eigenvalue of the limit pro-
blem (for the method of proof see, e.g., [19]).

Remark 2.2. The limit spectral problem (2.3) is studied very well. In particular, if the eigen-
value λ0 is simple, then the corresponding eigenfrequency k0 =

√
λ0 of (2.3) is the zero-point

of the Bessel-functionJ0, and the corresponding eigenfunction has the formJ0(k0r). One can
find the definition of Bessel-functions, for example, in [20, Section 4.7].

The goal of this paper is to construct and verify the asymptotic expansion for the eigen-
values of (2.2). The obtained asymptotics is used for studying the behavior of the best cons-
tant in a Friedrichs-type inequality for functions belonging to the Sobolev class H1(Ωε,Γε)



International Journal of Differential Equations 5

(see the definition of H1(Ωε,Γε) in Section 7). One of the main results of this paper is the fol-
lowing asymptotics for λε converging to λ0:

λε = λ0 +
∞∑
i=1

εiλi, (2.4)

where λi are some fixed constants which can be calculated according to (4.23) and (4.15) in
the case of simple λε and according to (5.10) and (4.15)when λε is of multiplicity two. In parti-
cular, λ1 < 0 which implies that λε < λ0.

3. Construction of the Leading Terms of the Asymptotic Expansion

Suppose that λ0 is the simple eigenvalue for (2.3) and the corresponding eigenfunction u0 is
normalized in L2(Ω). Our aim is to construct the leading terms of the asymptotic expansions
for λε converging to λ0 as well as uε converging to u0. We use the method of boundary-layer
functions (see [21]) for this purpose.We are looking for eigenvalues and eigenfunctions in the
following form:

λε = λ0 + ελ1 + · · · ,
uε(x) = u0(x) + εu1(x) + εα0(θ)v(ξ) + · · · ,

(3.1)

where ξ = (ξ1, ξ2), ξ1 = θ/ε, ξ2 = (1 − r)/ε, and

u0(x) = α0(θ)(1 − r) +O
(
(1 − r)2

)
as r −→ 1, α0(θ) = −∂u0

∂r

∣∣∣∣
r=1

,

u1(x) = u1|r=1 + α1(θ)(1 − r) +O
(
(1 − r)2

)
as r −→ 1, α1(θ) = −∂u1

∂r

∣∣∣∣
r=1

.

(3.2)

Substituting the first expansion from (3.1) and the sum u0+εu1 from the second expan-
sion in (2.2) and equating terms at the same power of ε, we get the equation for u1:

−Δxu1 = λ0u1 + λ1u0 in Ω. (3.3)

The existence of the solution for (3.3) is given in the following proposition.

Proposition 3.1. For any λ1, there exists the smooth solution of (3.3) satisfying the boundary con-
dition

u1 = −λ1α0(θ)

(∫2π

0
α2
0 dθ

)−1
on ∂Ω. (3.4)
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Proof. The existence of the smooth solution follows from the classical results on regular solu-
tions of elliptic equations (see e.g., [22]). In order to get u1 as the unique solution, one can add
the condition of mutual orthogonality:

∫

Ω
u0u1dx = 0. (3.5)

By multiplying (3.3) by u0, integrating (3.3) overΩ, and twice integrating by parts the
obtained equation, we find that

−
∫

Ω
u1Δu0dx −

∫

∂Ω
u1

∂u0

∂r
dθ +

∫

∂Ω
u0

∂u1

∂r
dθ = λ1

∫

Ω
u2
0dx + λ0

∫

Ω
u1u0dx. (3.6)

Taking into account the fact that u0 is the normalized (in L2(Ω)) solution of (2.3) and since u1

satisfies (3.5), we can deduce that

λ1 = −
∫

∂Ω

∂u0

∂r
u1dθ = −

∫

∂Ω
α0(θ)u1dθ. (3.7)

Then (3.7) leads to (3.4) and the proof is complete.

However, the approximation u0+εu1 does not satisfy the condition on Γε. This forces us
to introduce an additional term α0v in second expansion of (3.1) to satisfy the appropriate
boundary condition. We assume that the function v has exponential decay as ξ2 → ∞ and is
π-periodical with respect to ξ1. Under this assumption, α0v “almost” does not destroy (2.2) in
the sense that the norm of additional contribution is small. The rigorous explanation is given
in Section 6. Proceeding, we have that

−Δx(u0 + εu1 + εα0v + · · · ) = (λ0 + ελ1 + · · · )(u0 + εu1 + εα0v + · · · ). (3.8)

Taking into account (2.3) and (3.3), we see that v has to satisfy the equation

−Δx(α0v) = λ0α0v. (3.9)

Rewrite Δx in polar coordinates and pass to the ξ-variables in the argument of v:

Δx(α0v) =
1
r

∂

∂r

(
r
∂

∂r
(α0v)

)
+

1
r2

∂2(α0v)
∂θ2

= α0
∂2v

∂r2
+
α0

r

∂v

∂r
+

1
r2

(
v
∂2α0

∂θ2
+ 2

∂α0

∂θ

∂v

∂θ
+ α0

∂2v

∂θ2

)

=
α0

ε2
∂2v

∂ξ22
− α0

(ε − ε2ξ2)
∂v

∂ξ2
+

1

(1 − εξ2)
2

[
v
∂2α0

∂θ2
+
2
ε

∂α0

∂θ

∂v

∂ξ1
+
α0

ε2
∂2v

∂ξ21

]
.

(3.10)
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Finally, replacing formulas 1/(ε − ε2ξ2) and 1/(1 − εξ2)
2 with Taylor series with respect to ε,

substituting the obtained formula for Δx(α0v) in (3.9), and equating terms at ε−2, we deduce
that

Δξv = 0. (3.11)

Now we derive the boundary conditions for function v. Substituting the second series
from (3.1) in boundary conditions from (2.2) and using (3.2), we have

0 = uε = u0 + εu1 + εα0v + · · · = ε(α0ξ2 + u1|r=1 + α0v) +O
(
ε2
)
,

0 =
∂uε

∂r
=

∂u0

∂r
+ ε

∂u1

∂r
+ εα0

∂v

∂r
+ · · · = −α0 − εα1 − α0

∂v

∂ξ2
+ · · · ,

(3.12)

which implies that

α0ξ2 + u1|r=1 + α0v = 0,

−α0 − α0
∂v

∂ξ2
= 0.

(3.13)

Taking into account (3.4), we derive the boundary conditions for v on ∂B and on Γ:

v = −ξ2 + λ1

(∫2π

0
α2
0 dθ

)−1
on ∂B,

∂v

∂ξ2
= −1 on Γ.

(3.14)

Summing up (3.11) and (3.14), we get the following boundary-value problem for v:

Δξv = 0 Π \ B,

v = −ξ2 + λ1

(∫2π

0
α2
0 dθ

)−1
on ∂B,

∂v

∂ξ2
= −1 on Γ.

(3.15)
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Define the function Y as the solution of the following boundary-value problem in the cell of
periodicity:

ΔY = 0 in Π \ B,
Y = 0 on ∂B,

∂Y

∂ξ1
= 0 on ∂Π \ Γ,

∂Y

∂ξ2
= 0 on Γ,

∂Y

∂ξ2
= 1 as ξ2 −→ ∞.

(3.16)

It was proved in [7] that there exists the solution of (3.16), which is even with respect
to ξ1 and has the asymptotics:

Y (ξ) = ξ2 + C(B) +O
(
e−αξ2

)
as ξ2 −→ ∞, (3.17)

where

C(B) =
∫

Π\B
|∇(Y − ξ2)|2dξ + |B| > 0, (3.18)

and |B| is the area of the domain B.
The following lemma gives the conditions to obtain v as an exponentially decaying fun-

ction as ξ2 → ∞.

Lemma 3.2. Assume that F is π-periodic with respect to ξ1 function with exponential decay as ξ2 →
∞, and let v be a π-periodic solution of the boundary-value problem:

Δv = F, ξ2 > 0; v = A1, ξ ∈ ∂B;
∂v

∂ξ2
= A2, ξ ∈ Γ; (3.19)

with finite Dirichlet integral in Π. Then there exists the unique weak solution, which has asymptotics
v = C +O(e−αξ2), α > 0. To obtain v as a function with exponential decay as ξ2 → ∞, it is necessary
and sufficient to have

∫

Π\B
YF dξ +

∫

∂B

A1
∂Y

∂νB
dSB +

∫

Γ
A2Y dξ1 = 0. (3.20)

Proof. The existence of the solution with asymptotics v = C+O(e−αξ2) follows from the classi-
cal results on elliptic boundary-value problems in cylindric domains (see, e.g., [23] and
[24, Chapters 2, 5]). Let us verify (3.20). Define ΠR = Π ∩ {0 < ξ2 < R} and ΓR = {ξ :
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−π/2 < ξ1 < π/2, ξ2 = R}. By multiplying the equation from (3.15) by Y , integrating it over
ΠR \ B, and using the property of Y , we get that

∫

ΠR\B
FY dξ = −

∫

ΠR\B
∇v∇Y dξ +

∫

ΓR

∂v

∂ξ2
Y dξ1 −

∫

Γ

∂v

∂ξ2
Y dξ1

=
∫

ΠR\B
vΔY dξ −

∫

ΓR
v
∂Y

∂ξ2
dξ1 +

∫

Γ
v
∂Y

∂ξ2
dξ1 −

∫

∂B

v
∂Y

∂ν
dSB

+
∫

ΓR

∂v

∂ξ2
Y dξ1 −

∫

Γ

∂v

∂ξ2
Y dξ1 = −

∫

ΓR
v
∂Y

∂ξ2
dξ1 −

∫

∂B

A1
∂Y

∂ν
dSB

+
∫

ΓR

∂v

∂ξ2
Y dξ1 −

∫

Γ
A2Y dξ1.

(3.21)

Passing to the limit as R → ∞, we obtain that

∫

Π\B
FY dξ = −πC −

∫

∂B

A1
∂Y

∂ν
dSB −

∫

Γ
A2Y dξ1. (3.22)

This can be rewritten as

C =
1
π

(
−
∫

Γ
A2Y dξ1 −

∫

∂B

A1
∂Y

∂ν
dSB −

∫

Π\B
FY dξ

)
. (3.23)

Then v has exponential decay as ξ2 → ∞ if and only if C = 0 which is equivalent to (3.20).
The proof is complete.

In order to obtain v as function with exponential decay as ξ2 → ∞, one must have

0 = −
∫

∂B

(−ξ2 +K)
∂Y

∂νB
dSB +

∫

Γ
Y dξ1, (3.24)

where we denote K = λ1(
∫2π
0 α2

0 dθ)
−1
. However, (3.24) implies that

K =
(∫

∂B

ξ2
∂Y

∂νB
dSB +

∫

Γ
Y dξ1

)(∫

∂B

∂Y

∂νB
dSB

)−1
. (3.25)
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Integrate the identities 0 =
∫
ΠR\B ΔY dξ, 0 =

∫
ΠR\B ξ2ΔY dξ:

0 =
∫

ΠR\B
ΔY dξ =

∫

∂(ΠR\B)

∂Y

∂n
dS =

∫

∂B

∂Y

∂νB
dSB +

∫

ΓR

∂Y

∂ξ2
dξ1,

0 =
∫

ΠR\B
(ξ2ΔY − YΔξ2)dξ =

∫

∂(ΠR\B)

(
ξ2
∂Y

∂n
− Y

∂ξ2
∂n

)
dS

=
∫

∂B

ξ2
∂Y

∂νB
dSB +

∫

Γ
Y dξ1 +

∫

ΓR

(
ξ2
∂Y

∂ξ2
− Y

)
dξ1.

(3.26)

Passing to the limit as R → ∞, we find that

0 =
∫

∂B

∂Y

∂νB
dSB + π,

0 =
∫

∂B

ξ2
∂Y

∂νB
dSB +

∫

Γ
Y dξ1 − πC(B).

(3.27)

Then (3.25) and (3.27) together with Remark 2.2 imply that

λ1 = −C(B)
∫2π

0
α2
0 dθ = −2πC(B)k2

0
(J′

0
)2(k0) < 0. (3.28)

4. Complete Expansion in the Case of the Simple Eigenvalue λ0

Assume that λ0 is the simple eigenvalue of the limit problem. Nowwe construct the complete
expansion in the following form:

uε(x) = uex
ε (x) + χ(1 − r)uin

ε

(
1 − r

ε
,
θ

ε

)
, (4.1)

where χ is a smooth cutoff function, which equals to one when 1/2 < r < 1 and zero when
r < 1/4:

uex
ε (x) = J0(k(ε)r), (4.2)

uin
ε (ξ) =

∞∑
i=1

εivi(ξ). (4.3)

Here k(ε) =
√
λε,vi(ξ) are π-periodic in ξ1 functions with exponential decay as ξ2 → ∞. One

can easily show that (4.2) solves the equation:

−Δxu
ex
ε (x) = λεu

ex
ε (x) (4.4)

if and only if k(ε) =
√
λε.
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We are looking for uin
ε (ξ), which solves the equation:

−Δxu
in
ε (ξ) = λεu

in
ε (ξ). (4.5)

If (4.4) and (4.5) are satisfied, then uε from (4.1) is the solution of

−Δxuε = λεuε + F, (4.6)

where F = −uin
ε Δxχ − 2∇xu

in
ε ∇xχ. Our aim is to construct uin

ε so that F will be of small order
as ε → 0. This is the reason why we need to have vi as exponentially decaying functions.

Now we derive the formula for the Laplacian in ξ-variables:

Δx =
∂2

∂r2
+
1
r

∂

∂r
+

1
r2

∂2

∂θ2

=
1
ε2

∂2

∂ξ22
+

1
ε(εξ2 − 1)

∂

∂ξ2
+

1

ε2(εξ2 − 1)2
∂2

∂ξ21

=
1
ε2
Δξ +

1
ε(εξ2 − 1)

∂

∂ξ2
+

1
ε2

(
1

(εξ2 − 1)2
− 1

)
∂2

∂ξ21
.

(4.7)

By substituting the Taylor series for the functions

1
ε(εξ2 − 1)

,
1
ε2

(
1

(εξ2 − 1)2
− 1

)
(4.8)

in (4.7), we get the final formula for Δx:

Δx =
1
ε2
Δξ +

∞∑
n=0

(n + 1)εn−2ξn2
∂2

∂ξ21
−

∞∑
n=0

εn−1ξn2
∂

∂ξ2
. (4.9)

Substituting (2.4) and (4.3) in (4.5) and taking into account (4.9), we deduce the follow-
ing formula:

∞∑
i=1

εiΔξvi =
(
ε + ε2ξ2 + · · · + εn+1ξn2 + · · ·

) ∞∑
i=1

εi
∂vi

∂ξ2

−
(
2εξ2 + 3ε2ξ22 + · · · + (n + 1)εnξn2 + · · ·

) ∞∑
i=1

εi
∂2vi

∂ξ21

−
(
ε2λ0 + ε3λ1 + · · · + εn+2λn

) ∞∑
i=1

εivi.

(4.10)
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By equating terms of the same power of ε, we obtain that

ε1 : Δξv1 = 0,

ε2 : Δξv2 =
∂v1

∂ξ2
− 2ξ2

∂2v1

∂ξ21
,

...,

εk : Δξvk =
k−1∑
j=1

(
ξ
j−1
2

∂vk−j
∂ξ2

− (j + 1
)
ξ
j

2

∂2vk−j
∂ξ21

)
−

k−3∑
j=0

λjvk−j−2,

....

(4.11)

Consider now the boundary conditions from (2.2). According to the property of χ,

uε(x) = uex
ε (x) + uin

ε

(
1 − r

ε
,
θ

ε

)
= J0(k(ε)r) +

∞∑
i=1

εivi(ξ), (4.12)

in a small neighborhood of ∂Ω. Moreover, on ∂Ω, it yields that

0 =
∂uε

∂r
= k(ε)J′

0(k(ε)) −
∞∑
i=1

εi−1
∂vi

∂ξ2

∣∣∣∣
ξ2=0

. (4.13)

We assume that the function k(ε) has asymptotics:

k(ε) = k0 + εk1 + · · · + εnkn + · · · , (4.14)

and since λε = k2(ε), we can derive the following formulas for λi:

λ0 = k2
0 , λ1 = 2k0k1, . . . , λi =

i∑
j=0

kjki−j . (4.15)

Rewriting J′
0(k(ε)) as a Taylor series with respect to ε, we have

J′
0(k(ε)) = J′

0(k0) +
J′′

0(k0)k1ε
1!

+

(J′′′
0 (k0)k

2
1 + J′′

0(k0)k2
)
ε2

2!
+ · · · . (4.16)

Substituting (4.16) in (4.13), using (4.14), and equating the termswith the same powers
of ε, we get the following boundary condition for vi, i = 1, 2, . . .:

∂vi

∂ξ2
= gi(k1, . . . , ki−1) on Γ, (4.17)
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where

g1 = k0J′
0(k0), g2 = k1J′

0(k0) + k0k1J′′
0(k0) ≡ 0. (4.18)

Consider now the boundary conditions on small holes. Analogously,

uε(x) = J0(k(ε)r) +
∞∑
i=1

εivi(ξ) = J0(k(ε)(1 − εξ2)) +
∞∑
i=1

εivi(ξ). (4.19)

Substituting the Taylor series for J0(k(ε)(1− εξ2))with respect to ε in the last formula,
using (4.14), and equating the terms with the same powers of ε in equation uε = 0 on Γε, we
get the following boundary condition for vi, i = 1, 2, . . ., on ∂B:

vi = −kiJ′
0(k0) + fi(ξ2; k0, k1, . . . , ki−1) on ∂B, (4.20)

where fi are polynomials of power i with respect to ξ2 with coefficients which depend on
(k0, k1, . . . , ki−1). The precise formula for fi can be derived for each fixed i. For example, we
have that

f1 = k0J′
0(k0)ξ2, f2 = k1J′

0(k0)ξ2 −
1
2
J′′

0(k0)(k1 − k0ξ2)
2. (4.21)

The following Lemma is useful for our analysis. For the proof see for example,[3].

Lemma 4.1. Suppose that F and v satisfy the conditions of Lemma 3.2. (a) If F is even with respect to
ξ1, then v is even; (b) if F is odd with respect to ξ1 and A1 = A2 = 0, then v is odd with respect to ξ1
and decays exponentially as ξ2 → ∞.

Theorem 4.2. There exist numbers ki and π-periodic in ξ1 functions vi with finite Dirichlet integral
in Π and exponential decay as ξ2 → ∞, such that these functions are solutions of the following
boundary-value problems:

Δvi = Fi ≡
i−1∑
j=1

(
ξ
j−1
2

∂vi−j
∂ξ2

− (j + 1
)
ξ
j

2

∂2vi−j
∂ξ21

)
−

i−3∑
j=0

λjvi−j−2 in Π \ B,

vi = −kiJ′
0(k0) + fi(ξ2; k0, k1, . . . , ki−1) on ∂B,

∂vi

∂ξ2
= gi(k1, . . . , ki−1) on Γ.

(4.22)

Moreover, the constants are defined by the formula:

ki = − 1
πJ′

0(k0)

(∫

Π\B
YFidξ +

∫

∂B

fi(ξ2; k0, k1, . . . , ki−1)
∂Y

∂νB
dSB + gi(k1, . . . , ki−1)

∫

Γ
Y dξ1

)

(4.23)
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In particular,

k1 = −πC(B)k0
(J′)2

0(k0), (4.24)

k2 =
k2
1

2k0
. (4.25)

Proof. Let v be the solution of boundary-value problem (3.15). It can be easily verified that

v1 = −k0J′
0(k0)v (4.26)

is a solution of (4.22), (4.20), (4.17) for f1, g1, and k1 defined by (4.21), (4.18), and (4.24). For
any k2 boundary-value problem (4.22), (4.20), (4.17) for v2 has a π-periodic solution with
finite Dirichlet integral. By Lemma 3.2 and (3.27), v2 has exponential decay as ξ2 → ∞ if and
only if k2 is given by (4.23) for i = 2. Let us verify formula (4.25)without applying the general
(4.23). It is obvious that

∂2v1

∂ξ21
= −∂

2v1

∂ξ22
. (4.27)

By using that fact one can write the boundary-value problem for v2 as

Δv2 =

(
∂v1

∂ξ2
− 2ξ2

∂2v1

∂ξ21

)
=

(
∂v1

∂ξ2
+ 2ξ2

∂2v1

∂ξ22

)
in Π \ B,

v2 = −k2J′
0(k0) + k1J′

0(k0)ξ2 −
1
2
J′′

0(k0)(k1 − k0ξ2)
2 on ∂B,

∂v2

∂ξ2
= 0 on Γ.

(4.28)

It can be verified that the function

v2 =
1
2
ξ22
∂v1

∂ξ2
(4.29)

is π-periodic with finite Dirichlet integral in Π, has exponential decay as ξ2 → ∞, and satis-
fies problem (4.28) for k2 defined by (4.25). We can use the induction process to finalize the
proof.

Since ki are defined by (4.23), we can calculate λi by using (4.15). Denote

uε,N = J0

(√
λε,Nr

)
+ χ(1 − r)vε,N, (4.30)

where λε,N and vε,N are the partial sums of (2.4) and (4.3), respectively.
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Theorem 4.2 implies the validity of the following useful result.

Theorem 4.3. For any integerN > 0, the function uε,N is the solution of the boundary-value problem

−Δuε,N = λε,Nuε,N + Fε,N in Ωε,

uε,N = aε,N(θ) on Γε,

∂uε,N

∂r
= bε,N(θ) on ∂Ω,

(4.31)

where ‖aε,N‖L2(Γε) = O(εN1), ‖bε,N‖L2(∂Ω) = O(εN1), ‖Fε,N‖L2(Ωε) = O(εN1), and N1 → ∞ as
N → ∞.

Proof. According to the definition of uε,N , we have that

−Δxuε,N = −Δx

(
J0

(√
λε,Nr

)
+ χ(1 − r)vε,N

)

= −ΔxJ0

(√
λε,Nr

)
−Δxχvε,N − 2∇xχ∇xvε,N − χΔxvε,N

= λε,NJ0

(√
λε,Nr

)
+ λε,Nχ(1 − r)vε,N − λε,Nχ(1 − r)vε,N −Δxχvε,N − 2∇xχ∇xvε,N

− χΔxvε,N

= λε,Nuε,N + Fε,N,

(4.32)

where

Fε,N = −vε,NΔxχ − χ(λε,Nvε,N + Δxvε,N) − 2∇xχ∇xvε,N =: I1 + I2 + I3. (4.33)

Passing from (x1, x2) variables to polar coordinates (r, θ), we get that

∂

∂x1
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂x2
= sin θ

∂

∂r
+
cos θ
r

∂

∂θ
, (4.34)

Δx =
1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2
. (4.35)

By using the fact that limx→∞xe−αx = 0 and due to the result of Theorem 4.2, we have
that, for any 1 ≤ i ≤ N,

εivi = εiO
(
e−αξ2

)
= εNO

(
εi−Ne−α(1−r)/ε

)
= εNO(εm) = O

(
εN+m

)
, (4.36)
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where m is fixed. Hence, vε,N = O(εN+m). Similarly, taking into account (4.34) and (4.35), we
can deduce that

∇xvε,N = O
(
εN+m

)(α cos θ
ε

− sin θ
r

,
α sin θ

ε
+
cos θ
r

)
,

∇xχ =
(− cos θχ′,− sin θχ′).

(4.37)

Consequently,

∇xvε,N∇xχ = O
(
εN+m

)
O

(
1
εr

)
. (4.38)

Furthermore,

Δxvε,N = − α

εr
O
(
εN+m

)
+
α2

ε2
O
(
εN+m

)
+

1
r2
O
(
εN+m

)
= O

(
1

ε2r2

)
O
(
εN+m

)
,

Δxχ = −1
r
χ′ + χ′′ = O

(
1
r

)
.

(4.39)

According to the definition of χ, the support of∇xχ andΔxχ is the set {1/4 ≤ r ≤ 1/2}.
Summarizing, we have that

I1 = O
(
εN+m

)
O

(
1
r

)
, I2 = O

(
εN+m

)
O

(
1

ε2r2

)
, I3 = O

(
εN+m

)
O

(
1
εr

)
, (4.40)

and we can derive that

‖Fε,N‖2L2(Ωε) =
∫

Ω
F2
ε,Nr dr dθ

=
∫

Ω∩{1/4≤r≤1}
I22r dr dθ +

∫

Ω∩{1/4≤r≤1/2}

[
(I1 + I3)2r + 2I2(I1 + I3)r

]
dr dθ

= O
(
ε2N+2m

)
O

(
1
ε3

)
+O
(
ε2N+2m

)
O

(
1
ε4

)
= O
(
ε2N+2m

)
O

(
1
ε4

)
.

(4.41)

Therefore,

‖Fε,N‖L2(Ωε) = O
(
εN+m−2

)
= O
(
εN1
)
, N1 −→ ∞ as N −→ ∞. (4.42)

Consider now uε,N on Γε:

uε,N = J0

(√
λε,Nr

)
+ vε,N = εN+1βN+1 + εN+2βN+2 + · · · , (4.43)
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where βj are the coefficients of the Taylor series of the function J0(
√
λε,Nr). Hence, aε,N =

O(εN+1) and

‖aε,N‖2L2(Γε) =
2
ε

∫

∂Bε

a2
ε,N dθ ∼ 2

ε
2πaεO

(
ε2N+2

)
= O
(
ε2N+2

)
, (4.44)

which yields that ‖aε,N‖L2(Γε) = O(εN+1) = O(εN1),N1 → ∞ as N → ∞. Analogously, one
can verify that ‖bε,N‖L2(∂Ω) = O(εN1),N1 → ∞ as N → ∞. The proof is complete.

5. Complete Expansion in the Case of Multiple Eigenvalue λ0

In this section we consider the case when λ0 is of multiplicity two. The asymptotics of the
eigenvalue were constructed in the form (2.4) and

uε(x) = uex
ε (x) + χ(1 − r)uin

ε

(
1 − r

ε
,
θ

ε
, θ

)
, (5.1)

uex
ε (x) = cos(nθ)Jn(k(ε)r), (5.2)

uin
ε (x) = cos(nθ)

∞∑
i=1

εiveven
i (ξ) + sin(nθ)

∞∑
i=2

εivodd
i (ξ). (5.3)

In this case,

veven
i = −kiJ′

n(k0) + f
(n)
i (ξ2; k0, k1, . . . , ki−1) on ∂B, (5.4)

where f
(n)
i are polynomials of power i with respect to ξ2 with coefficients which depend on

(k0, k1, . . . , ki−1). Moreover,

∂veven
i

∂ξ2
= g

(n)
i (k1, . . . , ki−1) on Γ, (5.5)

where

f
(n)
1 = k0J′

n(k0)ξ2, f
(n)
2 = k1J′

0(k0)ξ2 −
1
2
J′′

0(k0)(k1 − k0ξ2)
2,

g
(n)
1 = k0J′

n(k0), g
(n)
2 = k1J′

n(k0) + k0k1J′′
n(k0) ≡ 0,

(5.6)

vodd
i = 0, ξ ∈ ∂B,

∂vodd
i

∂ξ2
= 0, ξ ∈ Γ. (5.7)
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Substituting (5.3) and (2.4) in (4.5), passing to the variables ξ and (θ, ρ), and collecting
all the terms with equal order of ε, we get two systems of equations for veven

i and vodd
i :

Δveven
i =

i−1∑
j=1

(
ξ
j−1
2

∂veven
i−j
∂ξ2

− (j + 1
)
ξ
j

2

∂2veven
i−j

∂ξ21

)
− n

i−3∑
j=0

(
j + 1

)
ξ
j

2

∂vodd
i−j−1
∂ξ1

− n2
i−3∑
j=0

(
j + 1

)
ξ
j

2v
even
i−j−2 −

i−3∑
j=0

λjv
even
i−j−2 in Π \ B,

(5.8)

Δvodd
i =

i−2∑
j=1

⎛
⎝ξ

j−1
2

∂veven
i−j
∂ξ2

− (j + 1
)
ξ
j

2

∂2vodd
i−j

∂ξ21

⎞
⎠ + n

i−2∑
j=0

(
j + 1

)
ξ
j

2

∂veven
i−j−1
∂ξ1

+ n2
i−3∑
j=0

(
j + 1

)
ξ
j

2v
odd
i−j−2 −

i−3∑
j=0

λjv
odd
i−j−2 in Π \ B.

(5.9)

Theorem 5.1. There exist numbers ki and π-periodic in ξ1 even functions veven
i and odd functions

vodd
i with finite Dirichlet integral inΠ, which have exponential decay as ξ2 → ∞, such that these fun-

ctions are solutions of the boundary-value problems (5.8), (5.4), (5.5), and (5.9), (5.7), respectively.
Moreover, the constants ki are defined by the formula:

ki = − 1
πJ′

n(k0)

(∫

Π\B
YFi dξ+

∫

∂B

f
(n)
i (ξ2; k0, k1, . . . , ki−1)

∂Y

∂νB
dSB + g

(n)
i (k1, . . . , ki−1)

∫

Γ
Y dξ1

)
,

(5.10)

Proof. The problems (5.8), (5.5), (5.4) for functions veven
1 , veven

2 coincide with problems (4.22),
(4.17), and (4.20) (if one changeJ′

0(k0) byJ′
n(k0) and fi, gi by the respective f (n)

i , g
(n)
i ). There-

fore the construction of veven
1 , veven

2 and k1, k2 is just the same as the construction from the
proof of Theorem 4.2. Due to (5.9), (5.7), the problem for vodd

2 is as follows:

Δvodd
2 = nξ2

∂veven
1

∂ξ1
in Π \ B,

vodd
2 = 0 on ∂B,

∂vodd
2

∂ξ2
= 0 on Γ.

(5.11)

The function veven
1 is even (due to (4.26)) and, hence, the right-hand side is odd in (5.11) and is

even in (5.8). By Lemma 3.2 and Theorem 4.2, we conclude that there exists the even solution
vodd
2 of (5.11) with exponential decay. Then we can use the iteration process to complete the

proof.

Denote

uε,N = cos(nθ)J0

(√
λε,Nr

)
+ χ(1 − r)vε,N, (5.12)

where λε,N and vε,N are the partial sums of (2.4) and (5.3), respectively.
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Theorem 5.1 implies the validity of the following result.

Theorem 5.2. For any integerN > 0, the function uε,N is the solution of the boundary-value problem:

−Δuε,N = λε,Nuε,N + Fε,N in Ωε,

uε,N = aε,N(θ) cos(nθ) on Γε,

∂uε,N

∂r
= bε,N(θ) cos(nθ) on ∂Ω,

(5.13)

where ‖aε,N‖L2(Γε) = O(εN1), ‖bε,N‖L2(∂Ω) = O(εN1), ‖Fε,N‖L2(Ωε) = O(εN1), and N1 → ∞ as
N → ∞.

Proof. The proof is analogous to the proof of Theorem 4.3. Hence, we omit the details.

6. Verification of the Asymptotics

Consider the boundary-value problem:

−ΔUε = λUε + F in Ωε,

Uε = 0 on Γε,

∂Uε

∂r
= 0 on ∂Ω,

(6.1)

where F ∈ L2(Ω) and λ/=λ0 is some fixed number.
Similarly to the techniques used in [3, 18], one can show that the boundary-value pro-

blem (6.1) has the solution Uε ∈ H1(Ω) and the following representation holds:

Uε =
uε

λε − λ

∫

Ω
uεF dx + Ũε, (6.2)

for λ close to the simple eigenvalue λ0 of the problem (2.3) and

Uε =
1

λε − λ

2∑
i=1

ui
ε

∫

Ω
ui
εF dx + Ũε, (6.3)

for λ close to multiple eigenvalue λ0 of the problem (2.3). Here uε is normalized in L2(Ω) eig-
enfunctions to (2.2) and ui

ε is orthonormalized in L2(Ω) eigenfunctions to (2.2). Moreover,

∥∥∥Ũε

∥∥∥
H1

≤ C‖F‖L2
, (6.4)
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where the constant C is independent on ε and λ. It follows from (6.2) and (6.4) that

‖Uε‖H1 ≤ C

λε − λ
‖F‖L2

. (6.5)

Consider now the case of simple λ0. Define the function:

UN
ε (x) =

(
1 +

1
ε

)
uε,N(x) −

(
1 +

1
ε

)
aε,N + bε,Nχ(1 − r)(v(ξ) + ξ2 + C(B)), (6.6)

where uε,N and v are the solutions of (4.31) and (3.15), respectively, and C(B) is given by
(3.18). Then, by Theorem 4.3,UN

ε is the solution of (6.1) if

λ = λε,N, ‖F‖L2
= O
(
εN2
)
, N2 −→ ∞ as N −→ ∞. (6.7)

Taking into account (6.5), (6.7), and the fact that ‖Uε‖H1 < ∞, we can conclude that for each
fixed N,

λε − λε,N = O
(
εN2
)
= o
(
εN
)

as ε −→ 0. (6.8)

Therefore the asymptotics constructed in Section 4 coincide with the expansion of λε. For the
case of multiple λ0, one can use the same technique. The difference is follows: one should use
(6.3) instead of (6.2) and Theorem 5.2 instead of Theorem 4.3. The asymptotics of λε are com-
pletely verified.

7. Application to a Friedrichs-Type Inequality

Consider the sets Ωε,Γε, which were defined in Section 2.

Definition 7.1. The Sobolev classH1(Ωε,Γε) is the class of functions fromH1(Ωε) having zero
trace on Γε.

Theorem 7.2. Let u ∈ H1(Ωε,Γε). Then a Friedrichs-type inequality

∫

Ωε

u2(x)dx ≤ Kε

∫

Ωε

|∇u(x)|2 dx (7.1)

holds, where the best constant Kε has the asymptotics

Kε =
1
k2
0

+
4πC(B)

(J′
0

)2(k0)
k20

ε + o(ε), (7.2)

as ε → 0. Here k0 is the smallest root of the Bessel function J0 and the constant C(B) is given by
(3.18).
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Proof. The geometric approach developed in [5, 9] allows us to state that there is a constant
K > 0 such that

∫

Ωε

u2(x)dx ≤ K

∫

Ωε

|∇u(x)|2 dx. (7.3)

The idea and method of proof are exactly similar to the ones which were used in the men-
tioned papers. We are interested in the behavior of the best possible constant as ε → 0. Clear-
ly, the best constantKε = 1/λ1ε , where λ1ε is the smallest eigenvalue of the boundary-value pro-
blem (2.2) (due to the variational formulation of the smallest eigenvalue). Therefore, we can
apply (2.4) and (3.28) to derive the asymptotic expansion for Kε:

Kε =
(
λ1ε

)−1
=
(
λ10 + ελ11 + o(ε)

)−1
=

1
λ10

− 2λ11(
λ10
)2 ε + o(ε). (7.4)

Since we are interested in the smallest eigenvalue λ10, we have to choose the smallest positive
root of J0(k0) = 0 as k0, precisely, k0 = 2, 405. Then, we get, after some simple calculations
and using (4.15) and (3.28),

Kε =
1
k2
0

+
4πC(B)(J′

0)
2(k0)

k2
0

ε + o(ε). (7.5)

The proof is complete.
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