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Carlson’s type theorem on removable sets for a-Holder continuous solutions is investigated for
the quasilinear elliptic equations div A(x, u, Vu) = 0, having degeneration w in the Muckenhoupt
class. In partial, when a is sufficiently small and the operator is weighted p-Laplacian, we show

that the compact set E is removable if and only if the Hausdorff measure A,” o _W(E) =0.

1. Introduction

In this paper, we will consider questions of a removable singularity for the class of quasilinear
elliptic equations of the form

div(A(x,u,Vu)) =0, (1.1)

where A(x,¢,8) = {A1(x,¢,8), Aa(x,¢,8), ..., An(x,¢,8)} : D xR xR" — R" are continuous
with respect to ¢, continuously differentiable with respect to ¢ functions. For ¢ € R, { € R, it
is assumed that A;(x,¢,¢); j =1,2,...n are measurable functions with respect to a variable x
in the open domain D C R". Let the following growth conditions be satisfied:

3 %(x, & Omime > Aol
ik=1 Yok

(1.2)
o4 e, g)' kP Ki=12,...m
OCk
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where 1 <p < oo, A € (0,1). Throughout the paper, w : R* — [0, oo] is a measurable function

satisfying the doubling condition: for any ball B = B(x,r) with centre at a point x and of
radius r > 0, the inequality

J‘ wdeCJ‘ wdx (1.3)
2B

B

is satisfied, where the constant C is positive and does not depend on the ball B ¢ R". For the
system of functions A;(x,¢,¢); j =1,2,...n, we can write the following expression:

1 n
Ai(x,u(x),Vu(x)) = j Z%(x,u(x),tVu(x))uxkdt

0 k=1
(1.4)
= > b () w(x)|Vu(x) P Puy, i=1,2,...,n,
k=1
1 2p (1wn [ OA; .
where bix(x) = w(x)" |[Vu(x)] pfo Sk a (x,u(x),tVu(x))dt; i,k = 1,2,...,n. There-
k
fore, (1.1) can be written in the form
i . <w|Vu|p_2bik(x)a—u> = 0. (1.5)
ox; Oxk

ik=1

By virtue of (1.2) and (1.4), the system of functions {by(x)};x-1,  , is bounded and
measurable. Moreover, the condition of uniform ellipticity is satisfied: for a.e. x € D, 1 € R"
there exist positive constants C;, C, such that

n n ~ ~ 1 aAl
Cilnl* < Y bu()mime = Y w(@x) Vu@)P P | 5 (G u(x), tVu()gpedt < G|,

ik=1 ik=1 0 Ok
(1.6)

Denote by C*(D), 0 < a < 1, the class of continuous in D functions f : D — R
satisfying the condition

|f(x) = f(y)| < K|x - y|* (1.7)

with some K > 0 not depending on the points x,yy € D. Denote by W;w(D) the space of
measurable functions in D, which have the finite norm

Uy, (1.8)

n
lall = Nl 0 + ]zl| Loy

where u,, are the derivatives of a function u € Ly, (D) in the sense of the distribution
theory, which belong to the space L,, (D). The norm of the space L,,(D) is given in
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/
the form ||f||pr(D) = (wa|f|de)1 Pforp > 1; ||f||pr(D) = ess sup, p|f(x)| for p = oo.
Denote by W;w(D) a subspace of the space W;W(D), where the class of functions C§°(D)
is an everywhere dense set. Denote by W}}W(D) the closure of the set of functions C* (D) with

respect to the norm W,,,(D). The spaces W, (D) and I/T/r}w(D) coincide and are completely
reflexive [1, 2] if the conditions 1 < p < oo and A,-Muckenhoupt are fulfilled for w:

(IB w(x)dx> (IB w‘l/(’”‘l)(x)dxy_1 < Cy|BP, (19)

where |B| denotes the Lebesgue measure of an arbitrary ball B ¢ R". In the sequel, we will
also use the A;-condition:

f w(x)dx < Cp"inf w. (1.9"
B(x,p) x€B
Definition 1.1. A function u € W;W(D) is called a solution of (1.1) if the integral identity

f A(x,u,Vu) - Vepdx =0 (1.10)
D

is fulfilled for any test function ¢ € W, (D).

Definition 1.2. Let E CC D be a compact subset of the bounded domain D C R". One will say
that the set E is removable for the class of C*(D) of solutions of (1.1) if any solution of (1.1)
in D \ E from the space W;w,IOC(D \ E) belongs to the space W;w(D) throughout the domain
D and is extendable inside the compactum E as solution.

Definition 1.3. Let E C R" be a bounded closed subset, h : R — (0, o) a continuous function,

and h(0) = 0, u some Radon measure. A finite system of balls {B, = B(xy,7y)},-1, N, the

radii of which do not exceed 6 > 0, covers the set E, that is, E C |J,, B,. Assume that AZ"S (E) =

inf{>:, h(r,)u(By)}, where the lower bound is taken with respect to all the mentioned balls.
Assume that

AI(E) = Jlim AP (E). (1.11)

In the case u = dx, h(t) = tP P4 the number AZ(E) is a Hausdorff measure of order
n—p+ (p - 1a of the set E. We will sometimes denote it by mes, p.(,-1)«(E). Denote by

AP D%(E) the term AR (E) for h(t) = P+ 0D, dy = w dx.
By Carlson’s theorem [3], a necessary and sufficient condition for the compact set E

to be removable in the class of harmonic outside E functions belonging to the class C*(D) is
expressed in terms of a Hausdorff measure of order n — 2 + & having the form

mes, 2,.,E=0, O<a<l. (1.12)
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(For the case a = 1, the same result was proved in [4, 5].) In [6], the corresponding result was
proved for a general linear elliptic equation with variable coefficients (see also [7, 8]). In [9],
for the case p > 2, a sufficient condition was proved for a solution of the p-Laplace equation
(A = |Vul|’*Vu) to be removable in the class C*(D) (0 < a < 1) in the form

mes, pi(p-1aE =0, O0<a<l. (1.13)

Furthermore, a complete analogue of Carlson’s result was proved in [10], where the authors
not only proved the necessity of condition (1.13), but also gave another proof of sufficiency
that includes also range of exponent 1 < p < 2. Their approach was applied to the case of a
metric measure space in [11].

It should be said that in [9] a somewhat general result was in fact obtained for the
compact set E to be removable for the class C*(D) of solutions of the equation

20 ou
— P22\ _
igl o <w|Vu| axi> 0 (1.14)

in the form of a sufficient condition

APy = 0, (1.15)

Note, in [9], the case p > 2 was considered and it was required that the function w to satisfy
the doubling condition.

The present paper continues the development of the approach of [9]. We show that
condition (1.15) is also the necessary one for the compact set E to be removable. Moreover,
imposing some restrictions on the degeneration function, we manage to make the proof
embrace a range of the exponent 1 < p <2.

We will use the following auxiliary statements.

Lemma 1.4 (see [12]). Assume that a function u € L'(D) satisfies the inequality

’[ |u— (u),,|dx < Mr™® (1.16)
B(x,r)

for any ball B(x,r) C D, where a € (0,1). Then, u € C*(D) and for any D' CC D the estimate

suplu| + sup

ux)—u
[u() —uy)| C(M+ ull i), (1.17)
D' x,yeD’ |x_ y

—

where C = C(n,a, D', D), is satisfied.

We also need the following analogue of the well-known Giaquinta’s lemma [13].
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Lemma 1.5. Let ¢(t), w(t) be nonnegative nondecreasing functions on [0, R]. Assume that s > 0 is
such that

“;(()‘:)) > 18 (1.18)
forall r > 0and 0 < A < 1. Suppose that
P(p) < [ﬂ<—> +e]¢(r) + Bw(r)rf (1.19)

forany 0 < p < r < R, with A, B, a, p nonnegative constants and p < a. Then, for any y € (B, a),
there exists a constant ey = €9(A, &, B, y, s) such that if € < gy, then one has, farall 0 < p <r <R,

$(p) < [ (p))< ) b(r) +Bw(P)Pﬂ]f (1.20)
wherec = c(f,a, A,s,y) > 0.

Proof. For T € (0,1) and r < R, we have

LW(TT)

¢(rr) < AT” ()

[1+e77%°]p(r) + BrSw(zr)rP. (1.21)

Choose T < 1 in such a way that 2A7* = 7' and assume £y77*° < 1. Then, we get, for every
r <R,

P(tr) < TY ¢(r) + BrSw(tr)rf (1.22)

and therefore, for all integers k > 0,

#(rr) < SE o) rmra( )

(k+1) W(Tk 'r) k+l,\ kB p d i(y—p)
<T YT¢(7‘) + Bt~ w< T>T 7 277 ¥ (1.23)
=0
K+l _
O B

Tl o(r) + P r w<7'k”r>.

k+2 k+1

Choosing k such that 7°**r < p < 7"*'r, the last inequality gives

$(p) < <> (p)¢(r)+(1_f+:)7_s+2ﬁppaJ(p). (1.24)

w(r)

This proves Lemma 1.5. O
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We did not find the proof of the next inequality in the literature and therefore give here
our proof.

Lemma 1.6. Let 1 < p < 2. Let x,y € R" be arbitrary points. Then, the estimate

|l 2 = [y [y | < 22| -y (1.25)

is valid.

Proof. Let us introduce the vector function
9(0) = |6x + (1-0)y|"*(6x+ (1-0)y), 0<0O<1 (1.26)

acting from [0,1] into R". Applying the methods of differential calculus for the vector
function, we obtain

1
1372 = [y 2y | = lo(1) - 9(0)] = j;wx+u—ewﬁzw—yyw

1 d(P
fo %de‘ - (p-1)

1
<(p-1)|x-y fo |6x + (1-6)y|"ae.
(1.27)

The set of points {I(6) e R" : [(0) = Ox + (1 -0)y; 0< 0 <1} in R” forms a segment of
the straight line that connects the point x with the point y. We denote this segment by [x, y].
Let |dl| be a length element of this segment. It is obvious that |dl| = |x — y|d6. Therefore, for
the above integral expression, we have the estimate

|d1(6)]

[x~y|
s@—nﬂwﬁwwﬁwwn=@—nk

To proceed with the estimation of this expression, we introduce into consideration
the triangle, the base of which is the segment [x, y] and the vertex lies at the point 0. Now,
the integration in the preceding estimate will be carried out with respect to the base of the
triangle. It is not difficult to verify that the above integral expression takes a maximal value
when the point 0 lies in the middle of the segment [x, y], which means that for it we have the
estimate

|x—]/|/2 dS 5
-1 =Tyl g (1.29)
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To show that this is true, let us choose a new coordinate system, where the x,-axis is
directed along the segment [x, y]. Let (11,12, ...,u,) be the coordinates of the the point 0 in
the new coordinate system. Then, the preceding integral expression is equal to

lx-yl/2 p-2
(p—l)fl |/2< u%+u§+---+ui_1+(un—xn)2> dx,
|x-y
1.30
lx=yl|/2 5 |x-y|/2 » ( )
= (p—l)f [u, — sl “ds <2(p-1) sP2ds =2"P|x —y|".
~|x-y|/2 0 0O

The main result of this paper is contained in the following statements.

Theorem 1.7. Let D C R" be a bounded domain, E CC D be a compact subset. Let 2 < p < oo and
w be a positive, locally integrable function satisfying condition (1.3) or 1 < p < 2 and let any of the
following conditions be fulfilled for the function w:

(1) the function w is integrable along any finite smooth n—1-dimensional surface and condition
(1.9") is fulfilled for it;

(2) for any x € D and sufficiently small p > 0, the condition fB(x,p) wdy < Cp® is fulfilled for
some s > n —p + 1, where the constant C > 0 does not depend on x.

Then, for a compact set E to be remouvable in the class C*(D), 0 < a < 1 of solutions of (1.1)
inD\E,uc W; (D \ E), it is sufficient that condition (1.15) be fulfilled.

w,loc

Here, we will use also the fact that a solution of generating equations of the form (1.1)
is Holderian. According to [14], when a weight w belongs to the Muckenhoupt A,-class, a
solution of (1.1) belongs to the class C*(D,) in any subdomain D, = {x € D : dist(x,0D) > p}
of the domain D. For solutions, we have the estimate

K
oscu§C<B> oscu, O<p<r, (1.31)
B(x,p) Y/ B(xr)

where k = x(n,p,Cp,\) € (0,1] and C = C(n,p,Cp, 1). Let k denote a maximal number
K = x(n,p, CP,)L), for which the estimate (1.31) holds for solutions of (1.1). The following
statement is valid.

Theorem 1.8. Let w € Ay, E CC D be a compact subset of the domain D. Let 0 < a < x be
some number. In that case, if A,/ +(”71)0‘(15) > 0, then the set E is not removable in the class of u €
W (D \ E) solutions of (1.1) which belong to C*(D).

pw,loc

The foregoing statements give rise to the following corollaries.

Corollary 1.9. Let 0 <a <x,2<p < oo, w € Ap, or 1 <p <2 and any of the following conditions
be fulfilled:
(1) the function w satisfies condition (1.9') and is integrable along any finite smooth n — 1-
dimensional surface;
(2) for any x € D and sufficiently small p > 0, the condition fB(x/P) wdy < Cp?® is fulfilled by
some s > n —p + 1, where the constant C > 0 does not depend on x.
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Then, for the compact set E to be removable for the class of W;W(D \ E) solutions of (1.1)
belonging to C*(D), it is necessary and sufficient that condition (1.15) be fulfilled.

Corollary 1.10. Let 0 < a < 1,1 < p < oo. Then, for the compact set E to be remouvable in the class
W (D \ E) of solutions of the equation

p.loc
20 ou
— P27\
;:1 axi<|Vu| 6x~> 0 (1.32)

1

belonging to the class C*(D) throughout the domain D, it is necessary and sufficient that condition
(1.13) be fulfilled.

2. Proof of the Main Results

In [9], the method of proving Theorem 1.7 was based on the application of an analogue of
Landis-Gerver’s mean value theorem [15]. The restrictive condition p > 2 used in [9] was
necessitated by the proof of Lemma 2.1 below (see also [15, Lemma 1]). Below, we prove a
such type lemma for the case 1 < p < 2, ignoring some smoothness of the function f and
making some additional assumptions for the function w.

Lemma 2.1. Let D be a bounded domain. Let 2 < p < oo and the function w : R" — [0, oo] satisfy
condition (1.3) or 1 < p < 2, and let any of the following conditions be fulfilled for the function w:

(1) condition (1.9") is fulfilled and w is integrable along any finite smooth n — 1-dimensional
surface;
(2) for any x € D and sufficiently small p > 0, the condition jB(x,p) wdy < Cp®, where the

constant C > 0 does not depend on x, is fulfilled for some s > n—p + 1.
Assume that f : D — R is a sufficiently smooth function (one can also assume the condition

f(x) € CF(D), where p > min{p’,1}). Then, for any & > 0, there exist a finite number of balls {B,},
v=1,2,...,N, such that

N
ZJ‘ w|Vf|p_1ds <e. (2.1)
V= an

Proof. We will follow the same reasoning as that used in proving Lemma 1 in [9] (see also
[3], Lemma 2.1). The set Oy = {x € D : V f(x) = 0} is divided into two parts Oy = O} U O;ﬁ;
here, O} is the set of points where V2 f(x) #0, and O; is the set of points where V2f(x) = 0.
Let 1 < p < 2. Then, for the set O}, our reasoning is as follows. By virtue of the implicit
function theorem, the set O} lies on a countable quantity of smooth n—1-dimensional surfaces
{Sj}; j=1,2,....Let x € S; be a fixed point on the j-th surface. For sufficiently small » > 0,
we have

I w|Vf|p_1ds <2CirP tw(S(x, 1)), (2.2)
S(x,r)

where C; = supp|V?f| and w(S(x,r)) is integral omega over the n — 1 dimensional surface
S(x,r). By virtue of Fubini’s formula,

21y
J‘ <I w dsy> dt < J w(y)dy. (2.3)
Ty |y—x|:t |y—x|<2rx
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Let E be the set of points t € (ry,2ry), for which the following condition is fulfilled:

2
fly_x|:t wds > P, <f|y_x|<2rx w(x)dx>. (2.4)

Then

% <f|y_x|<2rx w(y)dy> 1 (E) < L <f|y_x|_t w ds> dt < f 2 (fly—xl—t w ds> dt

< f w(y)dy,
|y—x|<2rJC

(2.5)

whence for the one-dimensional Lebesgue measure of the set E we obtain the estimate i (E) <
rx/2. Hence, by virtue of the doubling condition, there exists a point t, € (ry,2ry), for which

- 2C 4C
<o d P d — dx ).
fly—x|_tx wees Tx <J.|y—x|<2rx w(y) y> : Tx <f|y—x|<rx W(y) ]/> : tx <f|y—x|<tx w(x) x>
(2.6)

Then, for sufficiently small ¢; > 0, for any x € S, it can be assumed that there exists a number
Px € (t]-,2t]~), for which

w((x,p)) < -0 (B(x,p.). 7)

Therefore,

f w|Vf|p71ds < 4C1p§71w(5(x,px)) < 16CC1p§72w(B(x,px)). (2.8)
S(X/Px)

For the surface S;, from the system of balls {B(x, px);x € S;}, we can extract, by virtue of
Besicovtich theorem [16], a subcovering { B(x,, py); x, € S;, v € N} with finite intersections:

N X8y () <Cur | UB(xv,pv) DS (2.9)

v

Therefore and by construction, for x, € S;, v =1,2,..., we have p, € (t;,2t;). Thus,

=

w|Vf|p71ds < Zl6CC1pv72w(B(xv,pv)) < 216CC1C2PZ+P*2 Bi(nf )w
S(xv,pv) v > x€B(xy,pv

< 3'32CC1Capl ' w (B (xy, py) N S;) <32 2p’1Ct?_1w(S]-), (2.10)

i=1,2,....
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Here, we have used the sufficient smallness of t;, condition (1.9'), and the inequality
prtinfyep(x, p,)w < 2w(B(xy, py)NS;). Choosing now ¢, 32~2”‘1CC1C2t§.’71w(S,-) < /2, where
€ > 0 is an arbitrary number, we obtain >, fs( o) w|V fIP~'ds < /2], whence, after summing
the inequalities over all surfaces S;, j € N, we find

Z Z f w|Vf|p_1ds <e. (2.11)
S(xv,pv)

j XVGS}'

In the case of the second condition 1 < p < 2, using fB(x oW dy < Cp®, we immediately
pass from the inequality (2.8) to (2.10) as

w(S(x,px)) < i—cw(B(x,px)) < 4CCup " = 8CCypy Pmes, 1 (B(x, px) N Si). (2.12)

Due to the latter inequality, an estimate analogous to (2.10) will have the form

ZI w|Vf|p_1ds < ZZClpv_zw(B(xv,pv)) < Z4C1pf§_2+s,
v S(XWPv) v v (213)
ZSClpffmp*lmesn,l(B(xv,pv) NnS;) <16- ZP‘lCt]S.’*mpflw(S,-), i=12....

After choosing t; sufficiently small and taking the condition s > n—p +1 into account, we can
make the right-hand part smaller than ¢/2/.

In the case p > 2, the whole reasoning of [9] is applicable. Note that only instead of the
inequality (2.10) we will have

ZJ‘ w|Vf|Pds < Cvaflw(B(xv,pv)) < Clt?zw(S{j), (2.14)
v 7 S(xy,pv) v

where S{j is the t; neighborhood of the surface S/. After choosing a sufficiently small ¢;, we
can make the right-hand part of this inequality smaller than ¢/2/. This is possible because the
n-dimensional Lebesgue measure of the surface S/ is equal to zero.

Now, it remains to obtain the covering for the set of points O}. Let1l <p <2 Letus
decompose O} = O}/ U O;”, where O}’ is the set of points O;L, for which V3f #0. Here, we
repeat the reasoning for O}. As above, the set O" is divided into two parts. In one part, we
have V*f(x)#0, to which we apply the same reasoning as for O}. The second part of 0",
where V*f(x) = 0, is again divided into two parts. At the k-th step, when k(p - 1) > 1 and
t > 0 is sufficiently small, this process yields the estimate

2

w|Vf|Pds <> Cp P V(S (xs, pv))
) Y (2.15)

< ﬂzchvk(p_l)_lw(B (xv; Pv) ) < ZTZCCBW(D)/

where 7 > 0 is arbitrary.
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Note that, in the case p > 2, the foregoing estimate gives the desired results
immediately at the first step (k = 1). O

Remark 2.2. 1t is not difficult to verify that under the assumptions of Lemma 2.1, instead of
the condition of sufficient smoothness it sufficed to assume that f(x) € CP(D), where f§ >
min{p’,1}.

Applying approaches similar to those in [15, Theorem 2.2, page 128] and [9], we prove
the following analogue of Landis-Gerver’s lemma.

Lemma 2.3. Let 2 < p < oo and the function w : R" — [0, oo] satisfy condition (1.3) or 1 < p <2
and let any of the following conditions be fulfilled for the function w:

(1) condition (1.9") is fulfilled and w is integrable along any finite smooth n — 1-dimensional
surface;

(2) for any x € D and sufficiently small p > 0, the condition fB(x/P) wdy < Cp® is fulfilled by
some s > n —p + 1, where the constant C > 0 does not depend on x.

Let D be some domain lying in the spherical layer B(xo,2r) \ B(xo, r) and having limit points
on the surfaces of the spheres S(xo,2r) and S(xo, 7). Let 3}, aix(x)1inx be the quadratic form, the
coefficients of which are well defined and continuously differentiable in the domain D and for which
the inequalities

Mal* < S aw)mime < A7y (2.16)
ik=1

are fulfilled for any x € D, n € R" for some A € (0,1). Assume that f : D — R is a sufficiently
smooth function.

Then, there exists a piecewise-smooth surface %, separating, in the domain D, the surfaces of
the spheres S(xo, r) and S(xo,2r) and being such that

(osch)p_lw(D)
P !

I w|VFIP? (2.17)
Py

Ef
—_— <
‘ds K

where 0f /Ov = Z;’zl aij(x) fx,n; is conormal derivative on X, n = (ny,n, ..., ny) is unit orthogonal
vector to the surface 3, and the constant K depends on p, A, and the dimension n.

Proof. It suffices to consider the case r = 1. Indeed, after the change of variables x = ry,
the function f : D — R transforms to the function f : D — R, where f (y) = f(ry).
Also, |V, f| = |Vaflr, 8f/8v, = (3f/0vy)r, w(D) = w(D)r™. D lies in the spherical layer
B(0,2) \ B(0,1). It suffices to show that 0 f /0vy, = (0f/0vy)r. Indeed, let a sufficiently small
element of the surface X satisfy the equation ¢(x) = 0 in coordinates x. Then, after the change
of variables, this equation takes the form ¢(y) = 0, where ¢(y) = ¢(ry). In other words, the
normals of the surfaces X and . are related by 1, = V,¢/|V¢| = V,¢/|V | = n,. Therefore,

n a a
i%::laik(x)a—ink = r%, Gi(y) = an(ry), i,k=1,2,...,n.

of & , .\ Of .
=D an(y)z-nk=r
ooy, i%::l (y) oy;

(2.18)
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Applying these equalities, from the estimate

J, w1

ds, <K (ogcf) pilw(ﬁ), (2.19)
D

of
0vy

we obtain (2.17).

Let us now prove (2.19). Following the notation and reasoning of [15] (see also [9]),
we assume that € = w(D)(oscf )pfl. For this ¢, we find the corresponding balls Q1, Q», ..., QN
of Lemma 2.1 and remove them from the domain D. Assume that D* = D \ U,I:ljzl Q. and
intersect D* with the closed layer (1 +1/4) < |x| < (1 + 3/4). Denote this intersection by D'.
On the closed set D', we have V f #0. Let us choose some §-neighborhood D:S with 6 <1/4
so small that in D we would have |V f| > a > 0. We consider on Dy, the system of equations

dx,- z 0 .
dxi Zaik(x)a_xfk, i=1,2,...n. (2.20)
k=1

In Dj, there are no stationary points of the system (2.20), and at every point x € D the
direction of the field forms with the direction of the gradient an angle different from the
straight angle. Let I(x) be the vector of the field at the point x. Then, using cos(I(x), Vf) =
(St aw(x)(0f /0x1), V) /| Siiy aie(20) (0f /0x)|[V f] > MV f/A7|V |2 = A%, we obtain

of
al

> V|VF]>ya>0, y=21% (2.21)

From this inequality, it follows that in D), there are no closed trajectories and all the trajectories
have the uniformly bounded length.
Let some surface S be tangential, at each of its points, to the field direction. Then,

[ wlvsr

0
of ‘ds =0, (2.22)
ov

since the integrand is identically zero. We will use this fact in constructing the needed surface
2. The base of X consists of ruled surfaces, while the generatrices are the trajectories of the
system (2.20). Note that they will add nothing to the integral in which we are interested.
These surfaces will have the form of fine tubes which will cover the entire D'. Let us insert
partitions into some of the tubes. The integral over these partitions will not any longer be
equal to zero, but we can make it infinitesimal. The construction of tubes practically repeats
that given in [15, pages 129-132].

Denote by E the intersection of D’ with the sphere S‘()1 132y~ Let N be the set of points
x € E, where the direction of the field of the system (2.20) is tangential to the sphere S(()1 13/4)°
At the points x € N, we have 0f/0v = 0, where 0/0v is the derivative with respect to the

conormal to the sphere S(()1 1372)- Cover N by a set G, open on the sphere S((J1 132y and being
such that
p-2 of p-1
w|VF|"7| 5 |ds < w(D)(osef)". (2.23)
G
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Put E' = E \ G. At the points x € E', the direction of the field is transversal to the sphere.
Cover E' on the sphere S?l 1374y Dy a finite number of uncovered domains with piecewise-
smooth boundaries. We will call them cells. We will choose their diameters so small that at the
points of the cells the field would be transversal to the sphere and the bundle of trajectories
passing through each of the cells would diverge by 6 /2n at most. The surface with trajectories
lying inside the ball |x| < (1 + 3/4) and passing through the cell boundary will be called a
tube. Thus, we obtain a finite number of tubes. We will call a tube a through tube if, without
intersecting this tube, we can connect by a broken line a point of its corresponding cell with
a point of the sphere 5?1 +1/4)(5/2) Within the limits of the intersection of D" with a spherical
layer 1 +1/4 - 6 < |x| < 1+ 3/4. Such through tubes are denoted by T1,T,...,T. If every
through tube is partitioned, then the spheres S and S) are separated in D by the set-theoretic
sum of nonthrough tubes, partitions T3, 15, ..., T, the spheres 51, S,, ..., Sn, and the set G on
the sphere S, 5 , .

Let us now take care to choose partitions in such a way that the integral
[w|V fIP 21 f/0v|ds over them would have the value which we need. Denote by U; the
domain bounded by T;. Choose any trajectory on this tube. Denote it by L;. The length p;L;
of the curve L; satisfies the inequality p;L; > 1/2. Introduce, on L;, the parameter [ which is
the length of the arc counted from S(()1 +1/2)- Denote by 0;(I) the section U; with a hypersurface
which is orthogonal, at the point [, to the trajectory L;. Let the diameter at the beginning of
the tube be so small that |, ([, 1 wds)dl < 2w(U;). Then, the set H of points I € L;, where
fo,- Ow ds > 8w(U;), satisfies the inequality p1L; < 1/4. Thus, for E = L; \ H, the inequality
u1Li > 1/4 is valid and

I wds <8w(U;) forleE. (2.24)
ai(l)

At the points of the curve L;, the derivative 0f /0l preserves the sign and therefore

[[Zas] |2

—|dl . 2.25

al ar |4 < gscf (@.29)

Hence, using p1L; > 1/4 and the mean value theorem, we see that there exists a point [y €

E such that |0f/ é)l|l=l0 < 4oscf. On the other hand, since, by virtue of (2.21), [0f/ al|l=,0 >
YIVfl,, wehave [V f P 1=, < (4oscf )P~y1-P. This together with (2.24) gives the estimate

(1osp

> f wds < C(p,y)w(lli)(oscf)p_l. (2.26)
=0/ ) 6io)

Let us now choose a cell diameter so small that

j |Vf|p_1w ds < 2C(p,y)w(lli)(oscf)p_1. (2.27)
oi(lo)

This can be done since the derivatives 0f/0xk, k = 1,2,...,n, are uniformly continuous.
Therefore,

i J |VF|" " wds < 4C(p,y)w(U;) (oscf)" . (2.28)
i= oi(lo)
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Denote by X the set-theoretic sum of all nonthrough tubes, all o;(ly), all spheres S;, and the
set G on the sphere S’ Then, from Lemma 2.1 and (2.22)—(2.28), we obtain

(1+3/4)r"
|0 -
f V|7 é‘wdsSC(p,n,y)w(lli)(oscf)p " (2.29)
b
Lemma 2.3 is proved. O

In this paper, we give the complete proof of Theorem 1.7. Some part of the proof of
sufficiency is in fact identical to the proof given in [9]. The method of proving Theorem 1.8 is
analogous to the method [10], where the nonweight case was considered.

Proof of Theorem 1.7 (Approximation). Let A;,p+(p_1)“(E) Oand u € C*(D);letu e W o, LD\

E) be a solution of (1.1). Denote by #/ a mean value of the function u with smooth kernel p
with finite support, u') = pi/; * u = j* [, p((x = y))u(y)dy, [p. p(x)dx =1, j € N. Then,
it is obvious that u) € C*(D), j = 1,2,.... Moreover, &/ — u uniformly in any subdomain
G c D. Also, for any open set E' > E contained in G, u') — u in the norm of the space
W;w(G \ E') (see [2, 16]). Since, by condition (1.15), we have mes,E = 0, it can be assumed
that mes,E' < 17, where 7 > 0 is an arbitrary number.

Let e > 0 be an arbitrary number. Cover the set E by a finite system of balls { B, },._; , .
Ufil B,, D E such that diam B,, < 6,

N
Zr;er(P_l)aw(Bv) <eE&. (2.30)

v=1
Assume that the number 6 = 6(¢, 77) is so small that the set I = Ufil (4B,) liesin E'.

For every v, there exists, by virtue of Lemma 2.3 and inequality (1.31), a piecewise-

smooth surface yy ), v=12,...,N, j=1,2,..., separating the surfaces of the spheres 0(2B,)
and 0(4B,), such that

f w| v <]>|

Denote by TV the interiority of the surface yy ) Then, T0) = U, ' 51 = U, (2B,). Assume
that oy = rDny,. Let o

f | wjv <;>)

It is obvious that the set G \ T” is a strictly interior subdomain of the domain D \ E.
Thus, we have the identity

u( ) _ . P_l
—|ds < Kr,’ (cz)gc u(1)> w(4B,). (2.31)

# () for some v. Then, for v, the inequality (2.31) implies the estimate

A\
ds<I<r <c2)l§;cu(’)> w(4B,). (2.32)

n

> f W| Vit 2yt gy = 0, (2.33)
ik=17Y G\I"
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for any ¢ € C}(D \ I'). From this, by virtue of the convergence [u/) - ullws, @y — 0as
j — oo and the fact that the ||be]() || satisfies (2.16) by some A > 0, we find

n P2
Z fw|Vu(])| bl.(,i)uyk)qrxidx:Sj. (2.34)

I'k:1G\F’

This follows from the fact that the integrand is a system of equi-integrable functions: for any
subset g ¢ D\ I", we have

n
> [ w
i,k=178

. P2 (i
A N

dx < CI w|Vu(7)|p_l|V(p|dx
8

1/p' 1/p
<2C <f w|Vu|pdx> <f w|V(p|pdx> —0
g g

(2.35)

as mes,g — 0. Here and in the sequel, speaking in general, we denote by 6; different
sequences tending to zero as j — oo.

Green’s Formulae for Approximations

Let now ¢ € Cé(D) be an arbitrary function. Assume that ¢ = p¢(d(x)/7), where 0 < ¢(s) <1
is an infinitely differentiable function equal to zero for s < 0 and to one for s > 1 and 7 > 0
is a parameter, for all ¢ € C(l)(D), d(x) = dist(x,I7). It is obvious that ¢ € C(l)(D \ I7). Then,
(2.34) implies, for j =1,2,...,

" P2y (G L P2 Gy G d
j | Vu | B ul g g dx+ > - f | vut | b;,guy:dxig/(ﬁ)(pdx:a,..
ik=17 D\I" ik=1 % JD\I' T

(2.36)

By virtue of the majorant Lebesgue theorem, for 7 — 0, the first summand in (2.36) tends
to the limit 37 _; [, 1) w| V|’ “bPul) g dx. Let us now find the limit of the second
summand. Applying the Federer formula, we have

il g (4 w|w<;’>|”*zbg>u(;‘>(ﬁ dx
ik T JDr T e

(G),j
=1 (7 Sp2buy dy ¢
= Z_J‘ f <pw|Vu(7)|P il P g'<_>dt.
=T o \ d@)=inm\r)) |Vd| T

(2.37)
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Applying the mean value theorem, for some t; € (0, T), we obtain

" g ) (] e()e)
= w| Vil ’—ds — — )dt
,-kzzl <J‘d(x) =t v | ' [Vd| t0> T Jo ¢ T

()
s 2by) ul)d, (2.38)

“d
vay

n

— Z J (pw|Vu(]
ik=1 d(x)=to

i) |p—2 au(l)

— (pw|Vu ds asT—0.

Taking this limit relation into account, from (2.36), we obtain, as T — 0, the following
equality which is Green’ formula for approximation function u/:

n Cp2 .
S f | v | b ul g, dx =J peo|vud [~ a”—d +6;. (2.39)
ik=17 D\I'® ori

Whence, in view of the inequality |p(x)| < ”‘/’HC(D)/ x € D, we have

N D P20, ) p-2|oull)
> f . a)|Vu(])| by thx, ¢ dx| < ”‘P”C(D)f , w|Vu(])' ds +6;
k=1 D\I'?) ary (9
(2.40)
~1p-2| ou)
< ”‘P”C(D)ZI w'Vum' X \ds + o;.
v Yv

Using the convergence [|u/) — ”||w,;w(c\r') — 0 (j — o0), Lemma 1.6, conditions (1.2),
and Holder inequality, we have the estimate for 1 < p <2:

£ b (-t e
ik=1 i

. p-1
< C,[D\r' w|V<u(7) - u>| |Vo|dx

) 1/p' 1/p
§C<I w'V(u(j)—u>| dx) <I w|V(p|pdx> =6j—0 asj— oo.
D\I" D\I"

(2.41)
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An analogous estimate for 2 < p < oo has the form

n

. N i
> f - wbﬁﬁ(lw”l )~ |Vup Zuxf)tpmdx
D\T'U

i,k=1
e[l Y
<C v (u P4 v vul + |vu9 " V4 R 04
- <—[D\r'w| (u —u>| x> <J‘D\r,w<| ul +| u |> x>
([ wlvgpar)
D

’ ) .
< 2CIIVtPII'Z,,w@)IIWII’ZW(D\m ”V(”(]) - ”>

=06;j—0 asj— co.
Lpw(D\T")

The Belongness u € W, (D)

Taking into account (2.41) and (2.42), the estimate (2.32), and the uniform convergence ul) —
u in G, convergence a.e. bl.(,]() — bj, we find

1

_ \P
s C”(P”C(D)Zr"p <(2)§C u(])> (A)(Bv) + 6]
v v

n

f w|Vu|p’2bikuxk(pxidx
D\TO)

ik=1 (2.43)

< C”‘PHC(D)Zr;er(p_l)uw(Bv) +0;.
v

Therefore,

n
> f W|VulP*bixtty, px,dx = O(e) + 6. (2.44)
ik=17 D\l

Taking into account the density of the class of functions C(l)(D) in the space W;W(D) and
the fact that u € W;w 1oc(D \ E), we also come to the same equality (2.44) for any function

p € W,}w(D). Assuming now that, in (2.44) ¢ = ug?, where § € C5°(D) is a positive function
equal to one in G, since IV C I” and the integrand is positive, we obtain

n
A w|VulPdx < ) f WE|VulP bty ty, dx < j W VulP' | VEl[uldx + O(e) + ;.
G\I ik=17 D\IV D\I'/

(2.45)

Whence, by means of Young’s inequality, we derive

f w|VulPdx < C’[ w|VEF|lulPdx = O(1). (2.46)
D\l D

Then, by virtue of the arbitrariness of ¢,  (mes,E = 0), we obtain u € W;w(D).
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proof of that u(x) is a solution in D. Let us return to relation (2.44), from which, in view of u €
W,,(D) and I C E', we have

> f w|VulP bty @, dx = O(e) (2.47)
ik=17 D\E'

forany ¢ € W;w(D). By virtue of the arbitrariness of ¢, 77, we find

Z J |Vl bigity, pr,dx = 0, (2.48)
ik=17D

that is, the function u € W}}w(D) is a solution of (1.5) throughout the domain D and thereby
of (1.1), too. O

Theorem 1.7 is proved. O
Proof of Theorem 1.8. Let A;,p+(p_1)“(E) > 0 for some compact set E C D. Let us use the recent
results for a Frosman type lemma with measure [11, 17] and follow the reasoning of the

original paper [3]. We come to the following conclusion. There exists a Radon measure y
with a support on the set E, such that y(E) > 0 and for any ball B = B(x, r) we have

w(B) < CrP*p-Dag(B). (2.49)
Letu e W;w be a solution of the equation
div(A(x,u, Vu)) = p (2.50)

in the domain D = B(0,R), where B is a sufficiently large ball. The solution of (2.50) is
understood in the sense as follows: the integral identity

f A(x,u,Vu) - Vodx = f pdu (2.51)
D D

is fulfilled for any test function ¢ € W;W(D). Such a solution exists by virtue of p €
(W;w(D))*. Let us show the latter inclusion.

By virtue of w € A, for g4 > p and the fact that g is sufficiently close to p, inequality
(2.49) implies for0 < p <r:

-n / /v a(p-1)/g-(n-1)(1- -1)(1/p-1/
B ) 0B ) £ G o ),
37'
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where o(B(x, p)) = fB(x,P) w PV (y)dy. This inequality defines the constant in the Adams
inequality
1/q 1/p
<I |u|qd‘u> < Cpy(r) <f w|Vu|”’dx> , (2.52)
B(0,r) B(0,r)
as

Coalr) = sup P (u(B(x,p))) (o (B(x,p))) """ (259)

x€B(0,r),0<p<4r

Then, by virtue of (37'), we have

Cpqlr) < Crap-1/a-(=1)(-p/9) (5(B(0, r)))(p—l)(l/p—l/q{ (37"

Whence, by virtue of Holder inequality, we obtain

1/p
w|VulPdx . (2.54)
B(0,r)

f luldpu < Cp4(r) (#(B(O,r)))l/q, (J
B(0,r)

Taking into account inequalities (2.49), (37") and the A,-condition, for any function u €
Cy(B(0,1)), we have

1/p
J |u|dusc<w<s<o,r>>>“”'rl’”(””“<I wlvui”d"> : (38)
B(0,r) B

O,r)

*

whence it follows that y € (W,,,,(D))
Let us, following ideas of [10], show that u(x) € C*(D). Let h € W;w(B(xo,r)) be a
solution of the equation

div(A(x, h, Vh)) =0 (2.55)

with the condition h —u € W;w(B (x0,7)). Then, for it, we have the integral identity

f (A(x,u,Vu) — A(x,h,Vh)) - Vodx = j vdy, (2.56)
B(xo,r) B(xo,r)
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where v = u—h. The integrand in the left-hand part of (2.56) is positive. Therefore, for p < r/2,
we have

I (A(x,u,Vu) - Vu+ A(x,h,Vh) - Vh)dx
B(XU,P)

(2.57)
:J (A(x,h, VR)Vu + A(x,u, Vu)Vh)dx+f vdp.
B(xo,p) B(xo,r)
By virtue of Young’s inequality and conditions (1.2), (1.3), from (2.57), we find
J‘ w|VulPdx < C[J w|VhPdx + J v d,u:I; C=C(np, ). (2.58)
B(xo,p) B(xo,p) B(xo,r)
From (2.55), we obtain
f A(x,h,Vh)-Vodx =0, (2.59)
B(xo,r)
whence by virtue of Holder inequality, we find
f w|Vh[Pdx < Cj w|VulPdx; C=C(n,p,L). (41")
B(xo,r) B(xo,r)

For the first summand of (2.58), we have the following estimates. According to [14], there
exists a positive number x = x(n,p,A,Cp) € (0,1) such that for the solution of (1.1) the
inequality

osc hsC(ri) osc h, (2.60)

B(xo,r1) 12/ B(xo,r2)

where C = C(n,p,Cp, ), x), is fulfilled for any r; < r,. If we take into account the Caccioppoli
type estimate (see [14])

w|Vh[Pdx <
’[B(XO/rl) (ra—m)P

< 0sc h)pw(B(xo,rZ)), (2.61)

B(xo,12)

then, by virtue of Moser’s inequality, we obtain

P
C
sup h ) £ ——F—= w(h-h;)ldx. 2.62
<B(x0,1:r)z) > w(B(.X'o, 272)) B(x0,21r2) ( 2) ( )
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From (2.60), we derive the estimate

“P+P% o (B(xy,
J w|VhPdx < C<3> w(B(xo,p)) w|Vh[Pdx. (2.63)
B(xo,p) r (,()(B(.X'o, 7’)) B(xo,r)
Indeed,
f w|VhPdx < Ef |V | dx < %f ol 1 [ ax
B(xo,p) P JB(x, p) P B(xo,p
< E( osc h) w(B(xo,p)) < = <£> ( osc h)pw(B(xo,p))
- p B(xo,p) r B(xo,r/2)
(2.64)
< S (&) wom) (gmay | In-mlax
P w(B(XOIr)) B(xo,r)

<< <P>_P+”KW(B(JC0/P))

w|Vh|Pdx,
pP w(B(xp,71)) B(xo,r) | |

where h; is the lower bound of the function h in the ball B(x, ). Inequality (2.63) is proved.
Using the estimate (2.63) in (2.58), by virtue of (41'), we have for0 < p < r/2

“PP% o (B (xo,
f w|VulPdx < c(‘—’) w(B(xo,p)) w|VulPdx + f vdu.  (2.65)
B(xo,p) r (A)(B(.‘X'o, 1")) B(xo,r) B(xo,r)

Now, let us derive an estimate for the last summand in (2.65). To this end, we use
inequality (38') to obtain

1/p
<f v dy) <C(p,n,Cp,) <I w|Vv|’”dx> , (2.66)
B(xo,r) B(xo,r)

where for the constant we have the estimate
C(p,n,Cp) < CriP* 0D (e (B(xo, 1)) /7 (2.67)

By virtue of (2.65) and (2.67), we find

P+P% o (B (0,
f w|VulPdx < C<E> M w|VulPdx
B(x0,p) r w(B(xo,7)) B(xo,r)

(2.68)
1/p' 1/p
+C [M] J w|VulPdx ,
r(-a) B(xor)
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whence, by virtue of Young’s inequality, we obtain

PP o (B(xo,
f w|VulPdx < C |:<B) M + 5] I w|VulPdx + Cow(B(xg, 1)) r PP*,
B(x0,p) r B(xo,1)

w(B(xo,1))
(2.69)
Assuming that 0 < a < x, from (2.69) and Lemma 1.5, we obtain the estimate
PP (B (x,
f w|VulPdx < C<B> M w|VulPdx + Cw(B(xo,p))p PP
B(x0,p) r w(B(xo,1)) Bl(xo,r)
(2.70)
This inequality implies
1/p 1/p
f |[Vuldx < <I w|Vu|”dx> <f w_(l/(p’l))dx>
B(xo,p) B(xo,p) B(x,p)
(2.71)
1/p 1/p'
< C(I wdx> <’[ w‘(l/(’”‘l))dx> pHr < cpne,
B(xo,p) B(xo,p)
whence, by virtue of the Poincaré inequality, we obtain
f |u ~ () p|” dx < Cp™*, 2.72)
B(xo,p)
where (u) , is average of the function u with respect to the ball B(xo, p).
By (2.72) and Campanato’s Lemma 1.4, we find u € C*.
Theorem 1.8 is proved. O
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