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The stationary Boussinesq equations describing the heat transfer in the viscous heat-conducting
fluid under inhomogeneous Dirichlet boundary conditions for velocity and mixed boundary
conditions for temperature are considered. The optimal control problems for these equations with
tracking-type functionals are formulated. A local stability of the concrete control problem solutions
with respect to some disturbances of both cost functionals and state equation is proved.

1. Introduction

Much attention has been recently given to the optimal control problems for thermal and
hydrodynamic processes. In fluid dynamics and thermal convection, such problems are
motivated by the search for the most effective mechanisms of the thermal and hydrodynamic
fields control [1–4]. A number of papers are devoted to theoretical study of control problems
for stationary models of heat and mass transfer (see e.g., [5–19]). A solvability of extremum
problems is proved, and optimality systems which describe the necessary conditions of
extremum were constructed and studied. Sufficient conditions to the data are established in
[16, 18, 19] which provide the uniqueness and stability of solutions of control problems in
particular cases.

Along with the optimal control problems, an important role in applications is played
by the identification problems for heat and mass transfer models. In these problems,
unknown densities of boundary or distributed sources, coefficients of model differential
equations, or boundary conditions are recovered from additional information of the original
boundary value problem solution. It is significant that the identification problems can
be reduced to appropriate extremum problems by choosing a suitable tracking-type cost
functional. As a result, both control and identification problems can be studied using
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an unified approach based on the constrained optimization theory in the Hilbert or Banach
spaces (see [1–4]).

The main goal of this paper is to perform an uniqueness and stability analysis of
solutions to control problems with tracking-type functionals for the steady-state Boussinesq
equations.We shall consider the situationwhen the boundary or distributed heat sources play
roles of controls and the cost functional depends on the velocity. Using some results of [2]
we deduce firstly the optimality system for the general control problem which describes the
first-order necessary optimality conditions. Then, based on the optimality system analysis,
we deduce a special inequality for the difference of solutions to the original and perturbed
control problems. The latter is obtained by perturbing both cost functional and one of
the functions entering into the state equation. Using this inequality, we shall establish the
sufficient conditions for data which provide a local stability and uniqueness of solutions to
control problems under consideration in the case of concrete tracking-type cost functionals.

The structure of the paper is as follows. In Section 2, the boundary value problem for
the stationary Boussinesq equations is formulated, and some properties of the solution are
described. In Section 3, an optimal control problem is stated, and some theorems concerning
the problem solvability, validity of the Lagrange principle for it, and regularity of the
Lagrange multiplier are given. In addition, some additional properties of solutions to the
control problem under consideration will be established. In Section 4, we shall prove the
local stability and uniqueness of solutions to control problems with the velocity-tracking cost
functionals. Finally, in Section 5, the local uniqueness and stability of optimal controls for the
vorticity-tracking cost functional is proved.

2. Statement of Boundary Problem

In this paper we consider the model of heat transfer in a viscous incompressible heat-
conducting fluid. The model consists of the Navier-Stokes equation and the convection-
diffusion equation for temperature that are nonlinearly related via buoyancy in the
Boussinesq approximation and via convective heat transfer. It is described by equations

−νΔu + (u · ∇)u +∇p = f − ˜βGT, div u = 0 in Ω, (2.1)

−λΔT + u · ∇T = f in Ω, (2.2)

u = g on Γ, T = ψ on ΓD, λ

(

∂T

∂n
+ αT

)

= χ on ΓN. (2.3)

Here Ω is a bounded domain in the space R
d, d = 2, 3 with a boundary Γ consisting of two

parts ΓD and ΓN ; u, p, and T denote the velocity and temperature fields, respectively; p = P/ρ,
where P is the pressure and ρ = const > 0 is the density of the medium; ν is the kinematic
viscosity coefficient,G is the gravitational acceleration vector, ˜β is the volumetric thermal ex-
pansion coefficient, λ is the thermal conductivity coefficient, g is a given vector-function on
Γ, ψ is a given function on a part ΓD of Γ, χ is a function given on another part ΓN = Γ \ ΓD
of Γ, n is the unit outer normal. We shall refer to problem (2.1)–(2.3) as Problem 1. We note
that all quantities in (2.1)–(2.3) are dimensional and their dimensions are defined in terms of
SI units.
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We assume that the following conditions are satisfied:

(i) Ω is a bounded domain in R
d, d = 2, 3, with Lipschitz boundary Γ ∈ C0,1, consisting

of coupled components Γ(i), i = 1, 2, . . . ,N; Γ = ΓD ∪ ΓN and meas ΓD > 0.

Below we shall use the Sobolev spaces Hs(D) and L2(D), where s ∈ R, or Hs(D) and
L2(D) for the vector functions whereD denotesΩ, its subsetQ, Γ or a part Γ0 of the boundary
Γ. In particularly we need the function spaces H1(Ω), L2(Ω), H1(Ω), H1/2(Γ), H1/2(ΓD) and
their subspaces

T =
{

θ ∈ H1(Ω) : θ|ΓD = 0
}

, L2
0(Ω) =

{

r ∈ L2(Ω) :
∫

Ω
rdx = 0

}

,

H1
div(Ω) =

{

v ∈ H1(Ω) : div v = 0
}

, H1
0(Ω) =

{

v ∈ H1(Ω) : v|Γ = 0
}

,

V =
{

v ∈ H1
0(Ω) : div v = 0

}

, ˜H1(Ω) =
{

v ∈ H1(Ω) : (v · n, 1)Γ(i) = 0, v · n|ΓN = 0
}

,

˜H1/2(Γ) =
{

v|Γ : v ∈ ˜H1(Ω)
}

⊂ H1/2(Γ), L2
+(ΓN) =

{

φ ∈ L2(ΓN) : φ ≥ 0 a.e. on ΓN
}

.

(2.4)

The inner products and norms in L2(Ω), L2(Q), or L2(ΓN) are denoted by (·, ·), ‖ · ‖,
(·, ·)Q, ‖ · ‖Q, or (·, ·)ΓN , ‖ · ‖ΓN . The inner products, norms and seminorms inH1(Q) andH1(Q)
are denoted by (·, ·)1,Q, ‖·‖1,Q, and |·|1,Q or (·, ·)1, ‖·‖1 and |·|1 ifQ = Ω. The norms inH1/2(Γ) or
H1/2(ΓD) are denoted by ‖ · ‖1/2,Γ or ‖ · ‖1/2,ΓD ; the norm in the dual space ˜H1/2(Γ)∗ is denoted
by ‖ · ‖−1/2,Γ. Set b ≡ ˜βG. Let in addition to condition (i) the following conditions hold:

(ii) f ∈ H−1(Ω), b ≡ ˜βG ∈ L2(Ω), α ∈ L2(ΓN).

The following technical lemma holds (see [2, 20]).

Lemma 2.1. Under conditions (i) there exist constants δi > 0, γi > 0, Cd, Cr , and β1 > 0 such that

(∇v,∇v) ≥ δ0‖v‖21 ∀v ∈ H1
0(Ω), (∇T,∇T) ≥ δ1‖T‖21 ∀T ∈ T, (2.5)

|((u · ∇)v,w)| ≤ γ0‖u‖1‖v‖1‖w‖1,
∣

∣

(

u · ∇T, η
)∣

∣ ≤ γ1‖u‖1‖T‖1
∥

∥η
∥

∥

1, (2.6)

|(bT,v)| ≤ β1‖T‖1‖v‖1 ∀T ∈ H1(Ω), v ∈ H1(Ω), (2.7)
∣

∣

∣

(

χ, T
)

ΓN

∣

∣

∣ ≤ γ2
∥

∥χ
∥

∥

ΓN
‖T‖1,

∣

∣

∣

(

αT, η
)

ΓN

∣

∣

∣ ≤ γ3‖α‖ΓN‖T‖1
∥

∥η
∥

∥

1,

‖T‖Q ≤ γ4‖T‖1, ‖v‖Q ≤ γ4‖v‖1,
(2.8)

‖rot v‖ ≤ Cr‖v‖1, ‖div v‖ ≤ Cd‖v‖1. (2.9)

Bilinear form −(div ·, ·) satisfies the inf-sup condition

inf
r∈L2

0(Ω)
r /= 0

sup
v∈H1

0(Ω)
v/= 0

−(div v, r)
‖v‖1‖r‖

≥ β = const > 0. (2.10)
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Besides the following identities take place:

((u · ∇)v,v) = 0 ∀u ∈ H1
div(Ω), v ∈ H1

0(Ω), (2.11)

(u · ∇T, T) = 0 ∀u ∈ H1
div(Ω) ∩ ˜H1(Ω), T ∈ H1(Ω). (2.12)

Let g ∈ ˜H1/2(Γ), χ ∈ L2(ΓN), ψ ∈ H1/2(ΓD), f ∈ L2(Ω) in addition to (i), (ii). We
multiply the equations in (2.1), (2.2) by test functions v ∈ H1

0(Ω) and S ∈ T and integrate
the results overΩwith use of Green’s formulas to obtain the weak formulation for the model
(2.1)–(2.3). It consists of finding a triple x ≡ (u, p, T) ∈ ˜H1(Ω) × L2

0(Ω) ×H1(Ω) satisfying the
relations

ν(∇u,∇v) + ((u · ∇)u,v) −
(

p,div v
)

= 〈f,v〉 − (bT,v) ∀v ∈ H1
0(Ω), b ≡ ˜βG, (2.13)

λ(∇T,∇S) + λ(αT, S)ΓN + (u · ∇T, S) =
(

f, S
)

+
(

χ, S
)

ΓN
∀S ∈ T, (2.14)

div u = 0 in Ω, u = g on Γ, T = ψ on ΓD. (2.15)

Following theorem (see [2]) establishes the solvability of Problem 1 and gives a priori
estimates for its solution.

Theorem 2.2. Let conditions (i), (ii) be satisfied. Then Problem 1 has for every quadruple g ∈
˜H1/2(Γ),χ ∈ L2(ΓN), f ∈ L2(Ω), ψ ∈ H1/2(ΓD) a weak solution (u, p, T) that satisfies the estimates

‖u‖1 ≤Mu,
∥

∥p
∥

∥ ≤Mp, ‖T‖1 ≤MT. (2.16)

Here Mu, Mp and MT are nondecreasing continuous functions of the norms ‖f‖−1, ‖b‖, ‖g‖1/2,Γ,
‖χ‖ΓN , ‖f‖, ‖ψ‖1/2,ΓD , ‖α‖ΓN . If, additionally, f,g, χ, f, ψ, α are small in the sense that

γ0
δ0ν

Mu +
γ1
δ0ν

β1
δ1λ

MT < 1, (2.17)

where δ0, δ1, γ0, γ1 and β1 are constants entering into (2.5)–(2.7), then the weak solution to Problem
1 is unique.

3. Statement of Control Problems

Our goal is the study of control problems for the model (2.1)–(2.3) with tracking-type
functionals. The problems consist in minimization of certain functionals depending on the
state and controls. As the cost functionals we choose some of the following ones:

I1(v) = ‖v − vd‖2Q, I2(v) = ‖v − vd‖21,Q, I3(v) = ‖rot v − ζd‖2Q. (3.1)

Here Q is a subdomain of Ω. The functionals I1, I2, and I3 where functions ud ∈ L2(Q) (or
ud ∈ H1(Q)) and ζd ∈ L2(Q) are interpreted as measured velocity or vorticity fields are used
to solve the inverse problems for the models in questions [2].
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In order to formulate a control problem for the model (2.1)–(2.3) we split the set of
all data of Problem 1 into two groups: the group of controls containing the functions χ ∈
L2(ΓN), ψ ∈ H1/2(ΓD), and f ∈ L2(Ω), which play the role of controls and the group of fixed
data comprising the invariable functions f,b, and α. As to the function g entering into the
boundary condition for the velocity in (2.3), it will play peculiar role since the stability of
solutions to control problems under consideration (see below)will be studied with respect to
small perturbations, both the cost functional and the function g in the norm of H1/2(Γ).

LetX = ˜H1(Ω)×L2
0(Ω)×H1(Ω), Y = H−1(Ω)×L2

0(Ω)× ˜H1/2(Γ)×T∗ ×H1/2(ΓD). Denote
by I : ˜H1(Ω) → R a weakly lower semicontinuous functional. We assume that the controls χ,
ψ, and f vary in some setsK1 ⊂ L2(ΓN),K2 ⊂ H1/2(ΓD),K3 ⊂ L2(Ω). SettingK = K1×K2×K3,
x = (u, p, T), u0 = (f,b, α), u = (χ, ψ, f) we introduce the functional J : X × K → R by the
formula

J(x, u) =
μ0

2
I(u) +

μ1

2
∥

∥χ
∥

∥

2
ΓN

+
μ2

2
∥

∥ψ
∥

∥

2
1/2,ΓD

+
μ3

2
∥

∥f
∥

∥

2
. (3.2)

Here μ0, μ1, μ2, μ3 are nonnegative parameters which serve to regulate the relative importance
of each of terms in (3.2) and besides to match their dimensions. Another goal of introducing
parameters μi is to ensure the uniqueness and stability of the solutions to control problems
under study (see below).

We assume that following conditions take place:

(iii) K1 ⊂ L2(ΓN), K2 ⊂ H1/2(ΓD), K3 ⊂ L2(Ω) are nonempty closed convex sets;

(iv) μ0 > 0, μl > 0 or μ0 > 0, μl ≥ 0 and Kl is a bounded set, l = 1, 2, 3.

Considering the functional J at weak solutions to Problem 1 we write the
corresponding constraint which has the form of the weak formulation (2.13)–(2.15) of
Problem 1 as follows:

F(x, u,g) = F
(

u, p, T, χ, ψ, f,g
)

= 0. (3.3)

Here F = (F1, F2, F3, F4, F5) : X ×K × ˜H1/2(Γ) → Y is the operator acting by formulas

〈F1(x),v〉 = ν(∇u,∇v) + ((u · ∇)u,v) −
(

p,div v
)

− 〈f,v〉 + (bT,v),

F2(x) = div u, F3(x,g) = u|Γ − g, F5
(

x, ψ
)

= T |ΓD − ψ,
〈

F4
(

x, f, χ
)

, S
〉

= λ(∇T,∇S) + λ(αT, S)ΓN + (u · ∇T, S) −
(

f, S
)

−
(

χ, S
)

ΓN
.

(3.4)

The mathematical statement of the optimal control problem is as follows: to seek a pair (x, u),
where x = (u, p, T) ∈ X and u = (χ, ψ, f) ∈ K1 ×K2 ×K3 = K such that

J(x, u) ≡
μ0

2
I(u) +

μ1

2
∥

∥χ
∥

∥

2
ΓN

+
μ2

2
∥

∥ψ
∥

∥

2
1/2,ΓD

+
μ3

2
∥

∥f
∥

∥

2 −→ inf,

F(x, u,g) = 0, (x, u) ∈ X ×K.
(3.5)

Let X∗ ≡ ˜H1(Ω)∗ ×L2
0(Ω)×H1(Ω)∗ and Y ∗ ≡ H1

0(Ω)×L2
0(Ω)× ˜H1/2(Γ)∗ ×T×H1/2(ΓD)

∗

be the duals of the spaces X and Y . Let F ′
x(x̂, û,g) : X → Y denotes the Fréchet derivative
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of F with respect to x at the point (x̂, û,g). By F ′
x(x̂, û,g)

∗ : Y ∗ → X∗ we denote the adjoint
operator of F ′

x(x̂, û,g) which is determined by the relation

〈

F ′
x(x̂, û,g)

∗y∗, x
〉

X∗×X =
〈

y∗, F ′
x(x̂, û,g)x

〉

Y ∗×Y ∀x ∈ X, y∗ ∈ Y ∗. (3.6)

According to the general theory of extremum problems (see [21]) we introduce an element
y∗ = (ξ, σ, ζ, θ, ζt) ∈ Y ∗ which is referred to as the adjoint state and define the Lagrangian
L : X ×K × R

+ × Y ∗ × ˜H1/2(Γ) → R, where R
+ = {x ∈ R : x ≥ 0}, by

L(x, u, λ0,y∗,g) = λ0J(x, u) + 〈y∗, F(x, u)〉 ≡ λ0J(x, u)

+ 〈F1(x), ξ〉 + (F2(x), σ) + 〈ζ, F3(x,g)〉Γ
+ κ
〈

F4
(

x, f, χ
)

, θ
〉

+ κ
〈

ζt, F5
(

x, ψ
)〉

ΓD
.

(3.7)

Here and below 〈ζ, ·〉Γ ≡ 〈ζ, ·〉
˜H1/2(Γ)∗× ˜H1/2(Γ), 〈ζt, ·〉ΓD ≡ 〈ζt, ·〉H1/2(ΓD)

∗×H1/2(ΓD) and κ is an aux-
iliary dimensional parameter. Its dimension [κ] is chosen so that dimensions of ξ, σ, θ at the
adjoint state coincide with those at the basic state, that is,

[ξ] = [u] = L0T
−1
0 , [θ] = [T] = K0, [σ] =

[

p
]

= L2
0T

−2
0 . (3.8)

Here L0, T0,M0, K0 denote the SI dimensions of the length, time, mass, and temperature units
expressed in meters, seconds, kilograms, and degrees Kelvin, respectively. As a result ξ, σ,
and θ can be referred to below as the adjoint velocity, pressure, and temperature. Simple
analysis shows (see details in [16]) that the necessity for the fulfillment of (3.8) is that [κ] is
given by [κ] = L2

0T
−2
0 K−2

0 .
The following theorems (see, e.g., [2]) give sufficient conditions for the solvability of

control problem (3.5), the validity of the Lagrange principle for it, and a regularity condition
for a Lagrange multiplier.

Theorem 3.1. Let conditions (i)–(iv) hold and g ∈ ˜H1/2(Γ). Then there exists at least one solution
(x̂, û) = (û, p̂, ̂T, χ̂, ψ̂, ̂f) to problem (3.5) for I = Ik, k = 1, 2, 3.

Theorem 3.2. Let under conditions of Theorem 3.1 a pair (x̂, û) ≡ (û, p̂, ̂T, χ̂, ψ̂, ̂f) ∈ X×K be a local
minimizer in problem (3.5) and let the cost functional I be continuously differentiable with respect to
u at the point x̂. Then there exists a nonzero Lagrange multiplier (λ0,y∗) = (λ0, ξ, σ, ζ, θ, ζt) ∈ R

+×Y ∗

such that the Euler-Lagrange equation

F ′
x(x̂, û,g)

∗y∗ = −λ0J ′x(x̂, û) in X∗ (3.9)

for the adjoint state y∗ is satisfied and the minimum principle holds which is equivalent to the
inequality

L(x̂, û, λ0,y∗,g) ≤ L(x̂, u, λ0,y∗,g) ∀u ∈ K. (3.10)
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Theorem 3.3. Let the assumptions of Theorem 3.2 be satisfied and condition (2.17) holds for all u ≡
(χ, ψ, f) ∈ K. Then any nontrivial Lagrange multiplier satisfying (3.9) is regular, that is, has the
form (1,y∗) and is uniquely determined.

We note that the functional J and Lagrangian L given by (3.7) are continuously
differentiable functions of controls χ, ψ, f and its derivatives with respect to χ, ψ, and f are
given by

〈

J ′χ(x̂, û), χ
〉

= μ1
(

χ̂, χ
)

ΓN
,

〈

J ′ψ(x̂, û), ψ
〉

= μ2
(

ψ̂, ψ
)

1/2,ΓD
,

〈

J ′f(x̂, û), f
〉

= μ3

(

̂f, f
)

,

〈

L′
χ(x̂, û, λ0,y

∗,g), χ
〉

= λ0μ1
(

χ̂, χ
)

ΓN
− κ
(

θ, χ
)

ΓN
≡
(

λ0μ1χ̂ − κθ, χ
)

ΓN
∀χ ∈ K1,

〈

L′
ψ(x̂, û, λ0,y

∗,g), ψ
〉

= λ0μ2
(

ψ̂, ψ
)

1/2,ΓD
− κ
〈

ζt, ψ
〉

ΓD
≡
〈

λ0μ2ψ̂ − κζt, ψ
〉

ΓD
∀ψ ∈ K2,

〈

L′
f(x̂, û, λ0,y

∗,g), f
〉

= λ0μ3

(

̂f, f
)

− κ
(

θ, f
)

≡
(

λ0μ3 ̂f − κθ, f
)

∀f ∈ K3.

(3.11)

Here for example L′
χ(x̂, û, λ0,y

∗,g) is the Gateaux derivative with respect to χ at the point
(x̂, û, λ0,y∗,g) ∈ X ×K × R

+ × Y ∗ × ˜H1/2(Γ). Since K1, K2, K3 are convex sets, at the minimum
point û = (χ̂, ψ̂, ̂f) of the functional L(x̂, ·, λ0,y∗,g) the following conditions are satisfied (see
[22]):

〈

L′
χ(x̂, û, λ0,y

∗,g), χ − χ̂
〉

≡
(

λ0μ1χ̂ − κθ, χ − χ̂
)

ΓN
≥ 0 ∀χ ∈ K1,

〈

L′
ψ(x̂, û, λ0,y

∗,g), ψ − ψ̂
〉

=
〈

λ0μ2ψ̂ − κζt, ψ − ψ̂
〉

1/2,ΓD
≥ 0 ∀ψ ∈ K2,

〈

L′
f(x̂, û, λ0,y

∗,g), f − ̂f
〉

=
(

λ0μ3 ̂f − κθ, f − ̂f
)

≥ 0 ∀f ∈ K3.

(3.12)

We also note that the Euler-Lagrange equation (3.9) is equivalent to identities

ν(∇w,∇ξ) + ((û · ∇)w, ξ) + ((w · ∇)û, ξ) + κ
(

w · ∇̂T, θ
)

−(σ,div w) + 〈ζ,w〉Γ + λ0
〈

J ′u(x̂, û),w
〉

= 0 ∀w ∈ ˜H1(Ω),

(r,div ξ) = 0 ∀r ∈ L2
0(Ω),

κ
[

λ(∇τ,∇θ) + λ(ατ, θ)ΓN + (û · ∇τ, θ) +
〈

ζt, τ
〉

ΓD

]

+ (bτ, ξ) = 0 ∀τ ∈ H1(Ω).

(3.13)

Relations (3.13), the minimum principle which is equivalent to the inequalities (3.10) or
(3.12), and the operator constraint (3.3) which is equivalent to (2.13)–(2.15) constitute the
optimality system for control problem (3.5).

Theorems 3.1 and 3.2 above are valid without any smallness conditions in relation to
the data of Problem 1. The natural smallness condition (2.17) arises only when proving the
uniqueness of solution to boundary problem (2.1)–(2.3) and Lagrange multiplier regularity.
However, condition (2.17) does not provide the uniqueness of problem (3.5) solution.
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Therefore, an investigation of problem (3.5) solution uniqueness is an interesting and
complicated problem. Studying of its solution stability with respect to small perturbations
of both cost functional I entering into (3.2) and state equation (3.3) is also of interest. In order
to investigate these questions we should establish some additional properties of the solution
for the optimality system (2.13)–(2.15), (3.12), (3.13). Based on these properties, we shall
impose in the next section the sufficient conditions providing the uniqueness and stability of
solutions to control problem (3.5) for particular cost functionals introduced in (3.1).

Let us consider problem (3.5). We assume below that the function g entering into (2.3)
can vary in a certain setG ⊂ ˜H1/2(Γ). Let (x1, u1) ≡ (u1, p1, T1, χ1, ψ1, f1) ∈ X×K be an arbitrary
solution to problem (3.5) for a given function g = g1 ∈ G. By (x2, u2) ≡ (u2, p2, T2, χ2, ψ2, f2) ∈
X ×K we denote a solution to problem

˜J(x, u) ≡
μ0

2
˜I(u) +

μ1

2
∥

∥χ
∥

∥

2
ΓN

+
μ2

2
∥

∥ψ
∥

∥

2
1/2,ΓD

+
μ3

2
∥

∥f
∥

∥

2 −→ inf, F(x, u, g̃) = 0, (x, u) ∈ X ×K.
(3.14)

It is obtained by replacing the functional I in (3.5) by a close functional ˜I depending on u and
by replacing a function g ∈ G by a close function g̃ ∈ G.

By Theorem 3.1 the following estimates hold for triples (ui, pi, Ti):

‖ui‖1 ≤M0
u,

∥

∥pi
∥

∥ ≤M0
p, ‖Ti‖1 ≤M0

T . (3.15)

Here

M0
u = sup

u∈K,g∈G
Mu(u0, u,g), M0

p = sup
u∈K,g∈G

Mp(u0, u,g), M0
T = sup

u∈K,g∈G
MT (u0, u,g),

(3.16)

where Mu, Mp, and MT are introduced in Theorem 3.1. We introduce “model” Reynolds
number Re, Raley number Ra, and Prandtl number P by

Re =
γ0M

0
u

δ0ν
, Ra =

γ1
δ0ν

β1M
0
T

δ1λ
, P =

δ0ν

δ1λ
. (3.17)

They are analogues of the following dimensionless parameters widely used in fluid
dynamics: the Reynolds number Re, the Rayleigh number Ra, and the Prandtl number Pr.
We can show that the parameters introduced in (3.17) are also dimensionless if ‖u‖, |u|1, and
‖u‖1 (where u is an arbitrary scalar) are defined as

‖u‖2 =
∫

Ω
u2dx, |u|21 =

∫

Ω
|∇u|2dx, ‖u‖21 = l−2‖u‖

2 + |u|21. (3.18)

Here l is a dimensional factor of dimension [l] = L0 whose value is equal to 1.
Assume that the following condition takes place:

Re + Ra ≡
γ0M

0
u

δ0ν
+

γ1
δ0ν

β1M
0
T

δ1λ
<

1
2
. (3.19)
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Let us denote by (1,y∗i ), where y∗i ≡ (ξi, σi, ζi, θi, ζti) ∈ H1
0(Ω) × L2

0(Ω) × ˜H1/2(Γ)∗ × T ×
H1/2(ΓD)

∗, i = 1, 2, Lagrange multipliers corresponding to solutions (xi, ui). By Theorems 3.2
and 3.3 and (3.12) they satisfy relations

ν(∇w,∇ξi) + ((ui · ∇)w, ξi) + ((w · ∇)ui, ξi) + κ(w · ∇Ti, θi) − (σi,div w)

+〈ζi,w〉Γ +
(μ0

2

)〈

(

Ii
)′(ui),w

〉

= 0 ∀w ∈ ˜H1(Ω), i = 1, 2,
(3.20)

(div ξi, r) = 0 ∀r ∈ L2
0(Ω), (3.21)

κ
[

λ(∇τ,∇θi) + λ(ατ, θ)ΓN + (ui · ∇τ, θi) +
〈

ζti , τ
〉

ΓD

]

+ (bτ, ξi) = 0 ∀τ ∈ H1(Ω), (3.22)

(

μ1χi − κθi, χ − χi
)

ΓN
+
〈

μ2ψi − κζti , ψ − ψi
〉

ΓD
+
(

μ3fi − κθi, f − fi
)

≥ 0 ∀
(

χ, ψ, f
)

∈ K.
(3.23)

We renamed I1 ≡ I, I2 ≡ ˜I in (3.20). Set ξ = ξ1−ξ2, σ = σ1−σ2, ζ = ζ1−ζ2, θ = θ1−θ2, ζt = ζt1−ζ
t
2,

g = g1 − g2, and

u=u1−u2, p=p1−p2, T =T1−T2, χ=χ1−χ2, ψ=ψ1−ψ2, f =f1 − f2.
(3.24)

Let us subtract (2.13)–(2.15), written for u2, p2, T2, u2,g2 from (2.13)–(2.15) for u1, p1, T1, u1,
g1. We obtain

ν(∇u,∇v) + ((u · ∇)u1 + (u2 · ∇)u,v) −
(

div v, p
)

+ (bT,v) = 0 ∀v ∈ H1
0(Ω), (3.25)

λ(∇T,∇S) + λ(αT, S)ΓN + (u · ∇T1, S) + (u2 · ∇T, S) =
(

f, S
)

+
(

χ, S
)

ΓN
∀S ∈ T, (3.26)

div u = 0 in Ω, u|Γ = g, T |ΓD = ψ. (3.27)

We set χ = χ1, ψ = ψ1, f = f1 in the inequality (3.23) under i = 2 and χ = χ2, ψ = ψ2, f = f2 in
the same inequality under i = 1 and add. We obtain

−κ
[

(

χ, θ
)

ΓN
+
〈

ζt, ψ
〉

ΓD
+
(

f, θ
)

]

≤ −μ1
∥

∥χ
∥

∥

2
ΓN

− μ2
∥

∥ψ
∥

∥

2
1/2,ΓD

− μ3
∥

∥f
∥

∥

2
. (3.28)

Subtract the identities (3.20)–(3.22), written for (x2, u2,y∗2,g2) from the corresponding
identities for (x1, u1,y∗1,g1), set w = u, τ = T and add. Using (3.27) we obtain

ν(∇u,∇ξ) + ((u1 · ∇)u + (u · ∇)u1, ξ) + 2((u · ∇)u, ξ2) + κ(u · ∇T1, θ) + κ((u · ∇)T, θ2)

+ 〈ζ,g〉Γ + κ
[

λ(∇T,∇θ) + λ(αT, θ)ΓN + (u1 · ∇T, θ) + (u · ∇T, θ2) +
〈

ζt, ψ
〉

ΓD

]

+ (bT, ξ)

+
(μ0

2

)〈

I ′(u1) − ˜I ′(u2),u
〉

= 0.

(3.29)
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Set further v = ξ in (3.25), S = κθ in (3.26), and subtract obtained relations from (3.29). Using
inequality (3.28) and arguing as in [18], we obtain

((u · ∇)u, ξ1 + ξ2) + κ(u · ∇T, θ1 + θ2) +
(μ0

2

)〈

I ′(u1) − ˜I ′(u2),u
〉

≤ −〈ζ,g〉Γ − μ1
∥

∥χ
∥

∥

2
ΓN

− μ2
∥

∥ψ
∥

∥

2
1/2,ΓD

− μ3
∥

∥f
∥

∥

2
.

(3.30)

Thus we have proved the following result.

Theorem 3.4. Let under conditions of Theorem 3.2 for functionals I and ˜I and condition (3.19)
quadruples (u1, p1, T1, u1) and (u2, p2, T2, u2) be solutions to problem (3.5) under g = g1 and
problem (3.14) under g = g2, respectively, y∗i = (ξi, σi, ζi, θi, ζti), i = 1, 2 be corresponding Lagrange
multipliers. Then the inequality (3.30) holds for differences u, p, T, χ, ψ, f , defined in (3.24), where
g = g1 − g2, ζ = ζ1 − ζ2.

Below we shall need the estimates of differences u = u1 − u2, p = p1 − p2, T = T1 − T2
entering into (3.25)–(3.27) by differences χ = χ1 − χ2, ψ = ψ1 − ψ2, f = f1 − f2, and g = g1 − g2.
Denote by u0 ∈ H1(Ω) a vector such that div u0 = 0 inΩ, u0|Γ = g, ‖u0‖1 ≤ C0‖g‖1/2,Γ. Here C0

is a constant depending on Ω. The existence of u0 follows from [20, page 24]. We present the
difference u ≡ u1 − u2 as u = u0 + ũ, where ũ ∈ V is a new unknown function. Set u = u0 + ũ,
v = ũ in (3.25). Taking into account (2.9)we obtain

ν(∇ũ,∇ũ) = −ν(∇u0,∇ũ) − ((u0 · ∇)u1, ũ) − ((ũ · ∇)u1, ũ) − ((u2 · ∇)u0, ũ) − (bT, ũ).
(3.31)

Using estimates (2.5), (2.6), (2.7), and (3.15), we deduce from (3.31) that

δ0ν‖ũ‖21 ≤ ν‖u0‖1‖ũ‖1 + γ0M0
u‖ũ‖

2
1 + 2γ0M0

u‖u0‖1‖ũ‖1 + β1‖T‖1‖ũ‖1. (3.32)

It follows from (3.19) that

δ0ν

2
< δ0ν − γ0M0

u −
β1γ1
δ1λ

M0
T ≤ δ0ν − γ0M0

u. (3.33)

Rewriting the inequality (3.32) by (3.33) as

(

δ0ν

2

)

‖ũ‖21 ≤
(

δ0ν − γ0M0
u

)

‖ũ‖21 ≤
(

ν + 2γ0M0
u

)

‖u0‖1‖ũ‖1 + β1‖T‖1‖ũ‖1, (3.34)

we obtain that

‖ũ‖1 ≤
(

2
δ0ν

)

(

ν + 2γ0M0
u

)

‖u0‖1 +
(

2β1
δ0ν

)

‖T‖1 ≤
(

2δ−10 + 4Re
)

‖u0‖1 +
(

2β1
δ0ν

)

‖T‖1

≤ 2R‖u0‖1 +
(

2β1
δ0ν

)

‖T‖1, R ≡ δ−10 + 2Re.

(3.35)
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Taking into account the relation u = u0+ũ, we come to the following estimate ‖u‖1 via ‖g‖1/2,Γ
and ‖T‖1:

‖u‖1 ≤ ‖u0‖1 + ‖ũ‖1 ≤ (2R + 1)‖u0‖1 +
(

2β1
δ0ν

)

‖T‖1 ≤ C0(2R + 1)‖g‖1/2,Γ +
(

2β1
δ0ν

)

‖T‖1.

(3.36)

Denote by T0 ∈ H1(Ω) a function such that T0|ΓD = ψ and the estimate ‖T0‖1 ≤
C1‖ψ‖1/2,ΓD holds with a certain constant C1, which does not depend on ψ. Let us present the
difference T = T1 − T2 as T = T0 + ˜T , where ˜T ∈ T is a new unknown function. Set T = T0 + ˜T ,
S = ˜T in (3.26). We obtain

λ
(

∇˜T,∇˜T
)

+ λ
(

α˜T, ˜T
)

ΓN
+
(

u2 · ∇˜T, ˜T
)

= −λ
(

∇T0,∇˜T
)

− λ
(

αT0, ˜T
)

ΓN

−
(

u2 · ∇T0, ˜T
)

−
(

u · ∇T1, ˜T
)

+
(

f, ˜T
)

+
(

χ, ˜T
)

ΓN
.

(3.37)

Using estimates (2.5)–(2.8) and (3.15) we deduce that

δ1λ
∥

∥

∥

˜T
∥

∥

∥

2

1
≤ λ‖T0‖1

∥

∥

∥

˜T
∥

∥

∥

1
+ γ1M0

u‖T0‖1
∥

∥

∥

˜T
∥

∥

∥ + λγ3‖α‖ΓN‖T0‖1
∥

∥

∥

˜T
∥

∥

∥

1

+ γ1M0
T‖u‖1

∥

∥

∥

˜T
∥

∥

∥

1
+
(

γ2
∥

∥χ
∥

∥

ΓN
+ γ4

∥

∥f
∥

∥

)∥

∥

∥

˜T
∥

∥

∥

1

(3.38)

or

∥

∥

∥

˜T
∥

∥

∥

1
≤ 1
δ1λ

(

λ + γ1M0
u + λγ3‖α‖ΓN

)

‖T0‖1 +
γ1M

0
T

δ1λ
‖u‖1 +

1
δ1λ

(

γ2
∥

∥χ
∥

∥

ΓN
+ γ4

∥

∥f
∥

∥

)

. (3.39)

Taking into account the relation T = T0 + ˜T , we obtain from this estimate that

‖T‖1 ≤ C1(N + 1)
∥

∥ψ
∥

∥

1/2,ΓD
+
γ2
∥

∥χ
∥

∥

ΓN
+ γ4

∥

∥f
∥

∥

δ1λ
+
γ1M

0
T

δ1λ
‖u‖1, N =

λ + γ1M0
u + λγ3‖α‖ΓN
δ1λ

.

(3.40)

Using further the estimate (3.36) for u, we deduce from (3.40) that

‖T‖1 ≤ C1(N + 1)
∥

∥ψ
∥

∥

1/2,ΓD
+
γ2
∥

∥χ
∥

∥

ΓN
+ γ4

∥

∥f
∥

∥

δ1λ

+ C0(2R + 1)
γ1M

0
T

δ1λ
‖g‖1/2,Γ +

2β1
δ0ν

γ1M
0
T

δ1λ
‖T‖1.

(3.41)
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From this inequality and (3.17), (3.19) we come to the following estimate:

‖T‖1 ≤
C1(N + 1)
1 − 2Ra

∥

∥ψ
∥

∥

1/2,ΓD
+
γ2
∥

∥χ
∥

∥

ΓN
+ γ4

∥

∥f
∥

∥

δ1λ(1 − 2Ra) +
C0(2R + 1)
1 − 2Ra

γ1M
0
T

δ1λ
‖g‖1/2,Γ. (3.42)

Using (3.42), we deduce from (3.36) that

‖u‖1 ≤ C0(2R + 1)

(

1 +
1

1 − 2Ra
2β1
δ0ν

γ1M
0
T

δ1λ

)

‖g‖1/2,Γ

+
2β1
δ0ν

[

C1(N + 1)
1 − 2Ra

∥

∥ψ
∥

∥

1/2,ΓD
+
γ2
∥

∥χ
∥

∥

ΓN
+ γ4

∥

∥f
∥

∥

δ1λ(1 − 2Ra)

]

.

(3.43)

Taking into account (3.17)we come to the following estimate for ‖u‖1:

‖u‖1 ≤
2β1
δ0ν

[

C1(N + 1)
1 − 2Ra

∥

∥ψ
∥

∥

1/2,ΓD
+
γ2
∥

∥χ
∥

∥

ΓN
+ γ4

∥

∥f
∥

∥

δ1λ(1 − 2Ra)

]

+
C0(2R + 1)‖g‖1/2,Γ

1 − 2Ra . (3.44)

An analogous estimate holds and for the pressure difference p = p1 − p2. In order to
establish this estimate we make use of inf-sup condition (2.10). By (2.10) for the function
p = p1 − p2 and any (small) number δ > 0 there exists a function v0 ∈ H1

0(Ω), v0 /= 0, such that
−(div v0, p) ≥ β0‖v0‖1‖p‖ where β0 = (β − δ) > 0. Set v = v0 in the identity for u in (3.25) and
make of this estimate and estimates (2.6), (2.7), (3.15). We shall have

β0‖v0‖1
∥

∥p
∥

∥ ≤ −
(

div v0, p
)

≤
(

ν + 2γ0M0
u

)

‖v0‖1‖u‖1 + β1‖T‖1‖v0‖1. (3.45)

Dividing to ‖v0‖1 /= 0, we deduce that

∥

∥p
∥

∥ ≤
ν + 2γ0M0

u

β0
‖u‖1 +

(

β1
β0

)

‖T‖1 =
δ0ν

β0
R‖u‖1 +

β1
β0

‖T‖1. (3.46)

Using (3.42) and (3.44), we come to the following final estimate for ‖p‖:

∥

∥p
∥

∥≤ 2R+1
β0(1−2Ra)

×

⎡

⎢

⎣
β1C1(N+1)

∥

∥ψ
∥

∥

1/2,ΓD
+
β1
(

γ2
∥

∥χ
∥

∥

ΓN
+γ4

∥

∥f
∥

∥

)

δ1λ
+δ0νC0(R+Ra)‖g‖1/2,Γ

⎤

⎥

⎦
.

(3.47)
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Remark 3.5. Along with three-parametric control problem (3.5) we shall consider and one-
parametric control problemwhich corresponds to situation when a function u = χ is a unique
control. This problem can be considered as particular case of the general control problem
(3.5), for which the set K2 consists of one element ψ0 ∈ H1/2(ΓD) and the set K3 consists of
one element f0 ∈ L2(Ω). For this case the conditions f ≡ f1 −f2 = 0, ψ ≡ ψ1 −ψ2 = 0 take place,
and the estimates (3.42)–(3.47) and inequality (3.30) take the form

‖T‖1 ≤
γ2
∥

∥χ
∥

∥

ΓN

δ1λ(1 − 2Ra) +
C0(2R + 1)
1 − 2Ra

γ1M
0
T

δ1λ
‖g‖1/2,Γ, (3.48)

‖u‖1 ≤
2β1γ2

∥

∥χ
∥

∥

ΓN

δ0νδ1λ(1 − 2Ra) +
C0(2R + 1)‖g‖1/2,Γ

1 − 2Ra , (3.49)

∥

∥p
∥

∥ ≤ 2R + 1
β0(1 − 2Ra)

[

β1γ2
∥

∥χ
∥

∥

ΓN

δ1λ
+ δ0νC0(R +Ra)‖g‖1/2,Γ

]

, (3.50)

((u · ∇)u, ξ1 + ξ2) + κ(u · ∇T, θ1 + θ2) +
(μ0

2

)〈

I ′(u1) − ˜I ′(u2),u
〉

≤ −〈ζ,g〉Γ − μ1
∥

∥χ
∥

∥

2
ΓN
.

(3.51)

4. Control Problems for Velocity Tracking-Type Cost Functionals

Based on Theorem 3.4 and estimates (3.42)–(3.47) or (3.48)–(3.50), we study below
uniqueness and stability of the solution to problem (3.5) for concrete tracking-type cost
functionals. We consider firstly the case mentioned in Remark 3.5 where I = I1 and the heat
flux χ on the part ΓN of Γ is a unique control; that is, we consider one-parametric control
problem

J
(

v, χ
)

≡
μ0

2
‖v − vd‖2Q +

μ1

2
∥

∥χ
∥

∥

2
ΓN

−→ inf, F
(

x, χ,g
)

= 0, x =
(

v, p, T
)

∈ X, χ ∈ K1.

(4.1)

In accordance to Remark 3.5 we can consider problem (4.1) as a particular case of the general
control problem (3.5), which corresponds to the situation when every of sets K2 and K3

consists of one element.
Let (x1, u1) ≡ (u1, p1, T1, χ1) be a solution to problem (4.1), that corresponds to given

functions vd ≡ u(1)
d

∈ L2(Q) and g = g1 ∈ G ⊂ ˜H1/2(Γ), and let (x2, u2) ≡ (u2, p2, T2, χ2) be
a solution to problem (4.1), that corresponds to perturbed functions ṽd ≡ u(2)

d
∈ L2(Q) and

g̃ = g2 ∈ G ⊂ ˜H1/2(Γ). Setting ud = u(1)
d

− u(2)
d

in addition to (3.24) we note that under
conditions of problem (4.1) we have

〈

I ′1(ui),w
〉

= 2
(

ui − u(i)
d
,w
)

Q
,
(

I ′1(u1) − ˜I ′1(u2),u
)

= 2
(

‖u‖2Q − (u,ud)Q
)

. (4.2)
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Identity (3.22) for problem (4.1) does not change, while identities (3.20), (3.21), and
inequality (3.51) take due to (4.2) a form

ν(∇w,∇ξi) + ((ui · ∇)w, ξi) + ((w · ∇)ui, ξi) + κ(w · ∇Ti, θi) − (σi,div w)

+〈ζi,w〉Γ + μ0

(

ui − u(i)
d
,w
)

Q
= 0 ∀w ∈ ˜H1(Ω),

(4.3)

(div ξi, r) = 0 ∀r ∈ L2
0(Ω), (4.4)

((u · ∇)u, ξ1 + ξ2) + κ(u · ∇T, θ1 + θ2) + μ0

(

‖u‖2Q − (u,ud)Q
)

≤ −〈ζ,g〉Γ − μ1
∥

∥χ
∥

∥

2
ΓN
. (4.5)

Using identities (4.3), (4.4), (3.22) we estimate parameters ξi, θi, σi and ζi. Firstly we
deduce estimates for norms ‖ξi‖1 and ‖θi‖1. To this end we set w = ξi, τ = θi in (4.3), (3.22).
Taking into account (2.11), (2.12), and condition ξi ∈ V, which follows from (4.4), we obtain

ν(∇ξi,∇ξi) = −((ξi · ∇)ui, ξi) − κ(ξi · ∇Ti, θi) − μ0

(

ui − u(i)
d
, ξi
)

Q
, (4.6)

κλ
[

(∇θi,∇θi) + (αθi, θi)ΓN
]

= −(bθi, ξi), i = 1, 2. (4.7)

Using estimates (2.5)–(2.8) and (3.15) we have

(∇ξi,∇ξi) ≥ δ0‖ξi‖21, (∇θi,∇θi) ≥ δ1‖θi‖21, (4.8)

|((ξi · ∇)ui, ξi)| ≤ γ0‖ui‖1‖ξi‖
2
1 ≤ γ0M0

u‖ξi‖21, (4.9)

κ|(ξi · ∇Ti, θi)| ≤ κγ1M0
T‖ξi‖1‖θi‖1, |(bθi, ξi)| ≤ β1‖θi‖1‖ξi‖1, (4.10)

∥

∥

∥ui − u(i)
d

∥

∥

∥

Q
≤ ‖ui‖Q +

∥

∥

∥u(i)
d

∥

∥

∥

Q
≤ γ4M0

u +
∥

∥

∥u(i)
d

∥

∥

∥

Q
≤ δ0νγ4γ−10

(

Re + Re0
)

, (4.11)

∣

∣

∣

∣

(

ui − u(i)
d , ξi

)

Q

∣

∣

∣

∣

≤
∥

∥

∥ui − u(i)
d

∥

∥

∥

Q
‖ξi‖Q ≤ δ0νγ

(

Re +Re0
)

‖ξi‖1, (4.12)

where

γ = γ24 γ
−1
0 , Re0 =

γ0
δ0νγ4

max
(

∥

∥

∥u(1)
d

∥

∥

∥

Q
,
∥

∥

∥u(2)
d

∥

∥

∥

Q

)

. (4.13)

By virtue of (4.8)–(4.10) and (4.12), we deduce from (4.7) and (4.6) that

κ‖θi‖1 ≤
β1
δ1λ

‖ξi‖1, (4.14)

δ0ν‖ξi‖21 ≤ γ0M0
u‖ξi‖21 + κγ1M0

T‖θi‖1 + μ0δ0νγ
(

Re +Re0
)

‖ξi‖1. (4.15)
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Taking into account (4.14), we obtain from (4.15) that

(

δ0ν − γ0M0
u −

β1γ1
δ1λ

M0
T

)

‖ξi‖21 ≤ μ0δ0νγ
(

Re +Re0
)

‖ξi‖1. (4.16)

Using (3.33)we deduce successfully from (4.16), (4.14) that

‖ξi‖1 ≤ 2μ0γ
(

Re + Re0
)

, κ‖θi‖1 ≤ 2μ0γ
β1
δ1λ

(

Re +Re0
)

. (4.17)

Let us estimate further the norms ‖σi‖ and ‖ζi‖−1/2,Γ from (4.3). In order to estimate
‖σi‖ we make use of inf-sup condition (2.10). By (2.10) for a function σi ∈ L2

0(Ω) and any
small number δ > 0 there exists a function vi ∈ H1

0(Ω), vi /= 0, such that the inequality

−(div vi, σi) ≥ β0‖vi‖1‖σi‖, i = 1, 2, β0 = β − δ (4.18)

holds. Setting in (4.3) w = vi and using this estimate together with estimates (2.6), (3.15),
(4.11), we have

β0‖vi‖1‖σi‖ ≤ −(div vi, σi)

≤ ν‖vi‖1‖ξi‖1

+ 2γ0M0
u‖vi‖1‖ξi‖1 + κγ1M0

T‖vi‖1‖θi‖1 + μ0δ0νγ
(

Re + Re0
)

‖vi‖1.

(4.19)

From this inequality we deduce by (4.17) that

‖σi‖ ≤ 1
β0

[(

ν + 2γ0M0
u

)

‖ξi‖1 + γ1M0
Tκ‖θi‖1 + μ0δ0νγ

(

Re + Re0
)]

≤ δ0ν

β0

[

R‖ξi‖1 +
γ1M

0
T

δ0ν
κ‖θi‖1 + μ0γ

(

Re +Re0
)

]

.

(4.20)

Taking into account (4.17), we come from (4.20) to the estimate

‖σi‖ ≤ μ0γ
δ0ν

β0

(

Re + Re0
)

(2R + 2Ra + 1). (4.21)

It remains to estimate ‖ζ‖−1/2,Γ. To this end we make again use of identity (4.3). Using
estimates (2.6), (2.9) and (3.15), (4.11), (4.17), (4.21) as well we have

|〈ζi,w〉Γ| ≤
[(

ν + 2γ0M0
u

)

‖ξi‖1 + γ1M0
Tκ‖θi‖1 + Cd‖σi‖ + μ0δ0νγ

(

Re + Re0
)]

‖w‖1

≤ μ0δ0νγ
(

1 + Cdβ
−1
0

)(

Re + Re0
)

(2R + 2Ra + 1)‖w‖1 ∀w ∈ ˜H1(Ω).
(4.22)
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As ζ = ζ1 − ζ2 we obtain from this inequality that

‖ζ‖−1/2,Γ ≤ μ0a, a = 2δ0νγ
(

1 + Cdβ
−1
0

)(

Re +Re0
)

(2R + 2Ra + 1). (4.23)

Taking into account (2.6), (3.48), (3.49), and estimates (4.17) for ξi, θi, we have

|((u · ∇)u, ξ1 + ξ2)| ≤ γ0‖u‖21(‖ξ1‖1 + ‖ξ2‖1)

≤ 4μ0γ0γ
(

Re + Re0
)

[

2β1γ2
∥

∥χ
∥

∥

ΓN

δ0νδ1λ(1 − 2Ra) +
C0(2R + 1)‖g‖1/2,Γ

1 − 2Ra

]2

,

κ|(u · ∇T, θ1 + θ2)| ≤
4μ0γ1γβ1

(

Re + Re0
)

δ1λ

[

2β1γ2
∥

∥χ
∥

∥

ΓN

δ0νδ1λ(1 − 2Ra) +
C0(2R + 1)‖g‖1/2,Γ

1 − 2Ra

]

×
[

γ2
∥

∥χ
∥

∥

ΓN

δ1λ(1 − 2Ra) +
C0(2R + 1)
1 − 2Ra

γ1M
0
T

δ1λ
‖g‖1/2,Γ

]

.

(4.24)

It follows from (4.24) that

|((u · ∇)u, ξ1 + ξ2) + κ(u · ∇T, θ1 + θ2)| ≤ μ0

(

b‖g‖21/2,Γ + c
∥

∥χ
∥

∥

2
ΓN

)

. (4.25)

Here constants b and c are given by

b = 4γγ0C2
0(2R + 1)2

(

Re + Re0
)

(1 − 2Ra)2

[

3 +
(

γ1
γ0

)2

P2Ra2
]

,

c = 4γγ0
(

β1
δ0ν

γ2
δ1λ

)2 (Re + Re0
)

(1 − 2Ra)2

[

12 +
(

γ1
γ0

)2

P2

]

.

(4.26)

Let the data for problem (4.1) and parameters μ0, μ1 be such that with a certain
constant ε > 0 the following condition takes place:

(1 − ε)μ1 ≥ μ0c, ε = const > 0. (4.27)

Under condition (4.27)we deduce from (4.25) that

|((u · ∇)u, ξ1 + ξ2) + κ(u · ∇T, θ1 + θ2)| ≤ μ0b‖g‖21/2,Γ + (1 − ε)μ1
∥

∥χ
∥

∥

2
ΓN
. (4.28)

Taking into account (4.28) and the estimate |〈ζ,g〉Γ| ≤ ‖ζ‖−1/2,Γ‖g‖1/2,Γ ≤ μ0a‖g‖1/2,Γ which
follows from (4.23), we come from (4.5) to the inequality

μ0

(

‖u‖2Q − (u,ud)Q
)

≤ −((u · ∇)u, ξ1 + ξ2) − κ(u · ∇T, θ1 + θ2) − 〈ζ,g〉Γ − μ1
∥

∥χ
∥

∥

2
ΓN

≤ −εμ1
∥

∥χ
∥

∥

2
ΓN

+ μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ.
(4.29)
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It follows from this inequality that

μ0‖u‖2Q ≤ μ0(u,ud)Q − εμ1
∥

∥χ
∥

∥

2
ΓN

+ μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ. (4.30)

Excluding nonpositive term −εμ1‖χ‖2ΓN from the right-hand side of (4.30), we deduce from
(4.30) that

‖u‖2Q ≤ ‖ud‖Q‖u‖Q + a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ. (4.31)

Equation (4.31) is a quadratic inequality for ‖u‖Q. Solving it we come to the following
estimate for ‖u‖Q:

‖u‖Q ≤ ‖ud‖Q +
(

a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ

)1/2
. (4.32)

As u = u1 − u2, ud = u(1)
d

− u(2)
d
, g = g1 − g2, the estimate (4.32) is equivalent to the following

estimate for the velocity difference u1 − u2:

‖u1 − u2‖Q ≤
∥

∥

∥u(1)
d

− u(2)
d

∥

∥

∥

Q
+
(

a‖g1 − g2‖1/2,Γ + b‖g1 − g2‖21/2,Γ
)1/2

. (4.33)

This estimate under Q = Ω has the sense of the stability estimate in L2(Ω) of the component
û of the solution (û, p̂, ̂T, χ̂) to problem (4.1) relative to small perturbations of functions vd ∈
L2(Ω) and g ∈ G in the norms of L2(Ω) and H1/2(Γ), respectively. In particular case where
g1 = g2 the estimate (4.33) transforms to “exact” a priori estimate ‖u1−u2‖Q ≤ ‖u(1)

d −u(2)
d ‖Q. It

was obtained when studying control problems for Navier-Stokes and in [18] when studying
control problems for heat convection equations. If besides u(1)

d
= u(2)

d
it follows from (4.33)

that u1 = u2 inΩ, ifQ = Ω. This yields together with (4.30), (3.48), (3.50) that χ1 = χ2, T1 = T2,
p1 = p2. The latter means the uniqueness of the solution to problem (4.1) when Q = Ω and
condition (4.27) holds.

It is important to note that the uniqueness and stability of the solution to problem
(4.1) under condition (4.27) take place and in the case where Q ⊂ Ω; that is, Q is only a part
of domain Ω. In order to prove this fact let us consider the inequality (4.30). Using (4.32) we
deduce from (4.30) that

εμ1
∥

∥χ
∥

∥

2
ΓN

≤ −μ0‖u‖2Q + μ0‖ud‖Q‖u‖Q + μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ

≤ μ0‖ud‖2Q + μ0‖ud‖Q
(

a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ

)1/2
+ μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ

≤ μ0

[

‖ud‖Q +
(

a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ

)1/2
]2

.

(4.34)
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From (4.34) and (3.48)–(3.50)we come to the following stability estimates:

∥

∥χ1 − χ2
∥

∥

ΓN
≤
√

μ0

εμ1
Δ, (4.35)

‖u1 − u2‖1 ≤
2β1γ2

δ0νδ1λ(1 − 2Ra)

√

μ0

εμ1
Δ +

C0(2R + 1)‖g1 − g2‖1/2,Γ
1 − 2Ra , (4.36)

‖T1 − T2‖1 ≤
γ2

δ1λ(1 − 2Ra)

√

μ0

εμ1
Δ +

C0(2R + 1)
1 − 2Ra

γ1M
0
T

δ1λ
‖g1 − g2‖1/2,Γ, (4.37)

∥

∥p1 − p2
∥

∥ ≤
(2R + 1)β1γ2

β0δ1λ(1 − 2Ra)

√

μ0

εμ1
Δ +

C0(2R + 1)(R +Ra)
1 − 2Ra

δ0ν

β0
‖g1 − g2‖1/2,Γ, (4.38)

where

Δ =
∥

∥

∥u(1)
d

− u(2)
d

∥

∥

∥

Q
+
(

a‖g1 − g2‖1/2,Γ + b‖g1 − g2‖21/2,Γ
)1/2

. (4.39)

Thus we have proved the theorem.

Theorem 4.1. Let, under conditions (i), (ii), (iii) for K1 and (3.19), the quadruple (ui, pi, Ti, χi) be
a solution to problem (4.1) corresponding to given functions vd = u(i)

d
∈ L2(Q) and gi ∈ G ⊂ ˜H1/2(Γ),

i = 1, 2, where Q ⊂ Ω is an arbitrary open subset, and let the parameters a and b, c are defined in
(4.23) and (4.26) in which parameters γ and Re0 are given by (4.13). Suppose that condition (4.27)
is satisfied. Then stability estimates (4.33) and (4.35)–(4.38) hold true where Δ is defined in (4.39).

Now we consider three-parametric control problem

J
(

v, χ, ψ, f
)

≡
μ0

2
‖v − vd‖2Q +

μ1

2
∥

∥χ
∥

∥

2
ΓN

+
μ2

2
∥

∥ψ
∥

∥

2
1/2,ΓD

+
μ3

2
∥

∥f
∥

∥

2 −→ inf,

F(x, u,g) = 0, x =
(

v, p, T
)

∈ X, u =
(

χ, ψ, f
)

∈ K
(4.40)

corresponding to the cost functional I1(v) = ‖v − vd‖2Q. Let (x1, u1) ≡ (u1, p1, T1, χ1, ψ1, f1)

be a solution to problem (4.40) corresponding to given functions vd ≡ u(1)
d

∈ L2(Q) and
g = g1 ∈ G, and let (x2, u2) ≡ (u2, p2, T2, χ2, ψ2, f2) be a solution to problem (4.40) corres-
ponding to perturbed functions ṽd ≡ u(2)

d ∈ L2(Q) and g̃ = g2 ∈ G. Setting ud = u(1)
d − u(2)

d

in addition to (3.24), we note that under conditions of problem (4.40) identities (3.20) and
(3.21) transform to identities (4.3), (4.4), identity (3.22) does not change, while inequality
(3.30) takes by (4.2) a form

((u · ∇)u, ξ1 + ξ2) + κ(u · ∇T, θ1 + θ2) + μ0

(

‖u‖2Q − (u,ud)Q
)

≤ −〈ζ,g〉Γ − μ1
∥

∥χ
∥

∥

2
ΓN

− μ2
∥

∥ψ
∥

∥

2
1/2,ΓD

− μ3
∥

∥f
∥

∥

2
.

(4.41)
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From (4.3), (4.4), and (3.22) we come to the same estimates (4.17), (4.21), and (4.23)
for norms ‖ξi‖1, ‖θi‖1, ‖σi‖ and ‖ζ‖−1/2,Γ. Taking into account these estimates and estimates
(3.42), (3.44) for ‖T‖1, ‖u‖1, we deduce that

|((u · ∇)u, ξ1 + ξ2)|

≤ γ0‖u‖21(‖ξ1‖1 + ‖ξ2‖1) ≤ 4μ0γ0γ
(

Re +Re0
)

×

⎡

⎢

⎣

2β1C1(N + 1)
∥

∥ψ
∥

∥

1/2,ΓD

δ0ν(1 − 2Ra) +
2β1
(

γ2
∥

∥χ
∥

∥

ΓN
+ γ4

∥

∥f
∥

∥

)

δ0νδ1λ(1 − 2Ra) +
C0(2R + 1)‖g‖1/2,Γ

1 − 2Ra

⎤

⎥

⎦

2

,

|(u · ∇T, θ1 + θ2)|

≤
4μ0γ1γβ1

(

Re + Re0
)

δ1λ

×

⎡

⎢

⎣

2β1C1(N + 1)
∥

∥ψ
∥

∥

1/2,ΓD

δ0ν(1 − 2Ra) +
2β1
(

γ2
∥

∥χ
∥

∥

ΓN
+ γ4

∥

∥f
∥

∥

)

δ0νδ1λ(1 − 2Ra) +
C0(2R + 1)‖g‖1/2,Γ

1 − 2Ra

⎤

⎥

⎦

×
[

C1(N + 1)
1 − 2Ra

∥

∥ψ
∥

∥

1/2,ΓD
+
γ2
∥

∥χ
∥

∥

ΓN
+ γ4

∥

∥f
∥

∥

δ1λ(1 − 2Ra) +
C0(2R + 1)
1 − 2Ra

γ1M
0
T

δ1λ
‖g‖1/2,Γ

]

.

(4.42)

Here parameters γ and Re0 are given by (4.13). From (4.42)we obtain that

|((u · ∇)u, ξ1 + ξ2) + κ(u · ∇T, θ1 + θ2)| ≤ μ0

(

b‖g‖21/2,Γ + c1
∥

∥χ
∥

∥

2
ΓN

+ c2
∥

∥ψ
∥

∥

2
1/2,ΓD

+ c3
∥

∥f
∥

∥

2
)

.

(4.43)

Here constants b, c1, c2, and c3 are given by relations

b = 8γ0γC2
0(2R + 1)2

(

Re +Re0
)

(1 − 2Ra)2

[

3 +
(

γ1
γ0

)2

P2Ra2
]

,

c1 = 8γ0γ
(

β1
δ0ν

γ2
δ1λ

)2 (Re + Re0
)

(1 − 2Ra)2

[

12 +
(

γ1
γ0

)2

P2

]

,

c2 = 8γ0γC2
1(N + 1)2

(

β1
δ0ν

)2 (Re + Re0
)

(1 − 2Ra)2

[

12 +
(

γ1
γ0

)2

P2

]

,

c3 = 8γ0γ
(

β1
δ0ν

γ4
δ1λ

)2 (Re + Re0
)

(1 − 2Ra)2

[

12 +
(

γ1
γ0

)2

P2

]

.

(4.44)
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Let the data for problem (4.40) and parameters μ0, μ1, μ2, and μ3 be such that

μ1(1 − ε) ≥ μ0c1, μ2(1 − ε) ≥ μ0c2, μ3(1 − ε) ≥ μ0c3, ε = const > 0. (4.45)

Under condition (4.45)we deduce from (4.43) that

|((u · ∇)u, ξ1 + ξ2) + κ(u · ∇T, θ1 + θ2)|

≤ (1 − ε)μ1
∥

∥χ
∥

∥

2
ΓN

+ (1 − ε)μ2
∥

∥ψ
∥

∥

2
1/2,ΓD

+ (1 − ε)μ3
∥

∥f
∥

∥

2 + μ0b‖g‖21/2,Γ.

(4.46)

Taking into account (4.46) and (4.23), we come from (4.41) to the inequality

μ0

(

‖u‖2Q − (u,ud)Q
)

≤ −((u · ∇)u, ξ1 + ξ2) − κ(u · ∇T, θ1 + θ2)

− 〈ζ,g〉Γ − μ1
∥

∥χ
∥

∥

2
ΓN

− μ2
∥

∥ψ
∥

∥

2
1/2,ΓD

− μ3
∥

∥f
∥

∥

2

≤ −εμ1
∥

∥χ
∥

∥

2
ΓN

− εμ2
∥

∥ψ
∥

∥

2
1/2,ΓD

− εμ3
∥

∥f
∥

∥

2 + μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ.
(4.47)

It follows from this inequality that

μ0‖u‖2Q ≤ μ0(u,ud)Q − εμ1
∥

∥χ
∥

∥

2
ΓN

− εμ2
∥

∥ψ
∥

∥

2
1/2,ΓD

− εμ3
∥

∥f
∥

∥

2 + μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ.
(4.48)

Excluding nonpositive terms from the right-hand side of (4.48), we come to the inequality
(4.31) where constants a and b are defined in (4.23) and (4.44). From (4.31) we deduce the
estimate (4.32) for ‖u‖Q with mentioned constants a and b given by (4.23) and (4.44). As in
the case of problem (4.1), stability in the norm L2(Ω) of the component û of the solution to
problem (4.40) relative to small perturbations of functions vd ∈ L2(Ω) and g ∈ G in the norms
of L2(Ω) and H1/2(Γ), respectively, and uniqueness of the solution to problem (4.40) follow
from (4.32) in the case when Q = Ω and (4.45) holds.

We note again that the uniqueness and stability of the solution to problem (4.40) under
condition (4.45) take place and in the case Q ⊂ Ω where Q is only a part of the domain Ω. In
order to establish this fact we consider inequality (4.48)which we rewrite taking into account
(4.32) as

εμ1
∥

∥χ
∥

∥

2
ΓN

+ εμ2
∥

∥ψ
∥

∥

2
1/2,ΓD

+ εμ3
∥

∥f
∥

∥

2 ≤ −μ0‖u‖2Q + μ0‖u‖Q‖ud‖Q + μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ

≤ μ0

[

‖ud‖Q +
(

a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ

)1/2
]2

.

(4.49)
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From this inequality and from (3.42)–(3.47)we come to the following stability estimates:

∥

∥χ1 − χ2
∥

∥

ΓN
≤
√

μ0

εμ1
Δ,

∥

∥ψ1 − ψ2
∥

∥

1/2,ΓD
≤
√

μ0

εμ2
Δ,

∥

∥f1 − f2
∥

∥ ≤
√

μ0

εμ3
Δ, (4.50)

‖u1 − u2‖1 ≤
2β1d

δ0ν(1 − 2Ra)

√

μ0

ε
Δ +

C0(2R + 1)‖g1 − g2‖1/2,Γ
1 − 2Ra , (4.51)

‖T1 − T2‖1 ≤
d

1 − 2Ra

√

μ0

ε
Δ +

C0(2R + 1)
1 − 2Ra

γ1M
0
T

δ1λ
‖g1 − g2‖1/2,Γ, (4.52)

∥

∥p1 − p2
∥

∥ ≤ (2R + 1)
β0(1 − 2Ra)

[

β1d

√

μ0

ε
Δ + δ0νC0(R +Ra)‖g1 − g2‖1/2,Γ

]

. (4.53)

Here a constant d depending on μ1, μ2, and μ3 is given by

d =
γ2

δ1λ
√
μ1

+
C1(N + 1)

√
μ2

+
γ4

δ1λ
√
μ3
, (4.54)

and a quantity Δ is defined in (4.39). Thus the following theorem is proved.

Theorem 4.2. Let, under conditions (i), (ii), (iii), and (3.19), an element (ui, pi, Ti, χi, ψi, fi) be a
solution to problem (4.40) corresponding to given functions vd = u(i)

d
∈ L2(Q) and gi ∈ G, i = 1, 2,

where Q is an arbitrary open subset, and let parameters a and b, c1, c2, c3 be defined in (4.23)
and (4.44), where γ and Re0are given by (4.13). Suppose that conditions (4.45) are satisfied.
Then stability estimates (4.33) and (4.50)–(4.53) hold where Δ and d are defined in (4.39) and
(4.54).

In the same manner one can study control problem

J
(

v, χ
)

≡
μ0

2
‖v − vd‖21,Q +

μ1

2
∥

∥χ
∥

∥

2
ΓN

−→ inf, F
(

x, χ,g
)

= 0, x ∈ X, χ ∈ K1 (4.55)

corresponding to the cost functional I2(v) = ‖v − vd‖21,Q. Let us denote by (x1, u1) ≡
(u1, p1, T1, χ1) a solution to problem (4.55) which corresponds to given functions vd ≡ u(1)

d ∈
L2(Q) and g = g1 ∈ G; by (x2, u2) ≡ (u2, p2, T2, χ2)we denote a solution to problem (4.1)which
corresponds to perturbed functions ṽd ≡ u(2)

d
∈ L2(Q) and g̃ = g2 ∈ G. Setting ud = u(1)

d
− u(2)

d

in addition to (3.24)we note that under conditions of problem (4.55) we have

〈

I ′2(ui),w
〉

= 2
(

ui − u(i)
d ,w

)

1,Q
,

(

I ′2(u1) − ˜I ′2(u2),u
)

= 2
(

‖u‖21,Q − (u,ud)1,Q
)

. (4.56)
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Identity (3.22) for problem (4.1) does not change while identities (3.20), (3.21) and inequality
(3.51) transform by (4.56) to (4.4) and relations

ν(∇w,∇ξi) + ((ui · ∇)w, ξi) + ((w · ∇)ui, ξi) + κ(w · ∇Ti, θi) − (σi,div w) + 〈ζi,w〉Γ
= −μ0

(

ui − u(i)
d ,w

)

1,Q
∀w ∈ ˜H1(Ω), i = 1, 2,

(4.57)

((u · ∇)u, ξ1 + ξ2) + κ(u · ∇T, θ1 + θ2) + μ0

(

‖u‖21,Q − (u,ud)1,Q
)

≤ −〈ζ,g〉Γ − μ1
∥

∥χ
∥

∥

2
ΓN
.

(4.58)

Using identities (4.57), (4.4), and (3.22)we estimate parameters ξi, θi, σi and ζi. To this
end we set w = ξi, τ = θi in (4.57), (3.22). Taking into account (2.11), (2.12) and condition
ξi ∈ V which follows from (4.4) we obtain (4.7) and relation

ν(∇ξi,∇ξi) = −((ξi · ∇)ui, ξi) − κ(ξi · ∇Ti, θi) − μ0

(

ui − u(i)
d , ξi

)

1,Q
. (4.59)

Using estimates (3.15)we deduce in addition to (4.8)–(4.10) that

∥

∥

∥ui − u(i)
d

∥

∥

∥

1,Q
≤ ‖ui‖1,Q +

∥

∥

∥u(i)
d

∥

∥

∥

1,Q
≤M0

u +
∥

∥

∥u(i)
d

∥

∥

∥

Q
≤ δ0νγ−10

(

Re + Re0
)

,

∣

∣

∣

∣

(

ui − u(i)
d
, ξi
)

1,Q

∣

∣

∣

∣

≤
∥

∥

∥ui − u(i)
d

∥

∥

∥

1,Q
‖ξi‖1,Q ≤

(

M0
u +

∥

∥

∥u(i)
d

∥

∥

∥

1,Q

)

‖ξi‖1 ≤ δ0νγ
(

Re + Re0
)

‖ξi‖1,

(4.60)

where

γ = γ−10 , Re0 =
γ0
δ0ν

max
(

∥

∥

∥u(1)
d

∥

∥

∥

1,Q
,
∥

∥

∥u(2)
d

∥

∥

∥

1,Q

)

. (4.61)

Proceeding further as above in study of problem (4.1) we come to the estimates for ξi, θi, σi
and ζ = ζ1 − ζ2. They have a form (4.17), (4.21), and (4.23), where parameters γ and Re0 are
given by (4.61).

Let us assume that the condition (4.27) takes place where parameter c is defined in
(4.26), (4.61). Using (4.27) and estimates (4.17), (4.21), (4.23) we deduce inequality (4.28)
where parameter b is given by relations (4.26), (4.61). Taking into account (4.28) and (4.23),
we come from (4.58) to the inequality

μ0

(

‖u‖21,Q − (u,ud)1,Q
)

≤ −((u · ∇)u, ξ1 + ξ2) − κ(u · ∇T, θ1 + θ2) − ‖ζ‖−1/2,Γ‖g‖1/2,Γ − μ1
∥

∥χ
∥

∥

2
ΓN

≤ −εμ1
∥

∥χ
∥

∥

2
ΓN

+ μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ.
(4.62)

It follows from this inequality that

μ0‖u‖21,Q ≤ μ0(u,ud)1,Q − εμ1
∥

∥χ
∥

∥

2
ΓN

+ μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ. (4.63)
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Excluding nonpositive term −εμ1‖χ‖2ΓN , we deduce from (4.63) that

‖u‖21,Q ≤ ‖ud‖1,Q‖u‖1,Q + a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ. (4.64)

Equation (4.31) is a quadratic inequality relative to ‖u‖1,Q. By solving it we come to the
estimate

‖u‖1,Q ≤ ‖ud‖1,Q +
(

a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ

)1/2
(4.65)

which is equivalent to the following estimate for u1 − u2:

‖u1 − u2‖1,Q ≤
∥

∥

∥u(1)
d − u(2)

d

∥

∥

∥

1,Q
+
(

a‖g1 − g2‖1/2,Γ + b‖g1 − g2‖21/2,Γ
)1/2

. (4.66)

The estimate (4.66) under Q = Ω has the sense of the stability estimate in the norm H1(Ω) of
the component û of the solution (û, p̂, ̂T, χ̂) to problem (4.55) relative to small perturbations
of functions vd ∈ H1(Ω) and g ∈ G in the norms of H1(Ω) and H1/2(Γ) respectively. In the
case where u(1)

d = u(2)
d and g1 = g2 it follows from (4.66) that u1 = u2 in Ω, if Q = Ω. This

yields together with (4.63), (3.48), (3.50) that χ1 = χ2, T1 = T2, p1 = p2. The latter means the
uniqueness of the solution to problem (4.55) when Q = Ω and (4.27) holds.

We note again that using (4.63), (4.65)we can deduce rougher stability estimates of the
solution to problem (4.55) which take place even in the case where Q/=Ω. In fact we deduce
from (4.63) (4.65) that

εμ1
∥

∥χ
∥

∥

2
ΓN

≤ μ0‖u‖1,Q‖ud‖1,Q + μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ

≤ μ0

[

‖ud‖1,Q +
(

a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ

)1/2
]2

.

(4.67)

From (4.67) and (3.48)–(3.50)we come to the estimates (4.35)–(4.38)where one should set

Δ =
∥

∥

∥u(1)
d − u(2)

d

∥

∥

∥

1,Q
+
(

a‖g1 − g2‖1/2,Γ + b‖g1 − g2‖21/2,Γ
)1/2

. (4.68)

Thus we have proved the following theorem.

Theorem 4.3. Let, under conditions (i), (ii), (iii) for K1 and (3.19), the quadruple (ui, pi, T, χi) be a
solution to problem (4.55) corresponding to given functions vd = u(i)

d
∈ H1(Q) and gi ∈ G, i = 1, 2,

where Q ⊂ Ω is an arbitrary open subset, and let parameters a, b, c be defined in (4.23) and (4.26),
in which γ and Re0 are given by (4.61). Suppose that condition (4.27) is satisfied. Then the stability
estimates (4.66) and (4.35)–(4.38) hold where Δ is defined in (4.68).
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In the similar way one can study three-parametric control problem

J
(

v, χ, ψ, f
)

≡
μ0

2
‖v − vd‖21,Q +

μ1

2
∥

∥χ
∥

∥

2
ΓN

+
μ2

2
∥

∥ψ
∥

∥

2
1/2,ΓD

+
μ3

2
∥

∥f
∥

∥

2 −→ inf,

F
(

x, χ, ψ, f,g
)

= 0,
(

x, χ, ψ, f
)

∈ X ×K1 ×K2 ×K3.

(4.69)

It is obtained from (4.40) by replacing of the cost functional I1(v) by I2(v). Analogous analysis
shows that the following theorem holds.

Theorem 4.4. Let, under conditions (i), (ii), (iii) and (3.19), an element (ui, pi, Ti, χi, ψi, fi) be a
solution to problem (4.69) corresponding to given functions ud = u(i)

d ∈ H1(Q) and gi ∈ G, i = 1, 2,
where Q ⊂ Ω is an arbitrary open subset and let parameters a and b, c1, c2, c3 are defined in (4.23)
and (4.26), in which γ and Re0 are given by (4.61). Suppose that conditions (4.45) are satisfied. Then
the stability estimates (4.66) and (4.50)–(4.53) hold where Δ is defined in (4.68).

5. Control Problem for Vorticity Tracking-Type Cost Functional

Consider now one-parametric control problem

J
(

v, χ
)

≡
μ0

2
‖rot v − ζd‖2Q +

μ1

2
∥

∥χ
∥

∥

2
ΓN

−→ inf, F
(

x, χ,g
)

= 0, x ∈ X, χ ∈ K1, (5.1)

which corresponds to the cost functional I3(v) = ‖ rot v−ζd‖2Q. Let (x1, u1) ≡ (u1, p1, T1, χ1) be a

solution to problem (5.1) corresponding to given functions ζd ≡ ζ
(1)
d

∈ L2(Q) and g = g1 ∈ G,
and let (x2, u2) ≡ (u2, p2, T2, χ2) be a solution to problem (4.1) corresponding to perturbed
functions ˜ζd ≡ ζ

(2)
d

∈ L2(Q) and g̃ = g2 ∈ G. Setting ud = u(1)
d

− u(2)
d

in addition to (3.24), we
have under conditions of problem (4.1)

〈

I ′3(ui),w
〉

= 2
(

rot ui − ζ(i)d , rot w
)

Q
,

(

I ′3(u1) − ˜I ′3(u2),u
)

= 2
(

‖rot u‖2Q − (rot u, ζd)Q
)

.

(5.2)

Identity (3.22) for problem (5.1) does not change, while identities (3.20), (3.21) and inequality
(3.51) transform due to (5.2) to (4.4) and relations

ν(∇w,∇ξi) + ((ui · ∇)w, ξi) + ((w · ∇)ui, ξi) + κ(w · ∇Ti, θi) − (σi,div w) + 〈ζi,w〉Γ
= −μ0

(

rot ui − ζ(i)d ,w
)

Q
∀w ∈ ˜H1(Ω),

(5.3)

((u · ∇)u, ξ1 + ξ2) + κ(u · ∇T, θ1 + θ2) + μ0

(

‖rot u‖2Q − (rot u, ζd)Q
)

≤ −〈ζ,g〉Γ − μ1
∥

∥χ
∥

∥

2
ΓN
.

(5.4)

Using identities (5.3), (3.22), (4.4) we estimate parameters ξi, θi, σi, and ζi. Firstly we
deduce estimates of norms ‖ξi‖1 and ‖θi‖1. To this end we set w = ξi, τ = θi in (5.3), (3.22).
Taking into account (2.11), (2.12) and condition ξi ∈ V, which follows from (4.4), we obtain
(4.7) and relation

ν(∇ξi,∇ξi) = −((ξi · ∇)ui, ξi) − κ(ξi · ∇Ti, θi) − μ0

(

rot ui − ζ(i)d , ξi
)

Q
. (5.5)
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Using (2.9), (3.15)we deduce in addition to (4.8)–(4.10) that

∥

∥

∥rot ui − ζ(i)d
∥

∥

∥

Q
≤ ‖rot ui‖Q +

∥

∥

∥ζ
(i)
d

∥

∥

∥

Q
≤ CrM

0
u +

∥

∥

∥ζ
(i)
d

∥

∥

∥

Q
≤
δ0νC

2
r

γ0

(

Re + Re0
)

,

∣

∣

∣

∣

(

rot ui − ζ(i)d , rot ξi
)

Q

∣

∣

∣

∣

≤
∥

∥

∥rot ui − ζ(i)d
∥

∥

∥

Q
‖ξi‖Q ≤ Cr

(

CrM
0
u +

∥

∥

∥ζ
(i)
d

∥

∥

∥

Q

)

‖ξi‖1

≤ δ0νγ
(

Re + Re0
)

‖ξi‖1,

(5.6)

where

γ = C2
r , Re0 =

γ0
δ0νCr

max
(

∥

∥

∥ζ
(1)
d

∥

∥

∥

Q
,
∥

∥

∥ζ
(2)
d

∥

∥

∥

Q

)

. (5.7)

Arguing as above in analysis of problem (4.1) we come to the same estimates (4.17), (4.21),
and (4.23) for ‖ξi‖1, ‖θi‖1, ‖σi‖, and ‖ζ‖−1/2,Γ in which parameters γ andRe0 are given by (5.7).

Let us assume that the condition (4.27) takes place where parameter c is defined
in (4.26), (5.7). Using (4.27) and (4.17), (4.21), (4.23) we deduce inequality (4.28) where
parameter b is given by (4.26), (5.7). Taking into account (4.28) and (4.23) with parameter
a defined in (4.23), (5.7) we come from (5.4) to the inequality

μ0

(

‖rot u‖2Q − (rot u, ζd)Q
)

≤ −((u · ∇)u, ξ1 + ξ2) − κ(u · ∇T, θ1 + θ2) + ‖ζ‖−1/2,Γ‖g‖1/2,Γ − μ1
∥

∥χ
∥

∥

2
ΓN

≤ −εμ1
∥

∥χ
∥

∥

2
ΓN

+ μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ.

(5.8)

It follows from this inequality that

μ0‖rot u‖2Q ≤ μ0(rot u, ζd)Q − εμ1
∥

∥χ
∥

∥

2
ΓN

+ μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ. (5.9)

Excluding nonpositive term −εμ1‖χ‖2ΓN , we deduce from (5.9) that

‖rot u‖2Q ≤ ‖ζd‖Q‖rot u‖Q + a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ. (5.10)

Equation (5.10) is a quadratic inequality relative to ‖ rot u‖Q. Solving it we come to the
estimate

‖rot u‖Q ≤ ‖ζd‖Q +
(

a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ

)1/2
, (5.11)

which is equivalent to the following estimate for the difference rot u1 − rot u2:

‖rot u1 − rot u2‖Q ≤
∥

∥

∥ζ
(1)
d − ζ(2)d

∥

∥

∥

Q
+
(

a‖g1 − g2‖1/2,Γ + b‖g1 − g2‖21/2,Γ
)1/2

. (5.12)
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The estimate (5.12) under Q = Ω has the sense of the stability estimate in the norm
L2(Ω) of the vorticity curl û of the component û of the solution (û, p̂, ̂T, χ̂) to problem (5.1)
relative to small perturbations of functions ζd ∈ L2(Ω) and g ∈ ˜H1/2(Γ) in the norms of L2(Ω)
andH1/2(Γ), respectively. In particular case where ζ(1)

d
= ζ(2)

d
and g1 = g2 it follows from (5.11)

that rot u1 = rot u2 in Ω, if Q = Ω. From this relation and from (4.30), (3.48), (3.50) it follows
that χ1 = χ2, T1 = T2, p1 = p2. The latter means the uniqueness of the solution to problem (4.1)
when Q = Ω and condition (4.27) holds.

IfQ/=Ωwe can deduce from (5.11) and (5.9) rougher stability estimates of the solution
to problem (5.1), which are analogous to estimates (4.35)–(4.38). In fact using (5.11) we
deduce from (5.9) that

εμ1
∥

∥χ
∥

∥

2
ΓN

≤ −μ0‖rot u‖2Q + μ0‖ζd‖Q‖rot u‖Q + μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ

≤ μ0‖ζd‖2Q + μ0‖ζd‖Q
(

a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ

)1/2
+ μ0a‖g‖1/2,Γ + μ0b‖g‖21/2,Γ

≤ μ0

[

‖ζd‖Q +
(

a‖g‖1/2,Γ + b‖g‖
2
1/2,Γ

)1/2
]2

.

(5.13)

From (5.13) and (3.48)–(3.50)we come to the estimates (4.35)–(4.38)where

Δ =
∥

∥

∥ζ
(1)
d

− ζ(2)
d

∥

∥

∥

Q
+
(

a‖g1 − g2‖1/2,Γ + b‖g1 − g2‖21/2,Γ
)1/2

. (5.14)

Thus the following theorem is proved.

Theorem 5.1. Let, under conditions (i), (ii), (iii) for K1 and (3.19), the quadruple (ui, pi, Ti,χi) be a
solution to problem (5.1) corresponding to given functions ζ(i)d ∈ L2(Q) and gi ∈ G, i = 1, 2, where
Q ⊂ Ω is an arbitrary open subset, and let parameters a and b, c be defined in relations (4.23) and
(4.26), in which γ and Re0 are given by (5.7). Suppose that condition (4.27) is satisfied. Then the
stability estimates (5.12) and (4.35)–(4.38) hold true where Δ is defined in (5.14).

In the similar way one can study three-parametric control problem

J
(

v, χ, ψ, f
)

≡
μ0

2
‖rot v − ζd‖2Q +

μ1

2
∥

∥χ
∥

∥

2
ΓN

+
μ2

2
∥

∥ψ
∥

∥

2
1/2,ΓD

+
μ3

2
∥

∥f
∥

∥

2 −→ inf,

F
(

x, χ, ψ, f,g
)

= 0,
(

x, χ, ψ, f
)

∈ X ×K1 ×K2 ×K3.

(5.15)

It is obtained from (4.40) by replacing the cost functional I1(v) by I3(v). The following
theorem holds.

Theorem 5.2. Let, under conditions (i), (ii), (iii), and (3.19), an element (ui, pi, Ti,χi, ψi, fi) be a solu-
tion to problem (5.15) corresponding to given functions ζd = ζ(i)d ∈ L2(Q) and gi ∈ G, i = 1, 2, where
Q ⊂ Ω is an arbitrary open subset, and let parameters a and b, c1, c2, c3 be given by relations (4.23)
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and (4.44), in which γ and Re0 be defined in (5.7). Suppose that conditions (4.45) are satisfied. Then
the stability estimates (5.12) and (4.50)–(4.53) hold where Δ and d are defined in (5.14) and (4.54).

6. Conclusion

In this paper we studied control problems for the steady-state Boussinesq equations
describing the heat transfer in viscous heat-conducting fluid under inhomogeneous Dirichlet
boundary conditions for velocity and mixed boundary conditions for temperature. These
problems were formulated as constrained minimization problems with tracking-type cost
functionals. We studied the optimality system which describes the first-order necessary
optimality conditions for the general control problem and established some properties of its
solution. In particular we deduced a special inequality for the difference of solutions to the
original and perturbed control problem. The latter is obtained by perturbing both the cost
functional and the boundary function entering into the Dirichlet boundary condition for the
velocity. Using this inequality we found the group of sufficient conditions for the data which
provide a local stability and uniqueness of concrete control problems with velocity-tracking
or vorticity-tracking cost functionals. This group consists of two conditions: the first is the
same for all control problems and has the form of the standard condition (3.19)which ensures
the uniqueness of the solution to the original boundary value problem for the Boussinesq
equations. The second one depends on the form of control problem under study. In particular
for the one-parametric problem (4.1) corresponding to velocity-tracking functional I1(v) it
has the form of estimates (4.27) of the parameters μ0 and μ1 included in (4.1), while for
the three-parametric problem (4.40) it has the form of estimates (4.45) of the parameters
μ0, μ1, μ2, and μ3 included in (4.40). Similar conditions take place for another tracking-type
functionals.

On the one hand, conditions (4.27) and (4.45) are similar to the uniqueness and
stability conditions for the solution to the coefficient identification problems for the
linear convection-diffusion-reaction equation. On the other hand, these conditions contain
compressed information on the Boussinesq heat transfer model (2.1), (2.2) in the form of the
constant c defined in (4.26) for problem (4.1) or in the form of three constants c1, c2, c3 defined
in (4.44) for problem (4.40). An analysis of the expressions for c or c1, c2, c3 shows that for
fixed values of the parameters μl inequality (4.27) or inequalities (4.45) represent additional
constraints on the Reynolds number Re, Rayleigh number Ra, and Prandtl number P which
together with (3.19) ensure the uniqueness and stability of the solution to problem (4.1) or
(4.40). We also note that for fixed values of Re, Ra, and P inequalities (4.27) and (4.45)
imply that to ensure the uniqueness and stability of the solution to problem (4.1) or (4.40)
the values of the parameters μ1, μ2, and μ3 should be positive and exceed the constants on
the right-hand sides of inequalities (4.27) and (4.45). This means that the term (μ1/2)‖χ‖2ΓN
in the expression for minimized functional in (4.1) or the terms (μ1/2)‖χ‖2ΓN , (μ2/2)‖ψ‖21/2,ΓD
and (μ3/2)‖f‖2 in the expression for minimized functional in (4.40) have a regularizing effect
on the control problem under consideration. The same conclusions hold true and for another
control problems studied in this paper.
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