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We employ the bifurcation method of planar dynamical systems and qualitative theory of
polynomial differential systems to derive new bounded traveling-wave solutions for a variant of
theK(3, 2) equation. For the focusing branch, we obtain hump-shaped and valley-shaped solitary-
wave solutions and some periodic solutions. For the defocusing branch, the nonexistence of
solitary traveling wave solutions is shown. Meanwhile, some periodic solutions are also obtained.
The results presented in this paper supplement the previous results.

1. Introduction
To study the role of nonlinear dispersion in the formation of patterns in the liquid drops, in
1993, Rosenau and Hyman [1] suggested a family of KdV-like equations,

ut + a(um)x + (un)xxx = 0, m, n ≥ 1, (1.1)

which is the so-called K(m,n) equation. In [2], the authors obtained topological soliton
solution of the K(m,n) equation by using the G′/G method.

For the focusing branch (a = 1), the K(n, n) has compacton solutions [3–9] given by

u(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

{√
2cn
n + 1

cos
[
n − 1
2n

(x − ct)
]}2/(n−1)

, |x − ct| ≤ nπ

n − 1
, n > 1,

0, otherwise,

u(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

{√
2cn
n + 1

sin
[
n − 1
2n

(x − ct)
]}2/(n−1)

, |x − ct| ≤ nπ

n − 1
, n > 1,

0, otherwise.

(1.2)
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For the defocusing branch (a = −1), the K(n, n) equation has solutions [7, 9] given by

u(x, t) =

{√
2cn
n + 1

cosh
[
n − 1
2n

(x − ct)
]}2/(n−1)

,

u(x, t) =

{√
2cn
n + 1

sinh
[
n − 1
2n

(x − ct)
]}2/(n−1)

.

(1.3)

Later, in 2000, Rosenau [5] introduced a variant of K(m,n) equation defined by

ut + a(um)x + (u(un)xx)x = 0, m, n ≥ 1, (1.4)

which emerges in nonlinear lattices and was used to describe the dispersion of dilute
suspensions for m = 2 and n = 1 [5]. In [10], (1.4) was investigated to support the feature of
the dispersion-velocity method for a = 1, m = 2, and n = 1.

For the focusing branch (a > 0) and m = n + 1, Rosenau [5] obtained a compacton
solution of (1.4) given by

u(x, t) =

⎧
⎪⎨

⎪⎩

{
2c
a
cos2
[√

a

2
(x − ct)

]}1/n

, |x − ct| ≤ π,

0, otherwise.
(1.5)

Later, Wazwaz [11] found another compacton solution given by

u(x, t) =

⎧
⎪⎨

⎪⎩

{
2c
a
sin2
[√

a

2
(x − ct)

]}1/n

, |x − ct| ≤ π,

0, otherwise.
(1.6)

For the defocusing branch (a < 0) and m = n + 1, Wazwaz [11] showed that (1.4) has
solutions given by

u(x, t) =
{

−2c
a
cosh2

[√−a
2

(x − ct)
]}1/n

,

u(x, t) =
{

−2c
a
sinh2

[√−a
2

(x − ct)
]}1/n

.

(1.7)

Here we note that (1.3) and (1.7) are unbounded solutions and have no physical meaning.
For more works regarding other variants of the K(m,n) equation, we refer to [12, 13].

Rosenau and Wazwaz’s work did not consider the periodic and general solitary-wave
solutions for (1.4). So, in this paper, we attempt to employ the bifurcation method of planar
dynamical systems and qualitative theory of polynomial differential systems to obtain such
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two types of solutions of (1.4) for a = ±1, m = 3, and n = 2, which are not obtained in [5, 11].
The equation reads

ut ±
(
u3)

x +
(
u
(
u2)

xx

)

x
= 0. (1.8)

From Rosenau’s point of view [5], we call (1.8) a variant of theK(3, 2) equation. a = 1 and a =
−1 correspond to the focusing branch and defocusing branch of (1.8), respectively. It is known
that periodic solution and solitary-wave solution are two important types of solutions for
physical systems. They describe practical physical processes and can explain many physical
phenomena. Here we must note that the bifurcation method was first used by Li and Liu
[14] to obtain smooth and nonsmooth traveling-wave solutions to a nonlinearly dispersive
equation and was later proved to be a powerful tool to solve a large number of integrable and
nonintegrable partial differential equations [15–22].

The remainder of the paper is organized as follows. In Section 2, using the traveling
wave transformation, we transform (1.8) into planar dynamical systems and then discuss
bifurcations and phase portraits of the systems corresponding to the focusing and defocusing
branch of (1.8), respectively. In Section 3, We obtain the solitary-wave solutions for the
focusing branch of (1.8) and demonstrate the nonexistence of solitary-wave solutions for
the defocusing branch of (1.8). In Section 4, we obtain some periodic solutions for both the
focusing branch and the defocusing branch of (1.8). A short conclusion is given in Section 5.

2. Plane Phase Analysis

Let ξ = x−ct, where c is the wave speed. By using the traveling wave transformation u(x, t) =
ϕ(x − ct) = ϕ(ξ), we can reduce (1.8) to the following ordinary differential equations:

−cϕ′ ± (ϕ3)′ +
(
ϕ
(
ϕ2)′′
)′

= 0, (2.1)

where ’ denotes the derivative of the function with respect to ξ.
Integrating (2.1) once with respect to ξ, we have

−cϕ ± ϕ3 + 2ϕϕ′2 + 2ϕ2ϕ′′ = g, (2.2)

where g is a constant of integration.
Let ϕ′ = y, then (2.2) can be transformed into the following planar dynamical system:

dϕ

dξ
= y,

dy

dξ
=

g + cϕ ∓ ϕ3 − 2ϕy2

2ϕ2
.

(2.3)
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We call it the travelingwave system of (1.8). It is a planar dynamical systemwithHamiltonian
function

H±
(
ϕ, y
)
= ±1

4
ϕ4 − c

2
ϕ2 − gϕ + ϕ2y2 = h, (2.4)

where h is a constant.
Note that (2.3) has a singular line ϕ = 0. To avoid the line temporarily, we make

transformation dξ = 2ϕ2dζ. Under this transformation, system (2.3) becomes

dϕ

dξ
= 2ϕ2y,

dy

dξ
= g + cϕ ∓ ϕ3 − 2ϕy2.

(2.5)

System (2.5) and system (2.3) have the same first integral as (2.4). Consequently,
system (2.5) has the same topological phase portraits as system (2.3) except for the straight
line ϕ = 0.

For a fixed h, (2.4) determines a set of invariant curves of system (2.5). As h is
varied, (2.4) determines different families of orbits of system (2.5) having different dynamical
behaviors. Let M(ϕe, ye) be the coefficient matrix of the linearized version of system (2.5) at
the equilibrium point (ϕe, ye), then

M
(
ϕe, ye

)
=

(
4ϕeye 2ϕ2

e

c ∓ 3ϕ2
e − 2y2

e −4ϕeye

)

(2.6)

and, at this equilibrium point, we have

J
(
ϕe, ye

)
= detM

(
ϕe, ye

)
= −12ϕ2

ey
2
e − 2ϕ2

e

(
c ∓ 3ϕ2

e

)
,

p
(
ϕe, ye

)
= trace

(
M
(
ϕe, ye

))
= 0.

(2.7)

By the theory of planar dynamical system (see [23]), for an equilibrium point of a
planar dynamical system, if J < 0, then this equilibrium point is a saddle point; it is a center
point if J > 0 and p = 0; if J = 0 and the Poincaré index of the equilibrium point is 0, then it is
a cusp.

2.1. The Focusing Branch

The traveling wave system corresponding to the focusing branch of (1.8) is

dϕ

dξ
= 2ϕ2y,

dy

dξ
= g + cϕ − ϕ3 − 2ϕy2.

(2.8)
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If the wave speed c < 0, then system (2.8) has only one equilibrium point, which is a
center point (g /= 0) or a degenerate center point (g = 0).

If the wave speed c > 0, then, by using the first integral value and properties of
equilibrium points, we can obtain three bifurcation curves of system (2.8): they are g1(c) =
(2c/9)

√
3c, g2(c) = 0, and g3(c) = (−2c/9)√3c. Obviously, these three curves have no

intersection point and g3(c) < g2(c) < g1(c) for arbitrary constant c > 0. They partition
the (c, g) parameter plane into four regions. Using the bifurcation method of vector fields
(e.g., [23–25]), we have the following result which describes the properties of the equilibrium
points of system (2.8).

Proposition 2.1. For given arbitrary constant c > 0, one has the following.

(1) If g > g1(c) or g < g3(c), then system (2.8) has one equilibrium point. It is a center point.

(2) If g = g1(c) or g = g3(c), then system (2.8) has two equilibrium points. One is a cusp, and
the other is a center point.

(3) If g2(c) < g < g1(c) or g3(c) < g < g2(c), then system (2.8) has three equilibrium points.
One is a saddle point, and the other two are all center points.

(4) If g = g2(c), then system (2.8) has three equilibrium points. One is a degenerate center
point, and the other two are all center points.

The phase portraits of system (2.8) in each region and on the bifurcation curves for the
wave speed c < 0 and c > 0 are shown in Figures 1 and 2, respectively.

2.2. The Defocusing Branch

The traveling wave system corresponding to the defocusing branch of (1.8) is

dϕ

dξ
= 2ϕ2y,

dy

dξ
= g + cϕ + ϕ3 − 2ϕy2.

(2.9)

If the wave speed c > 0, then one can easily see that system (2.9) has only one
equilibrium point, which is a saddle point (g /= 0) or a degenerate center point (g = 0).

If the wave speed c < 0, then, by using the first integral value (2.4) and properties
of equilibrium points, we can obtain three bifurcation curves of system (2.9) for c < 0: they
are g4(c) = (−2c/9)√−3c, g5(c) = 0, and g6(c) = (2c/9)

√−3c. Obviously, the three curves
have no intersection point and g6(c) < g5(c) < g4(c) for arbitrary c < 0. They partition the
(c, g) parameter plane into four regions. Again using the bifurcation method of vector fields
(e.g., [23–25]), we have the following result which describes the properties of the equilibrium
points of system (2.9) for the wave speed c < 0.

Proposition 2.2. For arbitrary constant c < 0, one has the following.

(1) If g > g4(c) or g < g6(c), then system (2.9) has one equilibrium point. It is a saddle point.

(2) If g = g4(c) or g = g6(c), then system (2.9) has two equilibrium points. One is a cusp, and
the other is a saddle point.
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Figure 1: The phase portraits of system (2.8) for the wave speed c < 0. (a) g > 0; (b) g < 0; (c) g = 0.

(3) If g5(c) < g < g4(c) or g6(c) < g < g5(c), then system (2.9) has three equilibrium points.
One is a center point, and the other two are all saddle points.

(4) If g = g5(c), then system (2.9) has three equilibrium points. One is a degenerate center
point, and the other two are all saddle points.

The phase portraits of system (2.9) in each region and on the bifurcation curves for the
wave speed c > 0 and c < 0 are given in Figures 3 and 4, respectively.

3. Solitary-Wave Solutions for (1.8)

Usually, a solitary-wave solution for (1.8) corresponds to a homoclinic orbit of system (2.8).
From Figure 2, we can see that, when the parameter g satisfies g2(c) < g < g1(c) and g3(c) <
g < g2(c) for c > 0, system (2.8) has homoclinic orbits. So the focusing branch of (1.8) has
solitary-wave solutions accordingly.
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Figure 2: The phase portraits of system (2.8) for the wave speed c > 0. (a) g > g1(c); (b) g < g3(c); (c)
g = g1(c); (d) g = g3(c); (e) g2(c) < g < g1(c); (f) g3(c) < g < g2(c); (g) g = g2(c).

Now, take g = (11c/72)
√
3c for c > 0, which satisfies g2(c) < g < g1(c). Then we

can figure out three equilibrium points of system (2.8). Denote them as (ϕ1−, 0), (ϕ2, 0), and
(ϕ1+, 0), where ϕ1± = (

√
3c ± 3

√
15c)/12 and ϕ2 = −(√3c/6). (ϕ1−, 0) and (ϕ1+, 0) are two

center points, while (ϕ2, 0) is a saddle point. There is a homoclinic orbit connecting with the
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Figure 3: The phase portraits of system (2.9) for the wave speed c > 0. (a) g > 0; (b) g < 0; (c) g = 0.

saddle point (ϕ2, 0), which lies on the left side of the singular line ϕ = 0 (see Figure 2(e)). This
homoclinic orbit is determined by H+(ϕ, y) = H+(ϕ2, 0) and can be expressed as

y = ±
(
ϕ − ϕ2

)√(
ϕ − ϕ−

2

)(
ϕ+
2 − ϕ

)

2ϕ
for ϕ−

2 ≤ ϕ ≤ ϕ2 < 0, (3.1)

where

ϕ±
2 =

√
3c ± √

66c
6

. (3.2)
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Figure 4: The phase portraits of system (2.9) for the wave speed c < 0. (a) g > g4(c); (b) g < g6(c); (c)
g = g4(c); (d) g = g6(c); (e) g5(c) < g < g4(c); (f) g6(c) < g < g5(c); (g) g = g4(c).

Substituting (3.1) into the first equation of system (2.3) and integrating along the
corresponding homoclinic orbit, we have

∫ϕ

ϕ−
2

s
(
s − ϕ2

)√(
s − ϕ−

2

)(
ϕ+
2 − s
)ds =

1
2
|ξ|, ϕ−

2 ≤ ϕ ≤ ϕ2. (3.3)
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Figure 5: Profiles of solitary-wave solutions for the focusing branch of (1.8). (a) c = 3, g = −1.375, h =
−0.328125; (b) c = 3, g = 1.375, h = −0.328125.

It follows from (3.3) that

arcsin
(
α1
(
ϕ
)) − arcsin

(
α1
(
ϕ−
2

)) − 2
(
ϕ−
2 + ϕ+

2

)

√(
3ϕ−

2 + ϕ+
2

)(
ϕ−
2 + 3ϕ+

2

)

×(arctan(β1
(
ϕ
)) − arctan

(
β1
(
ϕ−
2

)))
=

1
2
|ξ|, ϕ−

2 ≤ ϕ ≤ ϕ2,

(3.4)

where

α1
(
ϕ
)
=

2ϕ − ϕ−
2 − ϕ+

2

ϕ+
2 − ϕ−

2
,

β1
(
ϕ
)
=

(
ϕ−
2

)2 − (ϕ+
2

)2 + 2
(
ϕ−
2 − ϕ+

2

)
ϕ + 4

(
ϕ−
2 + ϕ+

2

)√(
ϕ − ϕ−

2

)(
ϕ+
2 − ϕ

)

(−2ϕ + ϕ−
2 + ϕ+

2

)√(
3ϕ−

2 + ϕ+
2

)(
ϕ−
2 + 3ϕ+

2

) .

(3.5)

Equation (3.4) is the implicit expression of a valley-shaped solitary-wave solution for the
focusing branch of (1.8). In physics, it can be called dark soliton (see [26]). A typical such
solution is shown in Figure 5(a).

Similarly, if taking g = (−11c/72) √3c for c > 0, which satisfies g3(c) < g < g2(c), then
we can obtain a hump-shaped solitary-wave solution for the focusing branch of (1.8) given
by

arcsin
(
α2
(−ϕ−

2

)) − arcsin
(
α2
(
ϕ
))

+
2
(
ϕ−
2 + ϕ+

2

)

√(
3ϕ−

2 + ϕ+
2

)(
ϕ−
2 + 3ϕ+

2

)

× (arctan(β2
(−ϕ−

2

)) − arctan
(
β2
(
ϕ
)))

=
1
2
|ξ|, −ϕ2 ≤ ϕ ≤ −ϕ−

2 ,

(3.6)
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where

α2
(
ϕ
)
=

2ϕ + ϕ−
2 + ϕ+

2

ϕ+
2 − ϕ−

2
,

β2
(
ϕ
)
=

(
ϕ−
2

)2 − (ϕ+
2

)2 − 2
(
ϕ−
2 − ϕ+

2

)
ϕ + 4

(
ϕ−
2 + ϕ+

2

)√(
ϕ + ϕ+

2

)(−ϕ−
2 − ϕ

)

(
2ϕ + ϕ−

2 + ϕ+
2

)√(
3ϕ−

2 + ϕ+
2

)(
ϕ−
2 + 3ϕ+

2

) ,

(3.7)

and ϕ±
2 are as in (3.2).
In physics, (3.6) can be called bright soliton (see [26]). A typical such solution is shown

in Figure 5(b).
For the defocusing branch of (1.8), one can see from Figures 3 and 4 that system (2.9)

has no homoclinic orbits. So the defocusing branch of (1.8) has no solitary-wave solutions of
traveling-wave type accordingly.

4. Periodic Solutions for (1.8)

Usually, a periodic solution for (1.8) corresponds to a periodic orbit of system (2.8). From
Figures 1 and 2, we can see that system (2.8) has periodic orbits except for the case c < 0,
g = 0. So the focusing branch of (1.8) has periodic solutions accordingly. In the following we
take some parametric conditions to obtain the exact expressions of some periodic solutions.

Firstly, take g = (11c/72)
√
3c for c > 0, which satisfies g2(c) < g < g1(c). Then

H+(ϕ, y) = H+(ϕ1−, 0) determines a periodic orbit of system (2.8) on the right-hand side of
the singular line ϕ = 0 (see Figure 2(e)). This periodic orbit can be expressed as

y = ±
(
ϕ − ϕ1−

)√(
ϕ − ϕ−

3

)(
ϕ+
3 − ϕ

)

2ϕ
for 0 < ϕ−

3 ≤ ϕ ≤ ϕ+
3 ,

(4.1)

where

ϕ±
3 =

1
12

(
−√3c + 3

√
15c ± 2

√
3c + 9

√
5c
)
. (4.2)

Substituting (4.1) into the first equation of system (2.3) and integrating along the
corresponding periodic orbit, we have

∫ϕ

ϕ−
3

2s
(
s − ϕ1−

)√(
s − ϕ−

3

)(
ϕ+
3 − s
)ds = |ξ|, ϕ−

3 ≤ ϕ ≤ ϕ+
3 . (4.3)
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Figure 6: Profiles of periodic solutions for the focusing branch of (1.8). (a) c = 3, g = 1.375, h = 0.0557; (b)
c = 3, g = −1.375, h = 0.0557; (c) c = 3, g = 0, h = 0.

It follows from (4.3) that

2
(
arcsin

(
α3
(
ϕ
)) − arcsin

(
α3
(
ϕ−
3

))) − 4
(
ϕ−
3 + ϕ+

3

)

√(
3ϕ−

3 + ϕ+
3

)(
ϕ−
3 + 3ϕ+

3

)

× (arctan(β3
(
ϕ
)) − arctan

(
β3
(
ϕ−
3

)))
= ±ξ + nT1, n = 0,±1,±2, . . . ,

(4.4)

where

α3
(
ϕ
)
=

2ϕ − ϕ−
3 − ϕ+

3

ϕ+
3 − ϕ−

3
,

β3
(
ϕ
)
=

(
ϕ−
3

)2 − (ϕ+
3

)2 + 2
(
ϕ−
3 − ϕ+

3

)
ϕ + 4

(
ϕ−
3 + ϕ+

3

)√(
ϕ − ϕ−

3

)(
ϕ+
3 − ϕ

)

(−2ϕ + ϕ−
3 + ϕ+

3

)√(
3ϕ−

3 + ϕ+
3

)(
ϕ−
3 + 3ϕ+

3

) ,

(4.5)

T1 = 4π

⎛

⎜
⎝1 − ϕ−

3 + ϕ+
3

√(
3ϕ−

3 + ϕ+
3

)(
ϕ−
3 + 3ϕ+

3

)

⎞

⎟
⎠, (4.6)

and ϕ±
3 is as (4.2).
Equation (4.4) is the implicit expression of a periodic solution with the period T1 for

the focusing branch of (1.8). A typical such solution is shown in Figure 6(a).
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Next take g = (−11c/72) √3c for c > 0, which satisfies g3(c) < g < g2(c). Similar to
the above discussion, we can obtain another periodic solution with the same period T1 for the
focusing branch of (1.8) as follows:

2
(
arcsin

(
α4
(
ϕ
)) − arcsin

(
α4
(−ϕ−

3

)))
+

2
(
ϕ−
3 + ϕ+

3

)

√(
3ϕ−

3 + ϕ+
3

)(
ϕ−
3 + 3ϕ+

3

)

× (arctan(β4
(
ϕ
)) − arctan

(
β4
(−ϕ+

3
)))

= ±ξ + nT1, n = 0,±1,±2, . . . ,

(4.7)

where

α4
(
ϕ
)
=

2ϕ + ϕ+
3 + ϕ−

3

ϕ+
3 − ϕ−

3
, (4.8)

β4
(
ϕ
)
=

(
ϕ−
3

)2 − (ϕ+
3

)2 − 2
(
ϕ−
3 − ϕ+

3

)
ϕ + 4

(
ϕ−
3 + ϕ+

3

)√(
ϕ + ϕ+

3

)(−ϕ−
3 − ϕ

)

(
2ϕ − ϕ−

3 − ϕ+
3

)√(
3ϕ−

3 + ϕ+
3

)(
ϕ−
3 + 3ϕ+

3

) , (4.9)

ϕ±
3 and T1 are as (4.2) and (4.6), respectively. A typical such solution is shown in Figure 6(b).

Last, take g = g2(c). ThenH+(ϕ, y) = 0 determines a periodic orbit of system (2.9) (see
Figure 2(g)). It can be expressed as

y = ±1
2

√

2c − ϕ2 for − √
2c ≤ ϕ ≤ √

2c. (4.10)

Substituting (4.10) into the first equation of system (2.3) and integrating along the
corresponding periodic orbit, we have

∫√2c

ϕ

1√
2c − s2

ds =
1
2
|ξ|, −

√
2c ≤ ϕ ≤

√
2c. (4.11)

It follows from (4.11) that

ϕ =
√
2c cos

(
1
2
ξ

)

. (4.12)

Equation (4.12) is obviously a periodic solution with the period T = 4π for the focusing
branch of (1.8). A typical such solution is shown in Figure 6(c).

For the defocusing branch of (1.8), we can see from Figures 4(e) and 4(f) that, in the
parametric regions c < 0, g5(c) < g < g4(c) and c < 0, g6(c) < g < g5(c), system (2.9) has
periodic orbits. So the defocusing branch of (1.8) has periodic solutions accordingly.

Now, take g = (−11c/72)
√
(−3c) for c < 0, which satisfies g5(c) < g < g4(c). Then

system (2.9) has three equilibrium points (ϕ∗
1, 0), (ϕ

∗
2, 0), and (ϕ∗

3, 0)(ϕ
∗
1 < 0 < ϕ∗

2 < ϕ∗
3). For
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fixed h (0 < h < H−(ϕ∗
2, 0)), the curve H+(ϕ, y) = h intersects the ϕ-axis with four points a,

b, d, and f , which satisfy that d < 0 < f < a < b. This curve determines a periodic orbit of
system (2.9) (see Figure 4(e)). It can be expressed as

y = ±

√(
ϕ − d

)(
ϕ − f

)(
a − ϕ

)(
b − ϕ

)

2ϕ
for f ≤ ϕ ≤ a. (4.13)

Substituting (4.13) into the first equation of system (2.3) and integrating along the
corresponding periodic orbit, we have

∫ϕ

f

2s
√

(s − d)
(
s − f

)
(a − s)(b − s)

ds = |ξ|, f ≤ ϕ ≤ a. (4.14)

It follows from (4.14) that

−4
√

(a − d)
(
b − f

)

(
dF
(
arcsin

(
γ
(
ϕ
)) | m) + (f − d

)
Π
(
l; sn−1(γ

(
ϕ
) | m) | m

))

= ±ξ + nT, n = 0,±1,±2, . . . ,
(4.15)

where

γ
(
ϕ
)
=

√
√
√
√ (a − d)

(
ϕ − f

)

(
a − f

)(
ϕ − d

) , (4.16)

m =
(b − d)

(
a − f

)

(
b − f

)
(a − d)

,

l =
a − f

a − d
,

T2 =
8

√

(a − d)
(
b − f

)

(
dK(m) +

(
f − d

)
Π(n | m)

)
,

(4.17)

and F(·|·) is the elliptic integral of the first kind, and the notation is as used in Section 17.2.6
of [27]. Π(·; ·|·) is the elliptic integral of the third kind, and the notation is as used in
Section 17.2.15 of [27]. sn−1(·|·) is the inverse of the Jacobian elliptic function sn(·|·), where
the notation is as used in Chapter 16 of [27]. K(·) is the complete elliptic integral of the first
kind, and Π(·|·) is the complete elliptic integral of the third kind.

Equation (4.15) is a periodic solution with the period T2 for the defocusing branch of
(1.8). A typical such solution is shown in Figure 7(a).
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Figure 7: Profiles of periodic solutions for the defocusing branch of (1.8). (a) c = −3, g = 1.375, h = 0.16;
(b) c = 3, g = −1.375, h = 0.16.

Next take g = (11c/72)
√
3c for c > 0, which satisfies g6(c) < g < g5(c). For the same

fixed h as above, we can obtain another periodic solution with the same period T2 as follows:

4
√

(a − d)
(
b − f

)

(
dF
(
arcsin

(
γ
(
ϕ
)) | m) + (f − d

)
Π
(
n; sn−1(γ

(
ϕ
) | m) | m

))

= ±ξ + nT2, n = 0,±1,±2, . . . ,
(4.18)

where γ(ϕ), m, l, and T2 are as (4.16)-(4.9), respectively.
A typical such solution is shown in Figure 7(b).

5. Conclusion

In summary, by using the bifurcation method, we investigate two new types of bounded
traveling-wave solutions for a variant of the K(3, 2) equation. For the focusing branch, we
obtain its solitary-wave solutions and some periodic solutions. For the defocusing branch,
we demonstrate the nonexistence of solitary-wave solutions of traveling type and obtain
some periodic solutions in terms of elliptic integrals. Our work supplements the results in
[5, 11] and may help people to know deeply the described physical process and possible
applications of this nonlinear dispersive equation.
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