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Timoshenko beam equations with external damping and internal damping terms and forcing terms are investigated, and boundary
conditions (end conditions) to be considered are hinged ends (pinned ends), hinged-sliding ends, and sliding ends. Unboundedness
of solutions of boundary value problems for Timoshenko beam equations is studied, and it is shown that the magnitude of the
displacement of the beam grows up to∞ as 𝑡 → ∞ under some assumptions on the forcing term. Our approach is to reduce the
multidimensional problems to one-dimensional problems for fourth-order ordinary differential inequalities.

1. Introduction

The most fundamental beam equations are of the following
form:
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= 0 (0 < 𝑥 < 𝐿, 𝑡 > 0) (1)

with the length 𝐿, the mass density 𝜌, the cross-sectional
area 𝐴, the modulus of elasticity 𝐸, and the flexural
rigidity 𝐸𝐼 (see [1, page 416]). Taking account of the
rotary inertia and the deflection due to shear, we obtain
the following fourth-order beam equation for the trans-
verse vibrations of prismatic beams on elastic founda-
tions:
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(see [1, page 433] and Wang and Stephens [2, page
150]).

Dividing the above equation by 𝜌2𝐼/(𝑘
1
𝐺), letting 𝛼 =
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and taking into account the nonlinear term 𝜑(𝑢), the external
damping term
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and the internal damping terms
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, (4)

we obtain the Timoshenko beam equation
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= 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ (0, 𝐿) × (0,∞) ,

(5)

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜖, 𝜎, and 𝐿 are positive constants.
Let 𝐽 = (0, 𝐿), 𝐽 = [0, 𝐿] and we assume throughout this

paper that

(H1) 𝜑 (𝜉) is a real-valued continuous function in R;
(H2) 𝜑 (𝜉) > 0 and 𝜑 (−𝜉) = −𝜑 (𝜉) for 𝜉 > 0;
(H3) 𝜑 (𝜉) is a nondecreasing function in R;
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(H4) 𝑓(𝑥, 𝑡) is a real-valued continuous function on 𝐽 ×
[0,∞).

Definition 1. By a solution of (5), one means a function 𝑢 ∈
𝐶 (𝐽 × [0,∞)) such that the partial derivatives
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exist and are continuous on 𝐽 × [0,∞).

Oscillations of beam equations have been treated by
numerous authors; see, for example, Feireisl and Herrmann
[3], Herrmann [4], Kopáčková [5], Kusano and Yoshida [6],
Yoshida [7–10], and the references therein. In particular, we
mention the paper [4] by Herrmann which deals with the
Euler-Bernoulli beam equations that is similar to (5). We
note that the oscillation of (5) was studied by Yoshida [10].
We refer to Ball [11], Fitzgibbon [12], and Narazaki [13] for
stability and existence results for beam equations.

However, there appears to be no known unboundedness
results for beam equations. The objective of this paper is
to provide unboundedness results for (5) by reducing the
multi-dimensional problems to one-dimensional problems
for ordinary differential inequalities of fourth-order.

In Section 2 we treat the hinged ends and reduce
unboundedness problem for (5) to that for ordinary differen-
tial inequalities. Sections 3 and 4 are devoted to the hinged-
sliding ends and sliding ends, respectively. In Section 5, we
study fourth-order differential inequalities, and we derive
unboundedness results for (5) in Section 6.

2. Hinged Ends

In this section, we treat the case where the ends of the beam
are hinged, so that solutions 𝑢 = 𝑢(𝑥, 𝑡) are required to satisfy
the boundary condition
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Theorem 2. Every solution 𝑢 of (5) satisfying (HE) is
unbounded on 𝐽 × [0,∞) if for any constant 𝑀̃ > 0, all
solutions 𝑦(𝑡) of the fourth-order differential inequalities
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are not bounded from below, where

𝐹 (𝑡) = ∫

𝐿

0

𝑓 (𝑥, 𝑡) sin 𝜋
𝐿

𝑥𝑑𝑥. (9)

Proof. Suppose to the contrary that there exists a solution 𝑢
of the boundary value problem (5), (HE) which is bounded
on 𝐽 × [0,∞). Then, there exists a constant𝑀 > 0 such that

|𝑢 (𝑥, 𝑡)| ≤ 𝑀, (𝑥, 𝑡) ∈ 𝐽 × [0,∞) , (10)

that is,

−𝑀 ≤ 𝑢 (𝑥, 𝑡) ≤ 𝑀, (𝑥, 𝑡) ∈ 𝐽 × [0,∞) . (11)

First we consider the case where −𝑀 ≤ 𝑢(𝑥, 𝑡) on 𝐽 × [0,∞).
It follows from the hypotheses (H2) and (H3) that

𝜑 (𝑢) ≥ 𝜑 (−𝑀) = −𝜑 (𝑀) (12)

and therefore we see from (5) that
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on 𝐽× [0,∞). Multiplying (13) by 𝜓(𝑥) = sin(𝜋𝑥/𝐿) and then
integrating over [0, 𝐿], we derive
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Integrating by parts and using (HE), we obtain
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Combining (14) and (15) yields
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where 𝑈(𝑡) = ∫𝐿
0
𝑢𝜓(𝑥)𝑑𝑥. It is easy to check that
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that is,𝑈(𝑡) is bounded from below. Hence, we conclude that
𝑈(𝑡) is a solution of (7) which is bounded from below. This
contradicts the hypothesis. In the case where 𝑢(𝑥, 𝑡) ≤ 𝑀 on
𝐽 × [0,∞), V := −𝑢 satisfies
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in view of the hypothesis (H2). It is readily verified that V ≥
−𝑀 and 𝜑 (V) ≥ 𝜑 (−𝑀) = −𝜑(𝑀). By the same arguments
as in the case where 𝑢(𝑥, 𝑡) ≥ −𝑀, we conclude that 𝑉(𝑡) =
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in light of 𝑉(𝑡) ≥ −(2𝐿/𝜋)𝑀. This contradicts the hypothesis
and the proof is complete.

3. Hinged-Sliding Ends

In this section, we deal with the case of hinged-sliding ends,
for which the boundary condition takes the form
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Theorem 3. Every solution 𝑢 of (5) satisfying (HSE) is
unbounded on 𝐽 × [0,∞) if for any constant 𝑀̃ > 0, all
solutions 𝑦(𝑡) of the fourth-order differential inequalities
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value problem (5), (HSE)which is bounded on 𝐽 × [0,∞). Let
|𝑢(𝑥, 𝑡)| ≤ 𝑀 on 𝐽 × [0,∞) for some𝑀 > 0. First, consider

the case where −𝑀 ≤ 𝑢(𝑥, 𝑡) on 𝐽 × [0,∞). Proceeding as
in the proof of Theorem 2, we find that the inequality (13)
holds. Multiplying (13) by 𝜔(𝑥) = sin (𝜋𝑥/(2𝐿)) and then
integrating over [0, 𝐿], we obtain the inequality (14) with𝜓(𝑥)
replaced by 𝜔(𝑥). Integration by parts yields
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4. Sliding Ends

We study the case of sliding ends for which the boundary
condition takes the form
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Theorem 4. Every solution 𝑢 of (5) satisfying (SE) is
unbounded on 𝐽 × [0,∞) if for any constant 𝑀̃ > 0, all
solutions 𝑦(𝑡) of the fourth-order differential inequalities

𝑦
(4)
(𝑡) + 𝛼𝛽𝛾𝑦

󸀠󸀠
(𝑡 ) + 𝛿𝑦

󸀠
(𝑡) − 𝐿𝜑 (𝑀̃) ≤ 𝐻 (𝑡) , (23)

𝑦
(4)
(𝑡) + 𝛼𝛽𝛾𝑦

󸀠󸀠
(𝑡) + 𝛿𝑦

󸀠
(𝑡) − 𝐿𝜑 (𝑀̃) ≤ −𝐻 (𝑡) (24)

are not bounded from below, where

𝐻(𝑡) = ∫

𝐿

0

𝑓 (𝑥, 𝑡) 𝑑𝑥. (25)

Proof. Suppose that the boundary value problem (5), (SE) has
a solution 𝑢 which is bounded on 𝐽 × [0,∞). There exists a
constant𝑀 > 0 such that |𝑢(𝑥, 𝑡)| ≤ 𝑀 on 𝐽 × [0,∞). First,
consider the case where −𝑀 ≤ 𝑢(𝑥, 𝑡) on 𝐽 × [0,∞). Arguing
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(𝑡) − 𝐿𝜑 (𝑀) ≤ 𝐻 (𝑡) , 𝑡 ≥ 0,

(27)
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where 𝑈(𝑡) = ∫

L
0
𝑢𝑑𝑥. Therefore, we conclude that 𝑈(𝑡)

is a solution of (23) which is bounded from below. This
contradicts the hypothesis. The case where 𝑢(𝑥, 𝑡) ≤ 𝑀 on
𝐽 × [0,∞) can be treated analogously, and we observe that
∫

𝐿

0
(−𝑢)𝑑𝑥 is a solution of (24) which is bounded from below.

This is a contradiction and the proof is complete.

5. Fourth-Order Ordinary Differential
Inequalities

Wedeal with the ordinary differential inequality of the fourth
order

𝑦
(4)
(𝑡) + 𝑘𝑦

󸀠󸀠
(𝑡) + ℓ𝑦

󸀠
(𝑡) + 𝑚𝑦 (𝑡) − 𝜇 ≤ 𝑔 (𝑡) , 𝑡 ≥ 0,

(28)

and derive sufficient condition for every solution 𝑦(𝑡) of (28)
to be unbounded from below. It is assumed that 𝑘, ℓ, 𝑚, and 𝜇
are nonnegative constants, and 𝑔(𝑡) is a continuous function
on [0,∞).

Theorem 5. Every solution 𝑦(𝑡) of (28) is not bounded from
below if

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝑔 (𝜉) 𝑑𝜉 = −∞. (29)

Proof. Assume, on the contrary, that there exists a solution
𝑦(𝑡) of (28) which is bounded from below. Let 𝑦(𝑡) ≥ −𝑀 on
[0,∞) for some constant𝑀 > 0. Then we obtain from (28)
the inequality

𝑦
(4)
(𝑡) + 𝑘𝑦

󸀠󸀠
(𝑡) + ℓ𝑦

󸀠
(𝑡) − 𝑀𝑚 − 𝜇 ≤ 𝑔 (𝑡) , 𝑡 ≥ 0. (30)

Integrating (30) over [0, 𝑡], we get

𝑦
(3)
(𝑡) + 𝑘𝑦

󸀠
(𝑡) + ℓ𝑦 (𝑡) − 𝑀𝑚𝑡 − 𝜇𝑡 ≤ 𝑐

1
+ ∫

𝑡

0

𝑔 (𝜉) 𝑑𝜉,

(31)

and hence

𝑦
(3)
(𝑡) + 𝑘𝑦

󸀠
(𝑡) − 𝑀ℓ −𝑀𝑚𝑡 − 𝜇𝑡 ≤ 𝑐

1
+ ∫

𝑡

0

𝑔 (𝜉) 𝑑𝜉, (32)

where 𝑐
1
= 𝑦
(3)
(0) + 𝑘𝑦

󸀠
(0) + ℓ𝑦(0). Integration of (32) over

[0, 𝑡] yields

𝑦
󸀠󸀠
(𝑡) + 𝑘𝑦 (𝑡) − 𝑀ℓ𝑡 −

𝑀𝑚

2

𝑡
2
−

𝜇

2

𝑡
2

≤ 𝑐
0
+ 𝑐
1
𝑡 + ∫

𝑡

0

𝑑𝑠
1
∫

𝑠
1

0

𝑔 (𝜉) 𝑑𝜉,

(33)

that is,

𝑦
󸀠󸀠
(𝑡) − 𝑀𝑘 −𝑀ℓ𝑡 −

𝑀𝑚

2

𝑡
2
−

𝜇

2

𝑡
2

≤ 𝑐
0
+ 𝑐
1
𝑡 + ∫

𝑡

0

𝑑𝑠
1
∫

𝑠
1

0

𝑔 (𝜉) 𝑑𝜉,

(34)

where 𝑐
0
= 𝑦
󸀠󸀠
(0) + 𝑘𝑦(0). Integrating (34) over [0, 𝑡] twice,

we obtain

𝑦 (𝑡) −

𝑀𝑘

2

𝑡
2
−

𝑀ℓ

6

𝑡
3
−

𝑀𝑚

24

𝑡
4
−

𝜇

24

𝑡
4

≤ 𝑑
0
+ 𝑑
1
𝑡 + 𝑑
2
𝑡
2
+ 𝑑
3
𝑡
3

+ ∫

𝑡

0

𝑑𝑠
3
∫

𝑠
3

0

𝑑𝑠
2
∫

𝑠
2

0

𝑑𝑠
1
∫

𝑠
1

0

𝑔 (𝜉) 𝑑𝜉,

(35)

and therefore

−𝑀 −

𝑀𝑘

2

𝑡
2
−

𝑀ℓ

6

𝑡
3
−

𝑀𝑚

24

𝑡
4
−

𝜇

24

𝑡
4

≤ 𝑑
0
+ 𝑑
1
𝑡 + 𝑑
2
𝑡
2
+ 𝑑
3
𝑡
3
+

1

6

∫

𝑡

0

(𝑡 − 𝜉)
3
𝑔 (𝜉) 𝑑𝜉,

(36)

in view of the identity

∫

𝑡

0

𝑑𝑠
3
∫

𝑠
3

0

𝑑𝑠
2
∫

𝑠
2

0

𝑑𝑠
1
∫

𝑠
1

0

𝑔 (𝜉) 𝑑𝜉 =

1

6

∫

𝑡

0

(𝑡 − 𝜉)
3
𝑔 (𝜉) 𝑑𝜉,

(37)

where 𝑑
0
= 𝑦(0), 𝑑

1
= 𝑦
󸀠
(0), 𝑑

2
= 𝑐
0
/2, and 𝑑

3
= 𝑐
1
/6.

Dividing (36) by 𝑡4 yields

−

𝑀

𝑡
4
−

𝑀𝑘

2𝑡
2
−

𝑀ℓ

6𝑡

−

𝑀𝑚

24

−

𝜇

24

− (

𝑑
0

𝑡
4
+

𝑑
1

𝑡
3
+

𝑑
2

𝑡
2
+

𝑑
3

𝑡

)

≤

1

6𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝑔 (𝜉) 𝑑𝜉.

(38)
The left hand side of (38) is bounded from below, whereas
the right hand side of (38) is not bounded from below from
the condition (29). This is a contradiction and the proof is
complete.

6. Unboundedness Results for Timoshenko
Beam Equations

Combining Theorems 2–4 with Theorem 5, we present
unboundedness results for the three types of boundary value
problems for (5) under consideration.

Theorem 6. Every solution 𝑢 of (5) satisfying (HE) is un-
bounded on 𝐽 × [0,∞) if

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝐹 (𝜉) 𝑑𝜉 = −∞, (39)

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝐹 (𝜉) 𝑑𝜉 = ∞. (40)

Proof. The hypothesis (39) implies that every solution 𝑦(𝑡)
of (7) is not bounded from below via Theorem 5. Since the
hypothesis (40) implies that

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

(−𝐹 (𝜉)) 𝑑𝜉

= − lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝐹 (𝜉) 𝑑𝜉 = −∞,

(41)
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we observe that every solution𝑦(𝑡) of (8) is not bounded from
below. The conclusion follows from Theorem 2. The proof is
complete.

We combine Theorems 3 and 4 with Theorem 5 to
establish the following two theorems.

Theorem 7. Every solution 𝑢 of (5) satisfying (HSE) is
unbounded on 𝐽 × [0,∞) if

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝐺 (𝜉) 𝑑𝜉 = −∞,

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝐺 (𝜉) 𝑑𝜉 = ∞.

(42)

Theorem 8. Every solution 𝑢 of (5) satisfying (SE) is
unbounded on 𝐽 × [0,∞) if

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝐻(𝜉) 𝑑𝜉 = −∞,

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝐻(𝜉) 𝑑𝜉 = ∞.

(43)

Remark 9. If a solution 𝑢 of (5) is unbounded on 𝐽 × [0,∞),
then there exists a sequence {(𝑥

𝑛
, 𝑡
𝑛
)} ⊂ 𝐽 × [0,∞) such that

lim
𝑛→∞

𝑢 (𝑥
𝑛
, 𝑡
𝑛
) = ∞. (44)

Remark 10. In the case where

𝜑 (𝜉) = 𝑝
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

𝑟−1

𝜉, (45)

𝑝 > 0, and 𝑟 > 0 being constants, we see that 𝜑(𝜉) satisfies the
hypotheses (H1)–(H3).

Example 11. We consider the Timoshenko beam equation

𝜕
4
𝑢

𝜕𝑡
4
+ 3

𝜕
2
𝑢

𝜕𝑡
2
− 6

𝜕
4
𝑢

𝜕𝑡
2
𝜕𝑥
2
+ 9

𝜕
4
𝑢

𝜕𝑥
4
+

1

3

𝜕𝑢

𝜕𝑡

−

1

3

𝜕
3
𝑢

𝜕𝑡𝜕𝑥
2
+

1

3

𝜕
5
𝑢

𝜕𝑡𝜕𝑥
4
+ 𝑢

= 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ (0, 𝜋) × (0,∞)

(46)

with the hinged ends (HE), where

𝑓 (𝑥, 𝑡) = (sin𝑥) [2𝑡5 sin 𝑡 + 𝑡5 sin(𝑡 + 𝜋
2

) + 5𝑡
4 sin 𝑡

− 70𝑡
4 sin(𝑡 + 𝜋

2

) + 60𝑡
3 sin 𝑡

+240𝑡
2 sin(𝑡 + 𝜋

2

) + 120𝑡 sin 𝑡] .

(47)

Here 𝐿 = 𝜋, 𝛼 = 1/3, 𝛽 = 𝛾 = 3, 𝛿 = 𝜖 = 𝜎 = 1/3, and
𝜑(𝑢) = 𝑢. An easy computation shows that

𝐹 (𝑡) =

𝜋

2

[2𝑡
5 sin 𝑡 + 𝑡5 sin(𝑡 + 𝜋

2

)

+ 5𝑡
4 sin 𝑡 − 70𝑡4 sin(𝑡 + 𝜋

2

)

+60𝑡
3 sin 𝑡 + 240𝑡2 sin(𝑡 + 𝜋

2

) + 120𝑡 sin 𝑡] .
(48)

Since

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝜉
5 sin (𝜉 + 𝜃

1
) 𝑑𝜉

= 6𝑡 sin (𝜉 + 𝜃
1
) + 𝐵
1
(𝑡, 𝜃
1
) ,

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝜉
𝑁 sin (𝜉 + 𝜃

2
) 𝑑𝜉

= 𝐵
2
(𝑡, 𝜃
2
) (𝑁 = 1, 2, 3, 4) ,

(49)

we observe that

1

𝑡

∫

𝑡

0

(1 −

𝜉

𝑡

)

3

𝐹 (𝜉) 𝑑𝜉

= 3𝜋𝑡 (2 sin 𝑡 + sin(𝑡 + 𝜋
2

)) + 𝐵
3
(𝑡) ,

(50)

where 𝜃
𝑖
(𝑖 = 1, 2) are constants, 𝐵

𝑖
(𝑡, 𝜃
𝑖
) (𝑖 = 1, 2) and 𝐵

3
(𝑡)

are bounded functions on [0,∞). Hence, the conditions (39)
and (40) are satisfied. It follows from Theorem 6 that every
solution 𝑢 of the problem (46), (HE) is unbounded on [0, 𝜋] ×
[0,∞). For example, 𝑢 = (sin𝑥)𝑡5 sin 𝑡 is such a solution.
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