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We consider a nonlinear 4th-order degenerate parabolic partial differential equation that arises
in modelling the dynamics of an incompressible thin liquid film on the outer surface of a
rotating horizontal cylinder in the presence of gravity. The parameters involved determine a rich
variety of qualitatively different flows. We obtain sufficient conditions for finite speed of support
propagation and for waiting time phenomena by application of a new extension of Stampacchia’s
lemma for a system of functional equations.

1. Introduction

The time evolution of thickness of a viscous liquid film spreading over a solid surface under
the action of the surface tension and gravity can be described by lubrication models [1–5].
These models approximate the full Navier-Stokes system that describes the motion of the
liquid flow. Thin films play an increasingly important role in a wide range of applications,
for example, packaging, barriers, membranes, sensors, semiconductor devices, and medical
implants [6–8].

In this paper we consider the dynamics of a viscous incompressible thin fluid film
on the outer surface of a horizontal circular cylinder that is rotating around its axis in the
presence of a gravitational field. The motion of the liquid film is governed by four physical
effects: viscosity, gravity, surface tension, and centrifugal forces. These are reflected in the
parameters: R: the radius of the cylinder, ω: its rate of rotation (assumed constant), g: the
acceleration due to gravity, ν: the kinematic viscosity, ρ: the fluid’s density, and σ: the surface
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tension. These parameters yield three independent dimensionless numbers: the Reynolds
number Re = (R2ω)/ν, γ = g/(Rω2), and the Weber number We = (ρR3ω2)/σ. The
understanding of coating flow dynamics is important for industrial printing process where
rotating cylinder transports the coating material in the form of liquid paint. The rotating thin
fluid film can exhibit variety of different behaviour including: interesting pattern formations
(“shark teeth” and “duck bill” patterns), fluid curtains, hydroplaning drops, and frontal
avalanches [8–10]. As a result, the coating flow has been the subject of continuous study
since the pioneering model was derived in 1977 by Moffatt (see [11]):

∂h

∂t
+

∂

∂θ

[
ωh − 1

3
g

νR
h3 cos θ

]
= 0. (1.1)

The surface tension and inertial effects were neglected in (1.1). Here h(x, t) is the thickness
of the fluid film, θ is a rotation angle, and t is a time variable. The linear stability of
rigidly rotating films on a rotating circular cylinder under three-dimensional disturbances
was examined in [12, 13]. It was shown that the most unstable mode for thin film flows on
the surface of a cylinder is the purely axial one that leads to so-called “ring instabilities”.
During the past decade, coating and rimming problems attracted many researchers who
analyzed different types of flow regime asymptotically [14–17] and numerically [18–20]. For
a detailed review of a growing literature on different types of thin film flows please see [21]
and references there in.

The coating flow is generated by viscous forces due to cylinder’s surface motion
relative to the fluid. There is no temperature gradient, hence the interface does not experience
a shear stress. If the cylinder is fully coated there is only one free boundary where the liquid
meets the surrounding air. Otherwise, there is also a free boundary (or contact line) where
the air and liquid meet the cylinder’s surface.

The asymptotic evolution equation for the thickness of the fluid film with the surface
tension effect:

∂h

∂t
+

∂

∂θ

[
ωh − 1

3
g

νR
h3 cos θ +

1
3

σ

ρR4ν
h3

(
∂h

∂θ
+
∂3h

∂θ3

)]
= 0, (1.2)

was derived by Pukhnachev [22] in 1977. It is valid under the assumptions that the fluid film
is thin h � R and its slope is small (1/R)(∂h/∂θ) � 1. Later in 2009, taking into account
inertial effects, Kelmanson [23] presented a more general model:

∂h

∂t
+

∂

∂θ

[
ωh − 1

3
g

νR
h3 cos θ +

1
3

σ

ρR4ν
h3

(
∂h

∂θ
+
∂3h

∂θ3

)
+
1
3
ω2ρ

νR
h3 ∂h

∂θ

]
= 0. (1.3)

He analyzed, asymptotically and numerically, diverse effects of inertia in both small- and
large-surface-tension limits.

We should mention that all three lubrication approximation models described above
were based on the assumption of the no-slip boundary condition. It is well known [24] that
the combination of constant viscosity and no-slip boundary conditions at the liquid-solid
interface yields a logarithmic divergence in the rate of dissipation at moving contact line,
that is, an infinite energy is needed to make the droplet expand. The most common way
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to overcome this difficulty is to introduce effective slip conditions (see (2.1)) that indeed
removes the force singularity at advancing contact lines (see [25]).

The main goal of our paper is to study waiting time phenomenon for the coating flows
under an assumption of effective slip conditions, that is, we analyze (2.1) that is a modified
version of (1.3). Our approach is based on now well-established nonlinear PDE analysis for
degenerate higher order parabolic equations.

The sufficient conditions: h0(x) ≤ A|x|4/n for 0 < n < 2, |h0x(x)| ≤ B|x|4/n−1 for 2 ≤
n < 3, (where A and B are some positive constants) on nonnegative initial data, h0 for the
occurrence of waiting time phenomena were derived by Dal Passo et al. [26] for the classic
thin film equation:

ht +
(|h|nhxxx

)
x = 0. (1.4)

These results were based on an energy method developed in [27] for quasilinear parabolic
equations. To the best of our knowledge, there is only one publication [28], where the waiting
time phenomenon in the classic thin film equation (1.4) was discovered for h0(x) ∼ |x|α
for 2 < α < 4/n. The result was obtained by means of matching asymptotic methods and
was supported by numerous numerical simulations. For more general nonlinear degenerate
parabolic equations with nonlinear lower order terms the waiting time phenomenon was
analyzed in [29–31].

It is well known [32] that the similarity solutions of the second order nonlinear
parabolic equation:

ct = (cmcx)x, m > 0, (1.5)

subject to prescribing appropriate initial data, demonstrate the existence of a waiting-time
phenomena before the free boundary moves. The comparison theorem, that is not applicable
in our case, then enabled a number of results to be obtained about the existence and length
of waiting times for general initial data. Our approach is completely different and based on
local entropy/energy functional estimates.

We also analyze speed of support propagation and obtain an upper bound on it for the
modified version of (1.3) (see (2.1)). The first finite speed results for nonnegative generalized
solutions of the classic thin film equation (1.4)were obtained in [33, 34] for the case 0 < n < 2
and 2 ≤ n < 3, respectively. For more general types of thin film equations the finite speed of
support propagation phenomenon was studied in [35–39] (see also references there in).

The outline of our paper is as follows. We first prove for n > 0 the long-time existence
of a generalized weak solution and then prove that it can have an additional regularity
in Section 2. In Sections 3 and 4 we show finite speed support propagation in the “slow”
convection case (n > 1): for 1 < n < 3 and waiting time phenomena for 1 < n < 2, accordingly.
The general strategy is to use an extension of Stampacchia’s lemma for a system of functional
equations (see Lemma 3.1 [26], where this extension is proved for a single equation and
Lemma A.2 in [37], where this extension is proved for systems in the homogeneous case).
This result to our knowledge is new and might be of independent interest. We leave as an
open problem the “fast” convection case (0 < n < 1): finite speed of support propagation and
sufficient conditions for waiting time phenomenon.
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2. Existence and Regularity of Solutions

We are interested in the existence of nonnegative generalized weak solutions to the following
initial-boundary value problem:

(P)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ht +
(
f(h)(a0hxxx + a1hx +wx)

)
x = 0 in QT,

∂ih

∂xi
(−a, t) = ∂ih

∂xi
(a, t) for t > 0, i = 0, 3,

h(x, 0) = h0(x) � 0,

(2.1)

where f(h) = |h|n, h = h(x, t), Ω = (−a, a), QT = (0, T) ×Ω, n > 0, a0 > 0, a1 ≥ 0, and w(x, t)
such that

w(x, ·) ∈ W1
∞(0, T) for a.e. x ∈ Ω, w(·, t) ∈ W2

∞(Ω) for a.e. t ∈ [0, T]. (2.2)

ote that (1.3) is a particular case of (2.1) that corresponds to n = 3 and w(x, t) = cos(x −ωt).
We consider a generalized weak solution in the following sense [40, 41].

Definition 2.1. A generalized weak solution of problem (P) is a nonnegative function h
satisfying

h ∈ C1/2,1/8
x,t

(
QT

)
∩ L∞

(
0, T ;H1(Ω)

)
, ht ∈ L2

(
0, T ;

(
H1(Ω)

)′)
,

h ∈ C4,1
x,t(P),

√
f(h) (a0hxxx + a1hx +wx) ∈ L2(P),

(2.3)

where P := {h > 0}. The solution h satisfies (2.1) in the following sense:

∫T

0

〈
ht(·, t), φ

〉
dt −

∫∫
P
f(h)(a0hxxx + a1hx +wx)φxdxdt = 0, (2.4)

for all φ ∈ C1(QT ) ∩ C(QT ) with φ(−a, ·) = φ(a, ·);

h(·, t) −→ h(·, 0) = h0 pointwise & strongly in L2(Ω) as t −→ 0, (2.5)

h(−a, t) = h(a, t) ∀t ∈ [0, T],
∂ih

∂xi
(−a, t) = ∂ih

∂xi
(a, t), (2.6)

for i = 1, 2, 3 at all points of the lateral boundary where h/= 0.

Because the second term of (2.4) has an integral over {h > 0} rather than over QT , the
generalized weak solution is “weaker” than a standard weak solution. Here, {h > 0} is short
hand for {(x, t) ∈ QT : h(x, t) > 0}. This short hand is used throughout: the time interval
included in {h > 0} is to be inferred from the context it appears in.
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A key object for proving additional properties of a generalized weak solution is an
integral quantity introduced by Bernis and Friedman [42]: the “entropy”

∫
G0(h(x, t))dx. The

function G0(z) is defined by

G0(z) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z2−n

(2 − n)(1 − n)
+ dz + c if n/= 1, 2,

z ln z − z + e if n = 1,

− ln z +
z

e
+ 1 if n = 2,

(2.7)

where

d =

{
1 if 1 < n < 2,
0 otherwise,

c =

⎧⎪⎨
⎪⎩

(n − 1)1/(1−n)

2 − n
if 1 < n < 2,

0 otherwise.
(2.8)

By construction, G0 is a nonnegative convex function on [0,∞). For 1 ≤ n ≤ 2, the linear part
of G0 is chosen to ensure that G0 has a positive lower bound on [0,∞). Also in the statement
of Theorem 2.2 we use an “α-entropy”,

∫
G

(α)
0 (h(x, t))dx, where

G
(α)
0 (z) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z ln z − z + e if α = n − 1,

− ln z +
z

e
+ 1 if α = n − 2,

z2−n+α

(2 − n + α)(1 − n + α)
+ dz + c otherwise,

(2.9)

d =

{
1 if α ∈ (n − 2, n − 1),
0 otherwise,

c =

⎧⎪⎨
⎪⎩

(n − 1 − α)1/(1+α−n)

2 + α − n
if α ∈ (n − 2, n − 1),

0 otherwise.
(2.10)

G
(α)
0 is a nonnegative convex function on [0,∞). The linear part of G(α)

0 is chosen to ensure
that G(α)

0 has a positive lower bound on [0,∞) if n − 2 ≤ α ≤ n − 1. If α = 0, the α-entropy is
the same as the entropy (2.7).

Theorem 2.2. (a) (Existence). Let n > 0 and the nonnegative initial data h0 ∈ H1(Ω), h0(−a) =
h0(a) satisfy

∫
Ω
G0(h0)dx < ∞. (2.11)

Then for any time 0 < T < ∞ there exists a nonnegative generalized weak solution, h, on QT in the
sense of the Definition 2.1. Furthermore,

h ∈ L2
(
0, T ;H2(Ω)

)
. (2.12)
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Let

E0(T) :=
1
2

∫
Ω

(
a0h

2
x(x, T) − a1h

2(x, T) − 2w(x, T)h(x, T)
)
dx (2.13)

then the weak solution satisfies

E0(T) +
∫∫

{h>0}
hn(a0hxxx + a1hx +wx)

2dxdt ≤ E0(0) −
∫∫

QT

hwtdxdt. (2.14)

(b) (Regularity). If the initial data also satisfies

∫
Ω
G

(α)
0 (h0)dx < ∞, (2.15)

for some −1/2 < α < 1, α/= 0 then the nonnegative generalized weak solution has the extra regularity
h(α+2)/2 ∈ L2(0, T ;H2(Ω)) and h(α+2)/4 ∈ L4(0, T ;W1

4 (Ω)).

The theorem above was proved earlier in [41] for the case n = 3 only. We note that the
analogue of Theorem 4.2 in [42] also holds: there exists a nonnegative weak solution with the
integral formulation

∫T

0

〈
ht(·, t), φ

〉
dt + a0

∫∫
QT

(
nhn−1hxhxxφx + hnhxxφxx

)
dxdt −

∫∫
QT

hn(a1hx +wx)φxdxdt = 0.

(2.16)

If initial data satisfy finite α-entropy condition, that is,
∫
G

(α)
0 (h0)dx < ∞ then one can prove

existence of nonnegative solutions with some additional regularity properties and use an
integral formulation [43] to define them that is similar to that of (2.16) except that the second
integral is replaced by the results of one more integration by parts (there are no hxxx terms).
It is worth to mention that for the case 0 < n < 2 the finite entropy assumption in Theorem 2.2
can be omitted because it does not impose any restriction on nonnegative initial data. One
needs to impose finite entropy and finite α-entropy conditions on initial data if n ≥ 2 only.

2.1. Regularized Problem

Given δ, ε > 0, a regularized parabolic problem, similar to one that was studied by Bernis
and Friedman [42] can be written as:

(Pδ,ε)

ht +
(
fδε(h)(a0hxxx + a1hx +wx)

)
x = 0, (2.17)

∂ih

∂xi
(−a, t) = ∂ih

∂xi
(a, t) for t > 0, i = 0, 3, (2.18)

h(x, 0) = h0,ε(x), (2.19)
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where

fδε(z) := fε(z) + δ =
|z|4

|z|4−n + ε
+ δ ∀z ∈ R

1, δ > 0, ε > 0. (2.20)

The δ > 0 in (2.20) makes the problem (2.17) regular (i.e., uniformly parabolic). The
parameter ε is an approximating parameter which has the effect of increasing the degeneracy
from f(h) ∼ |h|n to fε(h) ∼ h4. The nonnegative initial data, h0, is approximated via

h0 + εθ � h0,ε ∈ C4+γ(Ω) for some 0 < θ <
2
5
,

∂ih0,ε

∂xi
(−a) = ∂ih0,ε

∂xi
(a) for i = 0, 3,

h0,ε −→ h0 strongly in H1(Ω) as ε −→ 0.

(2.21)

The ε term in (2.21) “lifts” the initial data so that they are smoothing fromH1(Ω) to C4+γ(Ω).
By Eı̆del’man [44, Theorem 6.3, p.302], the regularized problem has a unique classical
solution hδε ∈ C

4+γ,1+γ/4
x,t (Ω × [0, τδε]) for some time τδε > 0. For any fixed value of δ and

ε, by Eı̆del’man [44, Theorem 9.3, p.316] if one can prove a uniform in time a priori bound
|hδε(x, t)| ≤ Aδε < ∞ for some longer time interval [0, Tloc,δε] (Tloc,δε > τδε) and for all x ∈ Ω
then Schauder-type interior estimates [44, Corollary 2, p.213] imply that the solution hδε can
be continued in time to be in C

4+γ,1+γ/4
x,t (Ω × [0, Tloc,δε]).

Although the solution hδε is initially positive, there is no guarantee that it will remain
nonnegative. The goal is to take δ → 0, ε → 0 in such a way that (1) Tloc,δε → Tloc > 0, (2)
the solutions hδε converge to a (nonnegative) limit, h, which is a generalized weak solution,
and (3) h inherits certain a priori bounds. This is done by proving various a priori estimates
for hδε that are uniform in δ and ε and hold on a time interval [0, Tloc] that is independent of
δ and ε. As a result, {hδε} will be a uniformly bounded and equicontinuous (in the C1/2,1/8

x,t

norm) family of functions inΩ×[0, Tloc]. Taking δ → 0 will result in a family of functions {hε}
that are classical, positive, unique solutions to the regularized problem with δ = 0. Taking
ε → 0 will then result in the desired generalized weak solution h. This last step is where
the possibility of nonunique weak solutions arise; see [40] for simple examples of how such
constructions applied to ht = −(|h|nhxxx)x can result in two different solutions arising from
the same initial data.

2.2. A Priori Estimates

Our first task is to derive a priori estimates for classical solutions of (2.17)–(2.21). The lemmas
given in this section are proved in the Section 4.

We use an integral quantity based on a function Gδε chosen such that

G′′
δε(z) =

1
fδε(z)

, Gδε(z) � 0. (2.22)

This is analogous to the “entropy” function first introduced by Bernis and Friedman [42].
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Lemma 2.3. Let h0ε satisfy (2.21) and be built from a nonnegative function h0 that satisfies the
hypotheses of Theorem 2.2. Then there exist δ0 > 0, ε0 > 0 and time Tloc > 0 such that if δ ∈ [0, δ0),
ε ∈ [0, ε0), and hδε is a solution of the problem (2.17)–(2.21) with initial data h0ε, then for any
T ∈ [0, Tloc] the following inequalities:

∫
Ω

{
h2
δε,x(x, T) +

2c1
a0

Gδε(hδε(x, T))
}
dx + a0

∫∫
QT

fδε(hδε)h2
δε,xxxdxdt ≤ K1 < ∞, (2.23)

∫
Ω
Gδε(hδε(x, T))dx + a0

∫∫
QT

h2
δε,xxdxdt ≤ K2 < ∞ (2.24)

hold. The energy Eδε(t) (see (2.13)) satisfies

Eδε(T) +
∫∫

QT

fδε(hδε)(a0hδε,xxx + a1hδε,x +wx)
2dxdt = Eδε(0) −

∫∫
QT

hδεwtdxdt. (2.25)

The time Tloc and the constants Ki are independent of δ and ε.

The proof of existence of δ0, ε0, Tloc, K1, and K2 is constructive; how to find them and
what quantities determine them are shown with details in Section 4.

Lemma 2.3 yields uniform-in-δ-and-ε bounds for
∫
h2
δε,x,

∫
Gδε(hδε),

∫∫
h2
δε,xx, and∫∫

fδε(hδε)h2
δε,xxx. However, these bounds are found in a different manner than in earlier work

for the equation ht = −(|h|nhxxx)x, for example. Although the inequality (2.24) is unchanged,
the inequality (2.23) has an extra term involving Gδε. In the proof, this term was introduced
to control additional, lower-order terms. This idea of a “blended” ‖hx‖2-entropy bound was
first introduced by Shishkov and Taranets for long-wave stable thin film equations with
convection [30].

The final a priori bounds for positive, classical solutions use the following functions,
parameterized by α for α /∈ {2, 3},

G
(α)
ε (z) = G

(α)
0 (z) + ε

zα−2

(α − 3)(α − 2)
=⇒

(
G

(α)
ε (z)

)′′
=

zα

fε(z)
, (2.26)

where G
(α)
0 is given by (2.9). In the following lemma, we restrict ourselves to the case α ∈

[−1/2, 1]; note that G(α)
ε (z) ≥ 0 for such α.

Lemma 2.4. Assume ε0 and Tloc are from Lemma 2.3, δ = 0, and ε ∈ [0, ε0). Assume α ∈ [−1/2, 1]
and that hε is a positive, classical solution of the problem (2.17)–(2.21)with initial data h0,ε satisfying
Lemma 2.3. If the initial data h0,ε is built from h0 which also satisfies

∫
Ω
G

(α)
0 (h0(x))dx < ∞ (2.27)

then there exists K4 such that

∫
Ω

{
h2
ε,x(x, T) +G

(α)
ε (hε(x, T))

}
dx +

∫∫
QT

[
βhα

εh
2
ε,xx + γhα−2

ε h4
ε,x

]
dxdt ≤ K4 < ∞ (2.28)
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holds for all T ∈ [0, Tloc] and K4 is independent of ε and is determined by α, ε0, a0, a1, wx, Ω and
h0. Here

β =

⎧⎨
⎩
a0 if 0 ≤ α ≤ 1,

a0
1 + 2α
4(1 − α)

if − 1
2
≤ α < 0,

γ =

⎧⎪⎪⎨
⎪⎪⎩
a0

α(1 − α)
6

if 0 ≤ α ≤ 1,

a0
(1 + 2α)(1 − α)

36
f − 1

2
≤ α < 0. (2.29)

Furthermore, if α ∈ (−1/2, 1) \ {0} then
{
h
(α+2)/2
ε

}
ε∈(0,ε0)

⊂ L2
(
0, Tloc;H2(Ω)

)
,

{
h
(α+2)/4
ε

}
ε∈(0,ε0)

⊂ L4
(
0, Tloc;W1,4(Ω)

)
(2.30)

are uniformly bounded.

The α-entropy,
∫
G

(α)
0 (h)dx, was first introduced for α = −1/2 in [45] and an a priori

bound like that of Lemma 2.4 and regularity results like those of Theorem 2.2 were found
simultaneously and independently in [40, 43].

The proof of existence starts from a construction of a classical solution hδε on [0, Tloc]
that satisfies the hypotheses of Lemma 2.3 if δ ∈ (0, δ0) and ε ∈ (0, ε0). Taking the regularizing
parameter, δ, to zero, one proves that there is a limit hε and that hε is a generalized weak
solution. After that additional nonlinear estimates are required to analyze properties of the
limit hε; specifically to show that it is strictly positive, classical, and unique. Hence, the a
priori bounds given by Lemmas 2.3 and 2.4 are applicable to hε. This allows us to take the
approximating parameter, ε, to zero and to construct the desired nonnegative generalized
weak solution of Theorems 2.2 (see, e.g., [41]).

2.3. Long-Time Existence of Solutions

Lemma 2.5. Let h be a generalized solution of Theorem 2.2. Then

a0

4
‖h(·, Tloc)‖2H1(Ω) ≤ E0(0) +K5 +K6Tloc, (2.31)

where E0(0) is defined in (2.13),M =
∫
h0, and

K5 = ‖w‖∞M +
2
√
6

3
(a0 + a1)3/2

a0
M2 +

a0 + a1

2
M2

|Ω| , K6 = ‖wt‖∞M. (2.32)

Proof of Lemma 2.5. By (2.13),

a0

2

∫
Ω
h2
x(x, T)dx ≤ E0(T) +

a1

2

∫
Ω
h2(x, T)dx +

∫
Ω
h(x, T)w(x, T)dx −

∫∫
QT

hwtdxdt. (2.33)
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The linear-in-time bound (2.14) on E0(Tloc) then implies

a0

2
‖h(·, Tloc)‖2H1 ≤ E0(0) +

a0 + a1

2

∫
Ω
h2dx + (‖w‖∞ + ‖wt‖∞T)M. (2.34)

Using the estimate (see [41, Lemma 4.1, page 1837])

‖h‖2L2(Ω) ≤ 62/3M4/3
(∫

Ω
h2
x dx

)1/3

+
M2

|Ω| , (2.35)

and Young’s inequality:

a0 + a1

2

∫
Ω
h2dx ≤ a0 + a1

2

(
62/3M4/3

(∫
Ω
h2
xdx

)1/3

+
M2

|Ω|

)

≤ a0

4

∫
Ω
h2
x(x, Tloc)dx +

2
√
6

3
(a0 + a1)3/2√

a0
M2 +

a0 + a1

2
M2

|Ω| .
(2.36)

Using this in (2.34), the desired bound (2.31) follows immediately.

This H1-estimate will be used to extend the short-time existence of a solution to the
long-time existence result of Theorem 2.2 (see [41, Proof of Theorem 3, page 1838]).

3. Finite Speed of Support Propagation

Theorem 3.1. Let 1 < n < 3. Assume h0 is nonnegative, h0 ∈ H1(Ω) and supp h0 ⊂ (−r0, r0) � Ω.
Then the solution h of Theorem 2.2 has finite speed of support propagation, that is, there exists a
continuous nondecreasing function Γ(T), Γ(0) = 0 such that supp h(T, ·) ⊂ (−r0−Γ(T), r0+Γ(T)) �
Ω for all T ≤ T0 := Γ−1(a − r0).

In the following theorem, we find the explicit upper bounds of the Γ(T) for a solution
of the corresponding Cauchy problem with a compactly supported nonnegative initial data
h0 ∈ H1(R1). Note that the definition of generalized weak solution of the Cauchy problem
is as Definition 2.1 except that Ω is replaced by R

1 and the relation (2.6) is dropped. Using
Lemma 2.5, we can show that the upper estimate of Γ(T) from Theorem 3.1 is independent
on Ω therefore the solution from Theorem 2.2 can be extended to be identically zero for |x| >
r0 − Γ(T) and thus is a solution on the line for all T ≤ T0. Performing a similar procedure in
[T0, 2T0], . . . , [mT0, (m + 1)T0], . . ., we obtain a compactly supported nonnegative solution of
the Cauchy problem for all T ≥ 0 and Theorem 2.2 holds with Ω = R

1.

Theorem 3.2. Let 1 < n < 3. Assume h0 is nonnegative, h0 ∈ H1(R1), supp h0 ⊂ (−r0, r0) and h is
a solution of the Cauchy problem. Then the following estimates:

Γ(T) ≤ D1(T1/(n+4) + T5/(n+4)) for all T > 0 if 1 < n < 2,

Γ(T) ≤ D2T
1/(n+4) for small enough time if 2 ≤ n < 3,

are valid. Here the constants Di depend on the parameters problem and initial data only.
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3.1. Proof of Theorem 3.1 for the Case 1 < n < 2

The following lemma contains the local entropy estimate. The proof of Lemma 3.3 is similar
to (A.16), (A.29), therefore it is omitted.

Lemma 3.3. Let ζ ∈ C1,2
t,x (QT ) such that supp ζ ⊂ Ω, (ζ4)′ = 0 on ∂Ω, and ζ4(−a, t) = ζ4(a, t).

Assume that −1/2 < α < 1, and α/= 0. Then there exist constants Ci (i = 1, 2, 3) dependent on
n, m, α, a0, and a1, independent of Ω, such that for all 0 < T < ∞

∫
Ω
ζ4(x, T)G(α)

0 (h(x, T))dx −
∫∫

QT

(
ζ4
)
t
G

(α)
0 (h)dxdt

+ C1

∫∫
QT

(
h(α+2)/2

)2

xx
ζ4dxdt ≤

∫
Ω
ζ4(x, 0)G(α)

0 (h0)dx

+ C2

∫∫
QT

hα+2
(
ζ4 + ζ4x + ζ2ζ2xx + ζ2ζ2x + ζ3|ζxx|

)
dxdt

+ C3

∫∫
QT

hα+1
(∣∣∣ζ3∣∣∣|ζx| + ζ4

)
dxdt.

(3.1)

Let 0 < n < 2, and let supp h0 ⊆ (−r0, r0) � Ω. For an arbitrary s ∈ (0, a − r0) and δ > 0
we consider the families of sets

Ω(s) = Ω \ (−r0 − s, r0 + s), QT (s) = (0, T) ×Ω(s). (3.2)

We introduce a nonnegative cutoff function η(τ) from the space C2(R1) with the following
properties:

η(τ) =

⎧⎪⎪⎨
⎪⎪⎩
0 if τ ≤ 0,
τ2(3 − 2τ) if 0 < τ < 1,
1 if τ ≤ 1.

(3.3)

Next we introduce our main cut-off functions ηs,δ(x) ∈ C2(Ω) such that 0 ≤ ηs,δ(x) ≤ 1 for all
x ∈ Ω and possess the following properties:

ηs,δ(x) = η

( |x| − (r0 + s)
δ

)
=

{
1, x ∈ Ω(s + δ),
0, x ∈ Ω \Ω(s),

∣∣(ηs,δ)x
∣∣ ≤ 3

δ
,
∣∣(ηs,δ)xx

∣∣ ≤ 6
δ2

, (3.4)

for all s > 0, δ > 0 : r0 + s + δ < a. Choosing ζ4(x, t) = ηs,δ(x)e−t/T , from (3.1) we arrive at

∫
Ω(s+δ)

hα−n+2(T)dx +
1
T

∫∫
QT (s+δ)

hα−n+2dxdt + C

∫∫
QT (s+δ)

(
h(α+2)/2

)2

xx
dxdt

≤ C

δ4

∫∫
QT (s)

hα+2dxdt +
C

δ

∫∫
QT (s)

hα+1dxdt =: C
2∑
i=1

δ−αi

∫∫
QT (s)

hξi ,

(3.5)
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for all s ∈ (0, a − r0), where (n − 1)+ < α < 1 and 0 < δ < 1 is enough small. We apply
the Nirenberg-Gagliardo interpolation inequality (see Lemma B.2) in the regionΩ(s + δ) to a
function v := h(α+2)/2 with a = (2ξi)/(α + 2), b = (2(α − n + 2))/(α + 2), d = 2, i = 0, j = 2, and
θi = ((α + 2)(ξi − α + n − 2))/(ξi(4α − 3n + 8)) under the conditions:

α − n + 2 < ξi for i = 1, 2. (3.6)

Integrating the resulted inequalities with respect to time and taking into account (3.5), we
arrive at the following relations:

∫∫
QT (s+δ)

hξi ≤ CT1−(θiξi)/(α+2)
(

2∑
i=1

δ−αi

∫∫
QT (s)

hξi

)1+νi

+ CT

(
2∑
i=1

δ−αi

∫∫
QT (s)

hξi

)ξi/(α−n+2)
,

(3.7)

where νi = (4(ξi − α + n − 2))/(4α − 3n + 8). These inequalities are true provided that

θiξi
α + 2

< 1 ⇐⇒ ξi < 5α − 4n + 10 for i = 1, 2. (3.8)

Simple calculations show that inequalities (3.6) and (3.8) hold with some (n − 1)+ < α < 1
if and only if 1 < n < 2. The finite speed of propagations follows from (3.7) by applying
Lemma B.3 with s1 = 0. Hence,

supp h(T, ·) ⊂ (−r0 − Γ(T), r0 + Γ(T)) � Ω for all T : T ∈ [0, T0], (3.9)

where T0 := Γ−1(a − r0).

3.2. Proof of Theorem 3.2 for the Case 1 < n < 2

We can repeat the previous procedure from Section 3.1 forΩ(s) = R
1 \ (−r0 − s, r0 + s) and we

obtain

Gi(s + δ) :=
∫∫

QT (s+δ)
hξi ≤ CT1−(θiξi)/(α+2)

(
2∑
i=1

δ−αi

∫∫
QT (s)

hξi

)1+νi

, (3.10)

instead of (3.7), and

Γ(T) = C
(
T (1−(θ1ξ1)/(α+2))(1+ν2)T (1−(θ2ξ2)/(α+2))ν1(1+ν1)(G(0))ν1

)1/(4(1+ν1)(1+ν2))

+ C
(
T (1−(θ2ξ2)/(α+2))(1+ν1)T (1−(θ1ξ1)/(α+2))ν2(1+ν2)(G(0))ν2

)1/((1+ν1)(1+ν2))
,

(3.11)

where

G(0) = C
(
T (1−(θ1ξ1)/(α+2))(1+ν2)(G2(0))1+ν1 + T (1−(θ2ξ2)/(α+2))(1+ν1)(G1(0))1+ν2

)
. (3.12)
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Now we need to estimate G(0). With that end in view, we obtain the following estimates:

Gi(0) ≤ C1(C2 + C3T)(ξi−1)/(α+5)T1−(ξi−1)/(α+5), i = 1, 2, (3.13)

where 1 < ξi < α + 6, and Ci depends on initial data only. Really, applying the Nirenberg-
Gagliardo interpolation inequality (see Lemma B.2) in Ω = R

1 to a function v := h(α+2)/2 with
a = (2ξi)/(α + 2), b = 2/(α + 2), d = 2, i = 0, j = 2, and θ̃i = ((α + 2)(ξi − 1))/(ξi(α + 5)) under
the condition ξi > 1, we deduce that

∫
R1

hξi ≤ c‖h0‖(2(3ξi+α+2))/((α+2)(α+5))1

(∫
R1

(
h(α+2)/2

)2

xx
dx

)(ξi−1)/(α+5)
. (3.14)

Integrating (3.14) with respect to time and taking into account the Hölder inequality ((ξi −
1)/(α + 5) < 1 ⇒ ξi < α + 6), we arrive at the following relations:

∫∫
QT

hξi ≤ c‖h0‖(2(3ξi+α+2))/((α+2)(α+5))1 T1−(ξi−1)/(α+5)
(∫∫

QT

(
h(α+2)/2

)2

xx
dx

)(ξi−1)/(α+5)
. (3.15)

From (3.15), due to (A.16) (as ε → 0) and (2.31), we find (3.13).
Inserting (3.13) into (3.12), we obtain after straightforward computations that

Γ(T) ≤ C
(
T1/(n+4) + T5/(n+4)

)
for all T ≥ 0. (3.16)

3.3. Proof of Theorem 3.1 for the Case 4/3 < n < 3

The following lemma contains the local energy estimate. The proof of Lemma 3.4 is
Appendix A.

Lemma 3.4. Let n ∈ (1/2, 3) and β > (1−n)/3. Let ζ ∈ C2(Ω) such that supp ζ inΩ and (ζ6)′ = 0
on ∂Ω, and ζ(−a) = ζ(a). Then there exist constants Ci (i = 1, 3) dependent on n, m, a0, and a1,
independent of Ω and ε, such that for any 0 < T < ∞

∫
Ω
ζ6h2

x(x, T)dx +
∫
Ω
ζ4hβ+1(T)dx + C1

∫∫
QT

ζ6
(
h(n+2)/2

)2

xxx
dxdt

≤
∫
Ω
ζ6h2

0(x)dx +
∫
Ω
ζ4h

β+1
0 dx + C2

∫∫
QT

hn+2
(
ζ6 + ζ6x + ζ3|ζxx|3

)
dxdt

+ C3

∫∫
QT

{
χ{ζ>0}hn+3β−1 + hnζ6

}
dxdt,

(3.17)

∫
Ω
ζ6h2

x(x, T)dx + C1

∫∫
QT

ζ6
(
h(n+2)/2

)2

xxx
dxdt �

∫
Ω
ζ6h2

0(x)dx

+ C2

∫∫
QT

hn+2
(
ζ6 + ζ6x + ζ3|ζxx|3

)
dxdt + C3

∫∫
QT

hnζ6dxdt.

(3.18)
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Let ηs,δ(x) be denoted by (3.4). Setting ζ6(x) = ηs,δ(x) into (3.17), after simple
transformations, we obtain

∫
Ω(s+δ)

h2
x(x, T)dx +

∫
Ω(s+δ)

hβ+1(T)dx + C

∫∫
QT (s+δ)

(
h(n+2)/2

)2

xxx
dxdt

≤ C

δ6

∫∫
QT (s)

hn+2dxdt + C

∫∫
QT (s)

{
hn+3β−1 + hn

}
dxdt =: C

3∑
i=1

δ−αi

∫∫
QT (s)

hξi ,

(3.19)

for all for all s ∈ (0, a − r0), δ > 0 : r0 + s + δ < a. We apply the Nirenberg-Gagliardo
interpolation inequality (see Lemma B.2) in the region Ω(s + δ) to a function v := h(n+2)/2

with a = (2ξi)/(n + 2), b = (2(β + 1))/(n + 2), d = 2, i = 0, j = 3, and θi = ((n + 2)(ξi − β −
1))/(ξi(n + 5β + 7)) under the conditions:

β < ξi − 1 for i = 1, 3. (3.20)

Integrating the resulted inequalities with respect to time and taking into account (3.19), we
arrive at the following relations:

∫∫
QT (s+δ)

hξi ≤ C T1−(θiξi)/(n+2)
(

3∑
i=1

δ−αi

∫∫
QT (s)

hξi

)1+νi

+ CT

(
3∑
i=1

δ−αi

∫∫
QT (s)

hξi

)ξi/(β+1)

,

(3.21)

where νi = (6(ξi − β − 1))/(n + 5β + 7). These inequalities are true provided that

θiξi
n + 2

< 1 ⇐⇒ β >
ξi − n − 8

6
for i = 1, 3. (3.22)

Simple calculations show that inequalities (3.20) and (3.22) hold with some β ∈ ((2−n)/2, n−
1) if and only if 4/3 < n < 3. Since all integrals on the right-hand sides of (3.21) vanish as
T → 0, the finite speed of propagations follows from (3.21) by applying Lemma B.3 with
s1 = 0 and sufficiently small T . Hence,

supph(T, ·) ⊂ (−r0 − Γ(T), r0 + Γ(T)) � Ω for all T : 0 ≤ T ≤ T0. (3.23)

3.4. Proof of Theorem 3.2 for the Case 4/3 < n < 3

Suppose that Ω(s) = R
1 \ {x : |x| < s}, QT (s) = (0, T) × Ω(s) for all s > r0, supph0 ⊆

(−r0, r0), and Γ(T) = r(T) − r0. Since the time interval is small, we can assume that r(T) < 2r0.
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Hence, for all s ∈ (r0, 2r0), we can take (up to regularization) ζ = (|x| − s)+ in (3.18). As a
result, we obtain

1
2

∫
Ω(s)

(|x| − s)6+h
2
xdx + δ6C1

∫∫
QT (s+δ)

(
h(n+2)/2

)2

xxx
dxdt

≤ C4

∫∫
QT (s)

{
hn+2 + (r(T) − s)6+h

n
}
dxdt,

(3.24)

for all T ≤ T0, s ∈ (r0, 2r0). Using the Hardy type inequality

∫
Ω(s)

(|x| − s)α+f
2dx ≤ C0

∫
Ω(s)

(|x| − s)α+2+ f2
xdx, (3.25)

where C0 = 4/(α + 1)2 and α > −1, we deduce that

∫
Ω(s+δ)

hdx ≤
(∫

Ω(s+δ)
(|x| − s)4+h

2dx

)1/2(∫
Ω(s+δ)

(|x| − s)−4+ dx

)1/2

≤
(

C0

3δ3

)1/2
(∫

Ω(s)
(|x| − s)6+h

2
xdx

)1/2

,

(3.26)

whence

(∫
Ω(s+δ)

hdx

)2

≤ C0

3
δ−3

∫
Ω(s)

(|x| − s)6+h
2
xdx, (3.27)

for all δ > 0, s ∈ (r0, 2r0). Substituting (3.27) in (3.24), we get

3
2C0

δ−3sup
t

(∫
Ω(s+δ)

hdx

)2

+ C1

∫∫
QT (s+δ)

(
h(n+2)/2

)2

xxx
dxdt

≤ C4

δ6

∫∫
QT (s)

{
hn+2 + Γ6(T)hn

}
dxdt,

(3.28)
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for all T ≤ T0, s ∈ (r0, 2r0). By the Nirenberg-Gagliardo, Hölder and Young inequalities, after
simple transformations, for εi > 0, we have

C4

δ6

∫∫
QT (s)

hn+2dxdt ≤ ε1

∫∫
QT (s)

(
h(n+2)/2

)2

xxx
dxdt +

C(ε1)
δn+7

∫T

0

(∫
Ω(s)

hdx

)n+2

dt,

C4Γ6(T)
δ6

∫∫
QT (s)

hndxdt ≤ ε2

∫∫
QT (s)

(
h(n+2)/2

)2

xxx
dxdt

+ C(ε2)
(
Γ(T)
δ

)3(n+7)/4 ∫T

0

(∫
Ω(s)

hdx

)(3n+1)/4

dt.

(3.29)

Substituting the estimates (3.29) in (3.28) and making the standard iterative procedure for
small enough 0 < εi < 1, we arrive at the inequality

3
2C0

sup
t

(∫
Ω(s+δ)

hdx

)2

+ C5δ
3
∫∫

QT (s+δ)

(
h(n+2)/2

)2

xxx
dxdt ≤ C6

2∑
i=1

G
(i)
T (s)
δαi

, (3.30)

where α1 = n + 4, α2 = (3(n + 3))/4, G
(1)
T (s) :=

∫T
0 (

∫
Ω(s) h dx)n+2dt, G

(2)
T (s) :=

Γ(3(n+7))/4(T)
∫T
0 (

∫
Ω(s) h dx)(3n+1)/4dt. Thus, (3.30) yields

G
(i)
T (s + δ) ≤ C7T Γμi(T)

(
2∑
i=1

G
(i)
T (s)
δαi

)βi

, (3.31)

for all s ∈ (r0, 2r0) and 0 < δ < s, where μ1 = 0, μ2 = (3(n + 7))/4, β1 = (n + 2)/2, β2 = (3n +
1)/8. By Lemma B.3, from (3.31) we find that G(i)

T (s0) = 0, where Γ(T) ≤ s0(T) = C8(T1/α1 +
T1/α2Γμ2/α2(T)). As μ2/α2 = (n + 7)/(n + 3) > 1 for any T ≤ T0, we have Γ(T) ≤ C9T

1/(n+4).

4. Waiting Time Phenomenon
Let Ω(s) = {x : x ≥ s} for all s ∈ R

1, and

h0(s) :=
∫
Ω(s)

hα−n+2
0 (x)dx = 0 ∀s ≥ 0, (4.1)

where (n − 1)+ < α < 1. Let us assume that the function h0(s) satisfies the flatness conditions.
Namely, for every s : s0 < s < 0 the following estimate:

h0(s) ≤ χmax
{
(−s)1+(4(α−n+2))/n, (−s)1+(4−3n+4(α−n+2))/(4(n−1))

}

=

⎧⎪⎨
⎪⎩
χ(−s)1+(4(α−n+2))/n for

4
3
≤ n < 2,

χ(−s)1+(4−3n+4(α−n+2))/(4(n−1)) for 1 < n <
4
3
,

(4.2)

is valid.
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Theorem 4.1. Let 1 < n < 2. Assume h0 is nonnegative, h0 ∈ H1(R1) andmeas{Ω(s)∩supp h0} =
∅ for all s ≥ 0, that is, the condition (4.1) is valid, and the flatness condition (4.2) also holds.

Then for the solution h of Theorem 2.2 (with Ω = R
1) there exists the time T ∗ = T ∗(χ) > 0

depending on the known parameters only such that

supp h(t, ·) ∩Ω(0) = ∅ ∀0 < t ≤ T ∗, (4.3)

where χ is the constant from the flatness condition. Note, that T ∗ → +∞ as χ → 0.

Remark 4.2. Let the initial data h0 ∈ C(R1) satisfy the following properties:

(1) if 1 < n < 4/3 then we suppose that

sup
x∈Ω(s)

h0(x) ≤ χ(−s)(4−3n+4(α−n+2))/(4(n−1)(α−n+2)) for some α ∈ ((n − 1)+, 1); (4.4)

(2) if 4/3 ≤ n < 2 then we suppose that supx∈Ω(s)h0(x) ≤ χ (−s)4/n.
These assumptions on the initial data are sufficient for the validity of flatness condition (4.2)
and guarantee the appearance of the WTP, that is, the validation of property (4.3).

Remark 4.3. Note that due to Lemma 2.5 we have the estimate hα+2(x, t) ≤ C(1 + t)hα+1(x, t).
Therefore, using this inequality in (3.1) with Ω = R

1, we could also obtain the waiting time
phenomenon by the application of Theorem 2.1 from [46]withw = h(α+2)/2, l = k = p = 2, q =
(2(α − n + 2))/(α + 2), and s = (2(α + 1))/(α + 2).

Proof of Theorem 4.1. Similar to (3.10) for Ω(s) = {x : x ≥ s} and we obtain

Gi(s + δ) :=
∫∫

QT (s+δ)
hξi ≤ K T1−(θiξi)/(α+2)

(
2∑

k=1

δ−αkGk(s) + h0(s)

)1+νi

. (4.5)

Let us check that all conditions of Lemma B.4 are satisfied. We denote by

Gmax(s) := max
i=1,2

⎧⎨
⎩c02β+1

(
2∑

k=1

(Gk(s))βk
)βi−1

(s)

⎫⎬
⎭

1/(αiβ)

,

gmax(s) := max
i=1,2

⎧⎨
⎩2(β+1)/(αiβ)

(
2β−1

2∑
k=1

(
K T1−(θkξk)/(α+2)

)βk

)βi/αi

(h0(s))(βi−1)/αi

⎫⎬
⎭,

c0 = 2β−1
2∑

k=1

(
K T1−(θkξk)/(α+2)

)βk
, βi = 1 + νi, β = β1β2.

(4.6)

Taking s = −2δ in (4.5) and passing to the limit δ → ∞, due to the boundedness of functions
Gk(s) and h0(s), we deduce

Gk(−∞) ≤ K T1−(θkξk)/(α+2)hβk
0 (−∞). (4.7)
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This implies that the condition (i) of Lemma B.4 is fulfilled. Because of the assumption (4.2)
on the function h0(s), we can find T ∗ such that the condition (ii) of Lemma B.4 is valid for all
T ∈ [0, T ∗]. Here T ∗ = T ∗(χ) goes to infinity as χ → 0. Hence, the application of Lemma B.4
ends the proof.

Appendices

A. Proofs of a Priori Estimates

The first observation is that the periodic boundary conditions imply that classical solutions
of (2.17) conserve mass:

∫
Ω
hδε(x, t)dx =

∫
Ω
h0,ε(x)dx = Mε < ∞ for all t > 0. (A.1)

Further, (2.21) impliesMε → M =
∫
h0 as ε → 0. Also, we will relate the Lp norm of h to the

Lp norm of its zero-mean part as follows:

|h(x)| ≤
∣∣∣∣h(x) − Mε

Ω

∣∣∣∣ + Mε

Ω
=⇒ ‖h‖pp ≤ 2p−1‖v‖pp +

(
2
|Ω|

)p−1
M

p
ε , (A.2)

where v := h − Mε/Ω. We will use the Poincaré inequality which holds for any zero-mean
function in H1(Ω)

‖v‖pp ≤ b1‖vx‖pp 1 ≤ p < ∞, b1 =
|Ω|p
p

. (A.3)

Also used will be an interpolation inequality [47, Theorem 2.2, page 62] for functions of zero
mean in H1(Ω):

‖v‖pp ≤ b2‖vx‖ap2 ‖v‖(1−a)pr , (A.4)

where r ≥ 1, p ≥ r, a = (1/r − 1/p)/(1/r + 1/2), b2 = (1 + r/2)ap. It follows that for any
zero-mean function v inH1(Ω)

‖v‖pp ≤ b3‖vx‖p2 ,=⇒ ‖h‖pp ≤ b4‖hx‖p2 + b5M
p
ε , (A.5)

where

b3 =

{
b1|Ω|(2−p)/p if 1 ≤ p ≤ 2

b
(p+2)/2
1 b2 if 2 < p < ∞,

b4 = 2p−1 b3, b5 =
(

2
|Ω|

)p−1
. (A.6)

To see that (A.5) holds, consider two cases. If 1 ≤ p < 2, then by (A.3), ‖v‖p is controlled
by ‖vx‖p. By the Hölder inequality, ‖vx‖p is then controlled by ‖vx‖2. If p > 2 then by (A.4),
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‖v‖p is controlled by ‖vx‖a2‖v‖1−a2 where a = 1/2 − 1/p. By the Poincaré inequality, ‖v‖1−a2 is
controlled by ‖vx‖1−a2 .

Proof of Lemma 2.3. In the following, we denote the solution hδε by h whenever there is no
chance of confusion.

To prove the bound (2.23) one starts by multiplying (2.17) by −hxx, integrating over
QT , and using the periodic boundary conditions (2.18) yields

1
2

∫
Ω
h2
x(x, T)dx + a0

∫∫
QT

fδε(h)h2
xxxdxdt =

1
2

∫
Ω
h2
0ε,x(x)dx

− a1

∫∫
QT

fδε(h)hxhxxxdxdt −
∫∫

QT

fδε(h)wxhxxxdxdt.

(A.7)

By Cauchy and Young inequalities, due to (A.3)–(A.5), it follows from (A.7) that

1
2

∫
Ω
h2
x(x, T)dx +

a0

2

∫∫
QT

fδε(h)h2
xxxdxdt ≤

1
2

∫
Ω
h2
0ε,xdx

+ c1

∫∫
QT

h2
xxdxdt + c2

∫T

0
max

{
1,
(∫

Ω
h2
xdx

)κ1
}
dt,

(A.8)

where κ1 = max{n, 3}, c1 = (a2
1/4a0)b2, c2 = (a2

1/2a0)b4 + (a2
1/2a0)b5M2n

ε + (a2
1/4a0)b2 +

(a2
1/a0)δ + supt≤T ((‖wx‖22/a0)δ + (‖wx‖2∞/a0)b4 + (‖wx‖2∞/a0)b5Mn

ε ). Multiplying (2.17) by
G′

δε(h), integrating over QT , and using the periodic boundary conditions (2.18), we obtain

∫
Ω
Gδε(h(x, T))dx + a0

∫∫
QT

h2
xxdxdt ≤

∫
Ω
Gδε(h0ε)dx

+ c3

∫T

0
max

{
1,
∫
Ω
h2
x(x, t)dx

}
dt,

(A.9)

where c3 = a1 + supt≤T‖wx‖2. Further, from (A.8) and (A.9)we find

∫
Ω
h2
xdx +

2c1
a0

∫
Ω
Gδε(h(x, T))dx + a0

∫∫
QT

fδε(h)h2
xxxdxdt

≤
∫
Ω
h2
0ε,xdx +

2c1
a0

∫
Ω
Gδε(h0ε)dx + c4

∫T

0
max

{
1,
(∫

Ω
h2
x(x, t)dx

)κ1
}
dt,

(A.10)

where c4 = 2c1c3/a0 + 2c2. Applying the nonlinear Grönwall lemma [48] to v(T) ≤ v(0) +
c4

∫T
0 max{1, vκ1(t)}dtwith v(t) =

∫
(h2

x(x, t) + 2c1/a0 Gδε(h(x, t)))dx yields

∫
Ω
h2
x(x, t) + 2

c1
a0

Gδε(h(x, t))dx

≤ 21/(κ1−1) max
{
1,
∫
Ω

(
h2
0ε,x(x) +

2c1
a0

Gδε(h0ε(x))
)
dx

}
= Kδε < ∞

(A.11)
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for all t ∈ [0, Tδε,loc], where

Tδε,loc :=
1

2c4(κ1 − 1)
min

{
1,
(∫

Ω

(
h2
0ε,x(x) +

2c1
a0

Gδε(h0ε(x))
)
dx

)−(κ1−1)
}
. (A.12)

Using the δ → 0, ε → 0 convergence of the initial data and the choice of θ ∈ (0, 2/5) (see
(2.21)) as well as the assumption that the initial data h0 has finite entropy (2.11), the times
Tδε,loc converge to a positive limit and the upper bound K in (A.11) can be taken finite and
independent of δ and ε for δ and ε sufficiently small. Therefore there exists δ0 > 0 and ε0 > 0
andK such that the bound (A.11) holds for all 0 ≤ δ < δ0 and 0 ≤ ε < ε0 withK replacingKδε

and for all

0 ≤ t ≤ Tloc :=
9
10

lim
ε→ 0,δ→ 0

Tδε,loc. (A.13)

Using the uniform bound on
∫
h2
x that (A.11) provides, one can find a uniform-in-δ-

and-ε bound for the right-hand-side of (A.10) yielding the desired a priori bound (2.23).
Similarly, one can find a uniform-in-δ-and-ε bound for the right-hand-side of (A.9) yielding
the desired a priori bound (2.24). The time Tloc and the constant K are determined by
δ0, ε0, a0, a1, supt≤T‖wx‖2, supt≤T‖wx‖∞,

∫
h0, ‖h0x‖2, and

∫
G0(h0).

To prove the bound (2.25), multiply (2.17) by −a0hxx − a1h − w, integrate over QT ,
integrate by parts, use the periodic boundary conditions (2.18) to find (2.25).

Proof of Lemma 2.4. In the following, we denote the positive, classical solution hε by h
whenever there is no chance of confusion.

Multiplying (2.17) by (G(α)
ε (h))

′
, integrating over QT , taking δ → 0, and using the

periodic boundary conditions (2.18) yield

∫
Ω
G

(α)
ε (h(x, T))dx + a0

∫∫
QT

hαh2
xxdxdt + a0

α(1 − α)
3

∫∫
QT

hα−2h4
xdxdt

=
∫
Ω
G

(α)
ε (h0ε)dx + a1

∫∫
QT

hαh2
xdxdt −

1
α + 1

∫∫
QT

hα+1wxxdxdt.

(A.14)

Case 1 (0 < α < 1). The coefficient multiplying
∫∫

hα−2h4
x in (A.14) is positive and can therefore

be used to control the term
∫∫

hαh2
x on the right-hand side of (A.14). Specifically, using the

Cauchy-Schwartz inequality and the Cauchy inequality,

a1

∫∫
QT

hαh2
xdxdt ≤

a0α(1 − α)
6

∫∫
QT

hα−2h4
xdxdt +

3a2
1

2a0α(1 − α)

∫∫
QT

hα+2dxdt. (A.15)



International Journal of Differential Equations 21

Using the bound (A.15) in (A.14), due to (A.5), yields

∫
Ω
G

(α)
ε (h(x, T))dx + a0

∫∫
QT

hαh2
xxdxdt + a0

α(1 − α)
6

∫∫
QT

hα−2h4
xdxdt

≤
∫
Ω
G

(α)
ε (h0ε)dx +

3a2
1

2a0α(1 − α)

∫∫
QT

hα+2dxdt +
supt≤T‖wxx‖∞

α + 1

∫∫
QT

hα+1dxdt.

≤
∫
Ω
G

(α)
ε (h0ε)dx + d1

∫T

0
max

{
1,
(∫

Ω
h2
xdx

)α/2+1
}
dt,

(A.16)

where d1 = b4((3a2
1)/(2a0α(1 − α))) + b4((supt≤T‖wxx‖∞)/(1 + α)) + b5(((3a2

1)/(2a0α(1 −
α)))Mα+2

ε + ((supt≤T‖wxx‖∞)/(1+α))Mα+1
ε ). Using the Cauchy inequality in (A.7) and taking

δ → 0, after applying the Cauchy-Schwartz inequality and (A.5), yields

∫
Ω
h2
xdx + a0

∫∫
QT

fε(h)h2
xxxdxdt ≤

∫
Ω
h2
0ε,xdx

+
2a2

1

a0

∫∫
QT

hnh2
xdxdt +

2supt≤T‖wx‖2∞
a0

∫∫
QT

hndxdt ≤
∫
Ω
h2
0ε,xdx

+
a0α(1 − α)

6

∫∫
QT

hα−2h4
xdxdt + d2

∫T

0
max

{
1,
(∫

Ω
h2
xdx

)n+1−α/2}
dt,

(A.17)

where d2 = ((6a4
1)/(a

3
0α(1 − α)))b4 + ((2supt≤T‖wx‖2∞)/a0)b4 + b5(((6a4

1)/(a
3
0α(1 −

α)))M2(n+1)−α
ε + ((2supt≤T‖wx‖2∞)/a0)Mn

ε ). Using (A.16) yields

∫
Ω
h2
x(x, T)dx +

∫
Ω
G

(α)
ε (h(x, T))dx + a0

∫∫
QT

fε(h)h2
xxxdxdt

≤
∫
Ω
h2
0ε,xdx +

∫
Ω
G

(α)
ε (h0ε)dx + d3

∫T

0
max

{
1,
(∫

Ω
h2
xdx

)n+1−α/2}
,

(A.18)

where d3 = d1 + d2. Applying the nonlinear Grönwall lemma [48] to v(T) ≤ v(0) +
d3

∫T
0 max{1, vn+1−α/2(t)}dtwith v(T) =

∫
(h2

x(x, T) + G
(α)
ε (h(x, T)))dx yields

∫
Ω

(
h2
x(x, T) +G

(α)
ε (h(x, T))

)
dx

≤ 41/(2n−α) max
{
1,
∫
Ω

(
h2
0ε,x(x) +G

(α)
ε (h0,ε(x))

)
dx

}
= Kε < ∞,

(A.19)

for all T :

0 ≤ T ≤ T
(α)
ε,loc :=

1
d3(2n − α)

min

{
1,
(∫

Ω

(
h2
0ε,x +G

(α)
ε (h0,ε)

)
dx

)−(2n−α)/2}
. (A.20)
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The bound (A.19) holds for all 0 ≤ ε < ε0 where ε0 is from Lemma 2.3 and for all t ≤
min{Tloc, T (α)

ε,loc}where Tloc is from Lemma 2.3.
Using the ε → 0 convergence of the initial data and the choice of θ ∈ (0, 2/5) (see

(2.21)) as well as the assumption that the initial data h0 has finite α-entropy (2.27), the times
T
(α)
ε,loc converge to a positive limit and the upper bound Kε in (A.19) can be taken finite and

independent of ε. Therefore there exists ε0 and K such that the bound (A.19) holds for all
0 ≤ ε < ε0 with K replacing Kε and for all

0 ≤ t ≤ T
(α)
loc := min

{
Tloc,

9
10

lim
ε→ 0

T
(α)
ε,loc

}
, (A.21)

where Tloc is the time from Lemma 2.3.
Using the uniform bound on

∫
h2
x that (A.19) provides, one can find a uniform-in-ε

bound for the right-hand-side of (A.16) yielding the desired bound

∫
Ω
G

(α)
ε (h(x, T))dx + a0

∫∫
QT

hαh2
xxdxdt + a0

α(1 − α)
6

∫∫
QT

hα−2h4
xdxdt ≤ K1, (A.22)

which holds for all 0 < ε < ε0 and all 0 ≤ T ≤ T
(α)
loc . Note, (A.22) implies that for all 0 <

ε < ε0 that hα/2+1
ε and hα/4+1/2

ε are contained in balls in L2(0, T ;H2(Ω)) and L4(0, T ;W1
4 (Ω))

respectively, that is,

∫∫
QT

(
hα/2+1
ε

)2

xx
dxdt ≤ K,

∫∫
QT

(
hα/4+1/2
ε

)4

x
dxdt ≤ K. (A.23)

From these estimates follows immediately (2.30).
Case 2 (−1/2 < α < 0). For α < 0 the coefficient multiplying

∫∫
hα−2h4

x in (A.14) is negative.
However, we will show that if α > −1/2 then one can replace this coefficient with a positive
coefficient while also controlling the term

∫∫
hαh2

x on the right-hand side of (A.14). Using the
Cauchy-Schwartz inequality, it is easy to show that

∫∫
QT

hα−2h4
xdxdt ≤

9

(1 − α)2

∫∫
QT

hαh2
xxdxdt ∀α < 1. (A.24)

Using (A.24) in (A.14) yields

∫
Ω
G

(α)
ε (h(x, T))dx + a0

1 + 2α
1 − α

∫∫
QT

hαh2
xxdxdt

≤
∫
Ω
G

(α)
ε (h0ε)dx + a1

∫∫
QT

hαh2
xdxdt +

supt≤T‖wxx‖∞
α + 1

∫∫
QT

hα+1dxdt.

(A.25)
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Note that if α > −1/2 then all the terms on the left-hand side of (A.25) are positive. We now
control the term

∫∫
hαh2

x on the right-hand side of (A.25). By integration by parts and the
periodic boundary conditions

∫∫
QT

hαh2
xdxdt = − 1

1 + α

∫∫
QT

hα+1hxxdxdt. (A.26)

Applying the Cauchy inequality to (A.26) yields

a1

∫∫
QT

hαh2
xdxdt ≤

a0(1 + 2α)
2(1 − α)

∫∫
QT

hαh2
xxdxdt +

a2
1(1 − α)

2a0(1 + 2α)(1 + α)2

∫∫
QT

hα+2dxdt. (A.27)

Using inequality (A.27) in (A.25) yields

∫
Ω
G

(α)
ε (h(x, T))dx + a0

1 + 2α
2(1 − α)

∫∫
QT

hαh2
xxdxdt ≤

∫
Ω
G

(α)
ε (h0ε)dx

+
a2
1(1 − α)

2a0(1 + 2α)(1 + α)2

∫∫
QT

hα+2dxdt +
supt�T‖wxx‖∞

α + 1

∫∫
QT

hα+1dxdt.

(A.28)

Adding ((a0(1+2α)(1−α))/36)
∫∫

QT
hα−2h4

xdxdt to both sides of (A.28) and using the inequality
(A.24) yields

∫
Ω
G

(α)
ε (h(x, T))dx + a0

(1 + 2α)
4(1 − α)

∫∫
QT

hαh2
xxdxdt

+
a0(1 + 2α)(1 − α)

36

∫∫
QT

hα−2h4
xdxdt ≤

∫
Ω
G

(α)
ε (h0ε)dx

+ e1

∫T

0
max

{
1,
(∫

Ω
h2
xdx

)α/2+1
}
dt,

(A.29)

where e1 = ((a2
1(1 − α))/(2a0(1 + 2α)(1 + α)2))b4 + ((supt≤T‖wxx‖∞)/(α + 1))b4 +b5(((a2

1(1 −
α))/(2a0(1 + 2α)(1 + α)2))Mα+2

ε + ((supt≤T‖wxx‖∞)/(α + 1))Mα+1
ε ). Recall the bound (A.17).

As before, by the Cauchy inequality,

2a2
1

a0

∫∫
QT

hnh2
xdxdt ≤

a0(1 + 2α)(1 − α)
36

∫∫
QT

hα−2h4
xdxdt

+
36a4

1

a3
0(1 + 2α)(1 − α)

∫∫
QT

h2(n+1)−αdxdt.

(A.30)
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Using (A.30) in (A.17) yields

∫
Ω
h2
xdx + a0

∫∫
QT

fε(h)h2
xxxdxdt ≤

∫
Ω
h2
0ε,xdx

+
a0(1 + 2α)(1 − α)

36

∫∫
QT

hα−2h4
xdxdt + e2

∫T

0
max

{
1,
(∫

Ω
h2
xdx

)n+1−α/2}
dt,

(A.31)

where e2 = ((36a4
1)/(a

3
0(1+2α)(1−α)))b4+((2supt≤T‖wx‖2∞)/a0)b4 + b5(((36a4

1)/(a
3
0(1+2α)(1−

α)))M2(n+1)−α
ε + ((2supt≤T‖wx‖2∞)/a0)Mn

ε ). Using (A.29) yields

∫
Ω
h2
x(x, T)dx +

∫
Ω
G

(α)
ε (h(x, T))dx + a0

∫∫
QT

fε(h)h2
xxxdxdt

≤
∫
Ω
h2
0ε,xdx +

∫
Ω
G

(α)
ε (h0ε)dx + e3

∫T

0
max

{
1,
(∫

Ω
h2
xdx

)n+1−α/2}
,

(A.32)

where e3 = e1 + e2. The rest of the proof now continues as in the 0 < α < 1 case. Specifically,
one finds a bound

∫
Ω

(
h2
x(x, T) +G

(α)
ε (h(x, T))

)
dx

≤ 41/(2n−α) max
{
1,
∫
Ω

(
h2
0ε,x(x) +G

(α)
ε (h0ε(x))

)
dx

}
= Kε < ∞

(A.33)

for all T :

0 ≤ T ≤ T
(α)
ε,loc :=

1
e3(2n − α)

min

{
1,
(∫

Ω

(
h2
0ε,x(x) +G

(α)
ε (h0,ε(x))

)
dx

)−(2n−α)/2}
. (A.34)

The time T (α)
loc is defined as in (A.21) and the uniform bound (A.33) used to bound the right-

hand side of (A.29) yields the desired bound

∫
Ω
G

(α)
ε (h(x, T))dx +

a0(1 + 2α)
4(1 − α)

∫∫
QT

hαh2
xxdxdt +

a0(1 + 2α)(1 − α)
36

∫∫
QT

hα−2h4
xdxdt ≤ K2.

(A.35)
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Proof of Lemma 3.4. Let φ(x) = ζ6(x). Multiplying (2.17) by −(φ(x)hx)x, and integrating on
QT , yields

1
2

∫
Ω
(x)h2

x(x, T)dxφ − 1
2

∫
Ω
φ(x)h2

0ε,x(x)dx

= −
∫∫

QT

fε(h)(a0hxxx + a1hx +wx)
(
φxxhx + 2φxhxx + φhxxx

)
dxdt

= −
∫∫

QT

fε(h)(a0hxxx + a1hx)φxxhxdxdt − 2
∫∫

QT

fε(h)(a0hxxx + a1hx)φxhxxdxdt

−
∫∫

QT

fε(h)(a0hxxx + a1hx)φhxxxdxdt −
∫∫

QT

fε(h)wx

(
φxxhx + 2φxhxx + φhxxx

)
dxdt

− a0

∫∫
QT

fε(h)h2
xxxφdxdt =: I1 + I2 + I3 + I4 + I5.

(A.36)

We now bound the terms I1, I2, I3, and I4. First,

I1 = − a0

∫∫
QT

φxxfε(h)hxxxhxdxdt − a1

∫∫
QT

φxxfε(h)h2
xdxdt

≤ ε1

∫∫
QT

ζ6
{
fε(h)h2

xxx + hn−4h6
x

}
dxdt + C(ε1)

∫∫
QT

hn+2
(
ζ6 + ζ6x + ζ3|ζxx|3

)
dxdt,

(A.37)

I2 = − 2a0

∫∫
QT

φxfε(h)hxxxhxxdxdt − 2a1

∫∫
QT

φxfε(h)hxxhxdxdt

≤ ε2

∫∫
QT

ζ6
{
fε(h)h2

xxx + hn−2h2
xh

2
xx + hn−1|hxx|3

}
dxdt

+ C(ε2)
∫∫

QT

hn+2
(
ζ6 + ζ6x

)
dxdt,

(A.38)

I3 = − a0

∫∫
QT

φfε(h)h2
xxxdxdt − a1

∫∫
QT

φfε(h)hxxxhxdxdt

≤ − a0

∫∫
QT

ζ6fε(h)h2
xxxdxdt + ε3

∫∫
QT

ζ6
(
fε(h)h2

xxx + hn−4h6
x

)
dxdt

+ C(ε3)
∫∫

QT

hn+2ζ6dxdt,

(A.39)
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I4 = − 6
∫∫

QT

fε(h)hxwxζ
4
(
5ζ2x + ζζxx

)
dxdt

− 12
∫∫

QT

fε(h)hxxwxζ
5ζxdxdt −

∫∫
QT

fε(h)hxxxwxζ
6dxdt

≤ ε4

∫∫
QT

ζ6
{
fε(h)h2

xxx + hn−4h6
x + hn−1|hxx|3

}
dxdt

+ C(ε4)
∫∫

QT

hn+2
(
ζ6x + ζ3ζ3xx

)
dxdt + C(ε4)

∫∫
QT

hnζ6dxdt.

(A.40)

Now, multiplying (2.17) by ζ4(h + γ)β, β > (1 − n)/3, γ > 0 and integrating on QT ,
using the Young’s inequality, letting γ → 0, we obtain the following estimate:

∫
Ω
ζ4hβ+1(T)dx ≤

∫
Ω
ζ4h

β+1
0ε dx + ε4

∫∫
QT

ζ6
{
fε(h)h2

xxx + hn−4h6
x

}
dxdt

+ C(ε4)
∫∫

QT

{
χ{ζ>0}hn+3β−1 + hn+2

(
ζ6 + ζ6x

)
+ hnζ6

}
dxdt,

(A.41)

where β > (1 − n)/3. If we now add inequalities (A.36) and (A.41), in view of (A.37)–(A.39),
then, applying Lemma B.1, choosing εi > 0, and letting ε → 0, we obtain (3.17).

B. Auxiliary Lemmas

Lemma B.1 (see [34, 38]). Let Ω ⊂ R
N, N < 6, be a bounded convex domain with smooth

boundary, and let n ∈ (2 −
√
1 −N/(N + 8), 3) for N > 1, and 1/2 < n < 3 for N = 1. Then

the following estimates hold for any strictly positive functions v ∈ H2(Ω) such that∇v · �n = 0 on ∂Ω
and

∫
Ω vn|∇Δv|2 < ∞:

∫
Ω
ϕ6

{
vn−4|∇v|6 + vn−2

∣∣∣D2v
∣∣∣2|∇v|2

}
≤ c

{∫
Ω
ϕ6vn|∇Δv|2 +

∫
{ϕ>0}

vn+2∣∣∇ϕ
∣∣6
}
,

∫
Ω
ϕ6

∣∣∣∇Δv(n+2)/2
∣∣∣2 ≤ c

{∫
Ω
ϕ6vn|∇Δv|2 +

∫
{ϕ>0}

vn+2
{∣∣∇ϕ

∣∣6 + ϕ2
∣∣∣D2ϕ

∣∣∣2∣∣∇ϕ
∣∣2 + ϕ3∣∣Δϕ

∣∣3}
}
,

(B.1)

where ϕ ∈ C2(Ω) is an arbitrary nonnegative function such that the tangential component of ∇ϕ is
equal to zero on ∂Ω, and the constant c > 0 is independent of v.

Lemma B.2 (see [49]). If Ω ⊂ R
N is a bounded domain with piecewise-smooth boundary, a > 1,

b ∈ (0, a), d > 1, and 0 ≤ i < j, i, j ∈ N, then there exist positive constants d1 and d2 (d2 = 0 if Ω is
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unbounded) depending only on Ω, d, j, b, and N such that the following inequality is valid for every
v(x) ∈ Wj,d(Ω) ∩ Lb(Ω):

∥∥∥Div
∥∥∥
La(Ω)

≤ d1 ‖Djv
∣∣∣θ
Ld(Ω)

‖v‖1−θLb(Ω) + d2‖v‖Lb(Ω), θ =
1/b + i/N − 1/a
1/b + j/N − 1/d

∈
[
i

j
, 1
)
. (B.2)

Lemma B.3 (see [37]). Let (β1, . . . , βm) ∈ R
m,m ≥ 1 and let β =

∏m
j=1βj , βi = β/βi =

∏m
j=1,j /= iβj .

Assume that Gi(s) are nonnegative nonincreasing functions satisfying the conditions:

Gi(s + δ) ≤ ci

(
m∑
i=1

Gi(s)
δαi

)βi

∀s > 0, δ > 0, i = 1, m (B.3)

with real constants ci > 0, βi > 1, and αi ≥ 0 for i = 1, m, and αi > 0 for i = 1, �. Let

G(s) =
∑m

i=1 (c
βi
i )(Gi(s))

βi , and let the function H(s) = mβ
∑m

i=�+1 c
βi
i (c

βi
i )

1−βi
(Gi(s))

βi−1 be such
thatH(s1) < 1 at a some s1 ≥ 0. Then there exists a positive constant c > 1 depending onm,αi, βi, �,

andH(s1) such that Gi(s0) ≡ 0 for all i = 1, �, where s0 = s1 + c
∑�

i=1(c
βi
i (c

βi
i )

1−βi
(G(s1))

βi−1)1/(αiβ).
Note, if � = m then s1 = 0.

Lemma B.4. Let (β1, . . . , βm) ∈ R
m,m ≥ 1, and let β =

∏m
j=1βj , βi = β/βi =

∏m
j=1,j /= iβj . Assume

that Gi(s), g(s) are nonnegative nonincreasing functions satisfying the conditions:

Gi(s + δ) ≤ ci

(
m∑
i=1

Gi(s)
δαi

+ g(s)

)βi

∀s ∈ R
1, δ > 0, i = 1, m (B.4)

with real constants ci > 0, βi > 1, and αi > 0. Let the functions

Gmax(s) := max
i=1,m

⎧⎨
⎩mc02β

(
m∑
k=1

(Gk(s))βk
)βi−1

(s)

⎫⎬
⎭

1/αiβ

, c0 = 2β−1
m∑
k=1

(ck)βk (B.5)

and gmax(s) := maxi=1,m(m2β)1/αiβ(2β−1
∑m

k=1(ck)
βk)βi/αi(g(s))(βi−1)/αi be such that

(i) for some s1 ∈ (−∞, s0) the inequality Gmax(s) ≤ k1gmax(s) holds for all s < s1,

(ii) gmax(s) ≤ k2(s0 − s) for all s ≤ s0,

where k1 > (1 − maxi=1,m{2−(βi−1)/(αiβ)})−1 and 0 < k2 < k−1
1 (1 − k−1

1 −
maxi=1,m{2−(βi−1)/(αiβ)}). Then Gi(s) ≡ 0 for all s ≥ s0.
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Proof. Let us denote by G(s) :=
∑m

k=1(Gk(s))
βk . Raising both side of (B.4) to the power βi and

summing with respect to i, we deduce

G(s + δ) ≤
m∑
k=1

(ck)βk
(

m∑
i=1

Gi(s)
δαi

+ g(s)

)β

≤ c02β−1
m∑
i=1

G
β

i (s)

δαiβ
+ c0g

β(s) ≤ c02β−1
m∑
i=1

Gβi(s)
δαiβ

+ c0g
β(s).

(B.6)

Choosing δ = δ(s) =
∑m

i=1(mc02βGβi−1(s))1/(αiβ), we arrive at

G(s + δ(s)) ≤ 1
2
G(s) + c0g

β(s), (B.7)

whence we find that

δ(s + δ(s)) ≤ εδ(s) + g̃(s), (B.8)

where ε = maxi=1,m{2−(βi−1)/(αiβ)}, g̃(s) :=
∑m

i=1(mc
βi
0 2

β)1/(αiβ)(g(s))(βi−1)/αi . Applying [27,
Lemma 4] to δ(s), taking into account the conditions (i) and (ii), we obtain δ(s) = 0 for
all s ≥ s0.
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