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We study the existence of multiple nonnegative solutions for the doubly singular three-
point boundary value problem with derivative dependent data function −(p(t)y′(t))′ =
q(t)f(t, y(t), p(t)y′(t)), 0 < t < 1, y(0) = 0, y(1) = α1y(η). Here, p ∈ C[0, 1] ∩ C1(0, 1] with p(t) > 0
on (0, 1] and q(t) is allowed to be discontinuous at t = 0. The fixed point theory in a cone is applied
to achieve new and more general results for existence of multiple nonnegative solutions of the
problem. The results are illustrated through examples.

1. Introduction

In this paper, we consider the following three-point boundary value problem of Sturm-
Liouville type:

−(p(t)y′(t)
)′ = q(t)f

(
t, y(t), p(t)y′(t)

)
, 0 < t < 1, (1.1)

with boundary conditions

y(0) = 0, y(1) = α1y
(
η
)
, (1.2)

where 0 < α1 < (h(1))/(h(η)) and h(t) =
∫ t
0(1/p(x))dx.

Throughout this paper, we assume the following conditions on the functions p(t), q(t),
and f(t, y, py′):

(E1) p ∈ C[0, 1] ∩ C1(0, 1] with p(t) > 0 on (0, 1] and 1/p ∈ L1(0, 1);
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(E2) q(t) > 0, q is not identically zero on [0, 1] and q ∈ L1(0, 1);

(E3) f ∈ C([0, 1] × [0,∞) × R, [0,∞)) and f is not identically zero.

Note that condition (E2) allows q(t) be discontinuous at t = 0, and if p(0) = 0, then the
differential equation (1.1) is called doubly singular [1].

Nonlocal boundary value problem have variety of applications in the area of applied
mathematics and physical sciences. The design of a large size bridgewithmultipoint supports
can be considered as an application of these types of boundary value problem [2]. Somemore
applications can be found in [3–5] and the references therein. Recently, motivated by the wide
application of boundary value problems in physical and applied mathematics, the study of
multipoint boundary value problems has received increasing interest (see [2, 6–12] and the
references therein).

Nonsingular multipoint boundary value problems have been extensively studied in
literature, see [13–16] for derivative dependent data function f(t, y, z) and [8, 10, 12] for
derivative independent data function f(t, y, z) = f(t, y).

Some attention has been devoted to singular multipoint boundary value problems (see
[17, 18] and the references therein). When p(t) = 1 and q(t)f(t, y, z) may have singularity
at t = 0, t = 1, y = 0 and z = 0, differential equation (1.1) with boundary conditions
y′(0) = 0, y(1) = α1y(η) is considered by Chen et al. [17] and Agarwal et al. [18]. Chen
et al. proved the existence of at least one positive solution while Agarwal et al. established
that this problem may have at least two positive solutions and also may have no positive
solutions under some conditions on q(t) and f(t, y, z).

Bai and Ge [19] have generalized the Leggett-Williams fixed point theory and applied
to

y′′ + q(t)f
(
t, y, y′) = 0, t ∈ (0, 1),

y(0) = 0, y(1) = 0,
(1.3)

to achieve at least three positive solutions of the two-point boundary value problem.
In this work, we consider the problem (1.1)-(1.2) with unbounded coefficient of y′

along with singularity in the data function f(t, y, z).
Existence of nonnegative solution(s) of the problem (1.1)-(1.2) may be established

either directly or by reducing the problem to

y′′ + q(t)f
(
t, y, y′) = 0, (1.4)

and applying the existing results. But direct consideration of the problem provides better
results, especially as the order of singularity increases. This may be demonstrated by the
following simple linear three-point boundary value problem:

−(try′(t)
)′ = tr−1

[
2(r + 1)t − 5

4
r

]
, 0.5 ≤ r < 1, t ∈ (0, 1),

y(0) = 0, y(1) = y
(
1
4

)
.

(1.5)
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The problem (1.5) can be reduced to the following boundary value problem:

−v′′(x) =
1

(1 − r)2
x(2r−1)/(1−r)

[
2(r + 1)x1/(1−r) − 5

4
r

]
, x ∈ (0, 1),

v(0) = 0, v(1) = v

[(
1
4

)(1−r)]

,

(1.6)

by change of variable x = (1 − r) ∫ t0 τ−rdτ = t1−r .
Nowwe apply the result (Theorem 4.2) of this work to the problem (1.5) and conclude

that the problem has at least one nonnegative solution y(t)with

sup
t∈[0,1]

∣
∣y(t)

∣
∣ ≤ 3

2

[
3(1 − r)
4 − 4r

](1−r)/r[3
4
r + 2

]
. (1.7)

Further, for p(t) = 1, Theorems 4.2 and 4.3 may be regarded as extension of Theorem
3.1 in [19] for three-point singular boundary value problem. Now applying Theorem 4.2
with p(t) = 1 to the reduced problem (1.6), we get that the problem (1.5) has at least one
nonnegative solution y(t) with

sup
t∈[0,1]

∣∣y(t)
∣∣ = sup

t∈[0,1]
|v(t)| ≤ 3

4 − 4r

[
3(1 − r)
4 − 4r

](1−r)/r[3
4
r + 2

]
. (1.8)

Now as r approaches to one, that is, the order of singularity increases, the upper bound
for supt∈[0,1]|y(t)| in (1.8) approaches to ∞ while in (1.7) approaches to 4.125, which can be
seen from Figure 1. As smaller upper bound for supt∈[0,1]|y(t)|will enable to find nonnegative
solution(s) faster and hence will be helpful in constructing efficient numerical algorithms
to find multiple nonnegative solutions, thus it is justified to consider the singular problem
directly. A detailed working is given in Example 5.1.

In this work, we are concerned with existence of multiple nonnegative solutions of
the three-point doubly singular boundary value problem (1.1)-(1.2). To achieve this, we use
generalized Leggett-Williams fixed point theorem established by Bai and Ge [19].

For this purpose, we first establish certain properties of Green’s function of the
corresponding homogeneous boundary value problem. Then fixed point theorem of
functional type (generalized Leggett-Williams fixed point theorem) is applied to yield
multiple nonnegative solutions for the boundary value problem (1.1)-(1.2).

We organize this work as follows. In Section 2, we present some definitions and basic
results required for this work. Section 3 deals with nonnegativity of Green’s function and
some basic properties. Section 4 is devoted to existence of at least one and three or odd
number of nonnegative solutions. In Section 5, we demonstrate the results through examples.

2. Background and Definitions

The proof of main results is based on fixed point theorem of functional type in a cone given
by Bai and Ge [19], which deals with three fixed points of completely continuous nonlinear
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(1) When singular problem is reduced to regular problem

(2) When singular problem is solved directly
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Figure 1: Variation of bounds for y in both cases.

operators defined in a cone of an ordered Banach space. In this section, we provide some
background material from the theory of cone in Banach spaces to make the paper self-
contained.

Definition 2.1. A subset D of Banach space E is said to be retract of E if ∃ a continuous map
r : E → D such that r(x) = x for every x ∈ D.

Corollary 2.2. Every close convex set of a Banach space is a retract of Banach space.

Definition 2.3. Let E be a Banach space, P ⊂ E is nonempty convex, closed set, P is said to be
cone provided that

(1) λu ∈ P for all λ ≥ 0, u ∈ P , and

(2) u ∈ P, −u ∈ P implies u = 0.

Note. From Corollary 2.2, a cone P of Banach Space E is retract of E.

Definition 2.4. A subset R of Banach space X is called relatively compact if R (closure of R) is
compact.

Definition 2.5. Consider two Banach spaces X and Y , a subset Ω of X, and a map T : Ω → Y .
Then T is said to be completely continuous operator if

(1) T is continuous, and

(2) T maps bounded subset of Ω into relatively compact sets.
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Definition 2.6. The map α is said to be a nonnegative continuous convex functional on P
provided that α : P → [0,∞) is continuous and

α
(
tx + (1 − t)y) ≤ tα(x) + (1 − t)α(y), (2.1)

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, the map γ is said to be a nonnegative continuous
concave functional on P provided that γ : P → [0,∞) is continuous and

γ
(
tx + (1 − t)y) ≥ tγ(x) + (1 − t)γ(y), (2.2)

for all x, y ∈ P , and 0 ≤ t ≤ 1.

Definition 2.7. Suppose α, β : P → [0,∞) are two continuous convex functionals satisfying

‖x‖ ≤M max
{
α(x), β(x)

}
, for x ∈ P, (2.3)

whereM is positive constant, and

Ω =
{
x ∈ P : α(x) < r, β(x) < L

}
/=φ for r > 0, L > 0. (2.4)

From (2.3) and (2.4), Ω is a bounded nonempty open subset of P .

Definition 2.8. Let r > a > 0, L > 0 be given constants, α, β : P → [0,∞) two nonnegative
continuous convex functionals satisfying (2.3) and (2.4), and ψ a nonnegative continuous
concave functional on the cone P . Then bounded convex sets are defined as

P
(
αr, βL

)
=
{
x ∈ P : α(x) < r, β(x) < L

}
,

P
(
αr, βL

)
=
{
x ∈ P : α(x) ≤ r, β(x) ≤ L},

P
(
αr, βL, ψa

)
=
{
x ∈ P : α(x) < r, β(x) < L, ψ(x) > a

}
,

P
(
αr, βL, ψa

)
=
{
x ∈ P : α(x) ≤ r, β(x) ≤ L, ψ(x) ≥ a}.

(2.5)

Theorem 2.9 (see [20]). Let X be retract of real Banach space E. Then for every bounded relatively
open subset U of X and every completely continuous operator T : U → X which has no fixed point
on ∂U (relative to X), there exists an integer i(T,U,X) such that if i(T,U,X)/= 0, then T has at least
one fixed point inU. Moreover, i(T,U,X) is uniquely defined.

Theorem 2.10 (see [20]). Let E be Banach space, X retract of E, X1 a bounded convex retract of X,
and U ⊂ X nonempty open subset, such that U ⊂ X1. If T : X1 → X is completely continuous,
T(X1) ⊂ X1, such that there is no fixed point of T in X1 \U, then i(T,U,X) = 1.

Theorem 2.11 ((see [19]) (fixed point theorem of functional type)). Let E be Banach space,
P ⊂ E a cone, and c ≥ b > a > d > 0, L2 ≥ L1 > 0 given constants. Assume that α, β
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are nonnegative continuous convex functionals on P such that (2.3) and (2.4) are satisfied. ψ is a
nonnegative continuous concave functional on P such that ψ(x) ≤ α(x) for all x ∈ P(αc, βL2) and let
T : P(αc, βL2) → P(αc, βL2) be a completely continuous operator. Suppose that

(1) {x ∈ P(αb, βL2 , ψa) : ψ(x) > a}/=Φ and ψ(Tx) > a for x ∈ P(αb, βL2 , ψa),

(2) α(Tx) < d, β(Tx) < L1 for all x ∈ P(αd, βL1),

(3) ψ(Tx) > a for all x ∈ P(αc, βL2 , ψa) with α(Tx) > b.

Then T has at least three fixed points x1, x2, x3 ∈ P(αc, βL2) such that

x1 ∈ P
(
αd, βL1

)
, x2 ∈

{
x ∈ P

(
αc, βL2 , ψa

)
: ψ(x) > a

}
,

x3 ∈ P
(
αc, βL2

)
\
(
P
(
αc, βL2 , ψa

)
∪ P

(
αd, βL1

))
.

(2.6)

3. Some Preliminary Results

In this section, we construct the Green’s function and establish some properties, required to
establish the main results in Section 4.

Lemma 3.1. The Green’s function for the following boundary value problem:

−(p(t)y′(t)
)′ = 0

B.C. := y(0) = 0, y(1) = α1y
(
η
)

}
, t ∈ (0, 1) (3.1)

is given by

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G1(t, s), 0 ≤ s ≤ min
{
t, η

}
< 1;

G2(t, s), 0 ≤ t ≤ s ≤ η;
G3(t, s), η ≤ s ≤ t ≤ 1;
G4(t, s), 0 < max

{
η, t

} ≤ s ≤ 1.

(3.2)

Here

G1(t, s) =
h(s)
δ

[δ − h(t) + α1h(t)],

G2(t, s) =
h(t)
δ

[δ − h(s) + α1h(s)],

G3(t, s) =
1
δ

[
h(t)

{
α1h

(
η
) − h(s)} + δh(s)],

G4(t, s) =
h(t)
δ

[h(1) − h(s)],

δ = h(1) − α1h
(
η
)
> 0, h(t) =

∫ t

0

1
p(x)

dx, 0 < α1 <
h(1)
h
(
η
) .

(3.3)
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Proof. Consider the following linear differential equation:

−(p(t)y′(t)
)′ = q(t)F(t), (3.4)

where F ∈ C([0, 1], [0,∞)). Integrating the above differential equation twice first from t to 1
and then from 0 to t, changing the order of integration, and applying the boundary conditions,
we get

y(t) =
∫ t

0
h(s)q(s)F(s)ds + h(t)

∫1

t

q(s)F(s)ds

+
h(t)
δ

[

α1

∫η

0
h(s)q(s)F(s)ds −

∫1

0
h(s)q(s)F(s)ds + α1h

(
η
)
∫1

η

q(s)F(s)ds

]

.

(3.5)

For t ∈ [0, η], y(t) can be written as

y(t) =
∫ t

0

h(s)
δ

[δ − h(t) + α1h(t)]q(s)F(s)ds

+
∫η

t

h(t)
δ

[δ − h(s) + α1h(s)]q(s)F(s)ds +
∫1

η

h(t)
δ

[h(1) − h(s)]q(s)F(s)ds,
(3.6)

or

y(t) =
∫ t

0
G1(t, s)q(s)F(s)ds +

∫η

t

G2(t, s)q(s)F(s)ds +
∫1

η

G4(t, s)q(s)F(s)ds. (3.7)

Similarly, for t ∈ [η, 1], y(t) can be written as

y(t) =
∫η

0

h(s)
δ

[δ − h(t) + α1h(t)]q(s)F(s)ds

+
∫ t

η

1
δ

[
h(t)

{
α1h

(
η
) − h(s)} + δh(s)]q(s)F(s)ds +

∫1

t

h(t)
δ

[h(1) − h(s)]q(s)F(s)ds,

(3.8)

or

y(t) =
∫η

0
G1(t, s)q(s)F(s)ds +

∫ t

η

G3(t, s)q(s)F(s)ds +
∫1

t

G4(t, s)q(s)F(s)ds. (3.9)

From (3.7) and (3.9), we may write

y(t) =
∫1

0
G(t, s)q(s)F(s)ds, (3.10)
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where G(t, s) is given in the lemma. It is easy to see that G(t, s) satisfies all the properties
of Green’s function. Hence G(t, s) is the Green’s function for the boundary value problem
(3.1).

Lemma 3.2. The Green’s function G(t, s) satisfies the following properties:

(i) maxt∈[0,1]p(t)(∂G(t, s)/∂t) <∞,

(ii) G(t, s) ≥ 0 for all (t, s) ∈ {[0, 1] × [0, 1]},
(iii) there exist a constant λ in (0,1) such that mint∈[η,1]G(t, s) ≥ λ maxt∈[0,1]G(t, s) for s ∈

[0, 1], where

λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

{
α1
[
h(1) − h(η)]

h(1) − α1h
(
η
) ,

α1h
(
η
)

h(1)

}

, 0 < α1 ≤ 1,

min

{
h(1) − α1h

(
η
)

α1
[
h(1) − h(η)] ,

h
(
η
)

α1h(1)

}

, 1 ≤ α1 < h(1)
h
(
η
) .

(3.11)

Proof. (i)

p(t)
∂G(t, s)
∂t

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(s)
δ

[α1 − 1], 0 ≤ s ≤ min
{
t, η

}
< 1;

1
δ
[δ − h(s) − α1h(s)], 0 ≤ t ≤ s ≤ η;

1
δ

[
α1h

(
η
) − h(s)], η ≤ s ≤ t ≤ 1;

1
δ
[h(1) − h(s)], 0 < max

{
η, t

} ≤ s ≤ 1.

(3.12)

Since p(t)(∂G(t, s)/∂t) is independent of t, therefore maxt∈[0,1]p(t)(∂G(t, s)/∂t) <∞.
(ii) For t < η, α1[h(t) − h(η)] > h(1)/h(η)[h(t) − h(η)] and

G1(t, s) ≥ 1
δ
h(s)h(t)

[
h(1)
h
(
η
) − 1

]

≥ 0, (3.13)

it is easy to show that G1(t, s) ≥ 0, for t ≥ η.
Next we show G2(t, s) ≥ 0, G3(t, s) ≥ 0 and G4(t, s) ≥ 0 as follows:

G2(t, s) ≥ h(t)
δh

(
η
)
[
h(s)

(
h(1) − h(η))] ≥ 0;

G3(t, s) =
1
δ

[
h(s){h(1) − h(t)} + α1h

(
η
){h(t) − h(s)}] ≥ 0,

G4(t, s) =
h(t)
δ

[h(1) − h(s)] ≥ 0.

(3.14)

Thus G(t, s) ≥ 0 for all (t, s) ∈ {[0, 1] × [0, 1]}.
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(iii)We prove the inequality for the following cases:
(a) s ∈ [0, η] and (b) s ∈ [η, 1],
(a) for s ∈ [0, η], we further divide this case in two parts as follows.
(1)When 0 < α1 ≤ 1, (2) when 1 ≤ α1 < h(1)/h(η).
Case 1 (For 0 < α1 ≤ 1). It is easy to see that

G1(t, s) =
h(s)
δ

[(
h(1) − α1h

(
η
))

+ h(t)(α1 − 1)
]

(3.15)

implies

max
t∈[0,1]

G1(t, s) =
h(s)
δ

[
h(1) − α1h

(
η
)]
, min

t∈[η,1]
G1(t, s) =

α1h(s)
δ

[
h(1) − h(η)]. (3.16)

Next,

G2(t, s) =
h(t)
δ

[
h(1) − α1h

(
η
)
+ h(s)(α1 − 1)

]
,

≤ h(s)
δ

[
h(1) − α1h

(
η
)]
, as h(t) ≤ h(s).

(3.17)

Thus for 0 < α1 ≤ 1,

max
t∈[0,1]

G(t, s) =
h(s)
δ

[
h(1) − α1h

(
η
)]
, min

t∈[η,1]
G(t, s) =

α1h(s)
δ

[
h(1) − h(η)]. (3.18)

Case 2 (For 1 ≤ α1 < h(1)/h(η)). It is easy to see that

max
t∈[0,1]

G1(t, s) =
α1h(s)
δ

[
h(1) − h(η)], min

t∈[η,1]
G1(t, s) =

h(s)
δ

[
h(1) − h(η)]. (3.19)

Next,

G2(t, s) =
h(t)
δ

[
h(1) − α1h

(
η
)
+ h(s)(α1 − 1)

]
,

≤ α1h(s)
δ

[
h(1) − h(η)], as h(t) ≤ h(s) ≤ h(η).

(3.20)

Thus for 1 ≤ α1 < h(1)/h(η),

max
t∈[0,1]

G(t, s) =
α1h(s)
δ

[
h(1) − h(η)], min

t∈[η,1]
G(t, s) =

h(s)
δ

[
h(1) − h(η)]. (3.21)
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Combining (3.18) and (3.21), we may write for s ∈ [0, η],

max
t∈[0,1]

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h(s)
δ

[
h(1) − α1h

(
η
)]
, 0 < α1 ≤ 1,

α1h(s)
δ

[
h(1) − h(η)], 1 ≤ α1 < h(1)

h
(
η
) ,

min
t∈[η,1]

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1h(s)
δ

[
h(1) − h(η)], 0 < α1 ≤ 1,

h(s)
δ

[
h(1) − h(η)], 1 ≤ α1 < h(1)

h
(
η
) .

(3.22)

(b) For s ∈ [η, 1]. For this case, G3(t, s) and G4(t, s) are considered. From (3.2), it can be easily
seen that for s ∈ [η, 1],

max
t∈[0,1]

G(t, s) =
h(1)
δ

[h(1) − h(s)], min
t∈[η,1]

G(t, s) =
h
(
η
)

δ
[h(1) − h(s)]. (3.23)

Thus from (3.22) and (3.23), we get

max
t∈[0,1]

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ∈ [
0, η

]
:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h(s)
δ

[
h(1) − α1h

(
η
)]
, 0 < α1 ≤ 1,

α1h(s)
δ

[
h(1) − h(η)], 1 ≤ α1 < h(1)

h
(
η
) ,

s ∈ [
η, 1

]
:
{
h(1)
δ

[h(1) − h(s)], 0 < α1 <
h(1)
h
(
η
) .

min
t∈[η,1]

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ∈ [
0, η

]
:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1h(s)
δ

[
h(1) − h(η)], 0 < α1 ≤ 1,

h(s)
δ

[
h(1) − h(η)], 1 ≤ α1 < h(1)

h
(
η
) ,

s ∈ [
η, 1

]
:

{
h
(
η
)

δ
[h(1) − h(s)], 0 < α1 <

h(1)
h
(
η
) .

(3.24)

From (3.24),

min
t∈[η,1]

G(t, s) ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

{
α1
[
h(1) − h(η)]

h(1) − α1h
(
η
) ,

α1h
(
η
)

h(1)

}

max
t∈[0,1]

G(t, s), 0 < α1 ≤ 1,

min

{
h(1) − α1h

(
η
)

α1
[
h(1) − h(η)] ,

h
(
η
)

α1h(1)

}

max
t∈[0,1]

G(t, s), 1 ≤ α1 < h(1)
h
(
η
) .

(3.25)
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Consequently, setting

λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

{
α1
[
h(1) − h(η)]

h(1) − α1h
(
η
) ,

α1h
(
η
)

h(1)

}

, 0 < α1 ≤ 1,

min

{
h(1) − α1h

(
η
)

α1
[
h(1) − h(η)] ,

h
(
η
)

α1h(1)

}

, 1 ≤ α1 < h(1)
h
(
η
) ,

(3.26)

there holds

min
t∈[η,1]

G(t, s) ≥ λmax
t∈[0,1]

G(t, s). (3.27)

It can be easily seen that 0 < λ < 1. This completes the proof.

4. Existence of Multiple Nonnegative Solutions

Let X = C[0, 1]
⋂
C2(0, 1] be endowed with ordering x ≤ y if x(t) ≤ y(t) for all t ∈ [0, 1] and

‖x‖ = max{‖x‖1, ‖x′‖1}, where

‖x‖1 = sup
t∈[0,1]

|x(t)|,

∥∥x′∥∥
1 = sup

t∈(0,1]

∣∣p(t)x′(t)
∣∣.

(4.1)

Let E = {x : x ∈ X, ‖x‖ <∞} be bounded subset of X. E is Banach Space.
Now define a cone P ⊂ E as

P =
{
x ∈ E : x(t) ≥ 0, min

t∈[η,1]
x(t) ≥ λmax

t∈[0,1]
x(t),

(
p(t)x′(t)

)′ ≤ 0
}
. (4.2)

The boundary value problem (1.1)-(1.2) has a solution y(t) if and only if y(t) solves the
following operator equation:

y(t) = Ty(t), (4.3)

where the operator T : P → P is given by

(
Ty

)
(t) =

∫1

0
G(t, s)q(s)f

(
s, y(s), p(s)y′(s)

)
ds, 0 ≤ t ≤ 1. (4.4)

Here G(t, s) is the Green’s function of the problem (3.1) defined in Lemma 3.1.

Lemma 4.1. Let (E1)–(E3) hold, then the operator T : P → P is well defined and is completely
continuous.
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Proof. First we show that the operator T is well defined. For this, we take y ∈ P . From (E2),
(E3), and G(t, s) ≥ 0, it follows that Ty(t) ≥ 0.

Now applying Lemma 3.2, we get

min
t∈[η,1]

Ty(t) = min
t∈[η,1]

∫1

0
G(t, s)q(s)f

(
s, y(s), p(s)y′(s)

)
ds,

min
t∈[η,1]

Ty(t) ≥ λ
∫1

0
max
t∈[0,1]

G(t, s)q(s)f
(
s, y(s), p(s)y′(s)

)
ds,

= λmax
t∈[0,1]

∫1

0
G(t, s)q(s)f

(
s, y(s), p(s)y′(s)

)
ds,

= λmax
t∈[0,1]

(
Ty

)
(t).

(4.5)

It is easy to show that (p(t)Ty′(t))′ ≤ 0. Thus T is well defined.
We now show that T is completely continuous. Let {yn} be a sequence in P and y0 ∈ P

with limn→∞yn = y0. Then, there exists a constant k1 > 0 such that ‖yn‖ < k1 for all n ∈
N ∪ {0}. Thus ‖yn −y0‖ → 0 as n → ∞ implies supt∈[0,1]|(yn −y0)(t)| and supt∈(0,1]|p(t)(yn −
y0)′(t)| → 0 as n → ∞. So yn(t) → y0(t) and p(t)y′

n(t) → p(t)y′
0(t) as n → ∞.

Since f is continuous on {[0, 1] × [0, k1] × [−k1, k1]}, so

∣∣Tyn(t) − Ty0(t)
∣∣ =

∣∣∣∣∣

∫1

0
G(t, s)q(s)

[
f
(
s, yn(s), p(s)y′

n(s)
) − f(s, y0(s), p(s)y′

0(s)
)]
ds

∣∣∣∣∣

−→ 0 as n −→ ∞.

=⇒ ∥∥Tyn − Ty0
∥∥
1 −→ 0 as n −→ ∞.

(4.6)

∣∣p(t)
(
Ty′

n(t) − Ty′
0(t)

)∣∣ =

∣∣∣∣∣
p(t)

∫1

0

∂G(t, s)
∂t

q(s)
[
f
(
s, yn(s), p(s)y′

n(s)
)

−f(s, y0(s), p(s)y′
0(s)

)]
ds

∣∣∣∣∣

−→ 0 as n −→ ∞.

=⇒
∥∥∥
(
Tyn − Ty0

)′∥∥∥
1
−→ 0 as n −→ ∞.

(4.7)

From (4.6) and (4.7),

∥∥Tyn − Ty0
∥∥ −→ 0 as n −→ ∞. (4.8)

Hence T : P → P is a continuous operator.
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Next we prove that T maps every bounded subset of P into relatively compact set. Let
B = {x ∈ P : ‖x‖ ≤ k2, k2 is a positive constant} be any bounded subset of P . For y ∈ B,

Ty(t) =
∫1

0
G(t, s)q(s)f

(
s, y(s), p(s)y′(s)

)
ds

≤ max
t∈[0,1]

∫1

0
G(t, s)q(s)f

(
s, y(s), p(s)y′(s)

)
ds

≤ max
(s,u,v)∈[0,1]×[0,k2]×[−k2,k2]

f(s, u, v)max
t∈[0,1]

∫1

0
G(t, s)q(s)ds

=⇒ Ty(t) <∞.

(4.9)

Therefore T(B) is uniformly bounded. Further, equicontinuity of T(B) follows from

∣∣Ty(t1) − Ty(t2)
∣∣ =

∣∣∣∣∣

∫1

0

[
G(t, s)|t=t1 − G(t, s)|t=t2

]
q(s)f

(
s, y(s), p(s)y′(s)

)
ds

∣∣∣∣∣

−→ 0 as t1 −→ t2,

∣∣p(t)
(
Ty′(t1) − Ty′(t2)

)∣∣ =

∣∣∣∣∣
p(t)

∫1

0

[
∂G(t, s)
∂t

∣∣∣∣
t=t1

− ∂G(t, s)
∂t

∣∣∣∣
t=t2

]

q(s)f
(
s, y(s), p(s)y′(s)

)
ds

∣∣∣∣∣

≤ 2max
∣∣∣∣
∂G(t, s)
∂t

∣∣∣∣ · sup
t∈[0,1]

p(t)
∫ t2

t1

q(s)f
(
s, y(s), p(s)y′(s)

)
ds,

−→ 0 as t1 −→ t2.

(4.10)

Thus from Arzela-Ascoli Theorem, T(B) is relatively compact subset of P and also T : P → P
is completely continuous.

Next, define functionals α, β, ψ : P → [0,∞) such that

α
(
y
)
= sup

t∈[0,1]

∣∣y(t)
∣∣,

β
(
y
)
= sup

t∈(0,1]

∣∣p(t)y′(t)
∣∣,

ψ
(
y
)
= min

t∈[η,1]

∣∣y(t)
∣∣.

(4.11)

Clearly, α, β are nonnegative continuous convex functionals such that ‖y‖ = max{α(y), β(y)}
satisfying (2.3) and (2.4), and ψ is nonnegative concave functional with ψ(y) ≤ α(y).
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Let

C = min
t∈[η,1]

∫1

η

G(t, s)q(s)ds,

L = sup
t∈[0,1]

∫1

0
G(t, s)q(s)ds,

N = sup
t∈(0,1]

∣
∣
∣
∣
∣

∫1

0
p(t)

∂G(t, s)
∂t

q(s)ds

∣
∣
∣
∣
∣
.

(4.12)

Now we state the main results of this work.

Theorem 4.2. Suppose that (E1)–(E3) are satisfied and f(t, y, z) satisfies the following condition.

(H1) if there exist real constants d > 0 and L1 > 0 such that f(t, y, z) < min{d/L, L1/N} for
(t, y, z) ∈ {[0, 1] × [0, d] × [−L1, L1]},

then boundary value problem (1.1)-(1.2) has at least one nonnegative solution y1 such that
supt∈[0,1]|y1(t)| < d with supt∈(0,1]|p(t)y′

1(t)| < L1.

Theorem 4.3. Suppose that (E1)–(E3) are satisfied. There exist real constants a, c, d, L1, and L2 with
c ≥ a/λ = b > a > d > 0, L2 ≥ L1 > 0 such that a/C ≤ min{c/L, L2/N} and f(t, y, z) satisfies
following conditions.

(H1) f(t, y, z) < min{d/L, L1/N} for (t, y, z) ∈ {[0, 1] × [0, d] × [−L1, L1]},

(H2) f(t, y, z) > a/C for (t, y, z) ∈ {[η, 1] × [a, a/λ] × [−L2, L2]},

(H3) f(t, y, z) ≤ min{c/L,L2/N} for (t, y, z) ∈ {[0, 1] × [0, c] × [−L2, L2]}.

Then boundary value problem (1.1)-(1.2) has at least three nonnegative solutions y1, y2, and y3 in
P(αc, βL2) such that

sup
t∈[0,1]

∣∣y1(t)
∣∣ < d, sup

t∈(0,1]

∣∣p(t)y′
1(t)

∣∣ < L1,

a < min
t∈[η,1]

∣∣y2(t)
∣∣ ≤ sup

t∈[0,1]

∣∣y2(t)
∣∣ ≤ c,

sup
t∈(0,1]

∣∣p(t)y′
2(t)

∣∣ ≤ L2, sup
t∈[0,1]

∣∣y3(t)
∣∣ ≤ a

λ
with sup

t∈(0,1]

∣∣p(t)y′
3(t)

∣∣ ≤ L2.

(4.13)
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Proof of Theorem 4.2. Let U = P(αd, βL1) be open subset of P . We now show that T(U) ⊂ U.
For y ∈ U,

α
(
Ty

)
= sup

t∈[0,1]

∣
∣Ty(t)

∣
∣

= sup
t∈[0,1]

∫1

0
G(t, s)q(s)f

(
s, y(s), p(s)y′(s)

)
ds,

<
d

L
sup
t∈[0,1]

∫1

0
G(t, s)q(s)ds < d, from condition (H1)

(4.14)

implies that α(Ty) < d.
Consider that

β
(
Ty

)
= sup

t∈(0,1]

∣∣p(t)Ty′(t)
∣∣,

= sup
t∈(0,1]

∣∣∣∣∣
p(t)

∫1

0

∂G(t, s)
∂t

q(s)f
(
s, y(s), p(s)y′(s)

)
∣∣∣∣∣
,

<
L1

N
sup
t∈(0,1]

∣∣∣∣∣

∫1

0
p(t)

∂G(t, s)
∂t

q(s)ds

∣∣∣∣∣
, from condition (H1),

(4.15)

implies that β(Ty) < L1.
Thus T(U) ⊂ U. Next, we show that T has no fixed point on ∂U(= U\U). On contrary,

suppose there exists a fixed point y(t) on ∂U such that Ty(t) = y(t). Then from (4.14) and
(4.15), α(y) < d and β(y) < L1, which are not possible. So the operator T has no fixed point
on ∂U and from Theorem 2.10 i(T,U, P) = 1. Thus the operator T has at least one fixed point
in U and also the boundary value problem (1.1)-(1.2) has at least one nonnegative solution
y1 such that supt∈[0,1]|y1(t)| < d with supt∈(0,1]|p(t)y′

1(t)| < L1.

Proof of Theorem 4.3. It is easy to see that ψ(y) ≤ α(y) for each y ∈ P(αc, βL2). We now show
that T : P(αc, βL2) → P(αc, βL2) is well defined. For y ∈ P(αc, βL2),

α
(
Ty

)
= sup

t∈[0,1]

∣∣Ty(t)
∣∣,

= sup
t∈[0,1]

∫1

0
G(t, s)q(s)f

(
s, y(s), p(s)y′(s)

)
ds,

≤ c

L
sup
t∈[0,1]

∫1

0
G(t, s)q(s)ds, from assumption (H3),

≤ c.

(4.16)
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β
(
Ty

)
= sup

t∈(0,1]

∣
∣p(t)Ty′(t)

∣
∣,

= sup
t∈(0,1]

∣
∣
∣
∣
∣
p(t)

∫1

0

∂G(t, s)
∂t

q(s)f
(
s, y(s), p(s)y′(s)

)
∣
∣
∣
∣
∣
,

≤ L2

N
sup
t∈(0,1]

∣
∣
∣
∣
∣

∫1

0
p(t)

∂G(t, s)
∂t

q(s)ds

∣
∣
∣
∣
∣
, from assumption (H3),

≤ L2.

(4.17)

From (4.16) and (4.17),

T
(
y
) ∈ P

(
αc, βL2

)
. (4.18)

Thus, T : P(αc, βL2) → P(αc, βL2) is well defined, and by Lemma 4.1, it is completely
continuous. Now Condition (2) of Theorem 2.11 can be proved by similar manner. Choose
y(t) = a/λ ∈ P , 0 ≤ t ≤ 1, then α(y) = supt∈[0,1]|y(t)| = a/λ, β(y) = supt∈(0,1]|p(t)y′(t)| = 0 <

L2, ψ(x) = mint∈[η,1]|y(t)| = a/λ > a. Thus, {y ∈ P(αb=a/λ, βL2 ,Ψa) : Ψ(y) > a}/=Φ. Further if
y ∈ P(αa/λ, βL2 ,Ψa), then a ≤ y(t) ≤ a/λ for η ≤ t ≤ 1. Then by definition of ψ and assumption
(H2), we have

ψ
(
Ty

)
= min

t∈[η,1]

∣∣Ty(t)
∣∣

= min
t∈[η,1]

∫1

0
G(t, s)q(s)f

(
s, y(s), p(s)y′(s)

)
ds

≥ min
t∈[η,1]

∫1

η

G(t, s)q(s)f
(
s, y(s), p(s)y′(s)

)
ds

>
a

C
· C = a

(4.19)

Thus, Condition (1) of Theorem 2.11 is satisfied. We finally show that condition (3) of
Theorem 2.11 holds, too. Suppose y ∈ P(αc, βL2 ,Ψa) with α(Ty) > b. Then by definition of
ψ and Ty ∈ P , we have

Ψ
(
Ty

)
= min

t∈[η,1]

∣∣Ty(t)
∣∣

≥ λmax
t∈[0,1]

∣∣Ty(t)
∣∣

≥ λα(Ty)

= a.

(4.20)
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So, Condition (3) of Theorem 2.11 is also satisfied. Therefore, Theorem 2.11 yields that
boundary value problem (1.1)-(1.2) has at least three nonnegative solutions y1, y2, and y3
in P(αc, βL2) such that

sup
t∈[0,1]

∣∣y1(t)
∣∣ < d, sup

t∈(0,1]

∣∣p(t)y′
1(t)

∣∣ < L1;

a < min
t∈[η,1]

∣
∣y2(t)

∣
∣ ≤ sup

t∈[0,1]

∣
∣y2(t)

∣
∣ ≤ c, sup

t∈(0,1]

∣
∣p(t)y′

2(t)
∣
∣ ≤ L2;

sup
t∈[0,1]

∣
∣y3(t)

∣
∣ ≤ a

λ
, sup

t∈(0,1]

∣
∣p(t)y′

3(t)
∣
∣ ≤ L2.

(4.21)

Corollary 4.4. Suppose that (E1)–(E3) are satisfied. If there exist constants 0 < d1 < a1 <
a1/λ < d2 < a2 < a2/λ < d3 < · · · < dn, 0 < L1 ≤ L2 ≤ L3 ≤ · · · ≤ Ln n ∈ N, with
ai/C < min{di+1/L, Li+1/N}, 1 < i ≤ n − 1 such that f satisfies the following conditions:

(M1) f(t, y, z) < min{di/L, Li/N}, for (t, y, z) ∈ {[0, 1] × [0, di] × [−Li, Li]}, 1 ≤ i ≤ n,
(M2) f(t, y, z) > ai/C, for (t, y, z) ∈ {[η, 1] × [ai, ai/λ] × [−Li+1, Li+1]}, 1 ≤ i ≤ n − 1,

then boundary value problem (1.1)-(1.2) has at least 2n − 1 nonnegative solutions.

Proof. When n = 1, the result follows from Theorem 4.2. When n = 2, it is clear that all the
conditions of Theorem 4.3 hold (with c = d2, d = d1, a = a1). Thus the boundary value
problem (1.1)-(1.2) has at least three positive solutions y1, y2, and y3. Following this way, we
complete the proof by induction method.

Finally, we demonstrate these results through examples.

5. Example

In Example 5.1, we demonstrate the detailed working of the boundary value problem (1.5)
mentioned in the introduction. Example 5.2 verifies our results.

Example 5.1. Consider the boundary value problem (1.5).
Here,

f
(
t, y, py′) = 2(r + 1)t − 5

4
r, q(t) = tr−1, max

t∈[0,1]
f
(
t, y, py′) =

3
4
r + 2. (5.1)

Following the notations of this work, it is easy to see that

L =
3
2

[
3(1 − r)
4 − 4r

](1−r)/r
, N =

3(1 − r)
r(4 − 4r)

. (5.2)

Now for d ≥ (3/2)[3(1 − r)/4 − 4r](1−r)/r[(3/4)r+2] and L1 ≥ 3(1−r)((3/4)r+1)/r(4−
4r),f(t, y, py′) ≤ min{d/L, L1/N}.
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Then from Theorem 4.2, the problem has at least one nonnegative solution y(t) with

sup
t∈[0,1]

∣
∣y(t)

∣
∣ ≤ 3

2

[
3(1 − r)
4 − 4r

](1−r)/r[3
4
r + 2

]
, sup

t∈(0,1]

∣
∣p(t)y′(t)

∣
∣ ≤ 3(1 − r)

r(4 − 4r)

[
3
4
r + 2

]
. (5.3)

Next we reduce the problem and then apply Theorem 4.2 for p(t) = 1. Using the
transformation x = (1−r) ∫ t0(1/xr)dx = t1−r , the boundary value problem (1.5) can be reduced
to regular boundary value problem as

−v′′(x) =
1

(1 − r)2
x(2r−1)/(1−r)

[
2(r + 1)x1/(1−r) − 5

4
r

]
, x ∈ (0, 1),

v(0) = 0, v(1) = v

[(
1
4

)(1−r)]

.

(5.4)

Here,

F
(
x, v, v′) =

1

(1 − r)2
t(2r−1)/(1−r)

[
2(r + 1)t1/(1−r) − 5

4
r

]
,

max
x∈[0,1]

F
(
x, v, v′) =

1

(1 − r)2
[
2(1 + r) − 5

4
r

]
.

(5.5)

Now following the notation of this work for p(t) = 1,

L =
3(1 − r)2
4 − 4r

[
3(1 − r)
r(4 − 4r)

](1−r)/r
, N =

3(1 − r)2
r(4 − 4r)

. (5.6)

Now for d ≥ 3/(4 − 4r)[3(1 − r)/(4 − 4r)](1−r)/r[(3/4)r + 2] and L1 ≥ (3/r(4 − 4r))[(3/4)r +
2],f(t, v, v′) ≤ min{d/L, L1/N}. So the problem has at least one nonnegative solution v(t)
with

sup
t∈[0,1]

|v(t)| ≤ 3
4 − 4r

[
3(1 − r)
4 − 4r

](1−r)/r[3
4
r + 2

]
, sup

t∈(0,1]

∣∣v′(t)
∣∣ ≤ 3

r(4 − 4r)

[
3
4
r + 2

]
. (5.7)

Hence the boundary value problem (1.5) has at least one nonnegative solution y(t) with

sup
t∈[0,1]

∣∣y(t)
∣∣ ≤ 3

4 − 4r

[
3(1 − r)
4 − 4r

](1−r)/r[3
4
r + 2

]
, sup

t∈(0,1]

∣∣y′(t)
∣∣ ≤ 3

r(4 − 4r)

[
3
4
r + 2

]
. (5.8)

Now in this case it is easy to show that if r approaches one, that is, the order of
singularity increases, upper bound for supt∈[0,1]|y(t)| approaches ∞ while in case of direct
solving, upper bound for supt∈[0,1]|y(t)| approaches 4.125. As smaller upper bound for
supt∈[0,1]|y(t)| will enable to find nonnegative solution(s) faster and hence will be helpful
in constructing efficient numerical algorithms to find multiple nonnegative solutions.
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Example 5.2. Consider the following boundary value problem:

−
(
t1/2y′(t)

)′
= t−1/2f

(
t, y(t), t1/2y′(t)

)
, 0 < t < 1,

y(0) = 0, y(1) =
3
2
y

(
1
3

)
.

(5.9)

(i) If

f
(
t, y, z

)
=

⎧
⎪⎪⎨

⎪⎪⎩

sin t

3
+
10y2 + 8

400
+
(

z

300

)2

, y ≤ 4;

sin t

3
+
21
50

+
(

z

300

)2

, y ≥ 4;
(5.10)

then the boundary value problem (5.9) has at least one nonnegative solution.

(ii) Further, if

f
(
t, y, z

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

sin t

3
+
10y2 + 8

400
+
(

z

4000

)2

, y ≤ 4

sin t

3
+
9y2 + 24

400
+
(

z

4000

)2

, 4 ≤ y ≤ 191

sin t

3
+
328353
400

+
(

z

4000

)2

, y ≥ 191,

(5.11)

then the boundary value problem (5.9) has at least three nonnegative solutions.

Proof. Here, α1 = 3/2 and η = 1/3. After simple calculation, we get L = 5.464, N = 3.732,
C = 1.5396, and λ = 0.1786.

(i) At least one nonnegative solution: we choose d = 3 and L1 = 10. Here,
min{d/L, L1/N} = 0.549;

f
(
t, y, z

)
< 0.549, for 0 ≤ t ≤ 1, 0 ≤ y ≤ 3, −10 ≤ z ≤ 10. (5.12)

Thus, condition (H1) is satisfied. Now from Theorem 4.2 the problem has at least one
nonnegative solution y1 such that supt∈[0,1]|y1(t)| < 3 with supt∈(0,1]|p(t)y′

1(t)| < 10.
(ii) At least three nonnegative solutions: we choose constants d = 4, a = 34, c = 4800,

L1 = 10, and L2 = 3500. Here, min{d/L, L1/N} = 0.732, min{c/L, L2/N} = 878.45, a/λ =
190.34, and a/C = 22.084;

f
(
t, y, z

)
< 0.732, for 0 ≤ t ≤ 1, 0 ≤ y ≤ 4, −10 ≤ z ≤ 10;

f
(
t, y, z

)
> 22.084 for

1
3
≤ t ≤ 1, 34 ≤ y ≤ 190.34, −3500 ≤ z ≤ 3500;

f
(
t, y, z

)
< 878.45 for 0 ≤ t ≤ 1, 0 ≤ y ≤ 4800, −3500 ≤ z ≤ 3500.

(5.13)
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Thus, conditions (H1), (H2), and (H3) are satisfied. Now from Theorem 4.3 the problem has
at least three nonnegative solutions y1, y2, and y3 such that

sup
t∈[0,1]

∣
∣y1(t)

∣
∣ < 4, sup

t∈(0,1]

∣
∣p(t)y1(t)

∣
∣ < 10;

34 < min
t∈[η,1]

∣
∣y2(t)

∣
∣ ≤ sup

t∈[0,1]

∣
∣y2(t)

∣
∣ < 4800, sup

t∈(0,1]

∣
∣p(t)y′

2(t)
∣
∣ ≤ 3500,

sup
t∈[0,1]

∣
∣y3(t)

∣
∣ ≤ 190.34, sup

t∈(0,1]

∣
∣p(t)y′

3(t)
∣
∣ ≤ 3500.

(5.14)

Remark 5.3. For α1 = 1, the problem (1.1)-(1.2) can be regarded as two-point boundary value
problem with boundary conditions as

y(0) = 0, y′(1) = 0, (5.15)

in the limiting case η → 1−. Thus the results established in this work are also valid for the
two-point boundary value problem [21, 22].

Remark 5.4. Theorem 4.3 and Corollary 4.4 extend Theorem 3.1 and Corollary 3.1 of [19] to
doubly singular three-point boundary value problem.
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