Innovations in Incidence Geometry

Algebraic, Topological and Combinatorial

On two nonbuilding but simply connected compact Tits geometries of type \boldsymbol{C}_{3}

Antonio Pasini

Vol. 17 No. 32019

On two nonbuilding but simply connected compact Tits geometries of type \boldsymbol{C}_{3}

Antonio Pasini

Abstract

A classification of homogeneous compact Tits geometries of irreducible spherical type, with connected panels and admitting a compact flag-transitive automorphism group acting continuously on the geometry, has been obtained by Kramer and Lytchak (2014; 2019). According to their main result, all such geometries but two are quotients of buildings. The two exceptions are flat geometries of type C_{3} and arise from polar actions on the Cayley plane over the division algebra of real octonions. The classification obtained by Kramer and Lytchak does not contain the claim that those two exceptional geometries are simply connected, but this holds true, as proved by Schillewaert and Struyve (2017). Their proof is of topological nature and relies on the main result of (Kramer and Lytchak 2014; 2019). In this paper we provide a combinatorial proof of that claim, independent of (Kramer and Lytchak 2014; 2019).

1. Introduction

We presume that the reader has some knowledge of diagram geometry, in particular Tits geometries, namely geometries belonging to Coxeter diagrams, and buildings. A celebrated theorem of Tits [1981] states that Tits geometries generally come from buildings. Explicitly, a Tits geometry of rank $n \geq 3$ is 2 -covered by a building if and only if all of its residues of type C_{3} or H_{3} are covered by buildings; moreover, buildings of rank $n \geq 3$ are 2 -simply connected.

Having mentioned coverings and simple connectedness, I recall that, for $1 \leq$ $k \leq n$, a k-covering of geometries of rank n is a type-preserving morphism which induces isomorphims on rank k residues (with the convention that an n-covering is just an isomorphism), the domain of a k-covering being called a k-cover of the codomain. A geometry is said to be k-simply connected if it does not admit any proper k-cover [Pasini 1994, Chapter 12]. (It goes without saying that a k-covering

[^0]is proper if it is not an isomorphism.) I warn that ($n-1$)-coverings are usually called coverings, for short (which forbids us from using the word "covering" as a possible abbreviation for k-covering). Accordingly, a geometry of rank n is said to be simply connected if it is $(n-1)$-simply connected. In particular, coverings of geometries of rank 3 are 2 -coverings and when we say that a geometry of rank 3 is simply connected we just mean it is 2 -simply connected.

Turning back to the above theorem of Tits, that theorem shows the importance of the investigation of C_{3} geometries. As noticed by Tits [1981], geometries of type C_{3} that have no relation at all with buildings can be constructed by some kind of free construction, but more examples exist that are not covered by buildings. Classifying them all is perhaps hopeless. Nevertheless, with the help of some reasonable additional hypotheses, something can be done. For instance, the following is well known [Aschbacher 1984; Yoshiara 1996]:

Theorem 1.1. There exists a unique flag-transitive finite thick C_{3}-geometry which is not a building. It is simply connected and its automorphism group is isomorphic to the alternating group $\operatorname{Alt}(7)$.

The exceptional geometry of Theorem 1.1 is called the Alt(7)-geometry (also Neumaier geometry after its discoverer Neumaier [1984]). Calling the elements of a C_{3} geometry points, lines and planes as explained by the picture

the $\operatorname{Alt}(7)$-geometry has 7 points, 35 lines and 15 planes. Moreover, all of its points are incident with all of its planes; therefore, this geometry is flat. We refer to [Neumaier 1984] (also [Rees 1985; Pasini 1994, §6.4.2, §12.6.4]) for more details on the $\operatorname{Alt}(7)$ geometry.

A number of flag-transitive locally finite (even finite) thick Tits geometries of irreducible type are known that admit the $\operatorname{Alt}(7)$-geometry as a proper residue (see, e.g., [Buekenhout and Pasini 1995, §3] for a survey), but none of them belongs to a diagram of spherical type. Indeed, as proved by Aschbacher [1984], the Alt(7)geometry cannot occur as a rank-3 residue in any flag-transitive finite thick Tits geometry of irreducible spherical type and rank $n>3$. Moreover, no finite thick geometry of type H_{3} exists (as no finite thick generalized pentagons exist [Feit and Higman 1964]) and no finite thick building of irreducible type and rank at least 3 admits proper quotients [Brouwer and Cohen 1983]. Consequently:

Corollary 1.2. Apart from the Alt(7)-geometry, all flag-transitive finite thick Tits geometries of irreducible spherical type are buildings.

Results in the same vein as Theorem 1.1 and Corollary 1.2 have recently been obtained by Kramer and Lytchak [2014; 2019] for compact Tits geometries with connected panels admitting a flag-transitive and compact group of automorhisms acting continuously on Γ. Before reporting on those results, I must explain what a compact geometry is and what we mean when saying that it admits connected panels.

Let Γ be a geometry over a (finite) set of types I. Assume that for every $i \in I$ a compact Hausdorff topology is given on the set Γ_{i} of i-elements of Γ and let \mathscr{V}_{i} be the topological space thus defined on Γ_{i}. For every $J \subseteq I$ the set Γ_{J} of J-flags of Γ is a subspace, say \mathscr{V}_{J}, of the product space $\prod_{j \in J} \mathscr{V}_{j}$. If \mathscr{V}_{J} is closed (equivalently, compact) for every $J \subseteq I$, then Γ is said to be a compact geometry. (We warn that this definition is not literally the same as in [Kramer and Lytchak 2014, §2.1], but it is equivalent to it; see Remark 1.7 below.) When saying that Γ has connected panels we mean that, for every type $i \in I$, the i-panels of Γ are connected as subspaces of \mathscr{V}_{i} (or of \mathscr{V}_{I}, if we regard panels as sets of chambers).

With Γ a compact geometry as defined above, let G be a flag-transitive group of type-preserving automorphisms of Γ. Suppose that G is a locally compact topological group (we recall that for topological groups local compactness entails Hausdorff, by convention) and that G acts continuously on \mathscr{V}_{i} for every $i \in I$ (explicitly, the function $\rho: G \times \mathscr{V}_{i} \rightarrow \mathscr{V}_{i}$ that maps $(g, x) \in G \times \mathscr{V}_{i}$ onto $g(x) \in \mathscr{V}_{i}$ is continuous). Then the pair (Γ, G) is called a homogeneous compact geometry [Kramer and Lytchak 2014, §2.1]. We call Γ and G the geometric support and the group of (Γ, G).

If (Γ, G) is a homogeneous compact geometry, then G also acts continuously on \mathscr{V}_{J} for every $J \subseteq I$. Consequently, for every flag $X \in \Gamma_{J}$, the stabilizer G_{X} of X in G is closed in G (recall that, as \mathscr{V}_{J} is Hausdorff, the singleton $\{X\}$ is closed in \mathscr{V}_{J}). The function $\rho_{X}: G / G_{X} \rightarrow \mathscr{V}_{J}$ which maps every coset $g G_{X}$ onto the flag $g(X) \in \mathscr{V}_{J}$ is a continuous bijection from the coset space G / G_{X} to \mathscr{V}_{J}. If moreover G / G_{X} is compact (which is obviously the case when G is compact), then ρ_{X} is a homeomorphism. Indeed every continuous bijective mapping from a compact space to a Hausdorff space is a homeomorphism.

Conversely, without assuming any topology on the sets Γ_{i}, let G be a flagtransitive automorphism group of Γ carrying the structure of a locally compact group such that G_{X} is closed and G / G_{X} is compact for every flag X of Γ. Note that, as G is Hausdorff and G_{X} is closed, the coset space G / G_{X} is Hausdorff (see, e.g., [Freudenthal and de Vries 1969, §4.8]). For every $i \in I$ and chosen $x \in \Gamma_{i}$, we can copy the topology of G / G_{x} on Γ_{i} via the bijection $\rho_{x}: G / G_{x} \rightarrow \Gamma_{i}$, thus defining a compact Hausdorff space \mathscr{V}_{i} on Γ_{i}. As $G / G_{x} \approx G / G_{y}$ for any two elements $x, y \in \Gamma_{i}$, the space \mathscr{V}_{i} does not depend on the particular choice $x \in \Gamma_{x}$. The group G acts continuously on the space \mathscr{V}_{i}. Thus, Γ is turned into a compact geometry
and (Γ, G) is a homogeneous compact geometry. By the previous paragraph, we also have $G / G_{X} \approx \mathscr{V}_{J}$ for any $J \subseteq I$ and any flag $X \in \mathscr{V}_{J}$.

In this way, as noticed in [Kramer and Lytchak 2014], one can see that all buildings of spherical type associated to semisimple or reductive isotropic algebraic groups defined over local fields are (geometric supports of) homogeneous compact geometries.

We add one more definition and a few conventions. Given two homogeneous compact geometries $(\widetilde{\Gamma}, \widetilde{G})$ and (Γ, G) of $\operatorname{rank} n \geq 2$ with compact groups \widetilde{G} and G, a compact covering from ($\widetilde{\Gamma}, \widetilde{G}$) to (Γ, G) is a 2 -covering $\gamma: \widetilde{\Gamma} \rightarrow \Gamma$ such that γ is continuous as a mapping from the space $\widetilde{\mathscr{V}}$ of elements of $\widetilde{\Gamma}$ to the space \mathscr{V} of elements of Γ, the group \widetilde{G} normalizes the deck group D of γ and γ induces a continuous isomorphism from the topological group $\widetilde{G} / \widetilde{G} \cap D$ to the topological group G. Clearly, $\widetilde{G} \cap D$ is compact.

The category of homogeneous compact geometries with compact groups and compact coverings as morphisms is named HCG in [Kramer and Lytchak 2014]. We have defined compact coverings only for homogenous compact geometries with compact groups since these are the objects of HCG. According to this restriction, when we say that a given homogeneous compact geometry (Γ, G) with G compact is compactly covered by another homogeneous compact geometry ($\widetilde{\Gamma}, \widetilde{G}$), it must be understood that \widetilde{G} too is compact.

We warn the reader that the name "compact covering" is not used in [Kramer and Lytchak 2014]. We have introduced it with the hope that it can remind the reader of the objects and the morphisms of the category HCG.

We say that a homogeneous compact geometry is a Tits geometry (in particular, a building) if its geometric support is a Tits geometry (a building). Accordingly, when saying that a homogeneous compact geometry with compact group is compactly covered by a building, we mean that it is compactly covered by a homogenous compact geometry, the geometric support of which is a building. It goes without saying that, when speaking of coverings of geometric supports, we mean coverings in the usual "combinatorial" sense, recalled at the beginning of this Introduction.

More generally, when we say that (Γ, G) has some geometric property which neither refers to the topology of Γ nor to the group G (such as being a flat C_{3} geometry, for instance) we mean that the geometric support Γ of (Γ, G) has that property as a diagram geometry.

We are now ready to state the main result of Kramer and Lytchak [2014; 2019]. Theorem 1.3. Let (Γ, G) be a homogeneous compact Tits geometry of type C_{3} with connected panels and compact group G. Then either (Γ, G) is compactly covered by a building or it is one of two exceptional flat geometries where G is either $\left((\mathrm{SU}(3) \times \mathrm{SU}(3)) / C_{3}\right) \rtimes C_{2}$ or $\mathrm{SO}(3) \times \mathrm{G}_{2}$, respectively, in its polar action
on the Cayley plane of real octonions. Moreover, the geometric supports of these two exceptional geometries are not covered by any building.

It is convenient to have a name for the two exceptional geometries mentioned in Theorem 1.3. We shall call them $\mathbb{O} \mathrm{P}^{2}$-geometries where \mathbb{D} stands for the octonion algebra over the reals and $\mathbb{O P}{ }^{2}$ is the Cayley plane, namely the projective plane over \mathbb{D}.

By exploiting Theorem 1.3, Kramer and Lytchak [2014; 2019] also obtain:
Corollary 1.4. Apart from the two $\mathbb{O} \mathrm{P}^{2}$-geometries, all homogeneous compact Tits geometries of irreducible spherical type, rank at least 2 , with connected panels and compact group, are compactly covered by buildings.

The two $\mathbb{O} \mathrm{P}^{2}$-geometries, or rather the group actions giving rise to them, were first discovered by Podestà and Thorbergsson [1999] and Gorodski and Kollross [2016], in the context of an investigation of polar actions of Lie groups on symmetric spaces. A purely algebraic construction of (the geometric supports of) these two geometries is given by Schillewaert and Struyve [2017]. We shall report on that construction in the next section.

Let (Γ, G) be any of the two $\mathbb{O P}{ }^{2}$-geometries. The reader should be warned that in the final part of Theorem 1.3 it is not claimed that Γ is simply connected. It is only stated that the universal cover $\widetilde{\Gamma}$ of Γ is not a building. Thus, in view of the rest of the statement of Theorem 1.3, if $\widetilde{\Gamma} \neq \Gamma$, then either $\widetilde{\Gamma}$ is not the geometric support of any homogeneous compact geometry with compact group or, if it is such, no compact covering exists from that homogeneous compact geometry to (Γ, G). So, it is natural to ask if Γ is simply connected. The following theorem, due to Schillewaert and Struyve [2017], answers this question in the affirmative.
Theorem 1.5. The geometric support of either of the two $\mathbb{O} \mathrm{P}^{2}$-geometries is simply connected.

The proof that Schillewaert and Struyve give for this theorem is of topological nature. They prove that, if (Γ, G) is any of the two $\mathbb{O} \mathrm{P}^{2}$-geometries, then the universal cover $\widetilde{\Gamma}$ of Γ carries a compact Hausdorff topology and G lifts to a compact group $\widetilde{G} \leq \operatorname{Aut}(\widetilde{\Gamma})$, so that $(\widetilde{\Gamma}, \widetilde{G})$ is a compact cover of (Γ, G). Having proved this, the conclusion follows from Theorem 1.3: necessarily $\widetilde{\Gamma}=\Gamma$. However, Schillewaert and Struyve [2017] also collect a great deal of information of combinatorial nature on homotopies of closed paths of the two $\mathbb{O} \mathrm{P}^{2}$-geometries. In this paper we shall exploit that information to arrange a combinatorial proof of Theorem 1.5, with no use of [Kramer and Lytchak 2014] or [2019].
Remark 1.6. As the title of [Kramer and Lytchak 2019] makes clear, an error occurs in [2014]: the $\mathbb{O P}^{2}$-geometry associated to $\mathrm{SO}(3) \times \mathrm{G}_{2}$ is missing in [2014]. That gap is filled in [2019].

Remark 1.7. In the definition of compact geometry as stated in [Kramer and Lytchak 2014, §2.1], a compact Hausdorff topology \mathscr{V} is assumed on the set of elements of Γ such that for every $J \subseteq I$ the set Γ_{J} is closed in the power space \mathscr{V}^{J}. In particular, Γ_{i} is closed in \mathscr{V} for every $i \in I$. So, $\left\{\Gamma_{i}\right\}_{i \in I}$ is a finite partition of \mathscr{V} in closed sets. Accordingly, \mathscr{V} is the "free" union of the spaces \mathscr{V}_{i} induced by \mathscr{V} on the sets Γ_{i} for $i \in I$, the open sets of \mathscr{V} being just the unions $\bigcup_{i \in I} A_{i}$ with A_{i} open in \mathscr{V}_{i}. Clearly, \mathscr{V}^{J} and its subspace $\prod_{j \in J} \mathscr{V}_{j}$ induce the same topology on Γ_{J}. Thus, we can forget about \mathscr{V} and start from a compact Hausdorff space \mathscr{V}_{i} defined on Γ_{i} for each $i \in I$, as we have done in our definition.

2. The two $\mathbb{O} \mathbf{P}^{2}$-geometries

A description of the two $\mathbb{O} \mathrm{P}^{2}$-geometries as coset geometries is given by Kramer and Lytchak [2014] (for the geometry with group $G=(\mathrm{SU}(3) \times \mathrm{SU}(3)) / C_{3} \rtimes C_{2}$) and in [2019] (for $G=\mathrm{SO}(3) \times \mathrm{G}_{2}$). On the other hand, Schillewaert and Struyve [2017] propose a purely algebraic construction for these geometries, which we are going to recall in this section.

2A. Algebraic background. Let \mathbb{A} be a division algebra over the field \mathbb{R} of real numbers. It is well known that \mathbb{A} has dimension $1,2,4$ or 8 over \mathbb{R}. Accordingly, \mathbb{A} is either \mathbb{R} itself or the field \mathbb{C} of complex numbers or the division ring \mathbb{H} or real quaternions or the Cayley-Dickson algebra \mathbb{D} of real octonions. In any case, \mathbb{A} comes with a norm $|\cdot|: \mathbb{A} \rightarrow \mathbb{R}$ and a conjugation $-: \mathbb{A} \rightarrow \mathbb{A}$.

Explicitly, when $\mathbb{A}=\mathbb{R}$, then $|\cdot|$ is the usual absolute value and ${ }^{-}$is the identity; if $\mathbb{A}=\mathbb{C}$, then $|\cdot|$ and \cdot are the usual modulus and conjugation. When $\mathbb{A}=\mathbb{H}$, then \mathbb{A} can also be regarded as a right \mathbb{C}-vector space with canonical basis $\{1, j\}$. The \mathbb{C}-span $\mathbb{C}=1 \cdot \mathbb{C}$ of 1 is a subring of $\mathbb{H}, \boldsymbol{j}^{2}=-1$ and $x \boldsymbol{j}=\boldsymbol{j} \bar{x}$ for any $x \in \mathbb{C}$. The norm and the conjugation of \mathbb{H} map $x+\boldsymbol{j} y$ onto $\sqrt{|x|^{2}+|y|^{2}}$ and $\bar{x}-\boldsymbol{j} y$, respectively. The conjugation of \mathbb{H} is an involutory antiautomorphism. Clearly, $\{1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{j} \boldsymbol{i}\}$ is a basis of \mathbb{H} over \mathbb{R} (the canonical one), where \boldsymbol{i} stands for any of the two square roots of -1 in \mathbb{C}.

Finally, \mathbb{O} contains \mathbb{H} as a subring and is generated by \mathbb{H} together with an extra element \boldsymbol{k} such that $\boldsymbol{k}^{2}=-1$ and

$$
\begin{equation*}
u \boldsymbol{k}=\boldsymbol{k} \bar{u} \quad \text { for } u \in \mathbb{H}, \tag{1}
\end{equation*}
$$

where ${ }^{-}$denotes the conjugation in \mathbb{H} as defined above. Moreover,

$$
\begin{equation*}
(\boldsymbol{k} u) v=\boldsymbol{k}(v u)=\bar{v}(\boldsymbol{k} u) \quad \text { and } \quad(\boldsymbol{k} u)(\boldsymbol{k} v)=-v \bar{u} \quad \text { for all } u, v \in \mathbb{H} . \tag{2}
\end{equation*}
$$

Conditions (2) imply $(u v) \boldsymbol{k}=v(u \boldsymbol{k})=v(\boldsymbol{k} \bar{u})$. Jointly with (1) they also imply that the elements of \mathbb{D} admit the representation

$$
\begin{equation*}
u+\boldsymbol{k} v \quad \text { for } u, v \in \mathbb{H} . \tag{3}
\end{equation*}
$$

In spite of (3), the multiplication of \mathbb{O} does not yield an \mathbb{H}-vector space on \mathbb{O}, as it follows from the first equality of (2) and the fact that \mathbb{H} is noncommutative. More precisely, \mathbb{O} does carry an \mathbb{H}-vector space structure, as is clear from (3), but the scalar multiplication of that space is not the multiplication of \mathbb{O} restricted to $\mathbb{O} \times \mathbb{H}$. On the other hand, for $x, y \in \mathbb{C}$ we have

$$
\begin{aligned}
(\boldsymbol{k} x) y & =\boldsymbol{k}(y x)=\boldsymbol{k}(x y), \\
(\boldsymbol{k} \boldsymbol{j} x) y & =(\boldsymbol{k}(x \boldsymbol{j})) y=\boldsymbol{k}(y(x \boldsymbol{j}))=\boldsymbol{k}((y x) \boldsymbol{j})=(\boldsymbol{k} \boldsymbol{j})(y x)=(\boldsymbol{k} \boldsymbol{j})(x y) .
\end{aligned}
$$

So, the multiplication of \mathbb{O} restricted to $\mathbb{O} \times \mathbb{C}$ defines a 4-dimensional \mathbb{C}-vector space on \mathbb{O}, with $\{1, \boldsymbol{j}, \boldsymbol{k}, \boldsymbol{k} \boldsymbol{j}\}$ as the canonical basis. Needless to say, $\{1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{j} \boldsymbol{i}, \boldsymbol{k}$, $\boldsymbol{k i}, \boldsymbol{k j}, \boldsymbol{k}(\boldsymbol{j i})\}$ is a basis of \mathbb{D} over \mathbb{R} (the canonical one).

The norm and the conjugation of \mathbb{C} map $u+\boldsymbol{k} v$ onto $\sqrt{|u|^{2}+|v|^{2}}$ and $\bar{u}-\boldsymbol{k} v$, respectively. The conjugation of \mathbb{O} is an involutory antiautomorphism.

In any case, the norm of \mathbb{A} induces a positive definite \mathbb{R}-bilinear form $(\cdot \mid \cdot)_{\mathbb{R}}$ which maps $(x, y) \in \mathbb{A} \times \mathbb{A}$ onto the real part $\operatorname{Re}(\bar{x} y)$ of the product $\bar{x} y$. Clearly, $|x|=\sqrt{(x, x)_{\mathbb{R}}}$. We denote by $\perp_{\mathbb{R}} K$ the orthogonal complement of a subspace K of \mathbb{A} with respect to $(\cdot \mid \cdot)_{\mathbb{R}}$.

Let \mathbb{F} be \mathbb{R} or \mathbb{C}, with $\mathbb{F}=\mathbb{R}$ when $\mathbb{A}=\mathbb{R}$. Regarding \mathbb{F} as a subfield of \mathbb{A} in the usual way, namely as the \mathbb{F}-span of 1 , we $\operatorname{set} \operatorname{Pu}_{\mathbb{F}}(\mathbb{A}):=\perp_{\mathbb{R}} \mathbb{F}$ (in particular, $\operatorname{Pu}_{\mathbb{F}}(A)=0$ when $\left.\mathbb{A}=\mathbb{F}\right)$. Clearly, $\operatorname{Pu}_{\mathbb{F}}(\mathbb{A})$ is a subspace of the \mathbb{F}-vector space \mathbb{A} and $\mathbb{A}=\mathbb{F} \oplus \operatorname{Pu}_{\mathbb{F}}(\mathbb{A})$. The elements of $\mathrm{Pu}_{\mathbb{F}}(\mathbb{A})$ are said to be \mathbb{F}-pure.

As $\mathbb{A}=\mathbb{F} \oplus \operatorname{Pu}_{\mathbb{F}}(\mathbb{A})$, every element $x \in \mathbb{A}$ splits in a unique way as a sum $x=x_{1}+x_{2}$ with $x_{1} \in \mathbb{F}$ and $x_{2} \in \operatorname{Pu}_{\mathbb{F}}(\mathbb{A})$. We call x_{1} and x_{2} the \mathbb{F}-part and the \mathbb{F}-pure part of x.

When $\mathbb{F}=\mathbb{C}$ we also define a Hermitian inner product $(\cdot \mid \cdot)_{\mathbb{C}}: \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{C}$ by taking $(x \mid y)_{\mathbb{C}}$ equal to the complex part of $\bar{x} y$. Obviously, $\operatorname{Re}\left((x \mid y)_{\mathbb{C}}\right)=(x \mid y)_{\mathbb{R}}$. Hence, we also have $|x|=\sqrt{(x \mid x)_{\mathbb{C}}}$ for every $x \in \mathbb{A}$.

The elements of \mathbb{A} of norm 1 are called unit elements. Clearly, the set $\operatorname{Un}(\mathbb{A})$ of unit elements of \mathbb{A} is closed under multiplication and taking inverses in \mathbb{A} and

$$
\mathbb{A}=\operatorname{Un}(\mathbb{A}) \cdot|\mathbb{R}|:=\{x \cdot|t| \mid x \in \operatorname{Un}(\mathbb{A}), t \in \mathbb{R}\} .
$$

We recall that a homomorphism of \mathbb{F}-algebras is an \mathbb{F}-linear mapping which also preserves multiplication. In the sequel we shall deal with a particular class of homorphisms of \mathbb{F}-algebras, which we shall call sharp \mathbb{F}-morphisms. We define them as follows:

Definition 2.1. With \mathbb{F} equal to \mathbb{R} or \mathbb{C}, let \mathbb{A} and let \mathbb{B} be two division algebras over \mathbb{R} containing \mathbb{F}. When $\mathbb{F}=\mathbb{C}$ both \mathbb{A} and \mathbb{B} can also be regarded as algebras over \mathbb{C}. Thus, in any case, both \mathbb{A} and \mathbb{B} are \mathbb{F}-algebras.

A sharp \mathbb{F}-morphism from \mathbb{A} to \mathbb{B} is a homomorphism of \mathbb{F}-algebras from \mathbb{A} to \mathbb{B} which also preserves the inner product $(\cdot \mid \cdot)_{\mathbb{F}}$.

Let $\phi: \mathbb{A} \rightarrow \mathbb{B}$ be a sharp \mathbb{F}-morphism. Then ϕ is injective, since it preserves $(\cdot \mid \cdot)_{\mathbb{F}}$. Consequently, $\phi(1)=1$; hence, $\phi\left(\operatorname{Pu}_{\mathbb{F}}(\mathbb{A})\right) \subseteq \operatorname{Pu}_{\mathbb{F}}(\mathbb{B})$. Moreover, $\phi(\operatorname{Un}(\mathbb{A})) \subseteq \operatorname{Un}(\mathbb{B})$. We have $\bar{x}=x^{-1}$ for every unit element x. Therefore, $\phi(\bar{x})=\overline{\phi(x)}$ for every $x \in \operatorname{Un}(\mathbb{A})$. Finally, ϕ also preserves conjugation.

As sharp \mathbb{F}-morphisms are injective, every sharp \mathbb{F}-morphism from \mathbb{A} to \mathbb{A} is an automorphism. We call it a sharp \mathbb{F}-automorphism.
Setting 2.2. From now on we assume that \mathbb{A} and \mathbb{F} are as follows: either $\mathbb{A}=\mathbb{H}$ and $\mathbb{F}=\mathbb{R}$ or $\mathbb{A}=\mathbb{D}$ and $\mathbb{F}=\mathbb{C}$.

The following is proved in [Schillewaert and Struyve 2017, Proposition 2.1]:
Lemma 2.3. With \mathbb{F} and \mathbb{A} as in Setting 2.2 , let $a_{1}, a_{2} \in \mathrm{Pu}_{\mathbb{F}}(\mathbb{A})$ and $b_{1}, b_{2} \in \mathrm{Pu}_{\mathbb{F}}(\mathbb{B})$ be such that $\left(a_{1} \mid a_{2}\right)_{\mathbb{F}}=\left(b_{1} \mid b_{2}\right)_{\mathbb{F}},\left|a_{i}\right|=\left|b_{i}\right|$ for $i=1,2$ and $a_{1} \mathbb{F} \neq a_{2} \mathbb{F}$. Then there exists a unique sharp \mathbb{F}-morphism from \mathbb{A} to \mathbb{O} mapping a_{i} onto b_{i} for $i=1,2$.
Lemma 2.4. Every sharp \mathbb{R}-morphism from \mathbb{H} to \mathbb{C} can be extended to a sharp \mathbb{R}-automorphism of \mathbb{O}.
Proof. Let $\phi: \mathbb{H} \rightarrow \mathbb{D}$ be a sharp \mathbb{R}-morphism. Put $\boldsymbol{i}^{\prime}:=\phi(\boldsymbol{i})$ and $\boldsymbol{j}^{\prime}:=\phi(\boldsymbol{i})$ and recall that $\phi(1)=1$. Then $\phi(\mathbb{W})$ is the \mathbb{R}-span $\mathbb{H}:=\left\langle 1, \boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}, \boldsymbol{j}^{\prime} \boldsymbol{i}^{\prime}\right\rangle_{\mathbb{R}}$ of $\left\{1, \boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}, \boldsymbol{j}^{\prime} \boldsymbol{i}^{\prime}\right\}$ and ϕ is a sharp \mathbb{R}-isomorphism from \mathbb{H} to \mathbb{H}^{\prime}. We can construct a copy \mathbb{O}^{\prime} of \mathbb{O} starting from \mathbb{H}^{\prime} instead of \mathbb{H}, and if \boldsymbol{k}^{\prime} is the element of \mathbb{O}^{\prime} corresponding to \boldsymbol{k}, a sharp \mathbb{R}-isomorphism $\psi: \mathbb{D} \rightarrow \mathbb{D}^{\prime}$ is uniquely determined which maps $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k} onto $\boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}$ and \boldsymbol{k}^{\prime}, respectively, which coincides with ϕ in \mathbb{H}. If we can choose $\boldsymbol{k}^{\prime} \in \mathbb{O}$, then ψ can also be regarded as a sharp \mathbb{F}-automorphism of \mathbb{C} and we are done.

So it remains to prove that we can choose $\boldsymbol{k}^{\prime} \in \mathbb{O}$, namely \mathbb{C} contains an element \boldsymbol{k}^{\prime} orthogonal to \mathbb{H} and such that $\left(\boldsymbol{k}^{\prime}\right)^{2}=-1$. But this is obvious. Indeed every unit element orthogonal to \mathbb{H} has this property. The conclusion follows.

2B. Construction of the geometries. With \mathbb{A} and \mathbb{F} as in Setting 2.2, let $\operatorname{PG}(\mathbb{A})$ be the projective space of the \mathbb{F}-vector space \mathbb{A}. For every nonzero vector $x \in \mathbb{A}$, we denote by $[x]$ the corresponding point of $\operatorname{PG}(\mathbb{A})$, and for every subset X of \mathbb{A} we put $[X]:=\{[x] \mid x \in X \backslash\{0\}\}$. In particular, if X is a subspace of \mathbb{A}, then $[X]$ is the corresponding subspace of $\operatorname{PG}(\mathbb{A})$.

We write $(\cdot \mid \cdot)$ instead of $(\cdot \mid \cdot)_{\mathbb{F}}$ and \perp instead of $\perp_{\mathbb{F}}$, for short. As usual, \mathbb{F}^{*} stands for the multiplicative group of \mathbb{F}. Following Schillewaert and Struyve [2017], we construct a C_{3}-geometry $\Gamma_{\mathbb{F}}(\mathbb{A})$ as follows.

Definition 2.5. The elements (points, lines and planes) of $\Gamma_{\mathbb{F}}(\mathbb{A})$ are defined as follows:
(A1) The points are the points of $\left[\mathrm{Pu}_{\mathbb{F}}(\mathbb{A})\right]$.
(A2) The lines are the sets of pairs $[x, u]:=\left\{(x t, u t) \mid t \in \mathbb{F}^{*}\right\}$ with $x \in \mathrm{Pu}_{\mathbb{F}}(\mathbb{A})$, $u \in \mathrm{Pu}_{\mathfrak{F}}(\mathbb{O})$ and $|x|=|u| \neq 0$.
(A3) The planes are the sharp \mathbb{F}-morphisms $\phi: \mathbb{A} \rightarrow \mathbb{D}$.
The incidence relation is defined as follows:
(B1) Every point is incident with all planes.
(B2) A line $[x, u]$ and a point $[y]$ are declared to be incident when $y \in x^{\perp}$.
(B3) A line $[x, u]$ and a plane $\phi: \mathbb{A} \rightarrow \mathbb{O}$ are incident precisely when $\phi(x)=u$.
Clearly, the conditions defining point-line and line-plane incidences do not depend on the particular choice of the pair $(x, u) \in[x, u]$. It is proved in [Schillewaert and Struyve 2017, Proposition 4.3] that $\Gamma_{\mathbb{F}}(\mathbb{A})$ is indeed a C_{3}-geometry. According to clause (B 1) of Definition 2.5, this geometry is flat.

Lemma 2.6. Both the following hold:

(1) Two lines $[x, u]$ and $[y, v]$ are coplanar if and only if $(x \mid y)=(u \mid v)$. If this is the case, then the unique sharp \mathbb{F}-morphism $\phi: \mathbb{A} \rightarrow \mathbb{O}$ such that $\phi(x)=u$ and $\phi(y)=v$ (see Lemma 2.3) is the unique plane incident with both $[x, u]$ and $[y, v]$.
(2) If two lines have two distinct points in common, then they have the same set of points.

Proof. Claim (1) immediately follows from Lemma 2.3 (see also [Schillewaert and Struyve 2017, Lemma 4.2]). Claim (2) follows from clause (B2) of Definition 2.5 and the fact that $\mathrm{Pu}_{\mathbb{F}}(\mathbb{A})$ has dimension 3 over \mathbb{F} (see also [Schillewaert and Struyve 2017, Lemma 5.1]).

The set of points of a line $[x, u]$ is the line $x^{\perp} \cap \operatorname{Pu}_{\mathbb{F}}(\mathbb{A})$ of $\operatorname{PG}\left(\operatorname{Pu}_{\mathbb{F}}(\mathbb{A})\right)$. We call it the shadow of $[x, u]$ and also a shadow-line. With this terminology, we can rephrase claim (2) of Lemma 2.6 as follows:

Corollary 2.7. The set of points of $\Gamma_{\mathbb{F}}(\mathbb{A})$ equipped with the shadow lines as lines coincides with the projective plane $\mathrm{PG}\left(\mathrm{Pu}_{\mathbb{F}}(\mathbb{A})\right)$.

2C. Automorphism groups. Let $\operatorname{Aut}_{\mathbb{F}}(\mathbb{A})$ and $\operatorname{Aut}_{\mathbb{F}}(\mathbb{D})$ be the groups of sharp \mathbb{F} -

group of automorphisms. Explicitly, given an element $(\alpha, \omega) \in \operatorname{Aut}_{\mathbb{F}}(\mathbb{A}) \times \operatorname{Aut}_{\mathbb{F}}(\mathbb{O})$,

$$
\begin{array}{ll}
(\alpha, \omega):[x] \rightarrow[\alpha(x)] & \text { for every point }[x] \text { of } \Gamma_{\mathbb{F}}(\mathbb{A}), \\
(\alpha, \omega):[x, u] \rightarrow[\alpha(x), \omega(u)] & \text { for every line }[x, u] \text { of } \Gamma_{\mathbb{F}}(\mathbb{A}), \\
(\alpha, \omega): \phi \rightarrow \omega \phi \alpha^{-1} & \text { for every plane } \phi \text { of } \Gamma_{\mathbb{F}}(\mathbb{A}) .
\end{array}
$$

The first questions one may ask are whether this action is faithful and whether all automorphisms of $\Gamma_{\mathbb{R}}(\mathbb{A})$ arise in these way. Both questions are answered by Schillewaert and Struyve [2017], but the answers are different according to whether $(\mathbb{F}, \mathbb{A})=(\mathbb{R}, \mathbb{H})$ or $(\mathbb{F}, \mathbb{A})=(\mathbb{C}, \mathbb{D})$.

Let $\mathbb{F}=\mathbb{R}$ and $\mathbb{A}=\mathbb{H}$. Then both questions are answered in the affirmative:

$$
\operatorname{Aut}\left(\Gamma_{\mathbb{R}}(\mathbb{H})\right)=\operatorname{Aut}_{\mathbb{R}}(\mathbb{H}) \times \operatorname{Aut}_{\mathbb{R}}(\mathbb{D})=\mathrm{SO}(3) \times \mathrm{G}_{2} .
$$

(Recall that $\operatorname{Aut}_{\mathbb{R}}(\mathbb{H})=\mathrm{SO}(3)$ and $\operatorname{Aut}_{\mathbb{R}}(\mathbb{D})=\mathrm{G}_{2}$.) When $\mathbb{F}=\mathbb{C}$ and $\mathbb{A}=\mathbb{O}$ the answer is sligthly different. Indeed $\operatorname{Aut}_{\mathbb{C}}(\mathbb{D}) \times \operatorname{Aut}_{\mathbb{C}}(\mathbb{O})$ acts nonfaithfully on $\Gamma_{\mathbb{C}}(\mathbb{D})$, with kernel a group C_{3} of order 3 contributed by elements (ζ, ζ) with ζ in the center of $\mathrm{SU}(3)$ (recall that $\mathrm{SU}(3)=\operatorname{Aut}_{\mathbb{C}}(\mathbb{O})$). Moreover, the conjugation in \mathbb{C} also induces an automorphism γ of $\Gamma_{\mathbb{C}}(\mathbb{O})$ which, being semilinear as a mapping of $\mathbb{O} \times \mathbb{O}$, does not belong to $\operatorname{Aut}_{\mathbb{C}}(\mathbb{D}) \times \operatorname{Aut}_{\mathbb{C}}(\mathbb{D})$. All automorphisms of $\Gamma_{\mathbb{C}}(\mathbb{D})$ belong to the group generated by $\left(\operatorname{Aut}_{\mathbb{C}}(\mathbb{O}) \times \operatorname{Aut}_{\mathbb{C}}(\mathbb{O})\right) / C_{3}$ and γ. To sum up,

$$
\begin{aligned}
\operatorname{Aut}\left(\Gamma_{\mathbb{C}}(\mathbb{O})\right) & =\left(\left(\operatorname{Aut}_{\mathbb{C}}(\mathbb{D}) \times \operatorname{Aut}_{\mathbb{C}}(\mathbb{O})\right) / C_{3}\right) \rtimes C_{2} \\
& =\left((\operatorname{SU}(3) \times \operatorname{SU}(3)) / C_{3}\right) \rtimes C_{2} .
\end{aligned}
$$

2D. Recognizing $\Gamma_{\mathbb{F}}(\mathbb{A})$ as an \mathbb{O}^{2}-geometry. Let $\Gamma:=\Gamma_{\mathbb{F}}(\mathbb{A})$ and $G:=\operatorname{Aut}(\Gamma)$. As shown by Schillewaert and Struyve [2017, §5], in either of the two cases that we have considered, (Γ, G) is a homogeneous compact geometry. They obtain this conclusion by noticing that in either case G is compact and the stabilizers in G of the flags of Γ are closed in G, but a direct proof is also possible. We shall briefly sketch it here.

In order to stick to the notation used in the Introduction of this paper, let Γ_{1}, Γ_{2} and Γ_{3}, respectively, be the sets of points, lines and planes of Γ. In either case each of Γ_{1}, Γ_{2} and Γ_{3} can be equipped with a natural compact topology.

Explicitly, $\Gamma_{1}=\left[\mathrm{Pu}_{\mathbb{F}}(\mathbb{A})\right]$ carries the topology of the real projective plane $\mathbb{R P}^{2}$ when $(\mathbb{F}, \mathbb{A})=(\mathbb{R}, \mathbb{H})$ and the topology of the complex projective plane $\mathbb{C} \mathbb{P}^{2}$ when $(\mathbb{F}, \mathbb{A})=(\mathbb{R}, \mathbb{H})$. Either of these spaces is both Hausdorff and compact.

When $(\mathbb{F}, \mathbb{A})=(\mathbb{R}, \mathbb{H})$, the line-set Γ_{2} carries the topology of the quotient $\left(\mathbb{S}^{2} \times \mathbb{S}^{6}\right) / Z$ of the product space $\mathbb{S}^{2} \times \mathbb{S}^{6} \subset \mathbb{R}^{10}$ over the center Z of $\operatorname{SL}\left(\mathbb{R}^{10}\right)$. When $(\mathbb{F}, \mathbb{A})=(\mathbb{C}, \mathbb{O})$ then Γ_{2} carries the topology of the quotient $(U \times U) / \Lambda$ where $U:=\left\{x \in \mathbb{C}^{3}| | x \mid=1\right\}$ is the standard unital of \mathbb{C}^{3} and Λ is the group of
scalar transformations $\lambda \cdot$ id of \mathbb{C}^{6} with $|\lambda|=1$. Again, either of these spaces is Hausdorff and compact.

When $(\mathbb{F}, \mathbb{A})=(\mathbb{C}, \mathbb{O})$ then Γ_{3} carries the same topology as $\operatorname{Aut}_{\mathbb{C}}(\mathbb{D})=\mathrm{SU}(3)$, which is (Hausdorff and) compact. Finally, let $(\mathbb{F}, \mathbb{A})=(\mathbb{R}, \mathbb{H})$. Then every sharp \mathbb{R}-morphism from \mathbb{H} to \mathbb{D} can be regarded as the restriction of a sharp \mathbb{R} automorphism of \mathbb{O} (Lemma 2.4). Accordingly, the planes of Γ naturally correspond to the cosets ωH of the elementwise stabilizer H of \mathbb{H} in $G:=\operatorname{Aut}_{\mathbb{R}}(\mathbb{O})=\mathrm{G}_{2}$. The group H is the intersection $H=\bigcap_{x \in \mathbb{H}} G_{x}$ of the stabilizers G_{x} for $x \in \mathbb{H}$, which are closed. Hence, H is closed as well. Thus, Γ_{3} can be regarded as a copy of the quotient-space G / H, which is still compact and Hausdorff since H is closed.

As in the Introduction, let $\mathscr{V}_{1}, \mathscr{V}_{2}$ and \mathscr{V}_{3} be the spaces defined on Γ_{1}, Γ_{2} and Γ_{3} as above. It is straighforward to check that $\Gamma_{\{i, j\}}$ is closed in $\mathscr{V}_{i} \times \mathscr{V}_{j}$ for every choice of $1 \leq i<j \leq 3$ and the set of chambers $\Gamma_{\{1,2,3\}}$ is closed in $\mathscr{V}_{1} \times \mathscr{V}_{2} \times \mathscr{V}_{3}$. So Γ is a compact geometry. Each of the groups $\operatorname{Aut}\left(\Gamma_{\mathbb{R}}(\mathbb{H})\right)=\mathrm{SO}(3) \times \mathrm{G}_{2}$ and $\operatorname{Aut}\left(\Gamma_{\mathbb{C}}(\mathbb{O})\right)=\left((\mathrm{SU}(3) \times \mathrm{SU}(3)) / C_{3}\right) \rtimes C_{2}$ is compact and acts continuously on $\mathscr{V}_{1}, \mathscr{V}_{2}$ and \mathscr{V}_{3}.

It remains to show that the group G acts flag-transitively on Γ. Clearly, in either case G is transitive on the set of point-line flags of Γ. So in order to prove flagtransitivity, we only must show that the stabilizer in G of a given point-line flag ($[u],[v, x]$) of Γ acts transitively on the set of sharp \mathbb{F}-morphisms ϕ of Γ such that $\phi(v)=x$. This follows from Lemma 2.4. So:
Result 2.8. The pair (Γ, G) is indeed a homogeneous compact geometry.
As G acts flag-transitively on Γ, we can recover Γ as a coset-geometry from G, where the flags naturally correspond to the cosets of the stabilizers of the flags contained in a selected chamber of Γ, two flags being incident precisely when the corresponding cosets meet nontrivally (see, e.g., [Tits 1974, §1.4] or [Pasini 1994, $\S 10.1])$. Accordingly, Γ is uniquely determined by the complex of the stabilizers in G of the subflags of a chamber of Γ. This complex, as described by Schillewaert and Struyve [2017] for the case $(\mathbb{F}, \mathbb{A})=(\mathbb{C}, \mathbb{D})$, is the same as computed for G regarded as the automorphism group of the $\mathbb{O} \mathrm{P}^{2}$-geometry considered in [Kramer and Lytchak 2014] (see also [Schillewaert and Struyve 2017]). Similarly for the case $(\mathbb{F}, \mathbb{A})=(\mathbb{R}, \mathbb{H})$ and the $\mathbb{O P}^{2}$-geometry of [Kramer and Lytchak 2019]. So:
Result 2.9. The C_{3}-geometries $\Gamma_{\mathbb{R}}(\mathbb{H})$ and $\Gamma_{\mathbb{C}}(\mathbb{D})$ are the (geometric supports of the) two $\mathbb{O} \mathrm{P}^{2}$-geometries.
Remark 2.10. The two cases of Setting 2.2 correspond to the two cases of [Schillewaert and Struyve 2017] with $\mathbb{B}=\mathbb{D}$. Schillewaert and Struyve [2017] also consider one more case, with $\mathbb{F}=\mathbb{R}$ and $\mathbb{A}=\mathbb{B}=\mathbb{H}$, which leads to a flat C_{3}-geometry which is a quotient of the building associated to the Chevalley group $\mathrm{O}(7, \mathbb{R})$ and admits $\mathrm{SO}(3) \times \mathrm{SO}(3)$ as a flag-transitive automorphism group. This geometry
also appears in [Rees 1985, §1.6, (2.2)(ii)] as a member of a larger family of flagtransitive flat C_{3}-geometries, obtained as quotients from $\mathrm{O}(7, K)$-buildings, with K any ordered field. Note that the construction used by Rees [1985] is primarily geometric.

This geometry is indeed worth further investigation, but I have preferred to leave it aside in order to stick to the subject of this paper.

3. A combinatorial proof of Theorem 1.5

3A. Preliminaries. We follow [Pasini 1994] for basics on diagram geometry. We recall that, according to [Pasini 1994], all geometries are residually connected, by definition. In particular, all geometries of rank at least 2 are connected.

Throughout this subsection Γ is a given geometry of rank $n \geq 2$. Recall that Γ can be regarded as a simplicial complex, where the vertices are the elements of the geometry and the simplices are the flags. Moreover, with $\{1,2, \ldots, n\}$ chosen as the type-set of Γ, the vertices of the complex are marked by positive integers not greater than n, according to their type as elements of Γ. The incidence graph of Γ is just the skeleton of the complex Γ.

We firstly state some notation and recall a few basics on homotopy of paths. Given two paths $\alpha=\left(a_{0}, \ldots, a_{k}\right)$ and $\beta=\left(b_{0}, \ldots, b_{h}\right)$ of Γ with $a_{k}=b_{0}$, the join of α with β, also called the product of α and β, is the path:

$$
\alpha \cdot \beta:=\left(a_{0}, a_{1}, \ldots, a_{k}=b_{0}, b_{1}, \ldots, b_{h}\right) .
$$

A null path is a path of lenght 0 . The opposite (also called the inverse) of a path $\alpha=\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ is the path $\alpha^{-1}:=\left(a_{k}, a_{k-1}, \ldots, a_{0}\right)$.

Two paths $\alpha=\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ and $\beta=\left(b_{0}, b_{1}, \ldots, n_{h}\right)$ with $a_{0}=b_{0}$ and $a_{k}=b_{h}$ are said to be elementarily homotopic if $\alpha=\gamma \cdot \alpha^{\prime} \cdot \delta$ and $\beta=\gamma \cdot \beta^{\prime} \cdot \delta$ for suitable subpaths $\gamma, \delta, \alpha^{\prime}$ and β^{\prime} with α^{\prime} and β^{\prime} contained in the same simplex (namely flag) of Γ. More generally, two paths α and β are said to be homotopic if there exists a sequence $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}$ of paths with $\alpha=\alpha_{0}, \beta=\alpha_{m}$ and such that α_{i-1} and α_{i} are elementarily homotopic for $i=1,2, \ldots, m$.

If α and β are homotopic we write $\alpha \sim \beta$. We say that a closed path α based at a vertex a is null homotopic if it is homotopic with the null path (a). Equivalently, α splits in triangles each of which is contained in a simplex and, possibly, paths of the form $\beta \cdot \beta^{-1}$.

Clearly, homotopy is an equivalence relation. We denote by $[\alpha]$ the homotopy class of a path α. Given a vertex a of Γ, the homotopy classes of closed paths of Γ based at a form a group $\pi_{1}(\Gamma, a)$, with $[(a)]$ as the identity element and multiplication defined as follows: $[\alpha] \cdot[\beta]:=[\alpha \cdot \beta]$. The group $\pi_{1}(\Gamma, a)$ is called the fundamental group of Γ based at a. As Γ is connected, we have $\pi_{1}(\Gamma, a) \cong \pi_{1}(\Gamma, b)$
for any two vertices $a, b \in \Gamma$. Explicitly, for very choice of a path γ from a to b, the mapping

$$
[\alpha] \in \pi_{1}(\Gamma, a) \mapsto\left[\gamma^{-1} \cdot \alpha \cdot \gamma\right] \in \pi_{1}(\Gamma, b)
$$

is an isomorphims from $\pi_{1}(\Gamma, a)$ to $\pi_{1}(\Gamma, b)$. So, as far as we are interested only in the isomorphism type of $\pi_{1}(\Gamma, a)$, we are free not to keep a record of the base point a of $\pi_{1}(\Gamma, a)$ in our notation, thus writing $\pi_{1}(\Gamma)$ for $\pi_{1}(\Gamma, a)$ and calling $\pi_{1}(\Gamma)$ the fundamental group of Γ, for short.

It is well known (see, e.g, [Pasini 1994, §12.6.1]) that the geometry Γ is simply connected (namely ($n-1$)-simply connected) if and only it is simply connected as a complex, namely $\pi_{1}(\Gamma)$ is trivial; equivalently, every closed path is nullhomotopic.

Lemma 3.1. For $1 \leq i<j \leq n$, let $\Gamma_{i, j}$ be the $\{i, j\}$-truncation of Γ, namely the subgeometry induced by Γ on the set of elements of Γ of type i or j. Then every path of Γ starting and ending at $\Gamma_{i, j}$ (in particular, every closed path based at an element of type i or j) is homotopic to a path of $\Gamma_{i, j}$.

Proof. Let $\alpha=\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ be a path of Γ with $a_{0}, a_{k} \in F_{i, j}$. We argue by induction on the length k of α. When $k \leq 1$ there is nothing to prove. Let $k=2$. If $a_{1} \in \Gamma_{i, j}$ there is nothing to prove as well. Let $a_{1} \notin \Gamma_{i, j}$. By the socalled strong connectedness property [Pasini 1994, Theorem 1.18], the intersection $\operatorname{Res}\left(a_{1}\right) \cap \Gamma_{i, j}$ of the residue $\operatorname{Res}\left(a_{1}\right)$ of a_{1} with $\Gamma_{i, j}$ contains a path

$$
\beta=\left(b_{0}=a_{0}, b_{1}, \ldots, b_{h-1}, b_{h}=a_{2}\right)
$$

from a_{0} to a_{2}. We have $\left(b_{i-1}, b_{i}\right) \sim\left(b_{i-1}, a_{1}, b_{i}\right)$ for every $i=1,2, \ldots, h$, since $\left\{b_{i-1}, a_{1}, b_{i}\right\}$ is a flag. Moreover, $\left(a_{1}, b_{i}, a_{1}\right) \sim\left(a_{1}\right)$ for every $i=1,2, \ldots, h$. Therefore

$$
\beta \sim \gamma:=\left(b_{0}, a_{1}, b_{1}, a_{1}, b_{2}, \ldots, b_{h-1}, a_{1}, b_{h}\right) \sim\left(b_{0}, a_{1}, b_{h}\right)=\left(a_{0}, a_{1}, a_{2}\right)=\alpha .
$$

The claim is proved. Let now $k>2$. If $a_{k-1} \in \Gamma_{i, j}$ the claim follows by the inductive hypothesis on the subpath $\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)$. Let $a_{k-1} \notin \Gamma_{i, j}$. If $a_{k-2} \in \Gamma_{i, j}$ then the conclusion follows by the above on the subpath (a_{k-2}, a_{k-1}, a_{k}) and the inductive hypothesis on $\left(a_{0}, a_{1}, \ldots, a_{k-2}\right)$. Let $a_{k-2} \notin \Gamma_{i, j}$. Then $\operatorname{Res}\left(a_{k-2}, a_{k-1}\right) \cap$ $\Gamma_{i, j} \neq \varnothing$, since neither i nor j belong to the type of the flag $\left\{a_{k-2}, a_{k-1}\right\}$ and every flag is contained in a chamber. Pick an element $c \in \operatorname{Res}\left(a_{k-2}, a_{k-1}\right) \cap \Gamma_{i, j}$ and consider the paths

$$
\alpha^{\prime}:=\left(a_{0}, a_{1}, \ldots, a_{k-2}, c\right), \quad \alpha^{\prime \prime}:=\left(c, a_{k-1}, a_{k}\right) .
$$

The path α^{\prime} has length $k-1$. So, by the inductive hypothesis, a path β^{\prime} exists in $\Gamma_{i, j}$ from a_{0} to c such that $\beta^{\prime} \sim \alpha^{\prime}$. Similarly, as we have already proved the claim
for paths of length 2, a path $\beta^{\prime \prime}$ exists in $\Gamma_{i, j}$ from c to a_{k} such that $\beta^{\prime \prime} \sim \alpha^{\prime \prime}$. So, $\beta:=\beta^{\prime} \cdot \beta^{\prime \prime} \sim \alpha^{\prime} \cdot \alpha^{\prime \prime} \sim \alpha$ is a path of $\Gamma_{i, j}$ with the required properties.

The following lemma is implicit in [Pasini 1994, Lemma 12.60].
Lemma 3.2. Given two elements v and w of Γ, let α and β be two paths of Γ from v to w. If an element u exists in Γ such that its residue $\operatorname{Res}(u)$ contains both α and β, then $\alpha \sim \beta$.
Proof. Let $\alpha=\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ with $a_{0}=v, a_{k}=w$ and $\alpha \subseteq \operatorname{Res}(u)$. For every $i=1,2, \ldots, k$ put $\alpha_{i}=\left(a_{i-1}, u, a_{i}\right)$. As $\left(a_{i-1}, a_{i}\right) \sim\left(a_{i-1}, u, a_{i}\right)$ and $\left(u, a_{i}, u\right) \sim$ (u), we have

$$
\alpha \sim \alpha_{1} \cdot \alpha_{2} \cdots \cdots \alpha_{k}=\left(a_{0}, u, a_{1}, u, a_{2}, \ldots, a_{k-1}, u, a_{k}\right) \sim\left(a_{0}, u, a_{k}\right) .
$$

So, $\alpha \sim\left(a_{0}, u, a_{k}\right)=(v, u, w)$. Similarly, $\beta \sim(v, u, w)$. Therefore $\alpha \sim \beta$.
3B. Peculiar properties of C_{3}-geometries. From now on Γ is a geometry of type C_{3}. The integers 1, 2 and 3 are taken as types and stand for points, lines and planes respectively.
Definition 3.3. A primitive path of Γ is a closed path $\alpha:=(p, L, q, M, p)$ where p and q are points and L and M lines. If $p=q$ or $L=M$ then α is said to be degenerate.

Clearly, degenerate primitive paths are null-homotopic. The following is also well known [Tits 1981, Proposition 9] (see also [Pasini 1994, Corollary 7.39]).
Lemma 3.4. The geometry Γ is a building if and only if all of its primitive paths are degenerate.

The proof of the next lemma is implicit in [Schillewaert and Struyve 2017, §6.6]. We make it explicit.
Lemma 3.5. Every closed path of Γ based at a point is homotopic to a primitive path.
Proof. Let α be a closed path based at a point p. In view of Lemma 3.1, we may assume that α is contained in $\Gamma_{1,2}$. So, $\alpha=\left(p_{0}, L_{1}, p_{1}, \ldots, L_{k}, p_{k}\right)$ where $p_{0}=p_{k}=p$ and, for $i=1, \ldots, k, p_{i}$ is a point and L_{i} a line. We argue by induction on k. If $k=1$ there is nothing to prove. Let $k>1$. Suppose firstly that L_{i-1} and L_{i} are coplanar. Let ξ be the plane on L_{i-1} and L_{i} and let M be the line of $\operatorname{Res}(\xi)$ through p_{i-2} and p_{i}. Then $\left(p_{i-2}, L_{i-1}, p_{i-1}, L_{i}, p_{i}\right) \sim\left(p_{i-2}, M, p_{i}\right)$ by Lemma 3.2. Accordingly, $\alpha \sim \alpha^{\prime}:=\left(p_{0}, L_{1}, \ldots, p_{i-2}, M, p_{i}, \ldots, L_{k}, p_{k}\right)$. However α^{\prime}, being shorter than α, is homotopic to a primitive path, by the inductive hypothesis. Hence α too is homotopic to a primitive path.

Assume now that L_{i-1} and L_{i} are never coplanar, for any $i=2, \ldots, k$. Choose a plane ξ_{2} on L_{2}. The residue $\operatorname{Res}\left(p_{1}\right)$ of p_{1} contains a unique line-plane flag
$\left(M_{1}, \xi_{1}\right)$ such that L_{1} and M_{1} are incident with ξ_{1} and ξ_{2} respectively. Similarly, $\operatorname{Res}\left(p_{2}\right)$ contains a unique line-plane flag $\left(M_{2}, \xi_{3}\right)$ such that L_{3} and M_{2} are incident with ξ_{3} and ξ_{2} respectively. Let q be the meet-point of M_{1} and M_{2} in $\operatorname{Res}\left(\xi_{2}\right)$, let M_{0} be the line through p_{0} and q in $\operatorname{Res}\left(\xi_{1}\right)$ and let M_{3} be the line through p_{3} and q in $\operatorname{Res}\left(\xi_{3}\right)$. By Lemma 3.2 we have the following homotopies:

$$
\begin{aligned}
& \left(p_{0}, L_{1}, p_{1}\right) \sim\left(p_{0}, M_{0}, q, M_{1}, p_{1}\right) \\
& \left(p_{1}, L_{2}, p_{2}\right) \sim\left(p_{1}, M_{1}, q, M_{2}, p_{2}\right) \\
& \left(p_{2}, L_{3}, p_{3}\right) \sim\left(p_{2}, M_{2}, q, M_{3}, p_{3}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(p_{0}, L_{1}, p_{1}, L_{2}\right. & \left., p_{2}, L_{3}, p_{3}\right)=\left(p_{0}, L_{1}, p_{1}\right) \cdot\left(p_{1}, L_{2}, p_{2}\right) \cdot\left(p_{2}, L_{3}, p_{3}\right) \\
& \sim\left(p_{0}, M_{0}, q, M_{1}, p_{1}\right) \cdot\left(p_{1}, M_{1}, q, M_{2}, p_{2}\right) \cdot\left(p_{2}, M_{2}, q, M_{3}, p_{3}\right) \\
& =\left(p_{0}, M_{0}, q, M_{1}, p_{1}, M_{1}, q, M_{2}, p_{2}, M_{2}, q, M_{3}, p_{3}\right) \\
& \sim\left(p_{0}, M_{0}, q, M_{3}, p_{3}\right)
\end{aligned}
$$

Accordingly, α is homotopic to the path, say β, obtained by replacing the subpath $\left(p_{0}, L_{1}, p_{1}, L_{2}, p_{2}, L_{3}, p_{3}\right)$ of α with $\left(p_{0}, M_{0}, q, M_{3}, p_{3}\right)$. The path β is shorther than α, whence it is homotopic to a primitive path by the inductive hypothesis. As $\alpha \sim \beta$, the same holds for α.

By Lemma 3.5 we immediately obtain the following:
Corollary 3.6. The geometry Γ is simply connected if and only if all of its primitive paths are null-homotopic.

Let $\phi: \widetilde{\Gamma} \rightarrow \Gamma$ be the universal covering of Γ. As $\widetilde{\Gamma}$ is simply connected, all of its closed paths (in particular, all of its primitive paths) are null-homotopic. A closed path of Γ is null-homotopic if and only if it lifts through ϕ to a closed path of $\widetilde{\Gamma}$. In particular:

Corollary 3.7. A primitive path of Γ is null-homotopic if and only if it is the ϕ image of a primitive path of $\widetilde{\Gamma}$.

Corollary 3.8. The geometry Γ is covered by a building if and only if none of its nondegenerate primitive paths is null-homotopic.
Proof. Let $\widetilde{\Gamma}$ be a building. Then, by Lemma 3.4, no nondegenerate primitive path occurs in $\widetilde{\Gamma}$. By Corollary 3.7, none of the nondegenerate primitive paths of Γ can be null-homotopic. On the other hand, let $\widetilde{\Gamma}$ be not a building. Then $\widetilde{\Gamma}$ admits at least one nondegenerate primitive path $\tilde{\alpha}$, necessarily null-homotopic since $\widetilde{\Gamma}$ is simply connected. Accordingly, $\alpha:=\phi(\tilde{\alpha})$ is a null-homotopic nondegenerate primitive path of Γ.

Definition 3.9. Let $\alpha=(p, L, q, M, p)$ be a nondegenerate primitive path. Recall that $\operatorname{Res}(q)$ is a generalized quadrangle, the lines L and M being points of this quadrangle. So, lines on q exist which are coplanar with each of L and M. Let N be such a line and r a point of N. The line N is different from each of L and M, as L and M are noncoplanar. Let ξ be the plane on N and L and let L^{\prime} be the line of ξ through p and r. Similarly, if χ is the plane on N and M, let M^{\prime} be the line of χ through p and r. Then $\left(p, L^{\prime}, r, M^{\prime}, p\right)$ is a primitive path. We denote it by $\sigma_{q \rightarrow r}^{N}(\alpha)$ and call it the shift of α from q to r along N. We also say that N is admissible for the path α.

Lemma 3.10. Let $\alpha=(p, L, q, M, p)$ be a nondegenerate primitive path, $N a$ line admissible for α and r a point of N. Then:
(1) We have $\sigma_{q \rightarrow r}^{N}(\alpha)=\alpha$ if and only if $r=q$.
(2) The shift $\sigma_{q \rightarrow r}^{N}(\alpha)$ is a nondegenerate primitive path and the line N is admissible for it.
(3) $\sigma_{r \rightarrow q}^{N}\left(\sigma_{q \rightarrow r}^{N}(\alpha)\right)=\alpha$.
(4) $\alpha \sim \sigma_{q \rightarrow r}^{N}(\alpha)$.

Proof. Claims (1), (2) and (3) are trivial. Claim (4) can be proved as follows:

$$
\begin{aligned}
(p, L, q, M, p) & \sim(p, \xi, L, q, M, \chi, p) \sim(p, \xi, q, \chi, p) \\
& \sim(p, \xi, N, q, N, \chi, p) \sim(p, \xi, N, \chi, p) \sim(p, \xi, N, r, N, \chi, p) \\
& \sim(p, \xi, r, \chi, p) \sim\left(p, L^{\prime}, \xi, r, \chi, M^{\prime}, p\right) \sim\left(p, L^{\prime}, r, M^{\prime}, p\right)
\end{aligned}
$$

(This is essentially the same argoment as used by Schillewaert and Struyve to prove Lemma 6.6 of [2017].)

3C. Primitive paths in $\mathbb{O P}^{\mathbf{2}}$-geometries. Henceforth $\Gamma=\Gamma_{\mathbb{F}}(\mathbb{A})$ (see Section 2B). Recall that the point-line geometry with the same points as Γ and the shadow-lines as lines coincides with $\operatorname{PG}\left(\mathrm{Pu}_{\mathbb{F}}(\mathbb{A})\right) \cong \mathrm{PG}(2, \mathbb{F})$ (Corollary 2.7). In particular, two lines of Γ either have just one point in common or have exactly the same points.

Definition 3.11. Let L and M be two lines of Γ with the same shadow, namely $L=[a, u]$ and $M=[b, v]$ for $a, b \in \operatorname{Pu}_{\mathbb{F}}(\mathbb{A})$ and $u, v \in \mathrm{Pu}_{\mathbb{F}}(\mathbb{O})$ with $|a|=|u| \neq 0$, $|b|=|v| \neq 0$ and $[a]=[b]$. Suppose we have chosen the pairs (a, u) and (b, v) in such a way that $a=b$, as we can. Then we put $(L \mid M):=(u \mid v) /|u \| v|$.

Given a primitive path $\alpha=(p, L, q, M, p)$ we put $\ell(\alpha):=(L \mid M)$ and we call $\ell(\alpha)$ the line-invariant of α.

Clearly, $|(L \mid M)| \leq 1$ by Cauchy-Schwartz inequality, with equality if and only if u and v are proportional. Moreover $(L \mid M)=1$ if and only if $L=M$. So, $\ell(\alpha) \neq 1$ whenever α is nondegenerate.

The hypothesis $a=b$ is necessary for the above definition of $(L \mid M)$ to make sense. Indeed, without it, only the modulus $|(u \mid v)| /|u||v|$ of $(u \mid v) /|u \||v|$ is determined by the pair L and M. It is also clear that $(L \mid M)$ can be defined only when L and M have the same shadow. On the other hand, the particular choice of a in the representations $L=[a, u]$ and $M=[a, v]$ is irrelevant. Indeed, if we replace a with $a^{\prime}=t a$ for some $t \in \mathbb{F} \backslash\{0\}$ then we must also replace u with $u^{\prime}=t u$ and v with $v^{\prime}=t v$. Accordingly, $\left(u^{\prime} \mid v^{\prime}\right) /\left|u^{\prime}\right|\left|v^{\prime}\right|=|t|^{2}(u \mid v) /\left|t^{2}\right||u||v|=(u \mid v) /|u||v|$.
Remark 3.12. Schillewaert and Struyve [2017] call $\ell(\alpha)$ the $P L$-invariant of α.
Definition 3.13. We say that a primitive path $\alpha=(p, L, q, M, p)$ is orthogonal if $p \perp q$. Assuming that α is nondegenerate but not that it is orthogonal, an orthogonal shift of α is a shift $\sigma_{q \rightarrow r}^{N}(\alpha)$ with $p \perp r$.
Lemma 3.14. Every nondegenerate primitive path $\alpha=(p, L, q, M, p)$ admits orthogonal shifts along every line N admissible for it and, once N has been chosen, the orhogonal shift of α along N is uniquely determined. Moreover, if α is orthogonal, then α is its own orthogonal shift.
Proof. As N is coplanar with either of L and M, it has at most one point in common with L or M. However N contains q. Hence it cannot contain p. By Corollary 2.7, the line $p^{\perp} \cap\left[\operatorname{Pu}_{\mathbb{F}}(\mathbb{A})\right]$ of $\operatorname{PG}\left(\operatorname{Pu}_{\mathbb{F}}(\mathbb{A})\right)$ meets the shadow of N in just one point. (This argument is the same as in the proof of Lemma 6.6 of [Schillewaert and Struyve 2017].) The first part of the lemma is proved. The last claim of the lemma is obvious.

Henceforth we denote by $\sigma_{\perp}^{N}(\alpha)$ the orthogonal shift of α along a line N admissible for α.

Lemma 3.15. Given a nonorthogonal nondegenerate primitive path α of Γ and a line N admissible for α, let $\beta=\sigma_{\perp}^{N}(\alpha)$ be the orthogonal shift of α along N and let $\ell=\ell(\beta)$ be the line-invariant of β.

We can always choose the line N in such a way that $\ell \neq-1$.
Proof. We must distinguish two cases and two subcases for each of them.
Case 1. $\Gamma=\Gamma_{\mathbb{R}}(\mathbb{H})$. Modulo automorphisms of Γ, we can always assume that

$$
\begin{aligned}
& L=[\boldsymbol{j}, \boldsymbol{j}], \quad M=\left[\boldsymbol{j}, \boldsymbol{i} m_{1}+\boldsymbol{j} m_{2}\right], \quad m_{1}^{2}+m_{2}^{2}=1, \\
& p=[\boldsymbol{i}], \quad q=\left[\boldsymbol{i} q_{1}+\boldsymbol{j} \boldsymbol{i} q_{3}\right], \quad q_{1}^{2}+q_{3}^{2}=1 .
\end{aligned}
$$

So, $\ell(\alpha)=m_{2}$. Note that $q_{1} \neq 0$ (otherwise $p \perp q$, while α is nonorthogonal by assumption) and $q_{3} \neq 0$ (otherwise $p=q$). Let $N=[b, x]$ be admissible for α, where

$$
\begin{array}{lrl}
b=\boldsymbol{i} b_{1}+\boldsymbol{j} b_{2}+\boldsymbol{j} \boldsymbol{i} b_{3}, & b_{1}^{2}+b_{2}^{2}+b_{3}^{2} & =1, \\
x & =\boldsymbol{i} x_{1}+\boldsymbol{j} x_{2}+\boldsymbol{j} \boldsymbol{i} x_{3}+\boldsymbol{k} x_{4}+\boldsymbol{k} \boldsymbol{i} x_{5}+\boldsymbol{k} \boldsymbol{j} x_{6}+\boldsymbol{k}(\boldsymbol{j} \boldsymbol{i}) x_{7}, & |x|
\end{array}
$$

Modulo automorphisms of \mathbb{C} that leave \mathbb{H} elementwise fixed, we can always assume that

$$
x=\boldsymbol{i} x_{1}+\boldsymbol{j} x_{2}+\boldsymbol{j} \boldsymbol{i} x_{3}+\boldsymbol{k} x_{4}, \quad\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right) .
$$

For N to be admissible for α the following must hold: $\left(\boldsymbol{i} q_{1}+\boldsymbol{j} \boldsymbol{i} q_{3} \mid b\right)=0$ (namely q belongs to $N)$ and $(\boldsymbol{j} \mid b)=(\boldsymbol{j} \mid x)=\left(\boldsymbol{i} m_{1}+\boldsymbol{j} m_{2} \mid x\right)$ (Lemma 2.6, claim (1)). Explicitly:

$$
\begin{equation*}
b_{1} q_{1}+b_{3} q_{3}=0 \tag{4}
\end{equation*}
$$

and $b_{2}=x_{2}=m_{1} x_{1}+m_{2} x_{2}$, namely

$$
\begin{equation*}
b_{2}=x_{2}, \quad m_{1} x_{1}=\left(1-m_{2}\right) b_{2} . \tag{5}
\end{equation*}
$$

Let $r=\left[\boldsymbol{i} r_{1}+\boldsymbol{j} r_{2}+\boldsymbol{j} \boldsymbol{i} r_{3}\right]$ be the unique point of $\{[b], p\}^{\perp}$. So, $r_{1}=0$, namely $r=\left[\boldsymbol{j} r_{2}+\boldsymbol{j} \boldsymbol{i} r_{3}\right]$, and

$$
\begin{equation*}
b_{2} r_{2}+b_{3} r_{3}=0 . \tag{6}
\end{equation*}
$$

Moreover we assume $r_{2}^{2}+r_{3}^{2}=1$, as we can. We have already noticed that $q_{1} \neq 0$. We also have $r_{2} \neq 0$, otherwise equations (4) and (6) force $b_{1}=b_{3}=0$, hence $b= \pm \boldsymbol{j}$, contrary to the fact that N is coplanar with L and M. Thus, by (4) and (6) we obtain

$$
\begin{equation*}
b_{1}=-b_{3} q_{3} q_{1}^{-1}, \quad b_{2}=-b_{3} r_{3} r_{2}^{-1} \tag{7}
\end{equation*}
$$

These equations show that $b_{3} \neq 0$ (otherwise $b=0$, which is ridiculous). Recalling that $b_{1}^{2}+b_{2}^{2}+b_{3}^{2}=1$ now we get

$$
\begin{equation*}
b_{3}= \pm \frac{q_{1} r_{2}}{\sqrt{q_{1}^{2}+r_{2}^{2}-q_{1}^{2} r_{2}^{2}}}= \pm \frac{q_{1} r_{2}}{\sqrt{q_{1}^{2} r_{3}^{2}+1-r_{3}^{2}}}= \pm \frac{q_{1} r_{2}}{\sqrt{1-q_{3}^{2} r_{3}^{2}}} . \tag{8}
\end{equation*}
$$

Equation (8) is equivalent to the following

$$
r_{2}= \pm \frac{b_{3}}{\sqrt{b_{2}^{2}+b_{3}^{2}}}
$$

which better shows that the point r depends on the choice of the line N but, in view of the sequel, (8) is more convenient. We shall now consider two subcases: either $m_{2}=-1$ or $-1<m_{2}<1$ (note that $m_{2}=1$ is impossible, since $m_{2}=(L \mid M)$ and $(L \mid M) \neq 1$ because $L \neq M)$.
Subcase 1.1. $m_{2}=-1$. Equivalently, $m_{1}=0$. Then $b_{2}=x_{2}=0$ by (5), $r_{3}=0$ by (7) and since $b_{3} \neq 0$, whence $r_{2}= \pm 1$ (as $r_{2}^{2}+r_{3}^{2}=1$) and $b_{3}= \pm q_{1}$ by (8). Consequently, $b_{1}= \pm q_{3}$, since $b_{1}^{2}+b_{3}^{2}=q_{1}^{2}+q_{3}^{2}=1$. Summarizing:

$$
\begin{array}{cccccccc}
m_{1} & m_{2} & r_{2} & r_{3} & b_{1} & b_{2} & b_{3} & x_{2} \\
0 & -1 & \pm 1 & 0 & \pm q_{3} & 0 & \pm q_{1} & 0
\end{array}
$$

Let now ξ be the plane on L and N and χ the plane on M and N. Then ξ and χ, regarded as sharp \mathbb{R}-morphisms from \mathbb{H} to \mathbb{O}, are uniquely determined by the following conditions (Lemma 2.3): $\xi(\boldsymbol{j})=\boldsymbol{j}, \chi(\boldsymbol{j})=\boldsymbol{i} m_{1}+\boldsymbol{j} m_{2}$ and $\xi(b)=$ $\chi(b)=x$. By entering the above values for m_{1}, m_{2} and x_{2} we get

$$
\begin{equation*}
\xi(\boldsymbol{j})=\boldsymbol{j}, \quad \chi(\boldsymbol{j})=-\boldsymbol{j}, \quad \xi(b)=\chi(b)=\boldsymbol{i} x_{1}+\boldsymbol{j} \boldsymbol{i} x_{3}+\boldsymbol{k} x_{4} . \tag{9}
\end{equation*}
$$

Clearly $\boldsymbol{i}=\boldsymbol{i}\left(b_{1}-\boldsymbol{j} b_{3}\right)\left(b_{1}-\boldsymbol{j} b_{3}\right)^{-1}=b\left(b_{1}+\boldsymbol{j} b_{3}\right)$. Therefore, and taking (9) into account,

$$
\begin{align*}
& \xi(\boldsymbol{i})=\left(\boldsymbol{i} x_{1}+\boldsymbol{j} \boldsymbol{i} x_{3}+\boldsymbol{k} x_{4}\right)\left(b_{1}+\boldsymbol{j} b_{3}\right), \\
& \chi(\boldsymbol{i})=\left(\boldsymbol{i} x_{1}+\boldsymbol{j} \boldsymbol{i} x_{3}+\boldsymbol{k} x_{4}\right)\left(b_{1}-\boldsymbol{j} b_{3}\right) . \tag{10}
\end{align*}
$$

Let now L^{\prime} and M^{\prime} be the lines through p and r in ξ and χ respectively. Then $L^{\prime}=[a, \xi(a)]$ and $M^{\prime}=[a, \chi(a)]$ where $a=\boldsymbol{i} a_{1}+\boldsymbol{j} a_{2}+\boldsymbol{k} a_{3}$ is orthogonal with both p and r and we assume $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1$, as we can. Orthogonality with p and r forces $a_{1}=0=a_{2}$. Therefore $a= \pm \boldsymbol{j} \boldsymbol{i}$. Accordingly, and recalling (10),

$$
\begin{align*}
\xi(a) & = \pm \boldsymbol{j}\left(\boldsymbol{i} x_{1}+\boldsymbol{j} i x_{3}+\boldsymbol{k} x_{4}\right)\left(b_{1}+\boldsymbol{j} b_{3}\right), \tag{11}\\
\chi(a) & =\mp \boldsymbol{j}\left(\boldsymbol{i} x_{1}+\boldsymbol{j} \boldsymbol{i} x_{3}+\boldsymbol{k} x_{4}\right)\left(b_{1}-\boldsymbol{j} b_{3}\right) .
\end{align*}
$$

With $\beta=\sigma_{\perp}^{N}(\alpha)=\left(p, L^{\prime}, r, M^{\prime}, p\right)$ we have $\ell(\beta)=(\xi(a) \mid \chi(a))$. Equations (11) allow to explicitly compute the inner product $(\xi(a) \mid \chi(a))$. We obtain:

$$
\begin{align*}
(\xi(a) \mid \chi(a)) & =x_{1}^{2}\left(b_{3}^{2}-b_{1}\right)^{2}+x_{3}^{2}\left(b_{3}^{2}-b_{1}^{2}\right)+x_{4}^{2}\left(b_{3}^{2}-b_{1}^{2}\right) \\
& =\left(x_{1}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(b_{3}^{2}-b_{1}\right)^{2}=b_{3}^{2}-b_{1}^{2}=q_{1}^{2}-q_{3}^{2} . \tag{12}
\end{align*}
$$

So, $(\xi(a) \mid \chi(a))=q_{1}^{2}-q_{3}^{2}$. As $q_{1}, q_{3} \neq 0$, we have $-1<(\xi(a) \mid \chi(a))<1$.
Subcase 1.2. $m_{1} \neq 0$, namely $m_{2} \neq-1$. In this case the second equation of (5) yields

$$
\begin{equation*}
x_{1}=\frac{1-m_{2}}{m_{1}} b_{2} . \tag{13}
\end{equation*}
$$

The planes ξ and χ on L and N and on M and N are determined by the following conditions:

$$
\begin{align*}
& \xi(\boldsymbol{j})=\boldsymbol{j}, \quad \chi(\boldsymbol{j})=\boldsymbol{i} m_{1}+\boldsymbol{j} m_{2}, \\
& \xi(b)=\chi(b)=\boldsymbol{i} x_{1}+\boldsymbol{j} x_{2}+\boldsymbol{j} \boldsymbol{i} x_{3}+\boldsymbol{k} x_{4}=\left(\boldsymbol{i} \frac{1-m_{2}}{m_{1}}+\boldsymbol{j}\right) b_{2}+\boldsymbol{j} \boldsymbol{i} x_{3}+\boldsymbol{k} x_{4} . \tag{14}
\end{align*}
$$

Moreover, $x_{3}^{2}+x_{4}^{2}=1-\left(\left(1-m_{2}\right)^{2} m_{1}^{-2}+1\right) b_{2}^{2}=1-2\left(1+m_{2}\right)^{-1} b_{2}^{2}$. Therefore

$$
\begin{equation*}
x_{3}^{2}+x_{4}^{2}=1-\frac{2}{1+m_{2}} b_{2}^{2} . \tag{15}
\end{equation*}
$$

Now $\boldsymbol{i}=\left(b-\boldsymbol{j} b_{2}\right)\left(b_{1}-\boldsymbol{j} b_{3}\right)^{-1}=\left(b-\boldsymbol{j} b_{2}\right)\left(b_{1}+\boldsymbol{j} b_{3}\right)\left(b_{1}^{2}+b_{3}^{2}\right)^{-1}$. Recalling equations (7), we obtain

$$
\begin{equation*}
\boldsymbol{i}=\left(b+j \frac{r_{3}}{r_{2}} b_{3}\right)\left(j q_{1}-q_{3}\right) q_{1} b_{3}^{-1} . \tag{16}
\end{equation*}
$$

As in Subcase 1.1, let $L^{\prime}=[a, \xi(a)]$ and $M^{\prime}=[a, \chi(a)]$ be the lines through p and r in ξ and χ respectively, where $a=\boldsymbol{i} a_{1}+\boldsymbol{j} a_{2}+\boldsymbol{k} a_{3}$ with $|a|=1$. The vector a is orthogonal with both p and r. Orthogonality with p still forces $a_{1}=0$ but orthogonality with r only implies $a_{2} r_{2}+a_{3} r_{3}=0$. So $a_{2}=-a_{3} r_{3} r_{2}^{-1}$ and the condition $|a|=1$ implies $a_{3}= \pm r_{2}$. Hence $a_{2}= \pm r_{3}$. Summarizing

$$
\begin{equation*}
a= \pm\left(j r_{3}+j i r_{2}\right) . \tag{17}
\end{equation*}
$$

Exploiting (14), (16) and (17), we can compute $\xi(a)$ and $\chi(a)$ explicitly, whence $(\xi(a) \mid \chi(a))$ too. We firstly obtain $(\xi(a) \mid \chi(a))=A\left(x_{3}^{3}+x_{4}^{2}\right)+B$ where

$$
\begin{aligned}
& A=\left(q_{3}^{2} m_{2}+q_{1}^{2}\right) q_{1} r_{2}^{2} b_{3}^{-2} \\
& B=\left(-m_{1} r_{3}+\left(x_{1}-m_{1} b_{2}\right) q_{1}^{2} r_{2} b_{3}^{-1}\right) x_{1} q_{1}^{2} b_{3}^{-1}+r_{3}^{2} m_{2} \\
& \\
& \quad+\left(m_{2}-1\right) r_{3} r_{2} q_{1}^{2} b_{2} b_{3}^{-1}+\left(x_{1} m_{2} q_{3}-m_{1} q_{3} b_{2}\right) x_{1} q_{3} q_{1}^{2} r_{2}^{2} b_{3}^{-2}
\end{aligned}
$$

By exploiting (7), (8) and (15) we eventually obtain the following:

$$
\begin{equation*}
(\xi(a) \mid \chi(a))=-r_{3}^{2} \frac{q_{1}^{4} m_{2}^{2}}{1+m_{2}}+q_{3}^{2} m_{2}+q_{1}^{2} \tag{18}
\end{equation*}
$$

In this equation $(\xi(a) \mid \chi(a))$ is expressed as a function of r_{3} rather than b_{3}, but recall that r is uniquely determined by b. Note that the coefficient of r_{3}^{2} in (18) is negative except when $m_{2}=0$. If $m_{2}=0$ then $(\xi(a) \mid \chi(a))=q_{1}^{2}$, which is strictly positive and less than 1 , since neither q_{1} nor q_{3} are zero.
Case 2. $\Gamma=\Gamma_{\mathbb{C}}(\mathbb{D})$. As in Case 1, we can assume that

$$
\begin{array}{rlrl}
L & =[\boldsymbol{k}, \boldsymbol{k}], & M & =\left[\boldsymbol{k}, \boldsymbol{j} m_{1}+\boldsymbol{k} m_{2}\right], \\
p & =[\boldsymbol{j}], & q & =\left[\left.\boldsymbol{j} q_{1}\right|^{2}+\left|m_{2}\right|^{2}=1,\right. \\
\left.\boldsymbol{j} q_{3}\right], & \left|q_{1}\right|^{2}+\left|q_{3}\right|^{2} & =1 .
\end{array}
$$

So, $\ell(\alpha)=m_{2}$. As in Case 1, we have $q_{1} \neq 0 \neq q_{3}$. Let $N=[b, x]$ be admissible for α, where

$$
\begin{array}{ll}
b=\boldsymbol{j} b_{1}+\boldsymbol{k} b_{2}+\boldsymbol{k} \boldsymbol{j} b_{3}, & \left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}+\left|b_{3}\right|^{2}=1, \\
x=\boldsymbol{j} x_{1}+\boldsymbol{k} x_{2}+\boldsymbol{k} \boldsymbol{j} x_{3}, & \left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}=1 .
\end{array}
$$

For N to be admissible for α the following must hold: $\left(\boldsymbol{j} q_{1}+\boldsymbol{k} \boldsymbol{j} q_{3} \mid b\right)=0$ and $(\boldsymbol{k} \mid b)=(\boldsymbol{k} \mid x)=\left(\boldsymbol{j} m_{1}+\boldsymbol{k} m_{2} \mid x\right)$. Explicitly:

$$
\begin{equation*}
\overline{q_{1}} b_{1}+\overline{q_{3}} b_{3}=0 \tag{19}
\end{equation*}
$$

and $b_{2}=x_{2}=\overline{m_{1}} x_{1}+\overline{m_{2}} x_{2}$, namely

$$
\begin{equation*}
b_{2}=x_{2}, \quad \overline{m_{1}} x_{1}=\left(1-\overline{m_{2}}\right) b_{2} . \tag{20}
\end{equation*}
$$

Let $r=\left[\boldsymbol{j} r_{1}+\boldsymbol{k} r_{2}+\boldsymbol{k j} r_{3}\right]$ be such that $\{r\}=\{[b], p\}^{\perp}$. So, $r=\left[\boldsymbol{k} r_{2}+\boldsymbol{k j} r_{3}\right]$, where we assume $\left|r_{2}\right|^{2}+\left|r_{3}\right|^{2}=1$, and

$$
\begin{equation*}
\overline{r_{2}} b_{2}+\overline{r_{3}} b_{3}=0 . \tag{21}
\end{equation*}
$$

Recall that $q_{1} \neq 0$ because $p \not \perp q$ by assumption. We also have $r_{2} \neq 0$, otherwise N cannot be coplanar with either of L and M. Thus, by (19) and (21) we obtain

$$
\begin{equation*}
b_{1}=-b_{3} \frac{\overline{q_{3}}}{\overline{q_{1}}}, \quad b_{2}=-b_{3} \frac{\overline{r_{3}}}{\overline{r_{2}}} . \tag{22}
\end{equation*}
$$

These equations show that $b_{3} \neq 0$. Recalling that $\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}+\left|b_{3}\right|^{2}=1$ we get

$$
\begin{equation*}
b_{3}=\varepsilon \cdot \frac{q_{1} r_{2}}{\sqrt{\left|q_{1}\right|^{2}+\left|r_{2}\right|^{2}-\left|q_{1}\right|^{2}\left|r_{2}\right|^{2}}}=\varepsilon \frac{q_{1} r_{2}}{\sqrt{1-\left|q_{3}\right|^{2}\left|r_{3}\right|^{2}}} \tag{23}
\end{equation*}
$$

for a suitable multiplier ε with $|\varepsilon|=1$. We shall now consider two subcases: either $\left|m_{2}\right|=1$ or $\left|m_{1}\right|<1$.
Subcase 2.1. $\left|m_{2}\right|=1$. Equivalently, $m_{1}=0$. Then $b_{2}=x_{2}=0$ by (20), $r_{3}=0$ by (22) and since $b_{3} \neq 0$, whence $\left|r_{2}\right|=1$ and $\left|b_{3}\right|=\left|q_{1}\right|$ by (23). Consequently, $\left|b_{1}\right|=\left|q_{3}\right|$.

Let now ξ be the plane on L and N and χ the plane on M and N. Then ξ and χ, regarded as $\operatorname{sharp} \mathbb{C}$-autorphisms of \mathbb{O}, are uniquely determined by the following conditions: $\xi(\boldsymbol{k})=\boldsymbol{k}, \chi(\boldsymbol{k})=\boldsymbol{j} m_{1}+\boldsymbol{k} m_{2}$ and $\xi(b)=\chi(b)=x$. In view of the above:

$$
\begin{equation*}
\xi(\boldsymbol{k})=\boldsymbol{k}, \quad \chi(\boldsymbol{k})=\boldsymbol{k} m_{2}, \quad \xi(b)=\chi(b)=\boldsymbol{j} x_{1}+\boldsymbol{k} \boldsymbol{j} x_{3} . \tag{24}
\end{equation*}
$$

It is easy to check that

$$
\boldsymbol{j}=\left(\boldsymbol{j} b_{1}+\boldsymbol{k} \boldsymbol{j} b_{3}\right)\left(\overline{b_{1}}+\boldsymbol{k} \overline{b_{3}}\right)=b\left(\overline{b_{1}}+\boldsymbol{k} \overline{\boldsymbol{k}_{3}}\right) .
$$

By this and (24) we get

$$
\begin{align*}
& \xi(\boldsymbol{j})=\left(\boldsymbol{j} x_{1}+\boldsymbol{k} \boldsymbol{j} x_{3}\right)\left(\overline{b_{1}}+\boldsymbol{k} \overline{b_{3}}\right), \\
& \chi(\boldsymbol{j})=\left(\boldsymbol{j} x_{1}+\boldsymbol{j} \boldsymbol{k j} x_{3}\right)\left(\overline{b_{1}}+\boldsymbol{k} m_{2} \overline{b_{3}}\right) . \tag{25}
\end{align*}
$$

Let $L^{\prime}=[a, \xi(a)]$ and $M^{\prime}=[a, \chi(a)]$ be the lines through p and r in ξ and χ respectively, where $a=\boldsymbol{j} a_{1}+\boldsymbol{k} a_{2}+\boldsymbol{k j} a_{3}$ is orthogonal with both p and r and $\left|a_{1}\right|^{2}+\left|a_{2}\right|+\left|a_{3}\right|^{2}=1$. Orthogonality with p and r forces $a_{1}=0=a_{2}$. Therefore $a=k j \eta$ for a suitable η with $|\eta|=1$. By this and (25),

$$
\begin{align*}
& \xi(a)=\boldsymbol{k}\left(\left(\boldsymbol{j} x_{1}+\boldsymbol{k} \boldsymbol{j} x_{3}+\boldsymbol{k}\right)\left(\overline{b_{1}}+\boldsymbol{k} \overline{b_{3}}\right)\right) \eta, \tag{26}\\
& \chi(a)=\boldsymbol{k} m_{2}\left(\left(\boldsymbol{j} x_{1}+\boldsymbol{k j} x_{3}+\boldsymbol{k} x_{4}\right)\left(\overline{b_{1}}+\boldsymbol{k} m_{2} \overline{b_{3}}\right)\right) \eta .
\end{align*}
$$

Equations (26) allow to explicitly compute the inner product $(\xi(a) \mid \chi(a))$. We obtain:

$$
\begin{equation*}
(\xi(a) \mid \chi(a))=\left|b_{3}\right|^{2}+\left|b_{1}\right|^{2} \overline{m_{2}}=\left|q_{1}\right|^{2}+\left|q_{3}\right|^{2} \overline{m_{2}} . \tag{27}
\end{equation*}
$$

So, $|(\xi(a) \mid \chi(a))|=\left|q_{1}\right|^{4}+\left|q_{3}\right|^{4}+\left|q_{1}\right|^{2}\left|q_{3}\right|^{2}\left(m_{2}+\overline{m_{2}}\right)<1$, as $m_{2}+\overline{m_{2}}$ is a real number not less than -2 and less than 2 (because $\left|m_{2}\right|=1$ but $m_{2} \neq 1$) and $\left|q_{1}\right|^{2}+\left|q_{3}\right|^{2}=1$.
Subcase 2.2. $m_{1} \neq 0$, namely $\left|m_{2}\right|<1$. In this case the second equation of (20) yields

$$
\begin{equation*}
x_{1}=\frac{1-\overline{m_{2}}}{\overline{m_{1}}} b_{2} . \tag{28}
\end{equation*}
$$

The planes ξ and χ on L and N and on M and N are determined by the following conditions:

$$
\begin{align*}
& \xi(\boldsymbol{k})=\boldsymbol{k}, \quad \chi(\boldsymbol{k})=\boldsymbol{j} m_{1}+\boldsymbol{k} m_{2}, \\
& \xi(b)=\chi(b)=\boldsymbol{j} x_{1}+\boldsymbol{k} x_{2}+\boldsymbol{k} \boldsymbol{j} x_{3}=\left(\boldsymbol{j} \frac{1-m_{2}}{m_{1}}+\boldsymbol{k}\right) b_{2}+\boldsymbol{k} \boldsymbol{j} x_{3} . \tag{29}
\end{align*}
$$

Moreover, $\left|x_{3}\right|^{2}=1-\left(1+\left|1-m_{2}\right|^{2}\left|m_{1}\right|^{-2}\right)\left|b_{2}\right|^{2}$ by (28) and $x_{2}=b_{2}$. Therefore

$$
\begin{equation*}
\left|x_{3}\right|^{2}=1-\frac{2-m_{2}-\overline{m_{2}}}{\left|m_{1}\right|^{2}}\left|b_{2}\right|^{2} . \tag{30}
\end{equation*}
$$

Now $\left.\boldsymbol{j}=\left(b-\boldsymbol{k} b_{2}\right)\left(\overline{b_{1}}+\boldsymbol{k} \overline{b_{3}}\right)\left(1-\left|b_{2}\right|^{2}\right)^{-1}\right)$. Recalling equations (22), we obtain

$$
\begin{equation*}
\boldsymbol{j}=\left(b+\boldsymbol{k} \overline{\overline{r_{2}}} b_{3}\right)\left(\left(\boldsymbol{k} q_{1}-q_{3}\right) \overline{q_{1}} b_{3}^{-1}\right) \tag{31}
\end{equation*}
$$

Let $L^{\prime}=[a, \xi(a)]$ and $M^{\prime}=[a, \chi(a)]$ be the lines through p and r in ξ and χ respectively, where $a=\boldsymbol{j} a_{1}+\boldsymbol{k} a_{2}+\boldsymbol{k j} a_{3}$ is orthogonal with both p and r and $|a|=1$. Orthogonality with p forces $a_{1}=0$ but orthogonality with r only implies $\bar{r}_{2} a_{2}+\overline{r_{3}} a_{3}=0$. So $a_{2}=-a_{3} \bar{r}_{3} r_{2}^{-1}$ and the condition $|a|=1$ implies $\left|a_{3}\right|=\left|r_{2}\right|$, namely $a_{3}=\overline{r_{2}} \eta$ for some η with $|\eta|=1$. Hence

$$
\begin{equation*}
a=\left(-\boldsymbol{k} \overline{r_{3}}+\boldsymbol{k} \boldsymbol{j} \overline{r_{2}}\right) \eta=\left(\boldsymbol{k}\left(-\overline{r_{3}}+\overline{r_{2}} \boldsymbol{j}\right)\right) \eta=\left(\boldsymbol{k}\left(-\overline{r_{3}}+\boldsymbol{j} r_{2}\right)\right) \eta . \tag{32}
\end{equation*}
$$

By exploiting (29), (31) and (32) as well as (22) and (30) one can compute $\xi(a)$ and $\chi(a)$ explicitly, whence $(\xi(a) \mid \chi(a))$ too, but these computations are terribly toilsome. However, in order to prove the lemma, we do not need to perform them. It is enough to show that, for a lucky choice of $N=[b, x]$, whence of r, satisfying the above conditions, we get $\ell \neq-1$. We will go on in this way, referring the interested reader to Remark 3.16 for a way to express $(\xi(a) \mid \chi(a))$ in the general case.

The previous conditions on r, b and x allow to choose $r_{3}=0$. Accordingly, $\left|r_{2}\right|=1$. Hence $b_{2}=0$ by the second equation of (22) and $b_{3}=\lambda \overline{q_{1}}$ for some λ with $|\lambda|=1$ by (23). Therefore $b_{1}=-\lambda \bar{q}_{3}$ by the first equation of (22). Moreover $x_{1}=x_{2}=0$ by (20) and (28), whence $\left|x_{3}\right|=1$. Accordingly,

$$
\begin{equation*}
\boldsymbol{j}=b\left(\left(\boldsymbol{k} q_{1}-q_{3}\right) \lambda^{-1}\right) \tag{33}
\end{equation*}
$$

by (31) and since $b_{1}=\lambda \bar{q}_{1}$ and

$$
\begin{equation*}
a=\boldsymbol{k j} \overline{r_{2}} \eta \tag{34}
\end{equation*}
$$

by (32) and since $r_{3}=0$. By (33), recalling that $x_{1}=x_{2}=0$, we obtain

$$
\begin{align*}
\xi(\boldsymbol{j}) & =x\left(\left(\boldsymbol{k} q_{1}-q_{3}\right) \lambda^{-1}\right)=\boldsymbol{k} \boldsymbol{j} x_{3}\left(\boldsymbol{k} q_{1} \lambda^{-1}-q_{3} \lambda^{-1}\right) \\
& =\boldsymbol{j} \overline{q_{1} x_{3}} \lambda-\boldsymbol{k} \boldsymbol{j} q_{3} x_{3} \bar{\lambda}, \\
\chi(\boldsymbol{j}) & =x\left(\left(\left(\boldsymbol{j} m_{1}+\boldsymbol{k} m_{2}\right) q_{1}-q_{3}\right) \lambda^{-1}\right) \tag{35}\\
& =\boldsymbol{k} \boldsymbol{j} x_{3}\left(\boldsymbol{j} m_{1} q_{1} \lambda^{-1}+\boldsymbol{k} m_{2} q_{1} \lambda^{-1}-q_{3} \lambda^{-1}\right) \\
& =\boldsymbol{j} \bar{m}_{2} q_{1} x_{3} \lambda-\boldsymbol{k} \overline{m_{1} q_{1} x_{3}} \lambda-\boldsymbol{k} q_{3} x_{3} \bar{\lambda} .
\end{align*}
$$

(Recall that $\lambda^{-1}=\bar{\lambda}$ since $|\lambda|=1$.) By combining (34) with (35) we obtain

$$
\begin{aligned}
\xi(a) & =\left(\boldsymbol{k}\left(\boldsymbol{j} \overline{q_{1} x_{3}} \lambda-\boldsymbol{k} \boldsymbol{j} q_{3} x_{3} \bar{\lambda}\right)\right) \overline{r_{2}} \eta \\
& =\boldsymbol{j} \overline{q_{3} x_{3} r_{2}} \lambda \eta+\boldsymbol{k j} q_{1} x_{3} \overline{r_{2}} \bar{\lambda} \eta, \\
\chi(a) & =\left(\left(\boldsymbol{j} m_{1}+\boldsymbol{k} m_{2}\right)\left(\boldsymbol{j} \overline{m_{2} q_{1} x_{3}} \lambda-\boldsymbol{k} \overline{m_{1} q_{1} x_{3}} \lambda-\boldsymbol{k} \boldsymbol{j} q_{3} x_{3} \bar{\lambda}\right)\right) \overline{r_{2}} \eta \\
& =\boldsymbol{j} \overline{m_{2} q_{3} x_{3} r_{2}} \lambda \eta-\boldsymbol{k} \overline{m_{1} q_{3} x_{3} r_{2}} \lambda \eta+\boldsymbol{k} q_{1} x_{3} \overline{r_{2}} \bar{\lambda} \eta .
\end{aligned}
$$

Therefore $(\xi(a) \mid \chi(a))=\left(\left|q_{3}\right|^{2} \overline{m_{2}}+\mid q_{1}^{2}\right)\left(\left|x_{3}\right|^{2}\left|r_{2}\right|^{2}|\lambda|^{2}|\eta|^{2}\right.$. Finally, recalling that $\left|x_{3}\right|=\left|r_{2}\right|=|\lambda|=|\eta|=1$,

$$
\begin{equation*}
(\xi(a) \mid \chi(a))=\left|q_{3}\right|^{2} \overline{m_{2}}+\left|q_{1}\right|^{2} . \tag{36}
\end{equation*}
$$

The right side of (36) is equal to -1 only if $q_{1}=0$ and $m_{2}=-1$. However, $q_{1} \neq 0$ because $p \not \perp q$. Therefore $(\xi(a) \mid \chi(a)) \neq-1$.

Remark 3.16. In Subcase 2.2 of the above proof, with no additional hypotheses on $[b, x]$ we get

$$
(\xi(a) \mid \chi(a))=A\left|r_{2}\right|^{2}\left|b_{3}\right|^{-2}-2 \operatorname{Im}\left(m_{1} \overline{q_{1}} q_{3}\left|q_{3}\right|^{2} r_{2} \overline{r_{3}} b_{3}^{-1}\right)+\left|r_{3}\right|^{2} B
$$

where $\operatorname{Im}($.$) stands for imaginary part and$

$$
\begin{aligned}
& A=\left|q_{1} q_{3}\right|^{2} \overline{m_{2}}+\left|q_{1}\right|^{4} \\
& B=m_{2}-A-\left|q_{1} q_{3}\right|^{2}+\left|q_{1}\right|^{4}\left(m_{2}^{3}+\overline{m_{2}}-2\right)\left|m_{1}\right|^{-2}
\end{aligned}
$$

This shows that $(\xi(a) \mid \chi(b))$ depends on r_{2}, r_{3} and x_{2} nontrivially. Thus, we can always choose the line $N=[b, x]$ in such a way that $|(\xi(a) \mid \chi(a))|<1$. Accordingly, Lemma 3.15 can be given a stronger formulation: we can always choose N in such a way that $|\ell|<1$.
Remark 3.17. It follows from above proof that when $\left|m_{2}\right|=1$ then $|\ell|<1$ for every choice of the admissible line $N=[b, x]$. However, for certain values of m_{2} we can also choose N in such a way that $\ell=-1$. For instance, when $(\mathbb{F}, \mathbb{A})=(\mathbb{R}, \mathbb{H})$, this is possible in the following cases:
(1) $q_{1}^{4}=q_{3}^{2}\left(\right.$ namely $\left.q_{1}^{2}=(\sqrt{5}-1) / 2\right)$ and $-1 \leq m_{2} \leq-(\sqrt{5}+1) / 4$;
(2) $q_{1}^{2}>q_{3}^{2}$ and $-1 \leq m_{2} \leq\left(1-\sqrt{4 q_{1}^{6}+8 q_{1}^{4}-3}\right) /\left(q_{1}^{4}-q_{3}^{2}\right)$;
(3) $q_{1}^{2}<q_{3}^{2}$ and $1 \geq m_{2} \geq\left(-1+\sqrt{4 q_{1}^{6}+8 q_{1}^{2}-3}\right) /\left(q_{3}^{2}-q_{1}^{4}\right)$.

Lemma 3.18. Every orthogonal nondegenerate primitive path α of $\Gamma_{\mathbb{C}}(\mathbb{D})$ such that $|\ell(\alpha)|=1$ but $\ell(\alpha) \neq-1$ is homotopic with an orthogonal nondegenerate primitive path β such that $|\ell(\beta)|<1$.

See [Schillewaert and Struyve 2017, Lemma 6.7] for the above. The following lemma is also proved in [Schillewaert and Struyve 2017, Lemma 6.8].

Lemma 3.19. Let $\ell \in \mathbb{F}$ such that $|\ell|<1$. Then, for every choice of two distinct lines L and M with the same shadow, there exists a sequence $L_{0}=L, L_{1}, \ldots, L_{n}=M$ of lines with the same shadow as L and M and such that $\left(L_{i-1} \mid L_{i}\right)=\ell$ for every $i=1,2, \ldots, n$.

The next statement is implicit in what Schillewaert and Struyve say to justify [2017, Remark 6.9]. We make it explicit.

Corollary 3.20. Let $\ell \in \mathbb{F}$ such that $|\ell|<1$ and let $\alpha=(p, L, q, M, p)$ be a nondegenerate primitive path of $\Gamma=\Gamma_{\mathbb{F}}(\mathbb{A})$. Then $\alpha \sim \alpha_{1} \cdot \alpha_{2} \cdots \alpha_{n}$ for a suitable sequence of nondegenerate primitive paths $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ of Γ with the same points p and q as α and such that $\ell\left(\alpha_{i}\right)=\ell$ for every $i=1,2, \ldots, n$.
Proof. By Lemma 3.19 there exist lines $L_{0}=L, L_{1}, \ldots, L_{n}=M$ such that ($L_{i-1} \mid$ $\left.L_{i}\right)=\ell$ for $i=1,2, \ldots, n$. For $i=1,2, \ldots, n$ put $\alpha_{i}=\left(p, L_{i-1}, q, L_{i}\right)$. Thus, the product $\alpha_{1} \cdot \alpha_{2} \cdots \cdots \alpha_{n}$ is well defined. Note that

$$
\alpha_{n-1} \cdot \alpha_{n}=\left(p, L_{n-2}, q, L_{n-1}, p, L_{n-1}, q, L_{n}, p\right) \sim\left(p, L_{n-2}, q, L_{n}\right)=: \alpha_{n-1}^{\prime} .
$$

So, $\alpha_{1} \cdot \alpha_{2} \cdots \cdot \alpha_{n-1} \cdot \alpha_{n} \sim \alpha_{1} \cdot \alpha_{3} \cdots \cdots \alpha_{n-1}^{\prime}$. By iterating this argument we eventually obtain $\alpha_{1} \cdot \alpha_{2} \cdots \cdots \alpha_{n} \sim\left(p, L_{0}, q, L_{n}, p\right)=\alpha$.

We can now prove the main theorem of this subsection.
Theorem 3.21. Either $\Gamma_{\mathbb{F}}(\mathbb{A})$ is simply connected or it is covered by a building.

Proof. Suppose that $\Gamma=\Gamma_{\mathbb{F}}(\mathbb{A})$ is not covered by a building. Then, by Corollary 3.8, at least one of its nondegenerate primitive paths is null-homotopic. By Lemma 3.10 (claim (4)) and Lemma 3.14, at least one orthogonal nondegenerate primitive path, say α, is null-homotopic. Let $\ell=\ell(\alpha)$ be its line-invariant. The action of $G:=$ $\operatorname{Aut}(\Gamma)$ on \mathbb{A} and \mathbb{D} makes it clear that G acts transitively on the set of orthogonal primitive paths with line-invariant equal to ℓ. Thus, all orthogonal primitive paths with line invariant ℓ are null-homotopic.

Suppose firstly that $|\ell|<1$. Then every orthogonal primitive path β is null homotopic, by Corollary 3.20 and the above remark. In this case Γ is simply connected by Lemmas 3.10 and 3.14 and Corollary 3.6.

Let $|\ell|=1$. If $\ell \neq-1\left(\right.$ whence $\left.\Gamma=\Gamma_{\mathbb{C}}(\mathbb{O})\right)$ then $\alpha \sim \beta$ for some orthogonal primitive path β with $|\ell(\beta)|<1$, by Lemma 3.18. Thus, we can replace α with β and we are back to the previous case.

Finally, let $\ell(\alpha)=-1$. Clearly α admits a nonorthogonal shift $\beta \sim \alpha$, necessarily nondegenerate (Lemma 3.10). In its turn β admits an orthogonal shift γ with $\ell(\gamma) \neq-1$, by Lemma 3.15. Moreover $\beta \sim \gamma$ by Lemma 3.10. Hence $\alpha \sim \gamma$. Therefore γ is null-homotopic. We can now replace α with γ and we are back to the first or second one of the two previous cases, according to whether $|\ell(\gamma)|<1$ or $|\ell(\gamma)|=1$.

Remark 3.22. What Schillewaert and Struyve say to explain their Remark 6.9 in [2017] amounts to a sketch of the first three paragraphs of the above proof. However, as they had nothing like Lemma 3.15 at their disposal, they could only refer to the case $\ell \neq-1$ in that remark.

3D. End of the proof of Theorem 1.5. Let $\widetilde{\Gamma}$ be the universal cover of $\Gamma=\Gamma_{\mathbb{F}}(\mathbb{A})$. In view of Theorem 3.21, either $\widetilde{\Gamma}=\Gamma$ or $\widetilde{\Gamma}$ is a building. In order to finish the proof of Theorem 1.5 it only remains to prove that $\widetilde{\Gamma}$ cannot be a building. This immediately follows from the last claim of Theorem 1.3. However, as we have promised not to use that theorem, we shall give an explicit proof of this claim.

We firstly recall a few general properties of universal coverings and state some notation for quadratic and hermitian forms and related polar spaces.
3D1. Lifting automorphisms through universal coverings. Let $\phi: \widetilde{\Gamma} \rightarrow \Gamma$ be the universal k-covering of a geometry Γ of $\operatorname{rank} n>k$. Let $G:=\operatorname{Aut}(\Gamma)$ and $\widehat{G}:=$ $\operatorname{Aut}(\widetilde{\Gamma})$.

Pick a chamber C of Γ and a chamber $\widetilde{C} \in \phi^{-1}(C)$. For every $g \in G$ and every chamber $\widetilde{X} \in \phi^{-1}(g(C))$ there exists a unique $\tilde{g} \in \widehat{G}$, called a lifting of g to $\widetilde{\Gamma}$ through ϕ, such that $\phi \cdot \tilde{g}=g \cdot \phi$ and $\tilde{g}(\widetilde{C})=\widetilde{X}$ [Pasini 1994, Theorem 12.13]. The set of all liftings of the elements $g \in G$ is a subgroup \widetilde{G} of \widehat{G} and the function $p_{\phi}: \widetilde{G} \rightarrow G$ which maps every $\tilde{g} \in \widetilde{G}$ onto the unique $g \in G$ such that $\phi \cdot \tilde{g}=g \cdot \phi$ is a (surjective) homomorphism of groups. The kernel of p_{ϕ}, namely the group of
all liftings of the identity automorphisms of Γ, is the deck group $D(\phi)$ of ϕ and $\Gamma \cong \widetilde{\Gamma} / D(\phi)$ [Pasini 1994, Theorem 12.13].

Given a subflag $F \subset C$ of $\operatorname{rank} k$, let \widetilde{F} be the corresponding subflag of \widetilde{C} and let G_{F} be the stabilizer F in G. The stabilizer $\widetilde{G}_{\widetilde{F}}$ of \widetilde{F} in \widetilde{G} meets $D(\phi)$ trivially. Hence p_{ϕ} induces an isomorphism from $\widetilde{G}_{\widetilde{F}}$ to G_{F}. We call $\widetilde{G}_{\widetilde{F}}$ the lifting of G_{F} to $\widetilde{\Gamma}$ through ϕ based at \widetilde{F}.

Moreover, let $K_{F} \unlhd G_{F}$ be the elementwise stabilizer in G_{F} of the residue $\operatorname{Res}_{\Gamma}(F)$ of F in Γ. Similarly, let $\widetilde{K}_{\widetilde{\mathcal{K}}}^{\widetilde{\tilde{K}}}$ be the elementwise stabilizer of $\operatorname{Res}_{\Gamma}(\widetilde{F})$ in $\widetilde{G}_{\widetilde{F}}$. Then p_{ϕ} isomorphically maps $\widetilde{K}_{\widetilde{F}}$ onto K_{F}.

In order to complete the notation adopted above, we denote by $\widehat{G}_{\widetilde{F}}$ and $\widehat{K}_{\widetilde{F}}$ the stabilizer of \widetilde{F} in \widehat{G} and the elementwise stabilizer of $\operatorname{Res}_{\widetilde{\Gamma}}(\widetilde{F})$ in $\widehat{G}_{\widetilde{F}}$. Needless to say, $\widetilde{G}_{\widetilde{F}}$ and $\widetilde{K}_{\widetilde{F}}$ are subgroups of $\widehat{G}_{\widetilde{F}}$ and $\widehat{K}_{\widetilde{F}}$ respectively and $\widetilde{K}_{\widetilde{F}}=\widehat{K}_{\widetilde{F}} \cap \widetilde{G}_{\widetilde{F}}$.

The group K_{F} (respectively $\widetilde{K}_{\widetilde{F}}$ or $\widehat{K}_{\widetilde{F}}$) is often called the kernel of G_{F} (respectively $\widetilde{G}_{\widetilde{F}}$ or $\widehat{G}_{\widetilde{F}}$, as a shortening for "kernel of the action of G_{F} on $\operatorname{Res}_{\Gamma}(F)$ ". We shall adopt this terminology too in the sequel.

3D2. Some notation for quadratic and hermitian forms. For a positive integer n, let $f_{n}^{\mathbb{F}}$ be the usual scalar product on \mathbb{F}^{n} and let $\mathrm{L}\left(f_{n}^{\mathbb{F}}\right)$ be the group of all linear mappings preserving $f_{n}^{\mathbb{F}}$. So, $\mathrm{L}\left(f_{n}^{\mathbb{R}}\right)=\mathrm{O}(n)$ and $\mathrm{L}\left(f_{n}^{\mathbb{C}}\right)=\mathrm{U}(n)$ (notation as usual for Lie groups).

Given two positive integers n, m with $n \leq m$, let $f_{n, m}^{\mathbb{F}}:=\left(-f_{n}^{\mathbb{F}}\right) \oplus f_{m}^{\mathbb{F}}$. Namely, $f_{n, m}^{\mathbb{F}}$ admits the following representations, according to whether $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$, where $x=\left(x_{i}\right)_{i=1}^{n+m}$ and $y=\left(y_{i}\right)_{i=1}^{n+m}\left(\right.$ vectors of $\left.\mathbb{F}^{n+m}\right)$:

$$
\begin{array}{ll}
(\mathbb{F}=\mathbb{R}) & f_{n, m}^{\mathbb{R}}(x, y):=-\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i=1}^{m} x_{i+n} y_{i+m}, \\
(\mathbb{F}=\mathbb{C}) & f_{n, m}^{\mathbb{C}}(x, y):=-\sum_{i=1}^{n} \overline{x_{i}} y_{i}+\sum_{i=1}^{m} \overline{x_{i+n}} y_{i+m} .
\end{array}
$$

Clearly, n is the Witt index of $f_{n, m}^{\mathbb{F}}$. We also recall that, by Sylvester's law of inertia, every nondegenerate bilinear form on \mathbb{R}^{n+m} of Witt index $n \leq m$ can be expressed as $f_{n, m}^{\mathbb{R}}$ or its opposite, modulo a suitable choice of the basis of \mathbb{R}^{n+m} (see, e.g., [Bourbaki 1959, §7, n.2]). The same for hermitian forms of \mathbb{C}^{n+m}.

Let $\mathrm{L}\left(f_{n, m}^{\mathbb{E}}\right)$ be the group of linear trasformations of \mathbb{F}^{n+m} preserving $f_{n, m}^{\mathbb{E}}$. So we have $\mathrm{L}\left(f_{n, n}^{\mathbb{R}}\right)=\mathrm{O}^{+}(2 n, \mathbb{R}), \mathrm{L}\left(f_{n, n+1}^{\mathbb{R}}\right)=\mathrm{O}(2 n+1, \mathbb{R}), \mathrm{L}\left(f_{n, n}^{\mathbb{C}}\right)=\mathrm{U}(2 n, \mathbb{C})$ and $\mathrm{L}\left(f_{n, n+1}^{\mathbb{C}}\right)=\mathrm{U}(2 n+1, \mathbb{C})$ (notation as usual for Chevalley groups).

Let $\Gamma\left(f_{n, m}^{\mathbb{E}}\right)$ be the polar space associated to $f_{n, m}^{\mathbb{E}}$. Recall that its full automorphims group $\operatorname{Aut}\left(\Gamma\left(f_{n, m}^{\mathbb{F}}\right)\right)$ is the projectivization $\operatorname{PL}\left(f_{n, m}^{\mathbb{F}}\right)$ of $\mathrm{L}\left(f_{n, m}^{\mathbb{F}}\right)$, extended by two (possibly trivial) outer automorphism groups, henceforth denoted by \boldsymbol{d} and \boldsymbol{f}. The group \boldsymbol{d} is contributed by linear transformations of \mathbb{F}^{n+m} which do not preserve
$f_{n, m}^{\mathbb{E}}$ but multiply it by a scalar. However, as we deal with $\operatorname{PL}\left(f_{n, m}^{\mathbb{F}}\right)$ rather than $\mathrm{L}\left(f_{n, m}^{\mathbb{F}}\right)$, it turns ut that \boldsymbol{d} is either trivial or isomorphic to the group C_{2} of order 2 , according to whether $n+m$ is odd or even. The group \boldsymbol{f} is trivial when $\mathbb{F}=\mathbb{R}$ and isomorphic to C_{2} when $\mathbb{F}=\mathbb{C}$. In the latter case, the unique nontrivial involution of \boldsymbol{f} is contributed by the usual conjugation of \mathbb{C} and the extension $\left(\operatorname{PL}\left(f_{n, m}^{\mathbb{C}}\right) \cdot \boldsymbol{d}\right) \cdot \boldsymbol{f}$ is split: it can be realized as the semidirect product $\left(\operatorname{PL}\left(f_{n, m}^{\mathbb{C}}\right) \cdot \boldsymbol{d}\right) \rtimes\langle\iota\rangle$ of $\operatorname{PL}\left(f_{n, m}^{\mathbb{C}}\right) \cdot \boldsymbol{d}$ with the group $\langle\iota\rangle$ generated by a suitable involutory semilinear transformation ι of \mathbb{C}^{n+m}.

3D3. The case $(\mathbb{F}, \mathbb{A})=(\mathbb{C}, \mathbb{O})$. Let $\phi: \widetilde{\Gamma} \rightarrow \Gamma$ be the universal covering of $\Gamma=$ $\Gamma_{\mathbb{C}}(\mathbb{O})$. We already know that either $\widetilde{\Gamma}=\Gamma$ or $\widetilde{\Gamma}$ is a building. We want show that $\widetilde{\Gamma}$ cannot be a building.

By contradiction, suppose that $\widetilde{\Gamma}$ is a building, namely a polar space of rank 3 . We know that the residues of the planes of Γ are isomorphic to the complex projective plane $\mathbb{C} P^{2}=P G(2, \mathbb{C})$ while the panels of type 3 (namely the residues of the point-line flags) are homeomorphic to the 3 -dimensional sphere \mathbb{S}^{3} [Kramer and Lytchak 2014]. The same properties hold for $\widetilde{\Gamma}$. So, in view of Tits's classification of polar spaces [Tits 1974, Chapter 8], necessarily $\widetilde{\Gamma}=\Gamma\left(f_{3,4}^{\mathbb{C}}\right)$, with full automorphism group

$$
\widehat{G}:=\operatorname{Aut}\left(\Gamma\left(f_{3,4}^{\mathbb{C}}\right)\right)=\operatorname{PU}(7, \mathbb{C}) \rtimes f \cong \operatorname{PSU}(7, \mathbb{C}) \rtimes C_{2}
$$

We set $\underset{\tilde{\xi}}{ }:=\operatorname{Aut}(\Gamma)=\left((\operatorname{SU}(3) \times \mathrm{SU}(\underset{\tilde{\tilde{\xi}}}{(3)})) / C_{3}\right) \rtimes C_{2}$ (see Section 2C).
Let $\tilde{\xi}$ be a plane of $\widetilde{\Gamma}$ and $\xi=\phi(\tilde{\xi})$. With the notation and the terminology of Section 3 D 1 , let $G_{\xi}, \widehat{G}_{\tilde{\xi}}$ and $\widetilde{G}_{\tilde{\xi}}$ be respectively the stabilizer of ξ in G, the stabilizer of $\tilde{\xi}$ in \widehat{G} and the lifting of G_{ξ} to $\widetilde{\Gamma}$ through ϕ at $\tilde{\xi}$ and let $K_{\xi}, \widehat{K}_{\tilde{\xi}}$ and $\widetilde{K}_{\tilde{\xi}}$ be their kernels. It is not difficult to check that

$$
G_{\xi}=\operatorname{PSU}(3) \rtimes C_{2} \quad \text { with } K_{\xi}=1
$$

(See also [Schillewaert and Struyve 2017].) Hence $\widetilde{G}_{\tilde{\xi}} \cong \operatorname{PSU}(3) \rtimes C_{2}$ and $\widetilde{K}_{\tilde{\xi}}=1$. On the other hand, $\widehat{G}_{\tilde{\xi}}$ is the semidirect product $\widehat{G}_{\tilde{\xi}}=U \rtimes L$ of its unipotent radical U and a Levi complement L, where $U \cong \mathbb{C}^{6} \times \mathbb{R}^{3} \cong \mathbb{R}^{15}$, with $\mathbb{C}^{6}, \mathbb{R}^{3}$ and \mathbb{R}^{15} being regarded as additive groups, and $L \cong \mathrm{GL}(3, \mathbb{C}) \rtimes f=\Gamma \mathrm{L}(3, \mathbb{C})$. Moreover $\widehat{K}_{\tilde{\xi}}=U \rtimes Z$ where $Z=Z(L)$ is the center of L (see, e.g., [Weiss 2003, Chapter 11]). The group $\widetilde{G}_{\tilde{\xi}} \cong \operatorname{PSU}(3) \rtimes C_{2}$ is contained in $\widehat{G}_{\tilde{\xi}}=U \rtimes L$ but, as its kernel is trivial, it meets $\widehat{K}_{\tilde{\xi}}=U \rtimes Z$ trivially. Accordingly, the group $L \cong \Gamma L(3, \mathbb{C})$ contains a copy of $\widetilde{G}_{\tilde{\xi}}=\operatorname{PSU}(3) \rtimes C_{2}$. The group L indeed contains copies of $\operatorname{SU}(3) \rtimes C_{2}$, but no copy of $\operatorname{PSU}(3) \rtimes C_{2}$. Indeed $\operatorname{SU}(3)$ is not a semidirect product of its center C_{3} and a copy of $\operatorname{PSU}(3)$.

We have reached a contradiction. Hence in this case $\widetilde{\Gamma}=\Gamma$.

3D4. The case $(\mathbb{F}, \mathbb{A})=(\mathbb{R}, \mathbb{H})$. Let now $\phi: \widetilde{\Gamma} \rightarrow \Gamma$ be the universal covering of $\Gamma=\Gamma_{\mathbb{R}}(\mathbb{H})$. By contradiction, suppose that $\widetilde{\Gamma}$ is a building. The residues of the planes of Γ are isomorphic to the real projective plane $\operatorname{PG}(2, \mathbb{R})$ and the panels of type 3 are homeomorphic to the 5 -dimensional sphere \mathbb{S}^{5} [Kramer and Lytchak 2019]. By Tits's classification of polar spaces [1974] we see that $\widetilde{\Gamma}=\Gamma\left(f_{3,8}^{\mathbb{R}}\right)$, with full automorphism group $\widehat{G}:=\operatorname{Aut}\left(\Gamma\left(f_{3,8}^{\mathbb{R}}\right)\right)=\operatorname{PL}\left(f_{3,8}^{\mathbb{R}}\right)$. We set $G:=\operatorname{Aut}(\Gamma)=$ $\mathrm{SO}(3) \times \mathrm{G}_{2}$ (see Section 2C). As in the previous case, let $\tilde{\xi}$ be a plane of $\widetilde{\Gamma}$ and $\xi:=\phi(\tilde{\xi})$. We now have

$$
\begin{aligned}
G_{\xi} & =(\mathrm{SU}(2) \times \mathrm{SU}(2)) /\langle(-\iota,-\imath)\rangle=2 \cdot(\mathrm{PSU}(2) \times \mathrm{PSU}(2)), \\
K_{\xi} & =2 \cdot \mathrm{PSU}(2)=\mathrm{SU}(2), \\
G_{\xi} / K_{\xi} & \cong \mathrm{PSU}(2) \cong \mathrm{SO}(3)
\end{aligned}
$$

Here ι stands for the identity element of $\operatorname{SU}(2)$, whence (ι, ι) is the identity element of $\mathrm{SU}(2) \times \mathrm{SU}(2)$. The extension $2 \cdot(\mathrm{PSU}(2) \times \operatorname{PSU}(2))$ is nonsplit.

On the other hand, $\widehat{G}_{\tilde{\xi}}=U \rtimes L$ where $L \cong \mathrm{GL}(3, \mathbb{R}) \times \mathrm{SO}(5)$ and $U=U_{0} \cdot U_{1}$ with U_{0} and U_{1} isomorphic to the additive groups of \mathbb{R}^{3} and \mathbb{R}^{15} respectively. The group U_{0} is both the center and the commutator subgroup of U. Moreover, $\widehat{K}_{\tilde{\xi}}=$ $U \rtimes(Z \times \mathrm{SO}(5))$, where Z is the center of $\mathrm{GL}(3, \mathbb{R})$.

We have $\widetilde{G}_{\tilde{\xi}} \cong G_{\xi}=2(\operatorname{PSU}(2) \times \operatorname{PSU}(2)), \widetilde{K}_{\tilde{\xi}} \cong K_{\xi}=\operatorname{SU}(2)$ and $\widetilde{K}_{\tilde{\xi}}$ must be placed in $\widehat{K}_{\tilde{\xi}}$. As $U \unlhd \widehat{K}_{\tilde{\xi}}$, the intersection $\widetilde{K}_{\tilde{\xi}} \cap U$ is normal in $\widetilde{K}_{\tilde{\xi}}$. However $\widetilde{K}_{\tilde{\xi}} \cong \operatorname{SU}(2)$ is quasisimple as an abstract group, with center of order 2, while every nontrivial subgroup of U is infinite. Therefore $\widetilde{K}_{\tilde{\xi}} \cap U=1$, namely $\widetilde{K}_{\tilde{\xi}} \leq L \cap \widehat{K}_{\tilde{\xi}}=$ $Z \times \operatorname{SO}(5)$. Moreover $\widetilde{K}_{\tilde{\xi}} \leq \mathrm{SO}(5)$, since $\mathrm{SU}(2)$ doesn't split as the direct product of its center and a copy of PSU(2). So far, no contradiction has arised; indeed $\mathrm{SO}(5)$ actually contains copies of $\mathrm{SU}(2)$.

Similarly, $\widetilde{G}_{\tilde{\xi}} / \widetilde{K}_{\tilde{\xi}} \cong \operatorname{PSU}(2)$ must be placed in $\widehat{G}_{\tilde{\xi}} / \widehat{K}_{\tilde{\xi}}=L /(Z \times \mathrm{SO}(5))=$ $\operatorname{PGL}(3, \mathbb{R})$. This can be done as well, since $\operatorname{PGL}(3, \mathbb{R})$ contains copies of $\operatorname{SO}(3) \cong$ $\operatorname{PSU}(2)$. However these copies of $\operatorname{SO}(3)$ inside $\operatorname{GL}(3, \mathbb{R})$ meet the center Z of $\operatorname{GL}(3, \mathbb{R})$ trivially. It follows that $\widetilde{G}_{\tilde{\xi}}$ is the direct product $\widetilde{G}_{\tilde{\xi}}=\widetilde{K}_{\tilde{\xi}} \times X$ for a subgroup $X \cong \mathrm{SO}(3) \cong \operatorname{PSU}(2)$ of $\operatorname{GL}(3, \mathbb{R})$. In short, $\widetilde{G}_{\tilde{\xi}}=\operatorname{SU}(2) \times \operatorname{PSU}(2)$. However $\widetilde{G}_{\tilde{\xi}} \cong G_{\xi}=(\mathrm{SU}(2) \times \operatorname{SU}(2)) /\langle(-\iota,-\imath)\rangle$, which is not a direct product of $\operatorname{SU}(2)$ and $\underset{\sim}{\operatorname{PSU}}(2)$. Eventually, we have reached a contradiction.

Therefore $\widetilde{\Gamma}=\Gamma$ in this case too. The proof of Theorem 1.5 is complete.

References

[Aschbacher 1984] M. Aschbacher, "Finite geometries of type C_{3} with flag-transitive groups", Geom. Dedicata 16:2 (1984), 195-200. MR Zbl
[Bourbaki 1959] N. Bourbaki, Algèbre, Chapitre IX, Actualités Sci. Ind. 1272, Hermann, Paris, 1959. MR Zbl
[Brouwer and Cohen 1983] A. E. Brouwer and A. M. Cohen, "Some remarks on Tits geometries", Nederl. Akad. Wetensch. Indag. Math. 45:4 (1983), 393-402. MR Zbl
[Buekenhout and Pasini 1995] F. Buekenhout and A. Pasini, "Finite diagram geometries extending buildings", pp. 1143-1254 in Handbook of incidence geometry, edited by F. Buekenhout, NorthHolland, Amsterdam, 1995. MR Zbl
[Feit and Higman 1964] W. Feit and G. Higman, "The nonexistence of certain generalized polygons", J. Algebra 1 (1964), 114-131. MR Zbl
[Freudenthal and de Vries 1969] H. Freudenthal and H. de Vries, Linear Lie groups, Pure Appl. Math. 35, Academic Press, New York, 1969. MR Zbl
[Gorodski and Kollross 2016] C. Gorodski and A. Kollross, "Some remarks on polar actions", Ann. Global Anal. Geom. 49:1 (2016), 43-58. MR Zbl
[Kramer and Lytchak 2014] L. Kramer and A. Lytchak, "Homogeneous compact geometries", Transform. Groups 19:3 (2014), 793-852. MR Zbl
[Kramer and Lytchak 2019] L. Kramer and A. Lytchak, "Erratum to 'Homogeneous compact geometries"", Transform. Groups 24:2 (2019), 589-596. MR
[Neumaier 1984] A. Neumaier, "Some sporadic geometries related to PG(3, 2)", Arch. Math. (Basel) 42:1 (1984), 89-96. MR Zbl
[Pasini 1994] A. Pasini, Diagram geometries, Oxford Univ. Press, 1994. MR Zbl
[Podestà and Thorbergsson 1999] F. Podestà and G. Thorbergsson, "Polar actions on rank-one symmetric spaces", J. Differential Geom. 53:1 (1999), 131-175. MR Zbl
[Rees 1985] S. Rees, " C_{3} geometries arising from the Klein quadric", Geom. Dedicata 18:1 (1985), 67-85. MR Zbl
[Schillewaert and Struyve 2017] J. Schillewaert and K. Struyve, "On exceptional homogeneous compact geometries of type $C_{3} "$, Groups Geom. Dyn. 11:4 (2017), 1377-1399. MR Zbl
[Tits 1974] J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Math. 386, Springer, 1974. MR Zbl
[Tits 1981] J. Tits, "A local approach to buildings", pp. 519-547 in The geometric vein, edited by C. Davis et al., Springer, 1981. MR Zbl
[Weiss 2003] R. M. Weiss, The structure of spherical buildings, Princeton Univ. Press, 2003. MR Zbl
[Yoshiara 1996] S. Yoshiara, "The flag-transitive C_{3}-geometries of finite order", J. Algebraic Combin. 5:3 (1996), 251-284. MR Zbl

Received 27 Nov 2018. Revised 12 Mar 2019.
Antonio Pasini:
antonio.pasini@unisi.it
Department of Information Engineering and Mathematics, University of Siena, Siena, Italy

Innovations in Incidence Geometry
 msp.org/iig

MANAGING EDITOR
Tom De Medts Ghent University
tom.demedts@ugent.be
Linus Kramer Universität Münster
linus.kramer@wwu.de
Klaus Metsch Justus-Liebig Universität Gießen
klaus.metsch@math.uni-giessen.de
Bernhard Mühlherr Justus-Liebig Universität Gießen
bernhard.m.muehlherr@math.uni-giessen.de
Joseph A. Thas Ghent University
thas.joseph@gmail.com
Koen Thas Ghent University
koen.thas@gmail.com
Hendrik Van Maldeghem Ghent University
hendrik.vanmaldeghem@ugent.be
HONORARY EDITORS

Jacques Tits
Ernest E. Shult \dagger

EDITORS

Peter Abramenko
Francis Buekenhout
Philippe Cara
Antonio Cossidente
Hans Cuypers
Bart De Bruyn
Alice Devillers
Massimo Giulietti
James Hirschfeld
Dimitri Leemans
Oliver Lorscheid
Guglielmo Lunardon
Alessandro Montinaro
James Parkinson Antonio Pasini
Valentina Pepe
Bertrand Rémy
Tamás Szonyi
University of Virginia
Université Libre de Bruxelles
Vrije Universiteit Brussel
Università della Basilicata
Eindhoven University of Technology
University of Ghent
University of Western Australia
Università degli Studi di Perugia
University of Sussex
Université Libre de Bruxelles
Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Università di Napoli "Federico II"
Università di Salento
University of Sydney
Università di Siena (emeritus)
Università di Roma "La Sapienza"
École Polytechnique
ELTE Eötvös Loránd University, Budapest

PRODUCTION

Silvio Levy (Scientific Editor)
production@msp.org

See inside back cover or msp.org/iig for submission instructions.
The subscription price for 2019 is US $\$ 275 /$ year for the electronic version, and $\$ 325 /$ year $(+\$ 15$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial (ISSN 2640-7345 electronic, 26407337 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

IIG peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
Innovation in Incidence Geometry
Vol. 17 No. 3 2019
Chamber graphs of some geometries that are almost buildings 189 Veronica Kelsey and Peter Rowley
Groups of compact 8-dimensional planes: conditions implying the 201
Lie property
Helmut R. Salzmann
On two nonbuilding but simply connected compact Tits geometries 221 of type C_{3}
Antonio Pasini

[^0]: MSC2010: 20E42, 51E24, 57S15.
 Keywords: compact geometries, composition algebras, diagram geometries.

