Innovations in Incidence Geometry

Algebraic, Topological and Combinatorial

Chamber graphs of some geometries that are almost buildings

Veronica Kelsey and Peter Rowley

Chamber graphs of some geometries that are almost buildings

Veronica Kelsey and Peter Rowley

The global structure of the chamber graph of certain rank 3 geometries that are almost buildings is determined. Computer files containing extensive details of these graphs accompany this paper.

1. Introduction

The study of geometries that are almost buildings was instigated by Tits [1981]. The acronym "GAB" was bestowed upon them in [Kantor 1981], and they also go under the names of "geometries of type M" or "Tits geometries of type M". These geometries are Buekenhout-Tits geometries [Buekenhout 1979a] all of whose rank2 residue geometries are generalized polygons (though they are not required to satisfy the intersection property). That is, they are incidence geometries satisfying axioms (1) and (2) but not necessarily (3) of [Buekenhout 1979a].

We recall that an incidence geometry over a set I is a triple $(\Gamma, *, \tau)$ where Γ is a set, τ an onto map from Γ to I and $*$ is an incidence relation on Γ such that if $x, y \in$ Γ and $x * y$ then $\tau(x) \neq \tau(y)$. The map τ is called the type map and $|I|$ the rank of Γ. As is customary, we shall abbreviate $(\Gamma, *, \tau)$ to Γ. A flag F of Γ is a subset of Γ such that $x * y$ for all $x, y \in F, x \neq y$ and the type of F is $\{\tau(x) \mid x \in F\}$. The residue of F in Γ, Γ_{F}, is the (subgeometry) given by $\{x \in \Gamma \mid y * x$ for all $y \in F\}$. If $F=\{x\}$, then we write Γ_{x} instead of $\Gamma_{\{x\}}$. We shall call a maximal flag of Γ a chamber of Γ. Note that, by axiom (1) of [Buekenhout 1979a], the type of a chamber of a GAB is I. The chamber graph $\mathcal{C}(\Gamma)$ is defined as follows. The vertices are the chambers of Γ with distinct chambers γ and γ^{\prime} deemed adjacent in $\mathcal{C}(\Gamma)$ if $\left|\gamma \cap \gamma^{\prime}\right|=|I|-1$. We sometimes also say that γ and γ^{\prime} are i-adjacent if $I=\{i\} \cup\left\{\tau(x) \mid x \in \gamma \cap \gamma^{\prime}\right\}$. Let γ be a chamber of Γ. The i-th disc of γ, denoted by $\Delta_{i}(\gamma)$, consists of all the chambers which are distance i from γ in the graph $\mathcal{C}(\Gamma)$. We shall use $d($,) for

[^0]the distance metric on $\mathcal{C}(\Gamma)$ and $\operatorname{Diam}(\mathcal{C}(\Gamma))$ for the diameter of $\mathcal{C}(\Gamma)$. For more on incidence geometries, consult [Buekenhout 1979b; 1995], while for GAB's the survey paper [Kantor 1986] contains much interesting material.

The chamber graph of a building contains all the important geometric information about the building. For example, the (chambers of the) apartments of the building can be detected in the chamber graph. The sets $\Delta_{i}(\gamma)$, for γ a chamber, encode data relating to the Weyl group of the building. Further, if d is the diameter of the chamber graph and G is the automorphism group of the building, then G_{γ}, a Borel subgroup of G, acts transitively on $\Delta_{d}(\gamma)$. See [Ronan 2009; Tits 1974; 1981] for more on buildings. It is natural to wonder about chamber graphs of other geometries associated with groups which are, in some sense, close to buildings. This has prompted a number of papers which have focussed on analyzing the disc structure of such chamber graphs. See [Carr and Rowley 2018; Rowley 1998; 2009; 2010]. Most of the geometries of interest have a large number of chambers and so these investigations have necessarily involved extensive computation using packages such as MaGma [Cannon and Playoust 1997]. Here we continue this line of work, examining the chamber graphs of rank 3 GAB's. The examples we look at have been drawn from [Aschbacher and Smith 1983; Cooperstein 1989; Kantor 1981; Ronan and Smith 1980] (see also [Connor 2011; Kantor 1985; Yoshiara 1988]). We now state our main results on the disc structure of these GAB's.
Theorem 1.1. Let G denote one of the five groups $P \Omega_{6}^{-}(3), G_{2}(3), U_{6}(2), \Omega_{8}^{+}(2)$ and Suz, and let Γ denote a GAB associated to one of these groups. Set $\mathcal{C}=\mathcal{C}(\Gamma)$, and let γ_{0} be a fixed chamber of \mathcal{C}. Put $B=\operatorname{Stab}_{G}\left(\gamma_{0}\right)$.
(i) If $G \cong P \Omega_{6}^{-}(3)$ and Γ has diagram

then \mathcal{C} has 25515 chambers, 196 B-orbits, diameter 10 and disc structure

i-th disc	1	2	3	4	5	6	7	8	9	10
$\left\|\Delta_{i}\left(\gamma_{0}\right)\right\|$	6	20	64	176	416	1024	2432	5120	9088	7168
\# of B-orbits	3	5	8	12	15	19	27	35	43	28

(ii) If $G \cong G_{2}(3)$ and Γ has diagram

then \mathcal{C} has 66339 chambers, 1144 B-orbits, diameter 12 and disc structure

i-th disc	1	2	3	4	5	6	7	8	9	10	11	12
$\left\|\Delta_{i}\left(\gamma_{0}\right)\right\|$	6	20	64	208	600	1728	4640	10368	17920	20416	9472	896
$\#$ of B-orbits	3	6	10	18	27	42	90	176	288	321	148	14

(iii) If $G \cong G_{2}(3)$ and Γ has diagram

then \mathcal{C} has 66339 chambers, 1144 B-orbits, diameter 13 and disc structure

i-th disc	1	2	3	4	5	6	7	8	9	10	11	12	13
$\left\|\Delta_{i}\left(\gamma_{0}\right)\right\|$	6	20	56	144	384	960	2176	4864	10368	19072	21248	6976	64
$\#$ of B-orbits	3	6	9	14	21	31	51	92	172	302	332	109	1

(iv) If $G \cong U_{6}(2)$ and Γ has diagram

then \mathcal{C} has 1576960 chambers, 505 B-orbits, diameter 8 and disc structure

i-th disc	1	2	3	4	5	6	7	8
$\left\|\Delta_{i}\left(\gamma_{0}\right)\right\|$	15	117	972	6075	35721	203391	875043	455625
$\#$ of B-orbits	3	6	10	17	35	98	246	89

(v) If $G \cong \Omega_{8}^{+}(2)$ and Γ has diagram

then \mathcal{C} has 179200 chambers, 317 B-orbits, diameter 9 and disc structure

i-th disc	1	2	3	4	5	6	7	8	9
$\left\|\Delta_{i}\left(\gamma_{0}\right)\right\|$	9	45	216	891	3159	11421	37098	80676	45684
\# of B-orbits	3	6	10	16	26	43	68	95	49

(vi) If $G \cong$ Suz and Γ has diagram

then \mathcal{C} has 18243225 chambers, 1276 B-orbits, diameter 16 and disc structure

i-th disc	1	2	3	4	5	6	7	8
$\left\|\Delta_{i}\left(\gamma_{0}\right)\right\|$	8	32	128	432	1216	3712	11008	29184
\# of B-orbits	3	5	8	12	15	19	26	33
i-th disc	9	10	11	12	13	14	15	16
$\left\|\Delta_{i}\left(\gamma_{0}\right)\right\|$	81920	229376	598016	1576960	3595264	5410816	5304320	1400832
\# of B-orbits	44	66	99	155	241	270	222	57

The GAB associated with the Lyons sporadic simple group is beyond our computational reach having 207060716016 chambers. However, we can give bounds on the diameter of the chamber graph.
Theorem 1.2. Let Γ be the $G A B$ for Ly. Then $10 \leq \operatorname{Diam}(\mathcal{C}(\Gamma)) \leq 16$.

2. Properties of $\mathcal{C}(\Gamma)$

The information collated in Theorem 1.1 was obtained using the code available with [Carr and Rowley 2018] and employing MAGMA. In fact, much more intricate details about $\mathcal{C}(\Gamma)$ were obtained, and these are available in the files in the online supplement (see article web page, doi 10.2140/iig.2019.17.189). We give a brief summary of such things.

The chambers of Γ are viewed as the right cosets of B. The panel stabilizers will be denoted by P_{1}, P_{2} and P_{3} (recall we are only looking at rank 3 geometries). The data obtained and program code is underpinned by $D B$, a sequence containing the (B, B) double coset representatives. So for $g=D B[j]$, the $B g$ coset is a representative for the B-orbits on the chambers of Γ. To minimise storage, we record j rather than $D B[j]$ whenever possible.The important output files are BorbitsDiscs and Neighbours. The first is a sequence where BorbitsDiscs $[i]$ tells us the B-orbits making up $\Delta_{i}\left(\gamma_{0}\right)$ (where γ_{0} is identified with the coset B). Here we give B-orbit representatives $B g$, where $g=D B[k]$, by recording k. Neighbours is also a sequence where Neighbours $[j]$ is giving information on the neighbours of $B g$ (where $g=D B[j]$). Suppose we have $\left[P_{i}: B\right]=3$ for $i=1,2,3$ (as happens for the GAB associated with $P \Omega_{6}^{-}$(3), for example), so $\mathcal{C}(\Gamma)$ has valency 6 . Returning to Neighbours[j], in this case this would be a 6 -tuple [$k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}$]. This is saying that the six neighbours of $B g$ are in the B-orbits of $B * D B\left[k_{i}\right]$ ($i=1, \ldots, 6$). More than this we are also keeping track of the kind of adjacency. So the neighbours in the B-orbits of $B * D B\left[k_{1}\right]$ and $B * D B\left[k_{2}\right]$ are 1-adjacent to $B g$, those in the B orbits of $B * D B\left[k_{3}\right]$ and $B * D B\left[k_{4}\right]$ are 2-adjacent to $B g$, and those in the B-orbits of $B * D B\left[k_{5}\right]$ and $B * D B\left[k_{6}\right]$ are 3 -adjacent to $B g$.
Proof of Theorem 1.2. Let $G=L y$ and let γ_{0} be a chamber of $\mathcal{C}(\Gamma)$, and put $B=\operatorname{Stab}_{G}\left(\gamma_{0}\right)$. Recall that the diagram for Γ is

Let x be a point of Γ. Then by Section 6 of [Kantor 1981], Γ_{x} is a generalized hexagon dual to the usual $G_{2}(5)$ generalized hexagon. In particular, for any two chambers γ, γ^{\prime} of Γ containing x we have $d\left(\gamma, \gamma^{\prime}\right) \leq 6$. Let the point, line and plane of γ_{0} be respectively x_{0}, l_{0}, p_{0} and γ_{1} a chamber whose point, line and plane are respectively x_{1}, l_{0}, p_{1} where $x_{0} \neq x_{1}$. So x_{0} and x_{1} are collinear in Γ. Now $\gamma_{0}=$ $\left\{x_{0}, l_{0}, p_{0}\right\},\left\{x_{0}, l_{0}, p_{1}\right\},\left\{x_{1}, l_{0}, p_{1}\right\}=\gamma_{1}$ is a path in $\mathcal{C}(\Gamma)$, whence $d\left(\gamma_{0}, \gamma_{1}\right) \leq 2$. Since the point-line collinearity graph of Γ has diameter 2 (see Section 6 of [Kantor 1981] again), we infer that $\operatorname{Diam}(\mathcal{C}(\Gamma)) \leq 2+6+2+6=16$.

The number of chambers in the GAB associated with the Lyons group is

$$
\frac{|G|}{N_{G}(S)}=\frac{|G|}{5^{6} \cdot 2^{4}}=207060716016,
$$

where $S \in S y l_{5}(G)$. We find a lower bound for the diameter of the $\mathcal{C}(\Gamma)$ by working out the maximum number of chambers that can be in each disc. We have $\left[P_{i}: B\right]=$ $6, i=1,2,3$, and so the valency of $\mathcal{C}(\Gamma)$ is 15 . Therefore each chamber γ in $\Delta_{1}\left(\gamma_{0}\right)$ is joined to 5 chambers in $\Delta_{1}\left(\Gamma_{0}\right) \cup\left\{\gamma_{0}\right\}$. Hence $\left|\Delta_{1}(\gamma) \cap \Delta_{2}(\gamma)\right|=10$. Of course for $i \geq 2$, a chamber in $\Delta_{i}\left(\gamma_{0}\right)$ can have at most 14 neighbours in $\Delta_{i+1}\left(\gamma_{0}\right)$. Thus, letting $d=\operatorname{Diam}(\mathcal{C}(\Gamma))$,
$207060716016 \leq 1+15+150+150 \cdot 14+\cdots+150 \cdot 14^{d-2}=16+150\left(\frac{14^{d-1}-1}{14-1}\right)$.
This gives $d-1 \geq \log _{14}\left(\frac{13}{150}(207060716001)+1\right)$, whence $d-1 \geq 8.947$. Consequently, $\operatorname{Diam}(\mathcal{C}(\Gamma)) \geq 10$, which completes the proof of Theorem 1.2.

Collapsed adjacency graphs. For a GAB with diameter of say d, we call $\Delta_{d}\left(\gamma_{0}\right)$ the last disc (of γ_{0}) of the chamber graph. When examining the number of B orbits which comprise the last disc we see, from the point of the chamber graph, the appellation of "almost building" is something of a misnomer. Of the GAB's investigated here only the GAB associated with $G_{2}(3)$, diagram

has its last disc as a B-orbit. Because of this we have calculated the geodesic closure for this GAB, the results of which are summarized in Theorem 2.1. All the others have the number of B-orbit ranging from 14 to 89 . Indeed the more sporadic geometries studied in [Carr and Rowley 2018] and [Rowley 2009] come closer to buildings in this respect.

Notwithstanding the above comments on the last disc, we have looked at the induced graph on this disc. The most interesting (as far as we can see) are the GAB's from $G_{2}(3)$. Now we describe the B-collapsed adjacency graphs for the last disc of γ_{0}. The B-collapsed adjacency graph is formed by taking B-orbits, $B=\operatorname{Stab}_{G} \gamma_{0}$, as the vertices. We use j to stand for the B orbit of $B * D B[j]$ (where j is as given in the accompanying files). Two B-orbits, j and k are adjacent if and only if each chamber in j is adjacent to some chamber in k and we label the edge coming out from j with the number of chambers in k a chamber in j is adjacent with. If this number is 1 (as is mainly the case below) we omit this number.
(i) If $G \cong P \Omega_{6}^{-}(3)$ and Γ has diagram

then the last disc of the B-collapsed adjacency graph is connected apart from 87 and 89 , with 87 and 89 having the following adjacencies.

(ii) If $G \cong G_{2}(3)$ and Γ has diagram

then the $14 B$-orbits in the last disc form the following collapsed B-adjacency graph.

273
686
(iii) If $G \cong G_{2}(3)$ and Γ has diagram

then there is only one B-orbit in the last disc and $\Delta_{13}\left(\gamma_{0}\right)$ is a co-clique.
(iv) If $G \cong U_{6}(2)$ and Γ has diagram

then the last disc of the B-collapsed adjacency graph is connected apart from 215 and 377 , with 215 and 377 having the following adjacencies.

(v) If $G \cong \Omega_{8}^{+}(2)$ and Γ has diagram

then the B-collapsed adjacency graph of $\Delta_{9}\left(\gamma_{0}\right)$ is connected.
(vi) If $G \cong \operatorname{Suz}$ and Γ has diagram

then the last disc of the B-collapsed adjacency graph is connected apart from $145,146,175$ and 196 , which have the following adjacencies.

Geodesic closure. For $\gamma, \gamma^{\prime} \in \mathcal{C}$ a shortest path between them in \mathcal{C} is called a geodesic. The geodesic closure of a set of chambers X is defined to be the set \bar{X} of all chambers lying on some geodesic of γ, γ^{\prime} for any pair $\gamma, \gamma^{\prime} \in X$. The motivation for geodesic closures comes from the fact that in the chamber graph of a building, the geodesic closure of two chambers at maximal distance apart yields (the chambers of) an apartment.

Theorem 2.1. Let G denote one of the groups $P \Omega_{6}^{-}(3)$ or $G_{2}(3)$, and let Γ denote a GAB associated to one of these groups. Set $\mathcal{C}=\mathcal{C}(\Gamma)$, and let γ_{0} be a fixed chamber of \mathcal{C}. Put $B=\operatorname{Stab}_{G}\left(\gamma_{0}\right)$.
(i) Suppose $G \cong P \Omega_{6}^{-}(3)$ and Γ has diagram

and let $\gamma_{i} \in \Delta_{10}\left(\gamma_{0}\right), i=1, \ldots, 28$ be B-orbit representatives of $\Delta_{10}\left(\gamma_{0}\right)$. Set $n_{i, j}=\mid\left\{\overline{\left.\gamma_{0}, \gamma_{i}\right\}} \cap \Delta_{j}\left(\gamma_{0}\right) \mid\right.$. Then:

j	0	1	2	3	4	5	6	7	8	9	10
$n_{1, j}, n_{2, j}$	1	3	4	6	6	4	6	6	4	3	1
$n_{3, j}, n_{4, j}, n_{5, j}, n_{6, j}$	1	2	2	3	3	2	3	3	2	2	1
$n_{7, j}, n_{8, j}, n_{9, j}, n_{10, j}$	1	3	4	5	6	5	4	4	3	2	1
$n_{11, j}, n_{12, j}$	1	3	4	6	6	4	4	4	2	2	1
$n_{13, j}, n_{14, j}$	1	1	2	1	1	2	1	1	2	1	1
$n_{15, j}, n_{16, j}, n_{17, j}, n_{18, j}$	1	3	4	4	5	6	5	4	4	3	1
$n_{19, j}, n_{20, j}, n_{21, j}, n_{22, j}$	1	2	3	4	4	5	6	5	4	3	1
$n_{23, j}, n_{24, j}, n_{25, j}, n_{26, j}$	1	2	2	2	2	2	2	2	2	2	1
$n_{27, j}, n_{28, j}$	1	2	2	4	4	4	6	6	4	3	1

(ii) Suppose $G \cong G_{2}(3)$ and Γ has diagram

and let $\gamma^{\prime} \in \Delta_{13}\left(\gamma_{0}\right)$. Set $n_{j}=\mid\left\{\overline{\left.\gamma_{0}, \gamma^{\prime}\right\}} \cap \Delta_{j}\left(\gamma_{0}\right) \mid\right.$. Then:

j	0	1	2	3	4	5	6	7	8	9	10	11	12	13
n_{j}	1	6	15	23	24	26	25	25	26	24	23	15	6	1

(iii) Suppose $G \cong G_{2}(3)$ and Γ has diagram

and let $\gamma_{i} \in \Delta_{12}\left(\gamma_{0}\right), i=1, \ldots, 14$ be B-orbit representatives of $\Delta_{12}\left(\gamma_{0}\right)$. Set

$$
\begin{aligned}
n_{i, j}= & \mid\left\{\overline{\left.\gamma_{0}, \gamma_{i}\right\}} \cap \Delta_{j}\left(\gamma_{0}\right) \mid .\right. \text { Then: } \\
& \begin{array}{|c|ccccccccccccc|}
\hline j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline n_{1, j}, n_{2, j} & 1 & 3 & 6 & 9 & 9 & 10 & 12 & 10 & 9 & 9 & 6 & 3 & 1 \\
n_{3, j}, n_{4, j} & 1 & 5 & 9 & 13 & 13 & 13 & 18 & 13 & 13 & 13 & 9 & 5 & 1 \\
n_{5, j}, n_{6, j} & 1 & 6 & 14 & 17 & 25 & 29 & 26 & 29 & 25 & 17 & 14 & 6 & 1 \\
n_{7, j}, n_{8, j} & 1 & 3 & 5 & 6 & 6 & 7 & 7 & 8 & 7 & 7 & 5 & 3 & 1 \\
n_{9, j}, n_{10, j} & 1 & 5 & 12 & 15 & 18 & 18 & 16 & 18 & 18 & 15 & 12 & 5 & 1 \\
n_{11, j}, n_{12, j} & 1 & 3 & 5 & 7 & 7 & 8 & 7 & 7 & 6 & 6 & 5 & 3 & 1 \\
n_{13, j}, n_{14, j} & 1 & 5 & 8 & 12 & 12 & 13 & 16 & 13 & 12 & 12 & 8 & 5 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Apartments of GABs associated with $\boldsymbol{U}_{\mathbf{6}}(\mathbf{2})$ and $\mathbf{\Omega}_{\mathbf{8}}^{+}(\mathbf{2})$. The GAB's for $U_{6}(2)$ and $\Omega_{8}^{+}(2)$ possesses apartments (see [Kantor 1981]), viewed as the fixed chambers of T. For $U_{6}(2)$ we take T to be a cyclic group of order 4 , and for $\Omega_{8}^{+}(2)$ we take T to be an elementary abelian group order 4, see [Kantor 1981]. In both cases the apartments are isomorphic and have diameter 8 . They also have the property that the distance between any two chambers in the apartment (as measured in the apartment) is the same as in the chamber graph. So this is something one expects from a building. However, for $\Omega_{8}^{+}(2)$ the diameter of its chamber graph is 9 , so not equal to the diameter of the apartment - unlike the situation in a building.

Theorem 2.2. Suppose $G \cong \Omega_{8}^{+}(2)$, let Γ denote a $G A B$ associated to G. Set $\mathcal{C}=\mathcal{C}(\Gamma)$, and let γ_{0} be a fixed chamber of \mathcal{C}. Put $B=\operatorname{Stab}_{G}\left(\gamma_{0}\right)$.

An apartment, \mathcal{A}, of Γ containing γ_{0} cuts the discs as follows.

Disc i of $\mathcal{C}(\Gamma)$	0	1	2	3	4	5	6	7	8	9
$\left\|\mathcal{A} \cap \Delta_{i}\left(\gamma_{0}\right)\right\|$	1	3	5	8	11	13	13	8	2	0

Let $\mathcal{A} \cap \Delta_{8}\left(\gamma_{0}\right)=\left\{\gamma_{1}, \gamma_{2}\right\}$. For $j=1,2$ the geodesic closure of the γ_{0}, γ_{j} cuts the discs as follows.

Disc i of $\mathcal{C}(\Gamma)$	0	1	2	3	4	5	6	7	8
$\left\|\left\{\overline{\gamma_{0}, \gamma_{j}}\right\} \cap \Delta_{i}\left(\gamma_{0}\right)\right\|$	1	3	4	4	4	4	4	3	1

The graphs on the next page are the geodesic closures $\overline{\left\{\gamma_{0}, \gamma_{1}\right\}}$ and $\overline{\left\{\gamma_{0}, \gamma_{2}\right\}}$. The type of adjacency between two connected chambers is shown by the labelling on the edges, where

The set of chambers in both geodesic closures are subsets of the apartment. The intersection between $\overline{\left\{\gamma_{0}, \gamma_{1}\right\}}$ and $\overline{\left\{\gamma_{0}, \gamma_{2}\right\}}$ has size 18 and the chambers that lie in both geodesic closures are labelled with squares rather than circles.

Geodesic closures (see Theorem 2.2).

Theorem 2.3. Suppose $G \cong U_{6}(2)$, and let Γ denote a GAB associated to G. Set $\mathcal{C}=\mathcal{C}(\Gamma)$, and let γ_{0} be a fixed chamber of \mathcal{C}. Put $B=\operatorname{Stab}_{G}\left(\gamma_{0}\right)$.

An apartment, \mathcal{A}, of Γ containing γ_{0} cuts the discs as follows.

| Disc i of $\mathcal{C}(\Gamma)$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\left\|\mathcal{A} \cap \Delta_{i}\left(\gamma_{0}\right)\right\|$ | 1 | 3 | 5 | 8 | 11 | 13 | 13 | 9 | 1 |

Let $\mathcal{A} \cap \Delta_{8}\left(\gamma_{0}\right)=\left\{\gamma^{\prime}\right\}$. The geodesic closure of $\gamma_{0}, \gamma^{\prime}$ cuts the discs as follows.

Disc i of $\mathcal{C}(\Gamma)$	0	1	2	3	4	5	6	7	8
$\left\|\left\{\overline{\gamma_{0}, \gamma^{\prime}}\right\} \cap \Delta_{i}\left(\gamma_{0}\right)\right\|$	1	3	4	4	4	4	4	3	1

The graph for the geodesic closure of the only B-orbit in the last disc of the apartment in the $G A B$ of $U_{6}(2)$ is identical to the first diagram on page 197.

Again, the set of chambers in the geodesic closure in Theorem 2.3 is a proper subset of the apartment (once more not very building like).

Maximal opposite sets. A maximal opposite set of chambers is a set of chambers of maximal size subject to having the property that any two chambers are opposite to each other, meaning that their distance apart is the diameter of the graph.
Theorem 2.4. If $G \cong G_{2}(3)$ and Γ has diagram

then a maximal opposite set of chambers consists of three chambers.
Proof. Suppose $G \cong G_{2}(3)$ and Γ has diagram

Since $G_{\gamma_{0}}$ is transitive on $\Delta_{13}\left(\gamma_{0}\right)$, we may assume our maximal opposite set contains $\left\{\gamma_{0}, \gamma_{1}\right\}$, where $\gamma_{1} \in \Delta_{13}\left(\gamma_{0}\right)$ is the chamber corresponding to $B * D B[149]$ (the right coset of B containing $D B[149]$). We identify a chamber γ with the triple $\left\{F_{1}(\gamma), F_{2}(\gamma), F_{3}(\gamma)\right\}$ which corresponds to a point-line-quad triple. Using the action of B, we determine $\Delta_{13}\left(\gamma_{0}\right)$, and by applying $D B[149]$ to this set we obtain $\Delta_{13}\left(\gamma_{1}\right)$. We can then see that $\left|\Delta_{13}\left(\gamma_{0}\right) \cap \Delta_{13}\left(\gamma_{1}\right)\right|=1$. If we take $\gamma_{2} \in \Delta_{13}\left(\gamma_{0}\right) \cap \Delta_{13}\left(\gamma_{1}\right)$ we can see that $\left|\Delta_{13}\left(\gamma_{0}\right) \cap \Delta_{13}\left(\gamma_{1}\right) \cap \Delta_{13}\left(\gamma_{2}\right)\right|=0$, and so $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}\right\}$ is a maximal opposite set.
Theorem 2.5. If $G \cong G_{2}(3)$ and Γ has diagram

then each choice of the B-orbits in the last disc gives rise to a maximal opposite set of chambers consisting of four chambers. In particular all maximal opposite sets consist of four chambers.

Proof. We proceed as in Theorem 2.4, starting with γ_{0} but then there are 14 possible choices of $\gamma_{1} \in \Delta_{12}\left(\gamma_{0}\right)$ (one from each B-orbit in $\Delta_{12}\left(\gamma_{0}\right)$). We give the details for γ_{1} being the chamber corresponding to $B * D B[8]$ (the right coset of B containing $D B[8])$. We use MAGMA to calculate $\Delta_{12}\left(\gamma_{1}\right)$ and find that $\Delta_{12}\left(\gamma_{0}\right) \cap \Delta_{12}\left(\gamma_{1}\right)$ is comprised of 21 chambers. One of these 21 chambers, γ_{2}, has the property that $\left|\Delta_{12}\left(\gamma_{0}\right) \cap \Delta_{12}\left(\gamma_{1}\right) \cap \Delta_{12}\left(\gamma_{2}\right)\right|=2$. Two of the other twenty chambers give rise to
an intersection of 1 and the others to 0 . Taking γ_{3} to be either of the chambers in $\Delta_{12}\left(\gamma_{0}\right) \cap \Delta_{12}\left(\gamma_{1}\right) \cap \Delta_{12}\left(\gamma_{2}\right)$ we find that $\Delta_{12}\left(\gamma_{0}\right) \cap \Delta_{12}\left(\gamma_{1}\right) \cap \Delta_{12}\left(\gamma_{2}\right) \cap \Delta_{12}\left(\gamma_{3}\right)=\varnothing$. Hence γ_{1} is contained in a maximal opposite set with four chambers, so proving the theorem.

Perhaps the most surprising overall result was how unalike the chamber graphs of buildings and the chamber graphs of these GABs appear. In [Carr and Rowley 2018] and [Rowley 2009] all the geometries investigated were in some sense "building like", indeed their chamber graphs had at most two B-orbits in their final disc. The only GAB investigated here displaying this type of behaviour was $G_{2}(3)$ with diagram

There were also differences by other measures. For the two groups, $\Omega_{8}^{+}(2)$ and $U_{6}(2)$ possessing apartments we found that the geodesic closures were proper subsets of the apartments rather than being equal. Furthermore the apartment of $\Omega_{8}^{+}(2)$ did not even span the whole diameter of the chamber graph as it would were it a building.

Perhaps it would be of interest to try and characterise why a limited number of these GABs have so few B-orbits in their last disc while most have so many. Could it be that there is a more unifying lens through which to view these chamber graphs that would justify the name "geometries that are almost buildings"?

References

[Aschbacher and Smith 1983] M. Aschbacher and S. D. Smith, "Tits geometries over GF(2) defined by groups over GF(3)", Comm. Algebra 11:15 (1983), 1675-1684. MR Zbl
[Buekenhout 1979a] F. Buekenhout, "Diagrams for geometries and groups", J. Combin. Theory Ser. A 27:2 (1979), 121-151. MR Zbl
[Buekenhout 1979b] F. Buekenhout, "On the geometry of diagrams", Geom. Dedicata 8:3 (1979), 253-257. MR Zbl
[Buekenhout 1995] F. Buekenhout, "Foundations of incidence geometry", pp. 63-105 in Handbook of incidence geometry, North-Holland, Amsterdam, 1995. MR
[Cannon and Playoust 1997] J. J. Cannon and C. Playoust, "An introduction to algebraic programming with Magma", draft, 1997.
[Carr and Rowley 2018] E. L. Carr and P. J. Rowley, "Chamber graphs of minimal parabolic geometries of type M_{24} ", preprint, Manchester University, 2018, http://eprints.maths.manchester.ac.uk/ 2647.
[Connor 2011] T. Connor, The sporadic group of Suzuki and apartments in coset geometries, Masters dissertation, Université Libre de Bruxelles, Brussels, 2011.
[Cooperstein 1989] B. N. Cooperstein, "A finite flag-transitive geometry of extended G_{2}-type", $E u$ ropean J. Combin. 10:4 (1989), 313-318. MR Zbl
[Kantor 1981] W. M. Kantor, "Some geometries that are almost buildings", European J. Combin. 2:3 (1981), 239-247. MR Zbl
[Kantor 1985] W. M. Kantor, "Some exceptional 2-adic buildings", J. Algebra 92:1 (1985), 208-223. MR Zbl
[Kantor 1986] W. M. Kantor, "Generalized polygons, SCABs and GABs", pp. 79-158 in Buildings and the geometry of diagrams (Como, 1984), Lecture Notes in Math. 1181, Springer, 1986. MR Zbl
[Ronan 2009] M. Ronan, Lectures on buildings, updated and revised ed., University of Chicago Press, 2009. MR Zbl
[Ronan and Smith 1980] M. A. Ronan and S. D. Smith, "2-local geometries for some sporadic groups", pp. 283-289 in The Santa Cruz Conference on Finite Groups (Santa Cruz, 1979), edited by B. Cooperstein and G. Mason, Proc. Sympos. Pure Math. 37, Amer. Math. Soc., Providence, RI, 1980. MR Zbl
[Rowley 1998] P. Rowley, "Chamber graphs of some sporadic group geometries", pp. 249-260 in The atlas of finite groups: ten years on (Birmingham, 1995), London Math. Soc. Lecture Note Ser. 249, Cambridge Univ. Press, 1998. MR Zbl
[Rowley 2009] P. Rowley, "The chamber graph of the M_{24} maximal 2-local geometry", LMS J. Comput. Math. 12 (2009), 120-143. MR Zbl
[Rowley 2010] P. J. Rowley, "Disc structure of certain chamber graphs", Innov. Incidence Geom. 11 (2010), 69-93. MR Zbl
[Tits 1974] J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics 386, Springer, 1974. MR Zbl
[Tits 1981] J. Tits, "A local approach to buildings", pp. 519-547 in The geometric vein, Springer, 1981. MR Zbl
[Yoshiara 1988] S. Yoshiara, "A lattice theoretical construction of a GAB of the Suzuki sporadic simple group", J. Algebra 112:1 (1988), 198-239. MR Zbl

Received 13 Sep 2017. Revised 10 Feb 2019.

Veronica Kelsey:

veronicakelsey@live.com
School of Mathematics and Statistics, University of St. Andrews, St. Andrews, KY16 9SS, United Kingdom

Peter Rowley:

peter.j.rowley@manchester.ac.uk
School of Mathematics, Manchester University, Manchester, M13 6PL, United Kingdom

Innovations in Incidence Geometry
 msp.org/iig

MANAGING EDITOR
Tom De Medts Ghent University
tom.demedts@ugent.be
Linus Kramer Universität Münster
linus.kramer@wwu.de
Klaus Metsch Justus-Liebig Universität Gießen
klaus.metsch@math.uni-giessen.de
Bernhard Mühlherr Justus-Liebig Universität Gießen
bernhard.m.muehlherr@math.uni-giessen.de
Joseph A. Thas Ghent University
thas.joseph@gmail.com
Koen Thas Ghent University
koen.thas@gmail.com
Hendrik Van Maldeghem Ghent University
hendrik.vanmaldeghem@ugent.be
HONORARY EDITORS

Jacques Tits
Ernest E. Shult \dagger

EDITORS

Peter Abramenko
Francis Buekenhout
Philippe Cara
Antonio Cossidente
Hans Cuypers
Bart De Bruyn
Alice Devillers
Massimo Giulietti
James Hirschfeld
Dimitri Leemans
Oliver Lorscheid
Guglielmo Lunardon
Alessandro Montinaro
James Parkinson Antonio Pasini
Valentina Pepe
Bertrand Rémy
Tamás Szonyi
University of Virginia
Université Libre de Bruxelles
Vrije Universiteit Brussel
Università della Basilicata
Eindhoven University of Technology
University of Ghent
University of Western Australia
Università degli Studi di Perugia
University of Sussex
Université Libre de Bruxelles
Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Università di Napoli "Federico II"
Università di Salento
University of Sydney
Università di Siena (emeritus)
Università di Roma "La Sapienza"
École Polytechnique
ELTE Eötvös Loránd University, Budapest

PRODUCTION

Silvio Levy (Scientific Editor)
production@msp.org

See inside back cover or msp.org/iig for submission instructions.
The subscription price for 2019 is US $\$ 275 /$ year for the electronic version, and $\$ 325 /$ year $(+\$ 15$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial (ISSN 2640-7345 electronic, 26407337 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

IIG peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
Innovation in Incidence Geometry
Vol. 17 No. 3 2019
Chamber graphs of some geometries that are almost buildings 189 Veronica Kelsey and Peter Rowley
Groups of compact 8-dimensional planes: conditions implying the 201
Lie property
Helmut R. Salzmann
On two nonbuilding but simply connected compact Tits geometries 221 of type C_{3}
Antonio Pasini

[^0]: Kelsey was supported by LMS Undergraduate Research Bursary 16-17 01.
 MSC2010: primary 51E24; secondary 05B25.
 Keywords: chamber graphs, geometries, almost buildings.

