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Abstract

Let F be Cayley’s ruled cubic surface in a projective three-space over
any commutative field K. We determine all collineations fixing F , as a set,
and all cubic forms defining F . For both problems the cases |K| = 2, 3

turn out to be exceptional. On the other hand, if |K| ≥ 4 then the set of
simple points of F can be endowed with a non-symmetric distance function.
We describe the corresponding circles, and we establish that each isometry
extends to a unique projective collineation of the ambient space.
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1 Introduction

We investigate Cayley’s ruled cubic surface F in a three-dimensional projective
space over an arbitrary commutative ground field K. It is fairly obvious that
“most” of the results that are known from the classical case (K = R,C) will
remain valid. However, a closer look shows that the situation is sometimes
rather intricate.

In Section 3 we determine all collineations of the Cayley surface. If |K| ≤ 3

then there are “more” such collineations than in the general case. From the
proof of this result it is immediate that for |K| ≤ 3 there are non-proportional
cubic forms defining F . However, that proof does not answer the question of
finding all such cubic forms to within a non-zero factor. We pay attention to
this question, since it governs the interplay between incidence geometry and
algebraic geometry. In Section 4 we show that the number of solutions to this
problem equals 64 if |K| = 2, two if |K| = 3, and one otherwise. Our first
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attempt was to solve this problem by “brute force” with the help of a computer
algebra system. However, due to the presence of polynomial identities of high
degree, we could not succeed without assuming |K| being rather large. There-
fore, in our current approach, we first use a lot of geometric reasoning before
we enter the realm of algebra. In this way we obtain the result for |K| ≥ 3. By
virtue of a theorem due to G. TALLINI [12], it is easy to treat the remaining case
|K| = 2.

The Cayley surface has an interesting “inner geometry” which can be based
upon a distance function appearing (in the real case) in an article of H. BRAUNER

[4]. In Section 5, using a completely different, purely geometrical approach, we
generalize this distance function to the case of an arbitrary ground field K with
more than three elements. Our distance function δ fits into the very general
concepts developed by W. BENZ [1]. It is non-symmetric; this means that the
distance from A to B is in general not the distance from B to A. It will be
established that δ is a defining function for the group of automorphic projective
collineations of the Cayley surface.

Occasionally, we shall also come across phenomena reflecting the character-
istic of the ground field, like the presence of a line of nuclei in case charK = 3

(cf. formula (24)), or the absence of circles with more than one mid-point in
case of charK = 2 (cf. Proposition 5.3).

2 Preliminaries

Throughout this article we consider the three-dimensional projective space P3(K)

over a commutative field K. The points of P3(K) are the one-dimensional sub-
spaces of the column spaceK4×1, viz. they are of the formKpwith (0, 0, 0, 0)T 6=
p = (p0, p1, p2, p3)T ∈ K4×1.

Let K[X0, X1, X2, X3] be the polynomial ring which arises from K by ad-
joining independent indeterminates X0, X1, X2, X3. We shall use the shorthand
X := (X0, X1, X2, X3). Each polynomial g(X) ∈ K[X] determines a polyno-
mial function

K4×1 → K : (p0, p1, p2, p3)T 7→ g(p0, p1, p2, p3). (1)

SinceK may be a finite field, it is necessary to distinguish between a polynomial
and the associated polynomial function. We shall mainly be concerned with
homogeneous polynomials (forms) in K[X]. By virtue of (1), the subspace of
homogeneous polynomials of degree one in K[X] is in bijective correspondence
with the space of linear mappings K4×1 → K (the dual space of K4×1), which
in turn can be viewed as the row space K1×4. This bijection allows to identify
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K[X] with the symmetric algebra on the row space K1×4; cf., for example,
[6, pp. 155–156].

We refer to [8, pp. 48–51] for those basic notions of algebraic geometry
which will be used in this paper. However, our notation differs from [8], as we
write, for example,

V
(
g1(X), . . . , gr(X)

)
:=
{
Kp ∈ P3(K) | g1(p) = · · · = gr(p) = 0

}

for the set of K-rational points of the variety given by homogeneous polynomi-
als g1(X), g2(X), . . . , gr(X) ∈ K[X].

The plane ω := V(X0) will be considered as plane at infinity, thus turning
P3(K) into a projectively closed affine space. Finally, letQi := K(δ0i, δ1i, δ2i, δ3i)

T,
where δji is the Kronecker delta and i ∈ {0, 1, 2, 3}, be the base points of the
standard frame of reference.

Let us turn to Cayley’s ruled cubic surface or, for short, the Cayley surface. It
is, to within projective collineations, the point set F := V

(
f(X)

)
, where

f(X) := X0X1X2 −X3
1 −X2

0X3 ∈ K[X]. (2)

We collect some of its properties (see [3], [4], and [10] for the classical case):
The parametrization

K2 → P3(K) : (u1, u2) 7→ K(1, u1, u2, u1u2 − u3
1)T =: P (u1, u2) (3)

is injective, and its image coincides with F \ ω (the affine part of F ). The
intersection

F ∩ ω = V(X0, X1) =: g∞ (4)

is a line. By the above, the Cayley surface has |K|2 + |K| + 1 points; cf.
[9, Teorema 6]. Hence, in case of a finite ground field, it does not fit into the
characterizations given by G. TALLINI [11]. The plane V(X3) meets F along the
line V(X1, X3) and the parabola

l := V(X0X2 −X2
1 , X3). (5)

The mapping

β : l → g∞ : K(s2
0, s0s1, s

2
1, 0)T 7→ K(0, 0, s0, s1)T, (6)

where (0, 0) 6= (s0, s1) ∈ K2, is projective, and each point of l is distinct from
its image point. Let g(s0, s1) denote the line joining the two points given in (6).
Thus, in particular, we obtain g(0, 1) = g∞.

It is immediate that every line g(s0, s1) is a generator of F , i.e., it is contained
in F . Conversely, let h ⊂ F be a line. If h ⊂ ω then h = g∞, by (4). Otherwise,
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h has a unique point at infinity which necessarily belongs to g∞. The plane
which is spanned by h and g∞ has the form π = V(a0X0 − X1) with a0 ∈ K.
The intersection F ∩ π is given by

V
(
a0X0 −X1, X

2
0 (a0X2 − a3

0X0 −X3)
)
, (7)

whence it consists of two distinct lines. This shows F ∩ π = g∞ ∪ h and h =

g(1, a0).

According to (6), the line g∞ is not only a generator of F , but also a di-
rectrix, as it has non-empty intersection with every generator. Each point of
g∞, except the point Q3, is on precisely two generators of F ; each affine point
of F is incident with precisely one generator. Thus the projectivity (6) can be
used to “generate” the Cayley surface in a purely geometric way. This is nicely
illustrated in [10, p. 89] for the real projective three-space.

3 Automorphic collineations of F

Each matrix M = (mij)0≤i,j≤3 ∈ GL4(K) acts on the row space K1×4 by multi-
plication from the right hand side. By identifying each row vector (d0, d1, d2, d3)

in K1×4 with d0X0 + d1X1 + d2X2 + d3X3 ∈ K[X], the matrix M yields a lin-
ear bijection of the subspace of homogeneous polynomials of degree one; in
particular,

Xi 7→
3∑

j=0

mijXj for i ∈ {0, 1, 2, 3}. (8)

By the universal property of symmetric algebras, this linear bijection extends
to a K-algebra automorphism of K[X]; cf., e.g., [6, p. 156]. Thus, altogether,
GL4(K) acts on K[X].

On the other hand, M acts on the column space K4×1 by left multiplication,
and therefore as a projective collineation on P3(K). Given a form g(X) ∈ K[X]

and its image under M , say h(X), this collineation takes V
(
h(X)

)
to V

(
g(X)

)
,

since g(M · p) = h(p) for all p ∈ K4×1. If, moreover, h(X) ∼ g(X), i.e.,
the polynomials are proportional by a non-zero scalar in K, then V

(
g(X)

)
=

V
(
h(X)

)
.

The following result holds:

Lemma 3.1. The set of all matrices

Ma,b,c :=




1 0 0 0

a c 0 0

b 3 ac c2 0

ab− a3 bc ac2 c3


 (9)
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where a, b ∈ K and c ∈ K× := K\{0} is a group, sayG(F ), under multiplication.
Each matrix in G(F ) leaves invariant the cubic form f(X) = X0X1X2 − X3

1 −
X2

0X3 to within the factor c3. Consequently, the group G(F ) acts on F as a group
of projective collineations.

Proof. We obtain, for all a, b, c, x, y, z ∈ K with c, z 6= 0, M−1
a,b,c = Ma′,b′,c′ ,

where a′ := −ac−1, b′ := (3a2−b)c−2, c′ := c−1, and Ma,b,c ·Mx,y,z = Ma′′,b′′,c′′ ,
where a′′ := a+ cx, b′′ := b+ 3acx+ c2y, c′′ := cz. The rest is a straightforward
calculation: By (8), the image of f(X) under the action ofMa,b,c equals c3f(X).

Lemma 3.2. For each automorphism ζ ∈ Aut(K) the collineation P3(K) →
P3(K) : K(p0, p1, p2, p3)T 7→ K

(
ζ(p0), ζ(p1), ζ(p2), ζ(p3)

)T leaves invariant the
Cayley surface F .

Proof. Observe that all coefficients of the polynomial f(X) are in the prime
field of K, whence they are fixed under ζ. Therefore f(p) = f

(
ζ(p)

)
for all

p ∈ K4×1.

We now turn to the problem of finding all automorphic collineations of F .
The following lemma is preliminary, a stronger result will be established in The-
orem 5.4.

Lemma 3.3. The group G(F ) acts transitively on F \ g∞.

Proof. We fix the base point Q0 ∈ F \ g∞. By (2), an arbitrarily chosen affine
point of F has the form P (u1, u2) with (u1, u2) ∈ K2. Hence the matrixMu1,u2,1

takes Q0 = P (0, 0) to P (u1, u2), and the assertion follows.

We remark that {Ma,b,1 | a, b ∈ K} is a commutative subgroup of G(F ). By
the previous proof, this group acts regularly on F \ g∞. Summing up our three
lemmas, we obtain

Proposition 3.4. Each collineation κ of P3(K) which fixes the Cayley surface F
can be written as κ = κ3 ◦ κ2 ◦ κ1, where κ1 is given as in Lemma 3.2, κ2 is a
projective collineation which stabilizes F and the base point Q0 = K(1, 0, 0, 0),
and κ3 is induced by a matrix in G(F ).

We are thus lead to our first main result:

Theorem 3.5. Let Stab(F,Q0) be the group of all projective collineations of P3(K)

which stabilize F and the base point Q0. Depending on the ground field K, this
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stabilizer is determined by the following subgroups of GL4(K).

|K| = 2 : {M0,0,1, N}, (10)

|K| = 3 : {M0,0,c, Nc | c ∈ K×}, (11)

|K| ≥ 4 : {M0,0,c | c ∈ K×}, (12)

where

N :=




1 0 0 0

0 1 0 0

0 1 1 0

0 1 0 1


 and Nc :=




1 0 0 0

0 c 0 0

0 0 2 0

0 c 0 2c


 . (13)

Proof. Let σ ∈ Stab(F,Q0). We saw at the end of Section 2 that only the points
of g∞ \ {Q3} are on two distinct generators, whereas each other point of F is
incident with one generator only. Thus σ(g∞) = g∞, and σ(Q3) = Q3. Also, ω
is the only plane through g∞ which does not contain a second generator, so that
σ(ω) = ω. Also, since Q0 is fixed, so is the only generator g(1, 0) through this
point, whence g(1, 0) ∩ g∞, i.e. the base point Q2, is fixed too. Consequently, σ
is induced by a lower triangular matrix

(xij) =




1 0 0 0

0 x11 0 0

0 x21 x22 0

0 x31 0 x33


 ∈ GL4(K).

It remains to determine the unknown entries of this matrix, where obviously

det(xij) = x11x22x33 6= 0. (14)

First, fix a scalar t ∈ K× and consider the generator g(1, t). There is an s ∈ K×
such that σ

(
g(1, t)

)
= g(1, s). Thus for each λ ∈ K exists an element µ ∈ K

with σ(K(1, t, t2 + λ, λt)T) = K(1, s, s2 + µ, µs)T. So

x11t = s, (15)

x21t+ x22

(
t2 + λ

)
= s2 + µ, (16)

x31t+ x33λt = µs. (17)

We divide (17) by s, subtract it then from (16), and substitute s = x11t accord-
ing to (15). Hence

x21t+ x22t
2 − x31

x11
+

(
x22 −

x33

x11

)
λ = x2

11t
2 for all λ ∈ K. (18)

This implies
x33 = x11x22. (19)
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Next, we assume t to be variable, whence (18) gives
(
x22 − x2

11

)
t2 + x21t−

x31

x11
= 0 for all t ∈ K×. (20)

According to the cardinality of K there are three cases:

|K| = 2. By (14), x11 = x22 = x33 = 1 and (20) reads x21 · 1 = x31, so that
(xij) = M0,0,1 or (xij) = N .

|K| = 3. Then x2
11 = 1 = t2 for t ∈ {1, 2} = K×, and there are two possibilities:

(i) x22 = 1, whence (20) reads x21t − x31/x11 = 0 for t ∈ {1, 2}, so that
x21 = x31 = 0, and (xij) = M0,0,c with c := x11. (ii) x22 = 2, whence
(20) turns into 1 · 1 + x21t − x31/x11 = 0 for t ∈ {1, 2}, so that x21 = 0,
x31 = x11, and (xij) = Nc with c := x11.

|K| ≥ 4. From |K×| ≥ 3 and (20) follows x22 = x2
11, x21 = x31 = 0, and

(xij) = M0,0,c with c := x11.

In either case it is easy to see that the given matrices form a subgroup of
GL4(K).

We denote byGext(F ) the extended group of the Cayley surface, i.e. the group
of all matrices (xij)0≤i,j≤3 ∈ GL4(K), subject to the condition x00 = 1, leaving
invariant the Cayley surface F . By the first paragraph of the previous proof, each
automorphic projective collineation of F is induced by precisely one matrix in
Gext(F ). Furthermore, for |K| ≥ 4, we have G(F ) = Gext(F ), whereas for
|K| ≤ 3 the groups G(F ) and Gext(F ) are distinct, since none of the matrices N
and Nc is in G(F ). We are thus lead to the following result:

Proposition 3.6. Let

f(|K|)(X) :=

{
X0X

2
1 +X0X1X2 +X3

1 +X2
0X1 +X2

0X3 when |K| = 2,

2X0X1X2 + 2X3
1 + 2X2

0X1 +X2
0X3 when |K| = 3.

(21)

Then, for |K| ≤ 3, the Cayley surface F = V
(
f(X)

)
coincides with V

(
f(|K|)(X)

)
.

Proof. Let |K| = 2. The image of f(X) under the action of N gives the poly-
nomial f(2)(X). Likewise, for |K| = 3, the polynomial f(3)(X), multiplied by
c ∈ {1, 2}, arises as the image of f(X) under the action of Nc.

Observe that here “to coincide” just refers to sets of points and not to al-
gebraic varieties in the sense of [8, p. 48]. Thus, for |K| ≤ 3, the point
set of the Cayley surface F may also be considered as the algebraic curve
V
(
f(X), f|K|(X)

)
.
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4 All cubic forms defining F

In discussing the Cayley surface F we have to distinguish between properties
which stem from the defining polynomial f(X) and geometric properties, i.e.,
properties which are invariant with respect to the action of the group Gext(F ).
First, we recall some notions which can be defined in terms of f(X). Let ∂i :=
∂
∂Xi

. We start by calculating the partial derivatives

∂0f(X) = X1X2 − 2X0X3, ∂1f(X) = X0X2 − 3X2
1 ,

∂2f(X) = X0X1, ∂3f(X) = −X2
0 .

(22)

They vanish simultaneously at (p0, p1, p2, p3)T ∈ K4×1 if, and only if, at least
one of the following conditions holds:

p0 = p1 = 0; (23)

p0 = p2 = 0 and charK = 3. (24)

When K is a field of characteristic charK = 3 then, by (24), V(X0, X2) is a
distinguished line in the ambient space of the Cayley surface F . Each of its
points is a nucleus of F . See [8, p. 50] and [5, Proposition 3.17], where nuclei
are defined in a slightly different way. All points subject to (23) are singular;
they comprise the line g∞ ⊂ F . We obtain, for all s2, s3 ∈ K, that

f
(
(0, 0, s2, s3) + TX

)
= T 2X0(s2X1 − s3X0) + T 3(∗) ∈ K[X, T ].

Hence all points of g∞ are double points. The tangent cone (see [8, p. 49],
where the term tangent space is used instead) at a point Y = K(0, 0, s2, s3)T,
(s2, s3) 6= (0, 0), is

V
(
X0(s2X1 − s3X0)

)
, (25)

whence we refer to the plane at infinity as the tangent plane at Y = Q3. For
Y = K(0, 0, 1, s3)T the tangent cone is the union of the plane at infinity and the
plane spanned by g∞ and the generator g(1, s3). We call each of these planes a
tangent plane at Y . By (22), all points of F \ g∞ are simple. The tangent plane
at P (u1, u2) (see (3)) equals

V
(
(2u3

1 − u1u2)X0 + (−3u2
1 + u2)X1 + u1X2 −X3

)
. (26)

Next, we present a characterization of tangent planes:

Proposition 4.1. Let τ = V
(∑3

i=0 aiXi

)
, where ai ∈ K, be a plane. Then the

following assertions are equivalent.

(a) τ is a tangent plane of F with respect to f(X).
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(b) The coefficients ai satisfy the equation a0a
2
3 − a1a2a3 + a3

2 = 0.

(c) τ contains a generator of F .

Proof. (a) ⇒ (b): If τ is the tangent plane at an affine point of F then the
coefficients ai are proportional to the coefficients of a polynomial as in (26),
otherwise we obtain a2 = a3 = 0. In any case (b) holds.

(b) ⇒ (c): If a3 = 0 then so is a2. Consequently g∞ ⊂ τ . If a3 6= 0 then we
may let w.l.o.g. a3 = −1, whence g(1, a2) ⊂ τ .

(c)⇒ (a): This is immediate from (25) and (26).

By (b), the set of all tangent planes with respect to f(X) is a Cayley surface
in the dual projective space. In view of (26), it is somewhat surprising that this
holds irrespective of the characteristic of K.

Clearly, the notions from the above are not independent of the homogeneous
polynomial which is used for defining F . For example, we have F = V

(
f(X)2

)
,

but no point of F is simple with respect to f(X)2. However, by restricting
ourselves to cubic forms defining F , we obtain the next two theorems.

Theorem 4.2. Let |K| ≥ 3 and suppose that p(X) ∈ K[X] is a cubic form such
that V

(
p(X)

)
equals the Cayley surface F = V

(
f(X)

)
. Then p(X) ∼ f(X) or,

only for |K| = 3, p(X) ∼ f3(X), where f3(X) is given by (21).

Proof. (a) Suppose that p(X) =
∑

0≤i≤j≤k≤3 aijkXiXjXk is a form of degree
three such that V

(
p(X)

)
= F . We aim at finding the twenty coefficients aijk

to within a common non-zero factor, and we adopt the following convention:
Within this proof, concepts like “simple point”, “double point”, “intersection
multiplicity”, and “tangent plane” are tacitly understood with respect to p(X),
unless explicitly stated otherwise.

Obviously, Q0, Q2, Q3 ∈ F , whereas Q1 /∈ F . Hence

a111 6= a000 = a222 = a333 = 0.

The line g(1, 0) is on F , whence p
(
(1, 0, t, 0)T

)
= t(a002 + a022t) = 0 for all

t ∈ K. From |K| ≥ 3, we obtain

a002 = a022 = 0.

Likewise, g∞ ⊂ F forces
a223 = a233 = 0.

(b) We proceed by establishing four auxiliary results:
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(I) Each affine point Y ∈ F is simple. It suffices to show that there exists
a line m 3 Y such that |m ∩ F | = 3, since such a line meets F at Y with
multiplicity one. First, let Y = Q0. We consider the line m0, say, joining Q0 and
K(0, 1, α+ 1, α)T /∈ F , where α ∈ K \ {0, 1}; such an α exists by |K| ≥ 3. The
intersection m0 ∩ F equals the set of all points K

(
1, ξ, ξ(α + 1), ξα

)T
, ξ ∈ K,

with

f
(
(1, ξ, ξ(α+ 1), ξα)T

)
= ξ2(α+ 1)− ξ3 − ξα = −ξ(ξ − 1)(ξ − α) = 0.

Hence m0 has the required property. By the transitive action of G(F ) on F \g∞,
the assertion follows for all Y ∈ F \ g∞.

(II) V(X3) is the tangent plane of at least one affine point, say R, on g(1, 0).
We know from (5) that F ∩ V(X3) is the union of the generator g(1, 0) and the
parabola l. Hence p(X) = q(X)X1 +X3(∗), where

q(X) = a001X
2
0 + a011X0X1 + a012X0X2 + a111X

2
1 + a112X1X2 + a122X

2
2 .

The planar quadric l̃ := V(q(X), X3) and the parabola l have the same points
outside the line g(1, 0). There are at least two such points because of |l| =

|K| + 1 ≥ 4. Therefore |l̃| ≥ 2. It is well known that a planar quadric with at
least two points is either a (non-degenerate) conic, a pair of distinct lines, or a
repeated line. As g(1, 0) is the only line contained in F ∩ V(X3), we see that l̃
has to be a conic. If |K| is finite then |l| = |l̃| implies that |g(1, 0) ∩ l̃| = 2; thus
we can choose a point R ∈

(
g(1, 0) ∩ l̃

)
\ ω. If |K| is infinite then l and l̃ have

infinitely many common points outside g(1, 0). So we obtain l = l̃, and we let
R := Q0. In any case, the tangent plane of F at R contains the tangent of l̃ at R
(which is also a tangent of F with respect to p(X)), and the generator g(1, 0).
As these two lines do not coincide, the tangent plane of F at R is V(X3).

(III) The tangent plane at each affine point of F does not pass through Q3.
The planar section F ∩ V(X1) consists precisely of the two lines g(1, 0) and g∞.
Therefore

p(X) = X0 (a003X0 + a023X2 + a033X3)︸ ︷︷ ︸
=: r(X)

X3 +X1(∗),

where r(X) ∼ X0 or r(X) ∼ X3, whence

a023 = 0. (27)

Moreover, precisely one of the coefficients a003 and a033 vanishes. We claim that

a003 6= a033 = 0. (28)
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Assume to the contrary that a003 = 0 6= a033. Hence we would have p(X) =

a033X0X
2
3 + X1(∗). Then the line joining Q3 with the point R ∈ g(1, 0) from

(II) would meet F at R with multiplicity two, whence the tangent plane at the
simple point R would be V(X1), a contradiction to (II).

Next, choose any affine point Y ∈ g(1, 0). The line Q3Y meets F at Y with
multiplicity one, due to (27) and (28). Thus it is not a tangent, and the assertion
follows for all affine points of g(1, 0).

Finally, consider an arbitrary affine point Y of F . By Lemma 3.3, there exists
a matrix Ma,b,c ∈ G(F ) taking Q0 to Y . Let p̃(X) be the image of p(X) under
the action of Ma,b,c. So we obtain V

(
p̃(X)

)
= F . From the above, applied to

the cubic form p̃(X), we infer that the p̃(X)-tangent plane of F at Q0 does not
pass through Q3, whence the tangent plane of F at Y does not pass through
Q3 = κ(Q3) either.

(IV) All points Z ∈ g∞ are double points of F . Let Y be an affine point of F
and Z ∈ g∞. The line Y Z is either a generator of F , or we have Y Z ∩ F =

{Y, Z}; cf. formula (7). If Y Z /∈ F then, by (III), Y Z meets F at Y and Z with
multiplicities one and two, respectively. As Y varies in F \ g∞, the lines Y Z
generate the whole space. Thus Z cannot be a simple point.

(c) The planar section F ∩ V(X0) equals the line g∞. By (IV), all points of
g∞ are double points. Thus each line at infinity 6= g∞ meets F at a point of g∞
with multiplicity three. So

X3
1 ∼ a111X

3
1 +a112X

2
1X2 +a113X

2
1X3 +a122X1X

2
2 +a123X1X2X3 +a133X1X

2
3 ,

whence
a111 6= a112 = a113 = a122 = a123 = a133 = 0.

Now we consider the line through Q3 and a point P (u1, u2), where (u1, u2) ∈
K2. Since Q3 is a double point of F , the intersection multiplicity at P (u1, u2)

equals one. This implies, for all (u1, u2) ∈ K2,

T ∼ p
(
1, u1, u2, (u1u2 − u3

1) + T
)T

= wT + a001u1 + a011u
2
1 + a012u1u2 + a111u

3
1 + w(u1u2 − u3

1) ∈ K[T ],

where we used the shorthand w := a003 + a013u1. Since w must not vanish, we
obtain

a013 = 0.

We now substitute u1 = 1 in the constant term of p
(
1, u1, u2, (u1u2−u3

1) +T
)T

.
Hence

(a003 + a012)u2 + a001 − a003 + a011 + a111 = 0 for all u2 ∈ K,
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so that
a012 = −a003.

Altogether, the constant term of p
(
1, u1, u2, (u1u2−u3

1)+T
)T

yields the identity

(−a003 + a111)u3
1 + a011u

2
1 + a001u1 = 0 for all u1 ∈ K. (29)

There are two cases:

If (29) holds trivially then a111 = a003 6= 0, a011 = a001 = 0, and p(X) ∼
f(X). This has to be the case when |K| ≥ 4.

If (29) is a non-trivial identity in u1 then, of course, |K| = 3. Up to a factor
±1, T 3+2T ∈ K[T ] is the only cubic polynomial which vanishes for all elements
of K. So we let a001 := 2, whence a111 = 1 +a003. However, a111 and a003 must
not be zero. Thus, finally, we arrive at a111 = 2 and a003 = 1, as required.

In the proof from the above we repeatedly used the assumption |K| ≥ 3. If it
is dropped then the situation changes drastically.

Theorem 4.3. Let |K| = 2 and let p(X) ∈ K[X] be a cubic form. The Cayley
surface F = V

(
f(X)

)
coincides with V

(
p(X)

)
if, and only if,

f(X)− p(X) =
∑

0≤i<j≤3

bij(X
2
i Xj +XiX

2
j ) with bij ∈ K = {0, 1}. (30)

Proof. Because of K = {0, 1}, V
(
f(X)

)
= V

(
p(X)

)
holds precisely when the

cubic form f(X) − p(X) ∈ K[X] yields the zero function on K4×1. By a result
of G. TALLINI [12, formula (1)], a cubic form in K[X] has that property if, and
only if, it is given as in (30).

By the above, we obtain 64 cubic forms p(X) for |K| = 2, and we refrain
from a further discussion.

If |K| ≤ 3 then each of the polynomials f(X) and f|K|(X) yields the same
simple (double) points and the same set of tangent planes for F . This is in accor-
dance with the characterization of tangent planes in Proposition 4.1. However,
for each simple point the two polynomials yield distinct tangent planes.

If |K| ≥ 4 then, by following ideas from the proof of (II), it is easy to recover
the unique point of tangency of a plane τ containing a generator g(1, s), s ∈ K,
but not the point Q3: We know τ ∩F = g(1, s)∪k, where k is a parabola. This k
is uniquely determined by F , because g(1, s)∩ ω is its only point at infinity, and
because there are at least three points of k outside g(1, s). Thus k meets g(1, s)

residually at the unique point of F with tangent plane τ .
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5 Isometries of the Cayley surface F

We shall assume |K| ≥ 4 throughout this section.

Two (possibly identical) points of F \ g∞ are said to be parallel if they are on
a common generator of F . This parallelism is an equivalence relation; it will be
denoted by ‖.

Let A = P (u1, u2) and B = P (v1, v2), where u1, u2, v1, v2 ∈ K, be non-
parallel points of F \ g∞. Thus u1 6= v1. The points of intersection of the line
AB and F are in one-one correspondence with the zeros in K of the polynomial

f
(
(1− T )(1, u1, u2, u1u2 − u3

1) + T (1, v1, v2, v1v2 − v3
1)
)

= T (T − 1)(u1 − v1)
(
(u1 − v1)2T − 2u2

1 + u2 + u1v1 − v2 + v2
1

)
∈ K[T ],

taking into account multiplicities. We read off that those zeros are 0, 1, and

δ(A,B) :=
2u2

1 − u2 − u1v1 + v2 − v2
1

(u1 − v1)2
. (31)

So AB ∩ F = {A,B,C} where, in terms of a cross ratio (CR), the point C is
given by

CR(C,B,A, I) = δ(A,B) with {I} := AB ∩ ω. (32)

If AB ∩ F = {A,B}, i.e. when δ(A,B) ∈ {0, 1}, our definition of C is based
upon the intersection multiplicity of AB at A and B. This can be avoided as
follows: By the last remark of the previous section, it is possible to decide in a
purely geometric way whether AB lies in the tangent plane of F at A, whence
C = A, or at B, whence C = B. (For this reason we adopted the assumption
|K| ≥ 4.)

Moreover, we define δ(A,B) = ∞ whenever A ‖ B. So we are in a position
to regard δ as a distance function

δ : (F \ g∞)× (F \ g∞)→ K ∪ {∞}.

It turns the affine part of the Cayley surface into a distance space in the sense of
W. BENZ [1, p. 33]. We obtain

δ(A,A) =∞ and δ(A,B) = 1− δ(B,A) for all A,B ∈ F \ g∞, (33)

provided that we set 1 − ∞ := ∞. This distance function can be found in a
paper by H. BRAUNER [4, p. 115] for K = R in a slightly different form. In
terms of our δ, Brauner’s distance function can be expressed as

δ̂(A,B) :=
3

2

(
1

2
− δ(A,B)

)−1

;
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the easy verification is left to the reader. However, the approach in [4] is com-
pletely different, using differential geometry and Lie groups. A major advan-
tage of δ̂ is that instead of (33) one obtains the much more suggestive formulas
δ̂(A,A) = 0 and δ̂(A,B) = −δ̂(B,A). Since we do not want to impose any re-
striction on the characteristic of the ground field, it is impossible for us to make
use of that function δ̂.

Given a point A ∈ F \ g∞ and an element ρ ∈ K ∪ {∞} we define the circle
with midpoint A and radius ρ in the obvious way as

C(A, ρ) := {Y ∈ F \ g∞ | δ(A, Y ) = ρ}.

By the extended circle E(A, ρ) we mean the circle C(A, ρ) together with its mid-
point A.

If ρ =∞ then C(A, ρ) = E(A, ρ) is the generator of F through A, but without
its point at infinity. In order to describe the remaining circles, let us introduce,
for α, β, γ ∈ K, the rationally parameterized curve

Rα,β,γ :=
{
K(1, t, α+ βt+ (γ + 1)t2, αt+ βt2 + γt3)T | t ∈ K ∪ {∞}

}
, (34)

lying on F . It is a parabola for γ = 0, a planar cubic for γ = −1, and a twisted
cubic parabola (i.e. a twisted cubic having the plane at infinity as an osculating
plane) otherwise.

Lemma 5.1. Let P (u1i, u2i), uji ∈ K with i ∈ {1, 2, 3}, be three mutually non-
parallel points of F \ g∞. Then there is a unique triad (α, β, γ) ∈ K3 such that the
curve Rα,β,γ contains the three given points.

Proof. By Lagrange’s interpolation formula, there is a unique triad (α, β, γ) ∈
K3 such that u2i = α + βu1i + (γ + 1)u2

1i for i ∈ {1, 2, 3}. Hence the assertion
follows.

We add in passing that F \ g∞ together with the affine traces of the curves
(34) is isomorphic to the affine chain geometry on the ringK[ε] of dual numbers
overK. An isomorphism is given by P (u1, u2) 7→ u1+εu2. The interested reader
should compare with [7, p. 796].

Next we describe circles and extended circles:

Proposition 5.2. Suppose that a point A = P (a1, a2), a1, a2 ∈ K, and ρ ∈ K are
given. Let

α := (ρ− 2)a2
1 + a2, β := (1− 2ρ)a1, γ := ρ. (35)

Then (α, β, γ) is the only triad in K3 such that the curve Rα,β,γ contains the circle
C(A, ρ). Moreover, the extended circle E(A, ρ) equals the set of affine points of
Rα,β,γ .
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Proof. Let Y = P (u1, u2) ∈ F \ g∞, where u1, u2 ∈ K. Using (31) for Y ∦ A,
and a direct verification otherwise, shows that Y ∈ E(A, ρ) if, and only if,

2a2
1 − a2 − a1u1 + u2 − u2

1 = ρ(a1 − u1)2

which in turn is equivalent to

u2 = (ρ− 2)a2
1 + a2 + (1− 2ρ)a1u1 + (1 + ρ)u2

1.

So E(A, ρ) = Rα,β,γ \ ω, with α, β, γ as in (35). The uniqueness of (α, β, γ) is
immediate from |C(A, ρ)| = |Rα,β,γ | − 2 = |K| − 1 ≥ 3 and Lemma 5.1.

Proposition 5.3. Given a curve Rα,β,γ , with α, β, γ ∈ K, there are three possibil-
ities.

(a) 1− 2γ 6= 0 : Rα,β,γ \ ω coincides with the extended circle E(A, ρ), where

A := P

(
β

1− 2γ
, α− (γ − 2)β2

(1− 2γ)2

)
and ρ := γ. (36)

(b) 1− 2γ = 0 6= β : Rα,β,γ \ ω is not an extended circle.

(c) 1 − 2γ = 0 = β : Rα,β,γ \ ω is an extended circle E(A, 1
2 ) for all points

A ∈ Rα,β,γ \ ω.

Proof. We distinguish three cases according to the above:

(a) We infer from (35) that Rα,β,γ \ ω = E(A, ρ), with ρ and A as in (36).

(b) Assume to the contrary that Rα,β,γ \ ω = E(A, ρ). Now 1− 2γ = 0 yields
2γ 6= 0, so that charK 6= 2 and γ = 1

2 . Applying Theorem 5.2 to C(A, ρ)

yields ρ = γ = 1
2 and, consequently, β = 0, an absurdity.

(c) We proceed as in (b) thus obtaining that charK 6= 2, ρ = γ = 1
2 , and

a2 = α + 3
2a

2
1, where a1 ∈ K can be chosen arbitrarily. This means that

every point A = P (a1, a2) of the given curve Rα,β,γ can be considered as
midpoint.

As an application of the distance function δ, we investigate various actions
of the group G(F ) arising from its action on the projective space P3(K). Given
a point P ∈ F \ g∞ and a line g ⊂ F with P 6∈ g 6= g∞ the pair (P, g) will
be called an antiflag of F \ g∞. Following [1, p. 33] an isometry of F \ g∞ is
just a mapping µ : F \ g∞ → F \ g∞ such that δ(A,B) = δ

(
µ(A), µ(B)

)
for all

A,B ∈ F \ g∞.
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Theorem 5.4. The matrix group G(F ) has the following properties:

(a) G(F ) acts on F \ g∞ as a group of isometries.

(b) G(F ) acts regularly on the set of antiflags of F \ g∞.

(c) For each d ∈ K the group G(F ) acts regularly on the set

∆d := {(A,B) ∈ (F \ g∞)2 | δ(A,B) = d}.

(d) Let A ‖ B and A′ ‖ B′ be points of F \ g∞. Write A = P (u1, u2), B =

P (u1, v2), A′ = P (u′1, u
′
2), and B′ = P (u′1, v

′
2) with u1, u2, . . . , v

′
2 ∈ K.

Then the number of matrices in G(F ) mapping (A,B) to (A′, B′) equals the
number of distinct elements c ∈ K× such that

c2(v2 − u2) = (v′2 − u′2). (37)

Proof. (a) Let A,B ∈ F \ g∞. Suppose that M ∈ G(F ) takes A to A′ and
B to B′. If δ(A,B) 6= 0, 1,∞ then the line AB meets the Cayley surface
at three distinct points A,B, and C, say. Since M preserves cross ratios,
δ(A′, B′) = δ(A,B) is immediate from (32). If δ = 0 then AB is a tangent
of F at A. By the remark below (32), this tangent is mapped to a tangent
of F at A′, whence δ(A′, B′) = 0, as required. The case δ(A,B) = 1

can be treated similarly. Finally, δ(A,B) = ∞ means that A,B are on a
common generator, a property which is shared by their images, whence
the assertion follows.

(b) Since G(F ) acts transitively on F \ g∞, it is sufficient to show that the
stabilizer of Q0 in G(F ), i.e. {M0,0,c | c ∈ K×}, acts regularly on {g(1, c) |
c ∈ K×}. In fact, if we are given generators g(1, c1) and g(1, c2) with
c1, c2 ∈ K× then M0,0,c2c

−1
1

is the only solution.

(c) Let (A,B) and (A′, B′) be elements of ∆d. By Lemma 3.3, we may assume
w.l.o.g. that A = A′ = P (0, 0) . We infer from (31) that a point Y =

P (y1, y2), y1, y2 ∈ K, satisfies δ(A, Y ) = d if, and only if, y2 = (d + 1)y2
1

and y1 ∈ K×. So there exist elements u1, u
′
1 ∈ K× with

B = P (u1, (d+ 1)u2
1), B′ = P (u′1, (d+ 1)u′21 ).

Letting c := u′1u
−1
1 , the matrix M0,0,c has the required property. The point

A and the unique generator through B form an antiflag; the same holds
for A′ and the unique generator through B′. So the asserted regularity is
a consequence of (b).
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(d) The matrixM−u1,0,1M0,3u2
1−u2,1 ∈ G(F ) maps (A,B) to

(
P (0, 0), P (0, v2−

u2)
)
. Similarly, we can take (A′, B′) to

(
P (0, 0), P (0, v′2−u′2)

)
by a matrix

in G(F ). By (12), a matrix in G(F ) stabilizes P (0, 0) = Q0 if, and only if,
it has the form M0,0,c, where c ∈ K×. As (37) is a necessary and sufficient
condition for such a matrix to take P (0, v2 − u2) to P (0, v′2 − u′2), the
assertion follows.

The previous result shows that the action of G(F ) on pairs of parallel points
depends on the square classes of K×. If K× has a single square class (e.g. when
K is quadratically closed or when K is a finite field of even order) then all pairs
of distinct parallel points are in one orbit of G(F ). If K× has precisely two
square classes and if −1 is not a square (e.g. when K = R or when K is a finite
field with |K| ≡ 3 (mod 4)) then all 2-subsets of parallel points are in one orbit
of G(F ).

We are now in a position to describe all isometries of F \ g∞. Recall that we
do not assume an isometry to be a bijection.

Theorem 5.5. Each isometry µ : F \ g∞ → F \ g∞ is induced by a unique matrix
in G(F ). Consequently, µ is bijective and it can be extended in a unique way to a
projective collineation of P3(K) fixing the Cayley surface F .

Proof. By Theorem 5.4 (a) and (c), it is sufficient to verify the assertion for an
isometry µ fixing the points P (0, 0) and P (1, 0). Since G(F ) acts faithfully on
F \ g∞, the proof will then be accomplished by showing µ = idF\g∞ .

For all u2 ∈ K we obtain δ
(
P (1, 0), P (1, u2)

)
= ∞, δ

(
P (0, 0), P (1, u2)

)
=

u2 − 1, δ
(
P (0, 0), P (0, u2)

)
= ∞ and δ

(
P (1, 0), P (0, u2)

)
= u2 + 2. So, by the

isometricity of µ, all affine points of the generators through P (1, 0) and P (0, 0)

remain fixed under µ.

Next choose any point P (u1, u2), where u1 ∈ K \ {0, 1} and u2 ∈ K. We
determine all pairs (v2, w2) ∈ K2 subject to δ

(
P (0, v2), P (u1, u2)

)
= 0 and

δ
(
P (1, w2), P (u1, u2)

)
= 0. The unique solution is (v2, w2) := (u2 − u2

1,−u2
1 −

u1 + u2 + 2). A point P (x1, x2), x1, x2 ∈ K, belongs to the circle C
(
P (0, v2), 0

)

if, and only if,

x1 6= 0 and δ
(
P (0, v2), P (x1, x2)

)
=
−x2

1 + x2 + u2
1 − u2

x2
1

= 0. (38)

Similarly, P (x1, x2) ∈ C
(
P (1, w2), 0

)
if, and only if,

x1 6= 1 and δ
(
P (1, w2), P (x1, x2)

)
=
−x2

1 − x1 + x2 + u2
1 + u1 − u2

(x1 − 1)2
= 0.
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So, if P (x1, x2) belongs to both circles it has to satisfy

0 = (−x2
1 + x2 + u2

1 − u2)− (−x2
1 − x1 + x2 + u2

1 + u1 − u2) = −x1 + u1 ,

whence x1 = u1 and, by (38), x2 = u2. Clearly, under µ the two circles remain
fixed, so that µ

(
P (u1, u2)

)
= P (u1, u2).

In the previous theorem we used that an isometry leaves invariant all dis-
tances. Thus we established that δ is a defining function (see [2, p. 23]) for the
group of automorphic projective collineations of F . It would be interesting to
know if this assumption could be weakened, for example, by requiring that only
some distances are being preserved.
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