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Abstract

A closed connected subgroup Γ of the reduced stabilizer SG0 of a locally
compact connected translation plane (P,L) is called parabolic, if it fixes
precisely one line S ∈ L0 and if it contains at least one compression sub-
group. We prove that Γ is a semidirect product of a stabilizer ΓW , where
W is a line of L0 \ {S} such that ΓW contains a compression subgroup, and
the commutator subgroup R′ of the radical R of Γ. The stabilizer ΓW is a
direct product ΓW = K ×Υ of a maximal compact subgroup K ≤ Γ and a
compression subgroup Υ. Therefore, we have a decomposition Γ = K ·Υ·N
similar to the IWASAWA-decomposition of a reductive Lie group.

Such a “geometric IWASAWA-decomposition” Γ = K · Υ · N is possible
whenever Γ ≤ SG0 is a closed connected subgroup which contains at least
one compression subgroup Υ. Then the set S of all lines through 0 which
are fixed by some compression subgroup of Γ is homeomorphic to a sphere
of dimension dimN . Removing the Γ-invariant lines from S yields an orbit
of Γ.

Furthermore, we consider closed connected subgroups N ≤ SG0 whose
Lie algebra consists of nilpotent endomorphisms of P . Our main result
states that N is a direct product N = N1 × Σ of a central subgroup Σ

consisting of all shears in N and a complementary normal subgroup N1

which contains the commutator subgroup N ′ of N .
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1 Introduction

We consider a locally compact connected translation plane E = (P,L) with re-
duced stabilizer SG0. (For definitions and basic facts we refer to Section 2.) The
use of the collineation group for the classification of translation planes depends
on the availability of detailed information on the possible structure of SG0. The
present paper continues an investigation (commenced in [8] and [10]) of closed
connected subgroups Γ ≤ SG0 containing at least one compression subgroup.
Such a subgroup Γ will be called a hinge group: the name is suggested by the
way the compression subgroups act on the line pencil L0 and, moreover, in-
dicates that their investigation opens a door to a better understanding of the
possible structure of G0.

If Γ ≤ SG0 is a hinge group, then a line L ∈ L0 will be called a weight line of
Γ if it is fixed by one of the compression subgroups. The weight sphere of Γ is
the set S of all weight lines. In (4.5) we shall see that S is homeomorphic to a
sphere indeed.

Particular elements of S are the Γ-invariant lines through 0, to which we refer
as absolute lines of Γ. The number a of absolute lines is at most 2, because the
stabilizer of three distinct elements of L0 in SG0 is compact. Depending on a

we shall call Γ an elliptic (a = 0), a parabolic (a = 1), respectively, a hyperbolic
(a = 2) collineation group.

The following examples of groups of these types act on the classical planes
over R, C, H (quaternions) and O (octonions): the full reduced stabilizer Γ

(which is isomorphic to SL2K for K ∈ {R,C,H} and to Spin10(R, 1) for K =

O) is an elliptic collineation group. The stabilizer ΓL of a line L ∈ L0 is an
example of a parabolic collineation group. We remark that ΓL is also a parabolic
subgroup of Γ in the sense of Lie theory. Finally, the stabilizer of two distinct
lines through 0 is a hyperbolic collineation group.

We return to the general case: the structure of a hyperbolic collineation group
is completely clarified by Hähl’s theorem 2.1, and the elliptic case is treated in
[8] (for almost simple groups) and [10] (for the general case). Therefore, it
suffices to study parabolic collineation groups, whence the following theorem
(whose proof is deferred to Section 4) can be regarded as the main result of the
present paper.

Theorem 1.1. Let Γ ≤ SG0 be a parabolic collineation group with absolute line S
and weight sphere S. Let W ∈ S \ {S} be a (non-absolute) weight line and choose
a corresponding compression subgroup Υ ≤ ΓW . The solvable radical of Γ will be
denoted by R. Then the following assertions hold:

(a) Γ is a semidirect product Γ = ΓW n R′, where R′ denotes the commutator
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subgroup of R. Moreover, ΓW is a direct product ΓW = Υ × K of the
compression subgroup Υ and a maximal compact subgroup K of Γ.

(b) R′ is a unipotent collineation group acting freely on L0 \ {S}. Moreover, the
action of R′ on the orbit Γ(W ) is simply transitive.

(c) The set O := S \ {S} of non-absolute weight lines and the orbit Γ(W ) coin-
cide.

(d) S (endowed with the topology induced from L0) is a k-sphere, where k =

dimR′.

In (b) we understand a unipotent collineation group to be a closed connected
subgroup of SG0 whose Lie algebra consists of nilpotent endomorphisms of the
point space.

Organization of the paper and further results

Section 2 contains a short introduction to the theory of locally compact trans-
lation planes. We compile basic facts concerning noncompact subgroups of the
reduced stabilizer.

The next two sections are devoted to the proof of Theorem 1.1. First, we
consider the particular case of a solvable parabolic collineation group Γ. Besides
the results from Section 2, the main tool for the investigation comes from Lie
theory: we shall show that the stabilizer ΓL of a non-absolute weight line L of
Γ is a Cartan subgroup. This result enables us to study the weight sphere via the
adjoint action of Γ on the set of its Cartan subgroups. Afterwards, we attack the
general case by looking at the solvable radical R and a — necessarily compact
— Levi complement of an arbitrary parabolic collineation group Γ = ∆ n R.
The proof of (1.1) can be reduced to the solvable case by showing that ∆ fixes
a weight line.

At the end of Section 4 we consider an arbitrary closed connected subgroup
Γ ≤ SG0 which contains a compression subgroup Υ. We show the existence
of a maximal compact subgroup K ≤ Γ and a unipotent collineation group
N ≤ Γ such that Γ = K · Υ · N . This “geometric IWASAWA-decomposition” is
analogous to the usual one of real reductive Lie groups: the rôle of the real
Cartan subgroup is adopted by a compression subgroup.

Section 5 aims at a characterization of weight lines of hinge groups Γ, cf.
(5.4): L is a weight line if and only if ΓL is not compact. For a closed connected
subgroup Γ ≤ SG0 which does not contain a compression subgroup we have
the following result: if the stabilizer ΓL is not compact, then L is the unique
Γ-invariant line through 0, cf. (5.1).
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We turn to the investigation of unipotent collineation groups N ≤ SG0 in
Section 6, the main result being Theorem 6.5: if S ∈ L0 is the (unique) fixed
line of N , then N is a direct product N = N1 × Σ of the central subgroup
Σ consisting of all shears with axis S and a complentary normal subgroup N1

which contains the commutator subgroup N ′.

Basic facts concerning Cartan subgroups and subalgebras are collected in the
appendix.

2 Prerequisites

A projective plane is called topological if its point space and its line space are en-
dowed with Hausdorff topologies such that the geometric operations of joining
points and intersecting lines are continuous. Similar to the theory of topologi-
cal groups one obtains the nicest results under the additional assumption that
these topologies are locally compact and connected. Examples are the so-called
classical planes over R, C, H (quaternions), and O (octonions). For a detailed
introduction we refer to [13].

Translation planes

The point space of a locally compact connected translation plane is a topological
manifold of dimension n ∈ {2, 4, 8, 16} (henceforth called the dimension of the
plane). Moreover, the projective lines (regarded as subspaces of the point set)
are spheres of dimension l := n/2, see [13, 64.1]. The only 2-dimensional
(locally compact connected) translation plane is the real projective plane [12,
7.24].

For a non-classical locally compact connected translation plane one knows
that every (continuous) automorphism leaves the translation axis L∞ invariant.
Therefore, we may pass to the corresponding affine plane without losing auto-
morphisms. In this way, we gain a linear structure: the affine point space P
is in a natural way a right vector space over the kernel K of a coordinatizing
quasifield. Moreover,K is a topological field isomorphic to R, C or H. If K = H,
then the plane is isomorphic to the affine quaternion plane [2, Thm. 1].

In this picture the translation group coincides with the group of vector trans-
lations x 7→ x + v of P . Moreover, the line pencil L0 of all lines containing the
origin (here, L denotes the set of affine lines) consists of vector subspaces of
P of dimension (dimP )/2. Notice that the other lines are precisely the affine
cosets of the elements of L0.
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Automorphisms

The group G of all continuous automorphisms of (P,L) is a Lie group with re-
spect to the compact-open topology [13, 44.6]. In fact,G is a semidirect product
of the stabilizer G0 of the origin and the translation group. The elements of G0

are semilinear maps of the K-vector space P . The kernel K is encoded in G0:
the normal subgroup G[0,L∞] (consisting of all elements of G0 which leave the
translation axis pointwise fixed) is precisely the group {x 7→ xa | a ∈ K \ {0}}.
The connected component G◦0 of G is an almost direct product of the connected
component SG◦0 of the so-called reduced stabilizer1

SG0 := {γ ∈ G0 | γ is K-linear and detK γ = 1}

and (G[0,L∞])
◦, cf. [13, 81c].

Since K can be considered as a real vector space, P is a 2l-dimensional real
vector space. The set L0 consists of l-dimensional real vector subspaces of P . It
is easy to see that L0 has to be a spread, i.e. L0 covers P and any two distinct
elements K,L ∈ L0 satisfy P = K ⊕ L. The topology of L0 as a subspace of L
and as a subspace of the Grassmannian manifold Grasl(P ) of all l-dimensional
subspaces of P coincide [13, 64.4.a]2. The reduced stabilizer SG0 is a closed
subgroup of SL(P ).

Compression subgroups and noncompact collineation groups

Most of the results in this paper rest on Hähl’s theorem on compression sub-
groups, which we state next. For the proof we refer to [3] and [13, 81.8]:

Theorem 2.1. Let Γ be a closed subgroup of SG0 fixing two different lines W,S ∈
L0. Then the normal subgroup

∆ = {γ ∈ Γ | | det(γ|W )| = | det(γ|S)| = 1}

is the unique maximal compact subgroup of Γ. Moreover, the following assertions
hold.

(a) Γ is a semidirect product Γ = Υn∆ of ∆ and some closed subgroup Υ ≤ Γ. If
Γ is not compact (i.e. if Υ is not trivial), then only the following possibilities
can occur.

1If K = H, then the plane is isomorphic to the quaternion plane. In this case detK γ refers to
the real determinant of γ, whence the reduced stabilizer equals SL2H in its usual action on H2.

2Conversely, every compact spread S ⊆ Grasl(R2l) defines a locally compact connected trans-
lation plane [13, 64.4.d].
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1. Υ is isomorphic toR. In this case, Υ can be chosen as a central subgroup
of Γ, i.e. Γ is a direct product Γ = Υ×∆.

2. Υ is isomorphic to Z. In particular, Γ is disconnected.

(b) If Υ is any closed subgroup of Γ which is not compact, then there is an iso-
morphism ρ : R→ Υ, respectively, ρ : Z→ Υ having the following property:
For t → −∞, the maps ρ(t)|L0\{S} converge uniformly to the constant map
L0 \ {S} → {W} on each compact subset of L0 \ {S}. For t→∞, the
analogous property holds with the rôles of W and S interchanged.

In particular, no line L ∈ L0 \ {W,S} is Υ-invariant. Consequently, every
closed subgroup of SG0 fixing three different lines of L0 is compact.

We formalize the definitions from the introduction:

Definition 2.2. Let Γ ≤ SG0 be a closed subgroup. A compression subgroup of
Γ is a closed subgroup Υ ≤ Γ isomorphic to R which fixes two distinct lines
W,S ∈ L0 and which is a central subgroup of ΓW,S .

A closed connected subgroup Γ ≤ SG0 is called a hinge group if it contains at
least one compression subgroup. If Γ is a hinge group, then we refer to a line
L ∈ L0 which is fixed by one of these compression subgroups as a weight line of
Γ. The set S of all weight lines will be called the weight sphere of Γ. An absolute
line of Γ is a Γ-invariant element L ∈ S.

Depending on the number a of absolute lines (which is at most 2, see (2.1))
we shall call a hinge group Γ an elliptic (a = 0), parabolic (a = 1), or hyperbolic
collineation group (a = 2).

The structure of a hyperbolic collineation group Γ is clarified by Hähl’s theo-
rem 2.1: Γ is a direct product Γ = Υ ×∆ of a compression subgroup Υ and a
compact group ∆. General noncompact subgroups of SG0 are treated in [10].
Combining theorems 1.1 and 5.3 of that paper yields the following result.

Theorem 2.3. Let Γ ≤ SG0 be a closed connected subgroup. If Γ is not compact,
then one of the following (mutually exclusive) possibilities occurs.

(1) Γ is elliptic. Then Γ is an almost direct product Γ = Ω · C of an almost
simple Lie group Ω of real rank 1 and a compact connected group C. The
noncompact factor Ω is an elliptic collineation group, too.

(2) Γ is parabolic. Then the Levi complements of Γ are compact.

(3) Γ is hyperbolic.
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(4) Γ does not contain a compression subgroup. Then precisely one line S ∈ L0

is Γ-invariant. Moreover, Γ is a semidirect product Γ = K nB of a compact
group K and a simply connected solvable group B. The action of B on
L0 \ {S} is free.

According to [8, Thm. A], the noncompact part Ω of an elliptic collineation
group Γ = Ω · C is isomorphic to the 2-fold covering group Spinm(R, 1) of
PSO′m(R, 1) with 3 ≤ m ≤ 10. We emphasize that the (formally different)
notions of weight lines of Γ given here and in [8] (below Theorem B, cf. also
[10, 2.5]) are equivalent:

Lemma 2.4. Let Γ be an elliptic collineation group. We adopt the decomposition
Γ = Ω · C given in (2.3.2). Then L ∈ L0 is a weight line of Γ (in the sense of
Definition 2.2) if and only if there exists a one-dimensional real diagonalizable
subgroup Ψ ≤ Ω which fixes L (i.e. L is a weight line of Ω in the sense of [8],
[10]).

Proof. The subgroups Ψ ≤ Ω specified in the lemma are compression subgroups,
thanks to [8, 4.2]. Therefore, a Ψ-invariant line L is a weight line of Γ.

Conversely, let L be a weight line. Containing a compression subgroup, the
connected component Γ◦L is not compact [5, III.8.19]. The assertion follows
easily from [10, 6.2.b].

In view of the preceding lemma we infer the following result from [8, Theo-
rem B], [10, 6.2.b].

Theorem 2.5. Let Γ be an elliptic collineation group with weight sphere S. Let
Γ = Ω · C be the decomposition of Γ into the noncompact factor Ω ∼= Spinm(R, 1)

and a compact normal subgroup C. Then S (endowed with the topology induced
by L0) is a sphere if dimension m − 2. Moreover, Ω acts 2-transitively of S. In
contrast, every L ∈ L0 is C-invariant.

Remark 2.6. We take the opportunity to correct a missprint in [8, Theorem B
(3)]. The (false) assertion stated there should be replaced by the following. If
m − 2 strictly exceeds l/2, then (P,L) is isomorphic to the classical plane of
dimension 2l.

General assumptions and notation

Throughout this paper we let E = (P,L) denote a locally compact connected
translation plane with point space P = R2l (where l ∈ {1, 2, 4, 8}) and reduced
stabilizer SG0.
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If V is a real vector space, then Grask(V ) denotes the Grassmannian manifold
of all k-dimensional vector subspaces of V . Moreover, I is the identity map of
V .

The Lie algebra of a Lie group G will be denoted by TeG. We write 〈exp h〉
for the connected subgroup of G corresponding to a Lie subalgebra h ≤ TeG.

3 Solvable parabolic collineation groups

Throughout this section let Γ be a solvable parabolic collineation group of rank
m = rk Γ. By definition, precisely one element S ∈ L0 (namely the absolute
line of Γ) is Γ-invariant.

We put g := TeΓ. Notice that the commutator subalgebra g′ = g1 is the Lie
algebra of the commutator subgroup Γ′ of Γ. If L ∈ L0, then let gL denote the
Lie algebra of ΓL.

Proposition 3.1. Let L ∈ L0 be a weight line of Γ. Then the following assertions
hold.

(a) The stabilizer ΓL is a direct product ΓL = Υ× T of a compression subgroup
Υ and a maximal torus T of Γ. In particular, ΓL is abelian and connected.

(b) ΓL is a Cartan subgroup of Γ. Moreover, ΓL equals its own normalizer in Γ.

(c) There exists a Cartan subalgebra a of g with ΓL = 〈exp a〉.

(d) Γ′ is a unipotent collineation group of dimension at least 1. In particular, Γ′

acts freely on L0 \ {S}.

(e) Γ is a semidirect product Γ = ΓLnΓ′ of the stabilizer ΓL and the commutator
subgroup Γ′.

Proof. (1) In view of (2.1) ΓL contains a unique maximal compact subgroup C.
If Υ ≤ ΓL is a compression subgroup, then ΓL is a direct product ΓL = Υ× C.
Choose a maximal compact subgroup T ≤ Γ containing C. Since Γ is solvable
and connected, T is solvable and connected, too [5, III.7.3]. We conclude that
T is a torus group, whence ΓL is abelian.

(2) If γ ∈ Γ normalizes ΓL, then we have ΓL = γΓLγ
−1 = Γγ(L), enforcing

the Υ-invariance of both lines L and γ(L). As Υ ≤ ΓL = ΓL,S is a compression
subgroup, (2.1) asserts that γ(L) = L, i.e. γ is an element of ΓL: We obtain the
second claim in part (b).
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By the same argument we see that Γ◦L equals its own normalizer, too. This in
turn implies that the abelian subalgebra gL of g is a Cartan subalgebra. Accord-
ing to (7.7), Γ◦L = 〈exp gL〉 is a Cartan subgroup of Γ (because Γ is connected
and solvable) and hence is maximal among the nilpotent subgroups of Γ. Com-
pleting the proof of parts (b) and (c), we conclude that ΓL = Γ◦L, because ΓL is
abelian.

(3) The group Γ is not abelian: otherwise, (b) would imply that Γ fixes L
— but S is the only Γ-invariant element of L0. Consequently, the commutator
algebra g′ of the solvable Lie algebra g is not trivial and consists of nilpotent
endomorphisms of P . Together with [9, 2.16] (see also (6.4) below), these
facts imply (d).

(4) Since Γ′ acts freely on L0\{S}, we conclude that gL∩g′ = {0}. From (7.3)
we know that g = gL+g′, because gL is a Cartan subalgebra of g. Consequently,
Γ is a semidirect product of ΓL and Γ as claimed in part (e).

(5) Being a semidirect product of Υ ∼= R and a unipotent group, Υ n Γ′ is
a simply connected solvable Lie group. The complementary subgroup C is a
maximal compact subgroup of Γ (because {I} is the only compact subgroup of
Υ n Γ′). Since Γ is solvable, C is a maximal torus of Γ. This completes the
proof.

Remark. The preceding result implies that g∞ =
⋂
n≥1 gn equals g′: if L is a

weight line, then gL is a Cartan subalgebra of g. According to (7.3), g = gL+gn

holds for all n. Moreover, the vector space g is a direct sum g = gL ⊕ g′, see
(3.1.e). This is only possible if g′ = gn holds for all n ≥ 1.

Next, we shall characterize weight lines in several ways:

Proposition 3.2. We choose a weight line W ∈ L0 \ {S} of Γ. For every line
L ∈ L0 \ {S} the following properties are equivalent.

(1) L is a weight line of Γ, i.e. ΓL contains a compression subgroup.

(2) L is an element of O = Γ(W ).

(3) L is an element of Γ′(W ).

(4) There exists an element γ ∈ Γ′ such that ΓL = γΓW γ
−1.

(5) There exists an element γ ∈ Γ′ such that gL = (Ad γ)(gW ).

(6) ΓL is a Cartan subgroup of Γ.

(7) gL is a Cartan subalgebra of g.
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Proof. (1⇒ 6) follows from (3.1.b).

(6 ⇒ 7): If ΓL ≤ Γ is a Cartan subgroup, then gL = TeΓL is a Cartan
subalgebra of g.

(7⇒ 5): By (3.1.b), ΓW is a Cartan subgroup, whence gW is a Cartan subal-
gebra of g. Therefore, (7.4) ensures the existence of x ∈ g′ such that ead x maps
gW onto gL. The element γ := exp(x) of Γ′ has the desired property.

(5⇒ 4): By assumption, γΓ◦W γ
−1 equals Γ◦L and we only have to check that

ΓW and ΓL are connected. SinceW is a weight line, ΓW contains a compression
subgroup Υ. Observe that γΥγ−1 is a compression subgroup fixing γ(W ) = L,
whence L is a weight line, too. Applying (3.1.a) shows connectedness for ΓW
and ΓL.

(4⇒ 3): If Υ ≤ ΓW is a compression subgroup, then γΥγ−1 is a compression
subgroup, too, which fixes the lines L, γ(W ) ∈ L0 \ {S}. Using (2.1), we infer
that L = γ(W ).

(3⇒ 2) is obvious.

(2 ⇒ 1): Suppose that L = γ(W ). Then ΓL = γΓW γ
−1 contains a compres-

sion subgroup (because ΓW does), i.e. L is a weight line.

In the remainder of the section we choose a weight line W ∈ L0 \ {S} of Γ.
Recall that O denotes the set of all non-absolute weight lines of Γ.

Corollary 3.3. The following three sets coincide: (1) the set H of Cartan subalge-
bras of g, (2) the set {gL |L ∈ O}, and (3) the set {gL |L ∈ Γ(W )}.

Proof. Every element of Γ(W ) is a weight line, whence {gL |L ∈ Γ(W )} is a
subset of {gL |L ∈ O}. If L ∈ O, then gL ∈ H follows from (3.2). Finally,
let a ≤ g be a Cartan subalgebra. As g is solvable, (7.4) ensures the existence
of γ ∈ Γ such that a = (Ad γ)(gW ). From (Ad γ)(gW ) = gγ(W ) we obtain
a ∈ {gL |L ∈ Γ(W )}.

Combining (3.2) and (3.1.d) yields the following conclusion.

Corollary 3.4. If W ∈ L0 \ {S} is a weight line, then the commutator subgroup
Γ′ acts simply transitively on O = Γ(W ).

Next, we shall investigate the topology of O. To this end we choose a com-
pression subgroup Υ ≤ ΓW . Then the group ∆ := ΥnΓ′ acts transitively on O,
thanks to (3.4). Notice that ∆ is a solvable parabolic collineation group having
W as one of its weight lines, because Υ ≤ ∆ is a compression subgroup. By
(3.4) again, Γ′ as well as its subgroup ∆′ act simply transitively on O. Con-
sequently, Γ′ and ∆′ coincide. Being only interested in S = O ∪ {S}, we may
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assume that Γ = ∆. In this case the compression subgroup Υ = ΓW is a Cartan
subgroup of Γ. Therefore, Γ is a simply connected solvable Lie group of rank 1.
In this situation (7.5) and (7.6) read as follows.

Lemma 3.5. Suppose that ΓW = Υ is a compression subgroup. Then the sets
H = {gL |L ∈ O} and Gras1(g) \ Gras1(g′) coincide and the adjoint action of Γ′

on H is simply transitive. Moreover, if (γj)j , γj ∈ Γ′, is a sequence which converges
to ∞ in the one-point compactification of Γ′, then every accumulation point of a
sequence ((Ad γj)(x))j , x ∈ H, lies in Gras1(g′).

Proof. Recall that H is the set of Cartan subalgebras of g, cf. (3.3). If γ ∈ Γ′ and
L ∈ O, then (Ad γ)(gL) equals gγ(L). This implies that the adjoint action of Γ′

on H is effective, i.e. Ad : Γ′ → Ad Γ′ is an isomorphism. Applying (7.5) and
(7.6) yields the assertions.

Corollary 3.6. Retain the notations and assumptions of (3.5). Let Γ′ = Γ′ ∪ {∞}
and H = H∪{∞} denote the one-point compactifications of Γ′ and H, respectively.
We consider the map

Ψ : Γ′ → H; γ 7→
{

(Ad γ)(h) if γ ∈ Γ′

∞ if γ =∞

Then Ψ is a homeomorphism.

Lemma 3.7. The weight sphere S = O ∪ {S} is the closure O of O in L0.

Proof. It suffices to consider the case that ΓW = Υ is a compression subgroup.
We choose a line L ∈ O \ {W,S}. Being a boundary point of Υ(L) (see (2.1)),
S is an element of O. Thus, S is contained in O.

For the converse inclusion we consider a sequence (γj(W ))j (with γj ∈ Γ′)
which converges to L ∈ L0. We have to show that L ∈ S, whence it suffices to
consider the case L 6= S.

Passing to a subsequence we achieve that the sequence ((Ad γj)(gW ))j =

(gγj(W ))j converges to some element x ∈ Gras1(g). If δ ∈ 〈exp x〉, then there
exists a sequence (δj)j with δj ∈ Γγj(W ) such that δ = limj→∞ δj . From
δjγj(W ) = γj(W ) we conclude that

L = lim
j→∞

γj(W ) = lim
j→∞

δjγj(W ) = ( lim
j→∞

δj)( lim
j→∞

γj(W )) = δ(L).

Consequently, x is contained in gL. Since 〈exp g′〉 acts freely on L0 \{S} (3.1.d),
we infer that x = gL is an element of Gras1(g) \Gras1(g′). From (3.5) it follows
that gL is a Cartan subalgebra of g, whence L is an element of O, thanks to
(3.2).
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Proposition 3.8. We endow the weight sphere S = O∪{S} of Γ with the topology
induced by L0. Then S is homeomorphic to a sphere of dimension dim Γ′ = dim Γ−
rk Γ.

To be more precise: the map

Φ : Γ′ ∪ {∞} → S; γ 7→
{
γ(W ) for γ ∈ Γ′

S for γ =∞

is a homeomorphism, where Γ′ ∪ {∞} denotes the one-point compactification of
Γ′.

Proof. Since Γ is a connected solvable subgroup of GL(P ), its commutator sub-
group Γ′ is connected, simply connected and nilpotent, and exp : g′ → Γ′

is a diffeomorphism [14, 3.6.3]. Therefore, Γ′ is homeomorphic to Rk with
k = dim Γ′ = dim Γ− dim ΓW = dim Γ− rk Γ, whence its one-point compactifi-
cation Γ′ = Γ′ ∪ {∞} is a k-sphere. According to (3.4), the action of Γ′ on O is
simply transitive. We conclude that the map Φ is bijective, and that its restric-
tion to O is continuous. Both Γ′ ∪ {∞} and S are compact spaces (recall from
(3.7) that S equals the closure of O in the compact line pencil L0). If we could
prove that Φ is continuous at∞, then Φ is a continuous bijective map between
two compact Hausdorff spaces and, hence, is a homeomorphism.

In order to show continuity of Φ at ∞ let (γj)j be a sequence in Γ′ such
that (γj(W ))j is not convergent to S. At least one accumulation point L of
(γj(W ))j in the compact set S is different from S. Then L = γ(W ) holds for
an appropriate element γ ∈ Γ′. Choose a subsequence (γji)i such that L =

limi→∞ γji(W ). Putting Li := γij (W ) we have limi→∞ gLi = gL. From (3.6)
it follows that γ = limi→∞ γji , i.e. (γj)j does not converge to ∞. Thus, Φ is
continuous at∞.

4 Parabolic collineation groups — the general case

Henceforth we assume that Γ ≤ SG0 is a (not necessarily solvable) parabolic
collineation group with Lie algebra g. The solvable radical of Γ will be denoted
by R. Notice that r := TeR equals the solvable radical of g. If L ∈ L0, then put
gL := TeΓL and rL := TeRL.

We choose a Levi complement ∆ of Γ. Since a noncompact semisimple
collineation group does not fix any element of L0 (cf.[10, 1.1]), ∆ is a com-
pact semisimple group. Let d denote the Lie algebra of ∆.

The following result is the central tool for the investigation of Γ.
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Proposition 4.1. Let L ∈ L0 \ {S}. Then ΓL contains a compression subgroup if,
and only if, RL contains a compression subgroup, too.

Proof. Let Υ ≤ ΓL be a compression subgroup which is not contained in R (oth-
erwise there is nothing to show). Then the image x of TeΥ under the quotient
map g→ g/r ∼= d is a one-dimensional subalgebra of d. The closure Θ of 〈exp x〉
in the compact group ∆ is a compact connected abelian group.

It is not hard to see that Φ := Θ ·R (which contains Υ) is a solvable parabolic
collineation group. According to (3.1), we have a semidirect decomposition
Φ = ΦL n Φ′ and, moreover, ΦL is a direct product ΦL = Υ × Ξ, where Ξ is a
maximal torus of Φ. Thus, dim Θ is at most dim Ξ. Since Φ′ is a subgroup of
R, we derive that dim ΦL = 1 + dim Ξ ≥ 1 + dim Θ 	 dim Θ = dim Φ− dimR.
By a dimension argument we infer that Ω := (R ∩ ΦL)◦ is a closed subgroup
of RL having dimension at least one. The intersection of Ξ and R is discrete,
because Ξ is a subgroup of the Levi complement ∆. Using that the codimension
of Ξ in ΦL equals one, we obtain ΦL = Ξ · Ω. Since Ξ is compact while ΦL is
not (ΦL contains the compression subgroup Υ), Ω is a one-dimensional closed
subgroup ofRL which is not compact. From (2.1) we conclude that RL contains
a compression subgroup.

Combining (4.1) and (3.2) immediately implies the following.

Corollary 4.2. Consider a line L ∈ L0 \ {S}. Then the stabilizer ΓL contains a
compression subgroup if and only if L is an element of the orbit R′(W ).

Let W ∈ L0 \{S} be a weight line. If γ ∈ Γ, then the group Γγ(W ) = γΓW γ
−1

contains a compression subgroup, whence γ(W ) is an element of R′(W ), cf.
(4.2). From this observation we easily obtain the following result.

Corollary 4.3. We have O = Γ(W ) = R(W ) = R′(W ). Moreover, the action of
R′ on O is simply transitive.

As a last preparatory result for the proof of (1.1), we have the following.

Proposition 4.4. Every Levi complement of Γ fixes some line L ∈ O. Conversely,
every line L ∈ O is invariant under some Levi complement of Γ.

Proof. We may assume that Γ is not solvable. It suffices to show that the par-
ticular Levi complement ∆ fixes some element of O, because any two Levi
complements are conjugate in Γ, see [14, Thm. 3.18.13], and because Γ acts
transitively on O. Let W ∈ O be an arbitrary weight line of Γ.

If Ξ is a maximal torus of ∆, then Φ := Ξ · R is a solvable closed connected
subgroup of SG0. By (4.1), RW ≤ ΦW contains a compression subgroup Υ.
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Using (3.1) we obtain that (1) Φ is a semidirect product Φ = ΦW n Φ′, and (2)
ΦW is an almost direct product Φ = Υ ·Θ of Υ and a maximal torus Θ of Φ.

Since Θ ≤ Φ is a maximal compact subgroup, there exists an element γ ∈ Φ

such that Ξ is contained in γΘγ−1. In order to achieve that Ξ is a subgroup of
Φ, we replace ∆ with the Levi complement γ∆γ−1 of Γ and Ξ with the maximal
torus γΞγ−1 of γ∆γ−1. In particular, Ξ fixes W and centralizes RW .

Being a characteristic ideal of r, the commutator subalgebra r′ is (Ad ∆)-in-
variant. The semisimple group ∆ acts completely reducibly on r, whence r is an
(Ad ∆)-invariant sum r = r′ ⊕ x of r′ and a complementary subspace x ≤ r. We
claim that Ad ∆ fixes x pointwise: let x ∈ x and U ∈ TeΞ. Since r is a direct sum
of rW and r′, there exist y ∈ TeRW and z ∈ r′ such that x = y + z. Moreover, Ξ

centralizes RW , whence we derive that (adU)(x) = (adU)(y+z) = (adU)(z) is
an element of x ∩ r′ = {0}. Thus, (adU)(x) vanishes. Consequently, the adjoint
representation of the maximal torus Ξ of the semisimple group ∆ on x is trivial.
Therefore, the adjoint representation of ∆ on x is trivial, too.

Next, observe that y := x∩(TeΥ⊕r′) is one-dimensional and skew to r′. Using
(3.5) we deduce that y and TeΥ are conjugate in TeΥ⊕ r′. Consequently, there
exists a line L ∈ O such that Ω := exp y is a compression subgroup of ΦL and,
hence, of ΓL. Moreover, ∆ centralizes Ω, because Ad ∆ acts trivially on x. Since
L is the only Ω-invariant line in L0 \ {S}, see (2.1), we derive that ∆ fixes L.
This completes the proof.

Proof of Theorem 1.1

We retain the notation and assumptions of (1.1): Γ is a parabolic collineation
group whose solvable radical is R. Moreover, S ∈ L0 is the absolute line.
Choose a weight line W 6= S and a corresponding compression subgroup Υ ≤
ΓW = ΓW,S .

By (4.1), RW contains a compression subgroup Ψ and hence is a direct prod-
uct RW = Ψ × Θ, where Θ ≤ R is a maximal torus (3.1.a). According to
(3.1.e), R is a semidirect product R = RW n R′. The stabilizer ΓW contains a
Levi complement ∆ of Γ, see (4.4). Observe that ∆ is compact (a noncompact
semisimple group cannot fix a line in L0, cf. [10, 1.1]). Counting dimensions
we infer that (1) Γ = ΓW n R′ and (2) ΓW = (∆Θ) × Ψ. Hähl’s theorem
(2.1) asserts that ΓW is a direct product ΓW = Υ × K, where K is compact.
We deduce that K is a maximal compact subgroup of Γ (which has dimension
dim ∆ + dim Θ = dimK). This completes the proof of (a).

Notice that R is a solvable parabolic collineation group and that R(W ) =

Γ(W ), cf. (4.2) and (4.3). Combining (3.1.d), (3.4), (3.7) and (3.8) yields the
assertions of (b), (c) and (d) of (1.1).
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We turn to the geometric analog of the IWASAWA-decomposition announced
in the introduction.

Corollary 4.5 (Geometric IWASAWA-decomposition). Let Γ ≤ SG0 be a hinge
group. If Υ ≤ Γ is a compression subgroup, then there exists a “geometric Iwasawa-
decomposition”

Γ = K ·Υ ·N,
where N is a unipotent collineation group which is normal in Υ ·N , and where K
is a maximal compact subgroup of Γ.

The weight sphere S of Γ (endowed with the topology induced by L0) is a sphere
of dimension dimN . Moreover, the set O ⊆ S of non-absolute weight lines is a Γ-
orbit.

Proof. First, suppose that Γ is a hyperbolic collineation group. If W,S ∈ L0 are
the absolute lines, then S = {W,S} is a 0-sphere. According to (2.1), Γ is a
direct product Γ = K ×Υ, where K is compact. We put N := {I} and infer the
assertions.

If Γ is hyperbolic, then letN denote the commutator subgroup of the solvable
radical of Γ and apply (1.1).

It remains to consider an elliptic collineation group Γ. Let Υ ≤ Γ be a com-
pression subgroup which fixes the two weight lines W,S ∈ S. According to
(2.4), ΓW,S contains a real diagonalizable subgroup Ψ ≤ Γ with dim Ψ = 1. The
real rank of the reductive group Γ equals 1, whence Ψ is a real Cartan subgroup.
From [7, 6.46] we obtain the (usual) IWASAWA-decomposition Γ = K · Ψ · N .
Since ΓW,S equals the centralizer of Ψ in Γ, we may replace Ψ with Υ.

5 A characterization of compression subgroups

Proposition 5.1. Let Γ ≤ SG0 be a closed connected subgroup and let L ∈ L0 be
a line such that ΓL is not compact. Then one of the following possibilities occurs:

(1) Γ is a hinge group and ΓL contains a compression subgroup, i.e. L is a weight
line of Γ.

(2) Γ does not contain any compression subgroups. In this case, L is the unique
Γ-invariant line through 0.

Proof. Notice that Γ is not compact, because its closed subgroup ΓL is not. We
distinguish several cases.
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(1) Γ is a hyperbolic collineation group: Then the weight sphere of Γ contains
only the two absolute lines W,S ∈ L0. If L ∈ L0 \ {W,S}, then the stabilizer
ΓL = ΓW,S,L is compact, see (2.1), and we are done.

(2) Γ is an elliptic collineation group: Since the closed subgroup ΓL ≤ Γ is
not compact, there exists a sequence (γk)k with γk ∈ ΓL which converges to∞
in the one-point compactification of Γ. Being a reductive Lie group, Γ admits a
KAK-decomposition Γ = K ·A ·K, whereK ≤ Γ is a maximal compact subgroup
and where A is a real diagonalizable group, cf. [7, 7.39]. According to (2.4),
A is a compression subgroup. Let L± denote the weight lines corresponding
to A. By (2.1), there exists a parametrization ρ : R → A having the following
property: if C ⊆ L0 \ {L±} is a compact subset, then ρ(t)|C converges uniformly
to the constant map C → {L±} for t→ ±∞.

In view of the KAK-decomposition we write γk = ckakc
′
k with ck, c′k ∈ K and

ak ∈ A. Without loss of generality we assume that both sequences (ck)k and
(c′k)k are convergent in the compact group K. We put c := limk→∞ ck and c′ :=

limk→∞ c′k. Since limk→∞ ak = ∞, putting tk := ρ−1(ak) defines a sequence
of real numbers without an accumulation point. Passing to a subsequence we
may achieve that limk→∞ tk = ∞. (The case limk→∞ tk = −∞ can be treated
analogously.)

Aiming at a contradiction we assume that L is not an element of the weight
sphere S of Γ. Since S is K-invariant, the intersection of S and the orbit
K(L) is empty. In particular, K(L) is a compact subset of L0 \ {L±}. Since
ak equals ρ(tk), we infer that (ak|K(L))k converges uniformly to the constant
map K(L) → {L+}, whence limk→∞ akc

′
k(L) equals L+. In contradiction, we

have limk→∞ akc
′
k(L) = limk→∞ c−1

k γk(L) = c−1(L) ∈ K(L), because γk leaves
L invariant.

(3) Γ is neither a hyperbolic nor an elliptic collineation group. According
to [10, 1.1], there exists precisely one Γ-invariant line S ∈ L0. Therefore,
either Γ is a parabolic collineation group or Γ does not contain any compression
subgroups. In the latter case we have a decomposition Γ = KnB, whereK ≤ Γ

is a maximal compact subgroup and where B is a simply connected solvable Lie
group acting freely on L0 \ {S}, cf. [10, 5.3]. If Γ is parabolic, then take a
geometric IWASWA-decomposition Γ = K · Υ · N as described in (4.5). In this
case the closed subgroup B := Υ · N is a simply connected solvable normal
subgroup of Γ such that Γ = K nB.

We may assume that L 6= S. Aiming at a contradiction we assume that ΓL
does not contain a compression subgroup. According to (2.1), ΓL is a semidirect
product ΓL = ZnT of a compact group T and a discrete subgroup Z isomorphic
to Z. Up to conjugation we may suppose that T is contained in the maximal
compact subgroup K. Let γ be a generator of Z. Decompose γ into a product
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γ = b · h with b ∈ B and h ∈ K. Let T ′ ≤ K denote a torus subgroup of
minimal dimension containing h. Without loss of generality we may assume
that T ′ = K: since γ is an element of (T ′ n B)L which generates a discrete
subgroup isomorphic to Z, we are allowed to replace Γ with T ′ nB.

Since T is a closed subgroup of the torus group K, there exists a closed
subgroup T2 ≤ K such that K = T ◦ · T2 and that T ∩ T2 is discrete. Of course,
we may assume that the factor h of γ is an element of T2 and, moreover, that
T2 equals K (otherwise replace Γ with the group T2 n B which contains γ).
We derive that ΓL is a discrete group. If δ ∈ Γ centralizes γ, then γ = δγδ−1

fixes the lines S,L, and δ(L). Since the group generated by γ is not compact,
we deduce that δ(L) = L, whence δ is an element of the discrete group ΓL.
Consequently, the set γΓ = {αγα−1 |α ∈ Γ} is open in Γ. As Γ = K n B is
solvable (recall that K is a torus group), [4, p. 119] asserts that the exponential
image E of Γ is dense, whence the intersection of γΓ and E is not empty. Since
E is invariant under conjugation, γ has to be an element of E, i.e. there exists
an elementX ∈ TeΓ such that γ = exp(X). The corresponding one-dimensional
subgroup Θ := exp(R ·X) centralizes γ and, hence, leaves L invariant. But ΓL
is a discrete group. This contradiction completes the proof.

Corollary 5.2. Let Γ ≤ SG0 be a closed connected subgroup and let W,S be two
distinct lines. If ΓW,S is not compact, then ΓW,S contains a compression subgroup.

In general, the groups occuring in case (3) of the proof of (5.1) are not ex-
ponential. A counterexample which does not contain compression subgroups is
presented in [10, p. 257]. Moreover, we have also the following counterexam-
ple in the parabolic case.

Example 5.3. We consider the following parabolic collineation group of the
quaternion plane.

Γ :=

{(
r−1c 0

dj rc

) ∣∣∣∣ r ∈ Rpos, c, d ∈ C, |c| = 1

}

A Cartan subalgebra of the Lie algebra TeΓ is provided by

h =

{(
−c̄ 0

0 c

) ∣∣∣∣ c ∈ C
}
.

Since Γ is solvable, H := 〈exp h〉 is a Cartan subgroup of Γ, cf. (7.7). The
centralizer in H of the element

(
1 0

j 1

)
∈ Γ

equals {±id} and, hence, is disconnected. By [15, IV.2.44], Γ is not exponential.
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Theorem 5.4. Let Γ ≤ SG0 be a hinge group with weight sphere S ⊆ L0. Then
the following conditions are equivalent.

(1) L is an element of S.

(2) ΓL contains a compression subgroup.

(3) ΓL is not compact.

(4) The dimension of the orbit Γ(L) is at most dimS.

Proof. (1 ⇔ 2) is due to the definition of weight lines, while (2 ⇔ 3) is a
consequence of (5.1). Since L ∈ S implies that the orbit Γ(L) is contained in S,
(1) implies (4). In order to deduce (4 ⇒ 3) suppose that L ∈ L0 \ S. Then ΓL
is a compact group. Fix a geometric IWASAWA-decomposition Γ = K ·Υ ·N , cf.
(4.5). Since K is a maximal compact subgroup of Γ, we have dim ΓL ≤ dimK.
By (4.5) again, dimS equals dimN . Therefore, the inequality

dim Γ(L) = dim Γ− dim ΓL ≥ dim Γ− dimK = dimN + 1 	 dimN = dimS.

completes the proof of the theorem.

6 Unipotent collineations

In this section we investigate collineation groups which consist of unipotent en-
domorphisms of the vector space P . More precisely, we agree on the following
convention.

Definition 6.1. A closed connected subgroup N ≤ G0 is called a unipotent
collineation group if every element of its Lie algebra is a nilpotent endomorphism
of P .

According to [14, 3.6.3], the Lie algebra TeN of a unipotent collineation
group is nilpotent and N is a simply connected, unipotent, algebraic subgroup
of GL(P ). Moreover, the exponential function exp : TeN → N is a diffeomor-
phism. Notice that every element of N is a unipotent automorphism of P .

We start by looking at single unipotent elements of G0. Our aim is a charac-
terization of shears among these, cf. Lemma 6.3.

Lemma 6.2. Let λ ∈ G0 \ {I} be a unipotent map. Choose a one-dimensional
subspace X of the eigenspace E1 of λ with respect to the eigenvalue 1. Let S ∈ L0

be the line containing X and observe that S is λ-invariant.
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(a) λ acts freely on L0 \ {S}.
(b) E1 is a subspace of S.

(c) S is contained in (λ− I)(P ).

Proof. (a) Assume that L ∈ L0 \ {S} is a second λ-invariant line. Then the
unipotent endomorphism λ fixes some point p ∈ L \ {0}, whence X ⊕ R · p is a
subplane which is pointwise fixed by the group 〈λ〉. This implies that the closure
of 〈λ〉 in G0 is compact [13, 81.5]. Being a unipotent generator of a relatively
compact group, λ equals the identity — in contradiction to the assumption.

(b) is a direct consequence of (a): every fixed point of λ lies on a λ-invariant
line L ∈ L0.

(c) Aiming at a contradiction we assume that S \ (λ − I)(P ) contains an
element x. From Rx ∩ (λ− I)(P ) = {0} we infer the existence of a hyperplane
H ≤ P skew to Rx which contains (λ−I)(P ) and hence is λ-invariant. Since L0

is also a dual spread [13, 64.10.a], H contains precisely one line L ∈ L0 which
clearly is λ-invariant, too. In contradiction to (a), L is a line different from S,
because x is an element of S \ L.

Lemma 6.3. Let λ ∈ G0 be a unipotent collineation. Let S ∈ L0 denote a
λ-invariant line. Then the following properties are equivalent.

(1) λ is a shear with axis S.

(2) λ fixes S pointwise.

(3) (λ− I)(P ) is a subset of S.

(4) (λ− I)2 = 0.

Proof. (1⇒ 2, 3, 4): Suppose that λ is a shear with axis S. Let Q be a quasifield
corresponding to (P,L) such that S equals the vertical axis 0 × Q. Then there
exists an element s ∈ Q such that λ(x, y) = (x, y + s ◦ x), where ◦ denotes the
multiplication of Q. This implies that λ satisfies the conditions (2), (3) and (4).

(2⇔ 3): According to (6.2), we have ker (λ−I) ≤ S ≤ (λ−I)(P ). Moreover,
dim ker (λ− I) + dim(λ− I)(P ) equals 2l = 2 dimS. From this information the
claim is easily derived.

(4⇒ 2): Looking at the Jordan canonical form of the nilpotent map (λ−I) we
infer that there are only (1×1)- and (2×2)-Jordan blocks. Thus, the dimension
of the kernel of (λ−I) is at least l. By (6.2.b), it follows that λ fixes S pointwise.

(2 ⇒ 1): Notice that S is an axis of λ and that the line at infinity L∞ is
λ-invariant. Thus, the center z of λ lies on L∞. Since 0 ∨ z is λ-invariant,
(6.2.a) asserts that z = S ∧ L∞, whence λ is a shear with axis S.
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Next, we turn to the investigation of a unipotent collineation group N ≤ G0.
The following result concerning groups of this kind is taken from [9, 2.16].

Proposition 6.4. If N ≤ G0 is a unipotent collineation group, then N fixes pre-
cisely one line S ∈ L0 and acts freely on L0 \ {S}.

In fact, the proof of (6.4) is easy: according to Engel’s theorem [14, 3.5.2], N
fixes a non-zero vector x. Therefore, the line S ∈ L0 containing x isN -invariant.
Finally, every element of N \ {I} acts freely on L0 \ {S}, thanks to (6.2.a).

Theorem 6.5. Let N be a unipotent collineation group. Then Σ := N[S] equals
the group of shears with axis S and N = N1 × Σ is a direct product of Σ and a
connected normal subgroup N1 with N ′ ≤ N1 and (N1)|S ∼= N1. Thus, Σ is a
central normal subgroup of N .

Proof. Let n and s denote the Lie algebras of N and Σ, respectively. We may
assume that s does not vanish.

(1) First, we prove that s is contained in the center z of n. Assume that this
is false. Then (ad n)|s does not vanish. Since the adjoint action of n on s is
nilpotent, there exists an element k ∈ N with (ad n)k(s) 6= 0 and (ad n)k+1(s) =

0. Choose B ∈ (ad n)k−1(s) and A ∈ n such that C := [A,B] is an element of
(ad n)k(s) \ {0}. Notice that C is an element of s ∩ z. Moreover, choose a line
W ∈ L0 \ {S}. With respect to the decomposition P = W × S, the matrix of an
arbitrary element of s \ {0} has the form

(
0 0

X 0

)
,

where X is invertible. Changing vector space coordinates, we may achieve that

C =

(
0 0

I 0

)
.

Moreover, we have

A =

(
A1 0

A2 A3

)
and B =

(
0 0

B2 0

)
.

As C is an element of the center, [A,C] = 0 asserts that A1 = A3. Thus, we
obtain the following equation

(
0 0

I 0

)
= C = [A,B] =

(
0 0

[A1, B2] 0

)
.

We have reached a contradiction: [A1, B2] = I , but trace [A1, B2] = 0 6= l =

trace I .
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(2) Next, we claim that n′ ∩ s = {0}. Assume that this is false and choose
A,B ∈ n with C = [A,B] ∈ s\{0}. Decompose P = W×S, whereW ∈ L0\{S}.
Changing coordinates we achieve that

C =

(
0 0

I 0

)
.

Since s is contained in the center, the matrices of A and B are

A =

(
A1 0

A2 A1

)
and B =

(
B1 0

B2 B1

)
,

respectively. From the equation

[A,B] =

(
[A1, B1] 0

[A2, B1] + [A1, B2] [A1, B1]

)
=

(
0 0

I 0

)

we obtain again a contradiction by comparing traces.

(3) Choose a subspace n1 of n which is complementary to s and which con-
tains n′. Then n1 is an ideal of n and n is a direct sum n = n1⊕ s of the ideals n1

and s. Since the exponential function n→ N is a diffeomorphism, we infer the
assertions of the theorem.

Example 6.6. There are unipotent collineation groups containing elements which
are not shears, see [13, 72.10]. The examples constructed there are 4-dimen-
sional translation planes and the Lie algebras of the two unipotent collineation
groups in question are

span








0

0 0

1 0 0

0 1 0 0


 ,




0

1 0

0 1 0

h 0 1 0








with h ∈ {0, 1}.

Proposition 6.7. Let N ≤ SG0 be a simply connected solvable closed subgroup
which fixes precisely one line S ∈ L0 and which contains no compression sub-
groups. Let W ∈ L0 \ {S} be a second line. Then each of the following conditions
implies that N consists of shears with axis S:

(1) N is normalized by a collineation γ : P = W×S →W×S; (x, y) 7→ (x, ry)

with r ∈ R \ {0, 1}.

(2) N is unipotent and there exists a subgroup ∆ ≤ GW,S normalizing N which
acts irreducibly on W or on S.

(3) N is unipotent and there exists a subgroup ∆ ≤ GW,S , ∆ 6= {I}, normaliz-
ing N which acts trivially on W or on S.
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Proof. (1) Since S is N -invariant, every element of the Lie algebra n of N is a
linear map of the form T : W × S →W × S; (x, y) 7→ (X(x), Y (y) +Z(x)). We
have to prove that X = Y = 0 — then exp(RT ) consists of shears.

The (Ad γ)-invariant Lie algebra n contains the element

T ′ := r · T −Ad γ(T ) : (x, y) 7→ ((r − 1) ·X(x), (r − 1) · Y (y)).

The closure Θ of exp(R·T ′) inN is a connected abelian group which stabilizesW
and S. Since N contains no compression subgroups, Θ is a compact connected
subgroup of the simply connected solvable Lie group N . Consequently, Θ is
trivial and we derive that X = Y = 0.

(2) First, suppose that ∆ acts irreducibly on S. Let n denote the Lie algebra of
N . Then n|S is a nilpotent subalgebra of gl(S) conisting of nilpotent endomor-
phisms. According to Engel’s theorem [14, 3.5.2], the subspace S ′ ≤ S of vec-
tors annihilated by n|S contains non-zero vectors. Moreover, S ′ is ∆|S-invariant
(∆ normalizes N), whence S ′ = S holds by the irreducibility of the action of
∆ on S. As n|S vanishes, (6.3.2) asserts that N consists of shears with axis S.
Using the direction (3⇒ 1) of (6.3) we can prove the assertion in the remaining
case analogously.

(3) Let Σ ≤ N denote the subgroup of all shears and put s := TeΣ. We have
to show that s coincides with n = TeN . Choose an element α ∈ ∆ \ {I}. By
assumption, α is a homology leaving both lines W and S invariant and hence α
fixes no lines in L0 \ {W,S}. Thus, every element γ ∈ N centralizing α leaves
W invariant. Since N acts freely on L0 \{S}, it follows that γ = I . We conclude
that ϕ := Adα − id : n → n is an injective linear map. We complete the proof
by showing that ϕ takes it values in the subspace s of n: let X ∈ n and put
Y := ϕ(X). Since α fixes S or W pointwise, Y induces the zero map on S or on
P/S. This implies that Y ∈ s, thanks to (6.3).

Finally, we consider a unipotent collineation group N ≤ SG0 having the
maximal possible dimension l = (dimP )/2. Once again, Engel’s theorem shows
that there are vectors y0 ∈ S\{0} and x0 ∈ P \S such thatN fixes y0 and x0+S.
The homeomorphism x0 + S → L0 \ {S}; z 7→ 0 ∨ z yields an equivalence of
the actions of N on x0 + S and on L0 \ {S}. Since N acts simply transitively
on L0 \ {S} (observe that dimN = dimL0 \ {S} and use (6.4)), there exists an
element γ ∈ N \ {I} such that γ(x0) = x0 + y0.

Lemma 6.8. Retain the preceding notation. If γ is central in N , then γ is a shear.

Proof. In view of (6.3) it suffices to show that γ|S = I . If y ∈ S, then there
exists an element δ ∈ N such that δ(x0) = x0 + y. Therefore, we have that
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γ(x0) + γ(y) = γδ(x0) = δγ(x0) = δ(γ(x0)−x0) + δ(x0) = γ(x0)−x0 + δ(x0) =

γ(x0) + y, whence γ fixes y.

IfN is abelian, then γ is central in N indeed, whence we obtain the following
result.

Corollary 6.9. Let N be an abelian unipotent collineation group. If dimN =

(dimP )/2, then N contains non-trivial shears.

7 Appendix: Cartan subalgebras of real Lie alge-
bras

Let g be an m-dimensional real Lie algebra. For x ∈ g, we shall write ν(x) for
the multiplicity of the root 0 of the characteristic equation of adx. Of course,
1 ≤ ν(x) ≤ m, and ν(x) = m holds if and only if adx is nilpotent.

The rank rk g of g is the minimum of all numbers ν(x), x ∈ g. An element
x ∈ g is called regular if ν(x) equals rk g.

A Cartan subalgebra is a nilpotent subalgebra h ≤ g which equals its own
normalizer Ng(h). Cartan subalgebras and regular elements of g are closely
related through the following result.

Theorem 7.1 ([1, Th. 2 on p.29]). Let g be a real Lie algebra. Then a subalgebra
h ≤ g is a Cartan subalgebra if and only if there exists a regular element x ∈ g

such that

h = {y ∈ g | (adx)s(y) = 0 holds for some integer s ≥ 1},

i.e. h equals the generalized zero-eigenspace of adx for some regular element x.

Corollary 7.2. Every Lie algebra g possesses at least one Cartan subalgebra, and
the dimension of any Cartan subalgebra equals rk g.

The lower central series (gn)n of a Lie algebra g is defined recursively by
putting g0 := g and gn+1 := [g, gn]. We denote the intersection of all gn, n ≥ 1,
by g∞.

Proposition 7.3 ([1, Cor. 3 on p.20]). Let h be a Cartan subalgebra of the real
Lie algebra g. Then g = h + gn holds for all n.

Theorem 7.4 ([1, Th. 3 on p.31]). Let g be a solvable Lie algebra. If h1 and
h2 are two Cartan subalgebras, then there exists an element U ∈ g∞ such that
eadU (h1) = h2.
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Lemma 7.5. Let g be a solvable real Lie algebra of rank 1. Then the Cartan
subalgebras of g are precisely the elements of Gras1(g) \Gras1(g′). Furthermore,
the action of the group G := exp ad g′ on Gras1(g)\Gras1(g′) is simply transitive.

Proof. (1) Let h be a Cartan subalgebra of g. Notice that dim h = rk g = 1.
Aiming at a contradiction we assume that h is contained in g′. The commutator
ideal g′ of the solvable Lie algebra g is nilpotent. Being a Cartan subalgebra,
h is a maximal nilpotent subalgebra of g, cf. [1, Prop. 1 on p.19], whence we
infer that h = g′. But this is impossible, because the normalizer of g′ equals g

and, hence, is strictly larger than g′. We have proved that h is an element of
Gras1(g) \Gras1(g′).

(2) Choose a Cartan subalgebra h of g (see (7.2) for the existence of h). Then
h ∩ g′ = {0}, thanks to (1). Using (7.3) we deduce that g = h ⊕ g′. Since g is
also the sum of h and gn, n ≥ 1, (see (7.3) again), gn ≤ g′ implies that gn = g′

for all n, n ≥ 1. Thus, we have g∞ = g′.

(3) Let x be an element of Gras1(g) \Gras1(g′). We emphasize that the sub-
space x of g is complementary to g′. Fix a Cartan subalgebra h of g and choose
generators x and h of x and h, respectively, such that r := x− y is an element of
g′.

Aiming at a contradiction we assume that x is not a Cartan subalgebra of
g. Then the dimension of the normalizer Ng(x) is at least 2, whence Ng(x)

and g′ have some nonzero element t in common. Since g′ is nilpotent, there
exists an integer n, n ≥ 0, such that t ∈ (g′)n \ (g′)n+1. The commutator [t, x]

is an element of both g′ and x (recall that t ∈ Ng(x)) and, hence, vanishes.
Consequently, [t, h] = [t, x + r] = [t, r] is an element of (g′)n+1. We derive that
the image of R · t⊕ (g′)n+1 under adh is contained in (g′)n+1. Therefore, there
exists a vector u ∈ R · t ⊕ (g′)n+1, u 6= 0, with [h, u] = 0. This is impossible,
because the centralizer of the Cartan subalgebra h = R · h does not contain an
element u ∈ g′.

(4) We have shown that the Cartan subalgebras of g are precisely the ele-
ments of Gras1(g) \Gras1(g′). By (2), g′ and g∞ coincide. In view of (7.4) we
conclude that the group G = exp ad g′ acts transitively on Gras1(g) \Gras1(g′).
This action is also free: let h ∈ Gras1(g) \ Gras1(g′) and suppose that h is
γ-invariant for some γ ∈ G. As g is solvable, [14, 3.8.4] asserts that ad g′ is a
nilpotent Lie algebra consisting of nilpotent endomorphisms of g. By [14, 3.6.3],
the exponential function expG of G is a diffeomorphism whose inverse is given
by

X := exp−1
G γ =

dim g′∑

j=1

(−1)j−1

j
· (γ − id)j .
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It is easy to see that the element X ∈ ad g′ leaves h invariant, too. Since h is a
Cartan subgroup, h∩g′ = {0} implies that X = 0 and, hence, that γ = exp(0) =

id. This completes the proof.

Lemma 7.6. Retain the notation of (7.5) and put G := exp ad g′. Consider an
element x ∈ Gras1(g) \Gras1(g′) and a sequence (gj)j , gj ∈ G. If (gj)j converges
to ∞ in the one-point compactification of G, then every accumulation point of
(gj(x))j in the Grassmannian manifold Gras1(g) lies in Gras1(g′).

Proof. By (7.5), G is a simply transitive topological transformation group of the
manifold H := Gras1(g) \ Gras1(g′). Therefore, the map G → H; g 7→ g(x) is a
homeomorphism, and the assertion follows immediately.

Cartan subgroups

Following Chevalley, a subgroup of a group G is called a Cartan subgroup if it is
maximal among the nilpotent subgroups of G and every normal subgroup S E
G of finite index in H satisfies |N (S,G)/S| < ∞. (Here, N (S,G) denotes the
normalizer of S in G.) For a connected real Lie group G we have an equivalent
condition which is due to Neeb [11]: let h be a Cartan subalgebra of g := TeG.
From the set Λ of roots λ : hC → C of the complexification gC with respect to
hC we derive a subgroup of G by putting

C(h) := {g ∈ N (〈exp h〉, G) | ∀λ ∈ Λ : λ ◦ (Ad (g))|hC = λ}.

According to Neeb’s theorem, a closed subgroup H of a connected Lie group G
is a Cartan subgroup if and only if there exists a Cartan subalgebra h ≤ TeG

such that H = C(h).

Theorem 7.7. Let Γ be a connected real Lie group with Lie algebra such that
Γ/rad Γ is compact. Then every Cartan subgroup Ξ of Γ is connected. Moreover,
there exists a Cartan subalgebra a of g such that Ξ = 〈exp a〉. In particular, the
assertion holds if Γ is solvable.

Proof. Being a compact connected group, Γ/rad Γ is weakly exponential (i.e. the
image of the exponential function is dense). According to [6] it follows that Γ

is weakly exponential, too. By a result of Neeb [11] we infer that every Cartan
subgroup Ξ of Γ is connected. Since a := TeΞ is a Cartan subalgebra of Γ, see
above, the proof is finished.
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