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Abstract

An F,-linear blocking set B of 7 = PG(2,¢"), ¢ = p", n > 2, can
be obtained as the projection of a canonical subgeometry ¥ ~ PG(n, ¢) of
¥* = PG(n,¢") to w from an (n— 3)-dimensional subspace A of ¥*, disjoint
from 3, and in this case we write B = Bj,x. In this paper we prove that
two F-linear blocking sets, Bx,s and B,/ s/, of exponent h are isomorphic
if and only if there exists a collineation ¢ of ¥* mapping A to A’ and &
to ¥'. This result allows us to obtain a classification theorem for F,-linear
blocking sets of the plane PG(2, ¢*).
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1 Introduction

A blocking set B in the projective plane PG(2,q), ¢ = p", p prime, is a set of
points meeting every line of PG(2, ¢). B is called trivial if it contains a line, and
it is called minimal if no proper subset of it is a blocking set. We say B is small
when its size is less than @ and we call B of Rédei type if there exists a line [
such that |B\I| = ¢. The line [ is called a Rédei line of B. The exponent of B is the
maximal integer e (0 < e < h) such that |l N B| =1 (mod p°) for every line / in
PG(2,¢). In [12] T. Szényi proves that a small minimal blocking set of PG(2, ¢)
has positive exponent. All the known examples of small minimal blocking sets
belong to a family of blocking sets, called “linear”, introduced by G. Lunardon
in [6]. Let # = PG(2,¢") = PG(V,F,n), ¢ = p", p prime. A blocking set B of 7
is said to be an F-linear blocking set if B is an IF,-linear set of « of rank n + 1,
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i.e., B is defined by the non-zero vectors of an (n + 1)-dimensional F,-vector
subspace W of V, and we write B = By . If By is an F,-linear blocking set,
then each line of 7 intersects By in a number of points congruent to 1 modulo
¢, hence the exponent of an F,-linear blocking set is at least h. Also, if there
exists a line [ of 7 such that By N1 has rank n, then By is of Rédei type (see
[9]) and if By has exactly exponent h, then |By N1 > ¢"~ ! + 1 (see [11, [2]).

In the planes PG(2,¢?) and PG(2,¢3), the F,-linear blocking sets are com-
pletely classified: in PG(2,¢?) they are Baer subplanes and in PG(2,¢?) they
are isomorphic either to the blocking set obtained from the graph of the trace
function of F s over I, or to the blocking set obtained from the graph of the
function = — 2 (see [10]). In the plane PG(2, ¢*) all the sizes of the Fg-linear
blocking sets are known (see [9] and [11]). The next problem is the complete
classification of the Fy-linear blocking sets in PG(2, ¢") with n > 4.

An F-linear blocking set B of # = PG(2, ¢™), n > 2, can also be constructed
as the projection of a canonical subgeometry ¥ ~ PG(n,q) of ¥* = PG(n, ¢")
to 7 from an (n — 3)-dimensional subspace A of ¥*, disjoint from ¥ and we
write B = By . Also, if w5 is the quotient geometry of ¥* on A, note that
By x5 is isomorphic to the F,-linear blocking set B, x, in m consisting of all
(n — 2)-dimensional subspaces of ¥* containing A and with non-empty inter-
section with . Therefore, in this paper we will use F,-linear blocking sets By s
in the model 75 of PG(2, ¢™).

In this paper, we show that two [F-linear blocking sets, By s and By/ s/, of
exponent h respectively of the planes 7w, and 7/, constructed in X* (n > 2),
are isomorphic if and only if there exists a collineation ¢ of ¥* mapping A to A’
and ¥ to Y. In particular, we get that two F,-linear blocking sets of PG(2, ¢*),
B, s, and By 5, which are not Baer subplanes, are isomorphic if and only if there
exists a collineation ¢ of ¥* fixing ¥ such that p(I) =1'.

In Section 4, the above result and the main theorem of [9] leads us to com-
plete classification of all F-linear blocking sets in PG(2, ¢%).

In the table at the end of the paper we list, up to isomorphisms, all the
IF,-linear blocking sets of PG(2,¢*). Such a table shows that there are a lot of
non-isomorphic families of F-linear blocking sets in such a plane. This suggests
how difficult it could be to deal with the general case.

We would like to thank the referees for their helpful comments on the original
manuscript.
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2 F,-linear blocking sets

Let 7 = PG(2,q") = PG(V,Fyn), ¢ = p", p prime. A set of points X of 7 is said
to be F-linear if it is defined by the non-zero vectors of an [F-vector subspace
UofV,ie, X = Xy = {{wr,, : uec U\{0}}. If dimp, U = t, we say that
X has rank t. Let PG(3n — 1,¢q) = PG(V,F,) and note that each point P of the
plane 7 defines an (n — 1)-dimensional subspace Lp of PG(3n — 1,¢) and that
S ={Lp : P € 7w} is a normal spread of PG(3n — 1,q) (see e.g. [6]). Also,
the incidence structure whose points are the elements of S and whose lines are
the (2n — 1)-dimensional subspaces spanned by two elements of S is isomorphic
to m. A t-dimensional F,-vector subspace U of V defines in PG(3n — 1,¢) a
(t — 1)-dimensional projective subspace P(U) and the linear set X, of = can be
seen as the set of points P of 7 such that Lp N P(U) # 0, ie. Xy ={P € 7w :
LpnP(U) #0}.

If X = Xy is an Fy-linear set of 7w of rank ¢, we say that a point P =
(W)r,., u € U, of X has weight i in Xy if dimp (Lp N P(U)) = i — 1, ie.
dimg, ({()r,. NU) = i, and we write w(P) = i. Let 2; denote the number of
points of X of weight i. It is straightforward that counting, respectively, the
points of X and the points of P(U), we get

[ X|=z14+...+a, D

o4+ ro(g+ D)+ r(gT g D) = g+ ()

Also, if P = (u)r,, and Q = (u’)r,. are distinct points of X, u,u’ € U, with

w(P) =i and w(Q) = j, we have dimp, ((Lp N P(U),LoNPU))) =i+j—1,
and this implies

i+j<t. (3)

By (1), (2) and (3) it follows easily:

IX|=1 (mod q) 4)
IX|<¢™ '+ +qg+1 (5)
| X|=qg+1 = rank X =2. (6)

Note that, if X is an [ -linear set of 7 defined by the IF,-vector subspace U,
then Xy = X,y for any A € F}.. Also, there exist F -linear sets X of m such
that X = Xy = Xy with U’ # MU for any A € Fyn. In the following lemma
we prove that if X = Xy is an F,-linear set of size ¢ + 1, then the F,-vector
subspaces AU (A # 0) are the unique F,-vector subspaces defining X.
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Lemma 2.1. Let X be an Fy-linear set of m of size g + 1. If X = Xy = Xy
for some FF,-vector subspaces U and U’ of V, then U' = XU with A\ € F;.. In
particular, if UNU’ # {0} then U’ = U.

Proof. By (6) an F,-linear set Xy of size ¢+ 1 has rank 2 and hence it is defined
by the line P(U) of PG(3n — 1,q) intersecting ¢ + 1 elements of the normal
spread S. By [4, Theorem 25.6.1] such elements forms a regulus and any other
transversal to this regulus is defined by a subspace A\U with A € Fn \F,. O

Recall that the FF,-linear blocking sets of m = PG(2, ¢") are F,-linear sets of
m of rank n + 1. Let B = By be an F,-linear blocking set of 7 and suppose
that B is non-trivial (i.e., <W>Fqn = V). Also, suppose that B has exponent h.
Then by [13] there exist lines of 7 intersecting B in ¢ + 1 points. This property
allows us to prove that if By is an F,-linear blocking set of exponent h, then
the subspaces AW are the unique F,-vector subspaces defining B. In order to
prove this we need the following lemma.

Lemma 2.2. Let X = Xy be an F-linear set of m = PG(2,¢") = PG(V,Fyn)
of rank n, contained in a line . If there exists a point P of X of weight 1, then
|X| > q" ! +1. Also, the FF-vector subspace U is generated by the vectors defining
the points of X of weight 1.

Proof. Let () be a point of 7 \ [ and let Q = (v)f,., v € V. Since v ¢ U, the
IF4-vector subspace W = (U, v)r, has dimension n + 1 and defines a non-trivial
[F,-linear blocking set By, of = such that By Nl = Xy = X. Hence, By is a
blocking set of Rédei type and [ is a Rédei line of By,. Also, the line PQ is a
(¢+ 1)-secant of Byy. This means that By is a non-trivial Fy-linear blocking set
of Rédei type of exponent h. Hence, by [1] (see also [2]), |X| = |Bw NI| >
¢+ 1.

Now, let x be the number of points of X of weight greater than 1. By (1)
and (2) we get, respectively, 1 + x = |X| > ¢" ' +1and 21 + (¢ + 1)x <

q""'+...+q+ 1. From these we have 1 > ¢"~! —¢" 3 — ... — q. Let P(U’)
be the subspace of P(U) defined by U’ = (u € U : dimg, ((w)r,. NU) = 1)r,.
Since x1 > ¢" ' —q" 3 — ... —q, |[PU)| > 21 > ¢ —q"3—...—q >

q"3+¢"~*+---+1. Hence, dimp, P(U’) > n—2. Suppose dimp, P(U’) = n—2,
i.e. suppose that P(U’) is a hyperplane of P(U) and let R = (u)r,, € Xy, with
uecU. Ifw(R)=1in Xy, thenu € U’ and hence R € Xyv. If w(R) > 1 in
Xy, then dimg, (Lg N P(U)) > 1 and this implies dimp,(Lr N P(U’)) > 0, i.e.,
R € Xy/. Therefore Xy = Xy and by (5) we get qnil +1< |XU| = |XU/| <
¢""?+ ...+ ¢+ 1, a contradiction. This means that dimg, P(U’) = n — 1, i.e.,
U ="U. O
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Proposition 2.3. If By is an Fy-linear blocking set of m of exponent h, then
Bw = Bw ifand only if W' = AW with A € F.

Proof. Since By has exponent h, there exists a (¢+1)-secant !’ to By (see [13]).
Let P € By N1', with P = (wo)r,., Wo € W and note that w(P) = 1. Suppose
that By = Byw. Without loss of generality we may assume that wo € W NW".
It follows from Lemma 2.1 that if Q = (w)r_., w € W, is a point of By for
which PQ is a (¢ + 1)-secant, then w € W’. Now, let V = V/(wq)r,. and
let W = W + (wo)r,. < V. Since w(P) = 1, dimg, W = n and hence W
defines in PG(V,F,») ~ PG(1,¢") an F,-linear set X = Xy;, of rank n. Let
m = PG(V’,F,») be a line through P (i.e., wo € V'), and denote by m/P the
point of PG(V,Fy») defined by V/ = V' + (woq)r,. . Note that

w(m/P) = dimg, (V' N W) = dimg, (V' NW) — 1. )

This implies that m is a secant line to By if and only if dimg, (V/NW) > 1, i.e., if
and only if m/P € X. Also, by (x), (¢+ 1)-secants of By, through P correspond
to points of X of weight 1. In particular, I’/ P is a point of X of weight 1. Then,
by Lemma 2.2, W is generated by the vectors defining points of weight 1 of X,

i.e., there exists an F,-basis of W, namely {w; + (W0)Fyns-- s Wn + (Wo)F,n
such that dimg, ((w; + (Wo)F,. )¥,. N1W) =1, foranyi =1,...,n. In particular,
if Q; = (Wi)r,., from (x) we have dimr_ ((wi, wo)r,.» N W) = 2, i.e., PQ; is a
(¢ +1)-secant of Byy. Now, if w € W, then there exist a, ..., a,, € F, such that
w =Y o, a;w;i + Awp for some \ € Fy» and since dimg, ((Wo)r,. N W) =1,
we get A € F,, ie.,, {wo,w1,..., Wy} is an F,-basis of W. Since PQ); is a
(q + 1)-secant for any point Q; = (Wi)r,., (i = 1,...,n), we have w; € W’ for
any ¢, i.e., W =W". O

Recall that by [8] an F,-linear blocking set is either a canonical subgeometry
or the projection of a canonical subgeometry. So, in the planar case, if n > 2,
each F,-linear blocking set of PG(2, ¢™) can be constructed in the following way.

Let ¥ ~ PG(n,q), n > 3, be a canonical subgeometry of ¥* = PG(n,¢") =
PG(V*,F,n) and let ¥ = Xy where W is an F,-vector subspace of V* of rank
n + 1 such that (W)r,, = V*. Let A = PG(U,Fy») be an (n — 3)-dimensional
subspace of ¥* disjoint from ¥, and let 7 be a plane of ¥* disjoint from A. The
projection of ¥ from the axis A to the plane 7 is the map from ¥ to 7 defined by
pAaxx(P) = (P,A) N7 for each point P of 3. The set ps  »(X) is an F,-linear
blocking set of 7 = PG(2,¢™) ([71, [8]). Since X is a canonical subgeometry,
there is no hyperplane of ¥* containing 3 and hence the [F,-linear blocking sets
obtained by projecting ¥ are non-trivial.

Note that, if 7o = PG(V*/U,F,n) = PG(2,q¢") is the plane obtained as
quotient geometry of ¥* on A, then the set By x of the (n — 2)-dimensional



40 G. Bonoli e O. Polverino

subspaces of X* containing A and with non-empty intersection with ¥ is an
F,-linear blocking set of the plane 7, isomorphic to pj  »(X) = Ba x5, for
each plane 7 disjoint from A. Also, since ¥ = Xy and ANYX = (), then
W NU = {0} and the blocking set By, of m, is defined by the F,-vector
subspace W = W + U of rank n + 1 of V*/U, i.e., By s = Byy.

In the following theorem we see that the study of F,-linear blocking sets of
PG(2,¢™) with exponent h is equivalent to the study of the (n — 3)-subspaces A
of ¥* = PG(n, ¢™), disjoint from a fixed canonical subgeometry ¥ ~ PG(n, q) of
3*, with respect to the collineation group of ¥* fixing X.

Theorem 2.4. Two Fg-linear blocking sets By s, and By s of exponent h re-
spectively of the planes wp and s, constructed in ¥* = PG(n,q"™) (n > 2), are
isomorphic if, and only if, there exists a collineation ¢ of ¥.* mapping A to A’ and
Y to Y.

Proof. Let Bp s and By s be two Fy-linear blocking sets, respectively, of ma
and mps constructed in X* and suppose that there exists a collineation ¢ of
>* which maps A to A’ and ¥ to ¥'. Then ¢ induces, in a natural way, a
collineation @ between m, and ms which maps Bj s in By sy, i.e., By » and
By y are isomorphic. Now, suppose that By s is isomorphic to By x/. Then
there exists a collineation y of ¥* such that x(A) = A’ and x(Ba,x) = Bar >
Since x(Ba,s) = Bar,y(z) = Bar,s, if there exists a collineation ® of ¥* such
that ®(A’) = A/, and ®(x(X)) = ¥/, then ¢(A) = A’ and ¢(X) = ¥’ where
¢ = ® o x, and the proof is complete. Hence, to prove the statement it suffices
to show that if By 5y = By s, then there exists a collineation ¢ of ¥* such that
®(A) = Aand &(X) = ¥'. Let ¥ = Ty, ¥’ = X'y where W and W’ are
[F,-vector subspaces of V* of dimension n + 1 spanning the whole space and
let W = (wo,...,Wn)r,. Since Bp 5, = By s/, we have By, = By, and hence
by Proposition 2.3 there exists A € F;. such that W’ = AW, i.e, W + U =
AW + U) (where A = PG(U,F4)). This means that for each i = 0,...,n
we can write A\w; = wj} + u; for some vectors w; € W’ and u; € U. The
vectors w} are independent over F,: indeed, if }°;" j a;w] = 0 for o; € F,, then
S aiwi = A (X ayu;) and, since WNU = {0}, we get; = 0,7 =0,...,n.

This means that W' = (wyg,...,w,)r, and since (W')r, = V*, the vectors
wg, ..., w, are also independent over F,». Let f be the linear automorphism
of V* such that f(w;) = w{ fori = 0,...,n and let ® be the linear collineation

of ¥* induced by f. If P € A, then P = (u)p,, with u € U and we can write
u = > " a;wj, for some a; € Fgn. We have ®(P) = (f(u))r,. and f(u) =
Yoioaif(wi) =30 gaiwl = Y a;(Awi — u;) = Au — Y a;u; € U. Therefore,
the collineation ® fixes A and maps ¥ to ¥’. This proves the theorem. O



F,-linear blocking setfs in PG(2, ¢*) 41

3 Canonical subgeometries and their
collineation group

In this section we study some properties of the automorphism group of canoni-
cal subgeometries that will be useful in what follows.

A canonical subgeometry ¥ ~ PG(r,q) of £* = PG(V,Fyn)
F,-linear set of ¥* defined by the non-zero vectors of an (r
IF,-vector subspace U of V such that (U) = V.

+ d1mens1ona1

PG(r,q") is an
1)-

Let ¥ ~ PG(r,q) be a canonical subgeometry of ¥* = PG(r,¢") and de-
note by Aut(X) the collineation group of ¥* fixing 3. Recall that two canon-
ical subgeometries of ¥* on the same field are isomorphic; in particular any
canonical subgeometry ¥ ~ PG(r, ¢) is isomorphic to the canonical subgeome-
try ¥ = {(ao,...,a,) : a; € F,}. Since ¥ = Fix(r) where 7 is the semilinear
collineation 7: (zo,...,2,) — (2,...,22), if ¥ ~ PG(r,¢) is a canonical sub-
geometry of ¥*, there exists a semilinear collineation o of X* of order n such
that ¥ = Fix(o). By these remarks, we easily get the properties:

(3.1) Aut(X) ~ Aut(X) = G - A, where G is a normal subgroup of Aut(X),
GNA= {1}, G ~ PGL(r +1,q) and A ~ Aut(Fq), ie., Aut(X) ~
PGL(r +1,¢) x Aut(Fg») (x stands for semidirect product). In particular,
the linear part LAut(X) of Aut(X) is isomorphic to PGL(r + 1, q).

(3.2) LAut(X) acts transitively on the subspaces of ¥ of the same dimension.
(3.3) Aut(X) < Aut(¥'), for any canonical subgeometry ¥’ of ¥* containing X..
(B4 Auwt(X) ={p € PTL(r+1,¢") | po = op}.

Proposition 3.1. Let ¥ ~ PG(r,q) (r > 1) be a canonical subgeometry of ¥* =
PG(r,q" ') and denote by o a semilinear collineation of order r + 1 of ¥* such

that ¥ = Fix(o). Then for each hyperplane H of ¥, the stabilizer LAut(X) g acts
transitively on the points P € ¥* for which (P, P?,..., P’ ) = ©*.

Proof. Without loss of generality, we can fix ¥ = {(ao,...,ar) : a; € Fg}
and hence o: (zo,...,2,) — (af,...,2%). Since LAut(X) ~ PGL(r + 1,q)
acts transitively on the hyperplanes of ¥, we can assume that the hyperplane

H has equation 2 = 0. Note that if P = (ao,...,a,) is a point of ¥* for
which (P, P?,...,P°") = ©*, then aq, . . . , a, are independent elements of Fgri1
over F, (see [5, Lemma 3.51]) . Now, let P, = (ag,a1,...,a,) and P, =

(bo, b1, ...,b,) be two distinct points of ¥* for which (P, P¢,...,P¢") = ¥*
(k =1,2) and let M = (my;), i,5 € {0,1,...,7}, be the ((r + 1) x (r + 1))-
matrix on F, whose coefficients m;; are such that b; = 377_;m;ja;. Since
{ag,a1,...,a,}, {bo,b1,...,b,} are two F,-basis of Fr+1, det M # 0 and hence
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M induces a linear collineation ¢ of ¥* such that ¢ € LAut(X)y and ¢(P;) =
P;. O

Corollary 3.2. Let | ~ PG(1,q) be a subline of I* = PG(1,q*) and let I’ be the
unique subline over F . such that | C ' C I*. Then for each point Q € I, the
stabilizer LAut(l)q acts transitively on the points of I’ \ L.

Proof. It follows from Proposition 3.1 with ¥* =" and r = 1. O

Proposition 3.3. Let m ~ PG(2, q) be a subplane of 7* = PG(2, ¢*) and let 7’ be
the unique subplane over F > such that = C 7’ C 7*.

() For each point R € m, the stabilizer LAut(7) g acts transitively on the lines
" of o’ such that ' N7 = {R}.

(i) Let I’ be a line of * containing a subline of 7’ and intersecting 7 in a point
Q. Then LAut(w)y acts transitively on the points of I’ \ 7'.

(iii) LAut(w) acts transitively on the points P € =* for which (P, P?, P, P"3> =
7*, where ¢ is a semilinear collineation of order 4 such that m = Fix(o).
Consequently, if () is a point of w, then LAut(m)g acts transitively on the
points PJ € w* for which (P,P°,P°" P’y = 7* and {Q} = (P,P°") N
(P?,P").

Proof. The set Fx of lines of 7* through R form a dual PG(1, ¢*), and applying
Corollary 3.2 to Fr we get (i).

Now, let 7 = {(z0, %1, ®2) : ¥; € F,} and recall that LAut(r) ~ PGL(3, ¢). Since
PGL(3, ¢q) acts transitively on the points of 7, we can fix @ = (0,0, 1) and, by (0),
we can also fix I’ = {(zo,{xo, x2) : 0,22 € Fya} where & € F2 \ Fy. Let P; and
P, be two points of I’ \ #’. We can write P, = (1,{,n) and P>, = (1,£,7') where
n,n" € Fpa\F . Itis easy to see that {1,£, 7, £} is an F-basis of I+, and hence
we can write n = a1 + a2€ + asn’ + asén’ with a; € Fy, ¢ = 1,...,4. In particular,
since 7 € Fy2, (a3,as) # (0,0). Thus, the linear collineation ¢ € PGL(3,q)r
defined by ¢(xq, x1,x2) = (aszo+asx1, caszo+ (as+das)z, —a129—asx1 +x2),
where €2 = ¢+ d¢ with ¢,d € F,, maps P, to P». This proves (ii). Finally, if
P is a point of 7* for which (P, P7, P"27 P‘73) = 7*, then PP’ is a line of 7*
containing a subline of 7’ and intersecting 7 in a point, so combining (3.2), (i)
and (ii), we get (iii). O

Proposition 3.4. Let I' ~ PG(3, q) be a canonical subgeometry of I'* = PG(3, ¢*)
and let I be the 3-dimensional canonical subgeometry over IF > such that I' C I C
I'*. Also, let o be a semilinear collineation of order 4 of I'* such that T' = Fix(o).
Then the following properties hold.
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() LAut(T) acts transitively on the points P € T* for which (P, P°, P®" | P’} =
.

(i) LAut(T") acts transitively on the lines [ of I'* containing a subline in T and
disjoint from T.

(iii) Let [ be a line of T'* containing a subline of T and disjoint from T. LAut(T"),
acts transitively on the points of [ \ T".

(iv) Let Q be a point of . The stabilizer LAut(I")¢ acts transitively on the points
P € T* for which dim(P, P°,P°" P°") = 2 and Q & (P,P°,P° ,P°").
Consequently, if R is a point of I different from @, (LAut(I')q)r acts tran-
sitively on the points P € T'* for which dim(P, P",PUQ,P"S)=2, (P, P"2) N
(P°,P”’) = {R}and Q & (P,P°,P°" , P"").

(v) Let | and m be two disjoint lines of I'* containing a subline of I'. Then
(LAut(X);)m acts transitively on the points of | belonging to T' \ T..

Proof From Proposition 3.1 with ¥* = I'* and with r = 3, we get (i). Now,
let [ be a line of I'* containing a subline of I (i.e., [ = [°°) disjoint from I
(e, 1N1° = (). Then! = (P,P°") and (P, P, P°",P°’) = I'* for any point
P €1\ T". This means that applying (i), we easily get (ii) and (iii).

Now, in order to prove Case (iv) suppose ) = (0,0,0,1). Since LAut(T)g
acts transitively on the planes of I', not containing (), we may assume that
the point P for which dim(P, P?, P, P"3> = 2 belongs to the plane 7* of I'*
with equation z3 = 0. Now, noting that (LAut(I')g).- ~ LAut(w), (where
m = 7* N X), we can apply Case (iii) of Proposition 3.3 to the plane 7* and so
we get (iv).

Finally, since LAut(T") ~ PGL(4, q), we may assume [ = {(xg,1,0,0) : 2o, z1 €
Fya}and m = {(0,0,22,23) : 2,23 € Fya}. Let (1,1,0,0) and (1,7/,0,0) be two
points of / belonging to I'" \ T, i.e., n,7" € Fp2 \ F,. We can write 1’ = bg + b1
with bg,b1 € F,. Then, the linear collineation ¢ € (LAut(X);),, defined by
o(xo, 21, 22,23) = (To,boxo + b1, x2,23) maps (1,7,0,0) to (1,7,0,0). This
concludes the proof. O

4 TF,-linear blocking sets in PG(2, q*)

In [9], by using the geometric construction of linear blocking sets as projec-
tions of canonical subgeometries, P Polito and O. Polverino determine all the
sizes of the F,-linear blocking sets of the plane PG(2, ¢*). Their main result and
Theorem 2.4 leads us to the problem of classifying all F,-linear blocking sets
in PG(2, ¢*). From now on we suppose that ¥ ~ PG(4,q) (¢ = p", p prime) is
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the canonical subgeometry of ¥* = PG(4, ¢*) such that X = {(z, 21, 72, 73, 74) :
z; € F,} and hence ¥ = Fix(0), where o: (xq, 1, T2, 23, 24) — (zd, 2], 23, 24, 7).
The semilinear collineation o has order 4 and the set of fixed points of o2 is the
canonical subgeometry ¥ = {(xo, 1, %2, 3, 24) : ; € Fp2 } of ¥*. A subspace S
of ¥* of dimension k intersects 3 (respectively ') in a subspace of X (respec-
tively of ©2) of dimension k < k; also k = k if and only if S° = S (respectively
S§o° = S) (see e.g. [7]). All Fy-linear blocking sets of PG(2, q*) can be obtained
as blocking sets of type B; 5, where [ is a line of ¥* disjoint from X.

As pointed out in [9], the proof of the main result splits into the following
cases:

A il= 1°° & [lintersects ¥ in a line;
B) In 1°" is a point P < [ intersects ¥’ in a point P;

(© INl°° =0 « [is disjoint from 3.

As proved in [9], in Case (A) we get [F -linear blocking sets which are Baer
subplanes of PG(2, ¢*). Hence, it remains to investigate FF,-linear blocking sets
in Cases (B) and (C). In such cases, since there always exist (¢ + 1)-secants (see
[9]), the blocking sets are of exponent h and hence we can apply Theorem 2.4,
namely two F,-linear blocking sets of PG(2,¢*), B;» and By x, which are not
Baer subplanes, are isomorphic if and only if there exists ¢ € Aut(X) such that
(1) =I’. In particular, a blocking set of type (B) is not isomorphic to a blocking
set of type (C).

In the sequel, it is useful to recall that B; x is of Rédei type if and only if
dim(l, 19, l"z, l"3> < 3 and, if B x is not a Baer subplane, then it has a unique
Rédei line if and only if dim(l,1,1°",1°") = 3. Also, if B is not of type (By),
then |B; x| = ¢* + ¢® + ¢* + ¢ + 1 — gz where z is the number of lines of ¥
projected from [ to a point of B; 5, i.e., = is the number of lines m of ¥* such
that m N1 # () and m° = m (see [9]).

4.1 Blocking sets in Case (B)

Let [ be a line of ©* such that [ N{°" = {T'}. The authors of [9] determine four
classes of blocking sets in this case. The different classes correspond to different
geometric configurations of the lines [, 17, l"2, l"3, invariant under the action
of Aut(X). Hence, by Theorem 2.4 the blocking sets of type (B) belonging to
different classes are not isomorphic.
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4.1.1 Blocking sets in case (B;1)

(B1) 1N17 0.

In this case, by [9] B,y is equivalent to the blocking set obtained from the
graph of the trace function of F 4« over F,.

4.1.2 Blocking sets in case (B3)
(By) 1N1° = and dim(l,1%,1°,1°") = 3.

In this case B; 5 is of Rédei type with a unique Rédei line. Moreover, m =
(T,T°) and m’ = (1,1°°) N (1°,1°") are the only lines of %* fixed by o and
concurrent with /.

(B21) If m = m/, then exactly one line of ¥ is projected from [/ to a point of
Blyg, and hence |Blyg| = q4 + q3 + q2 + 1.

By Property (3.2) of Section 3 and by Corollary 3.2 we may assume that m =
{(%0,21,0,0,0) : zg,z1 € Fpu} and T" = (1,£,0,0,0), for some fixed element
§ € Fp2 \ Fy. Let £ be the set of lines I’ of X* through 7" such that I’ N U’ =T,
U'nre =0, dim(l, 17,07, 1'°°) = 3and (T,T°) = (I,1'7°) N (1", 1"").

Proposition 4.1. The group Aut(X)r acts transitively on L.

Proof. Recall that LAut(X) ~ PGL(5, ¢). So, we can easily prove that an element
of LAut(X)r is defined by a matrix of the form

a1y —aoid ap1 | @o2 @03 Qo4
apic ail | a2 a1z a4 7
0 | A

where a;; € Fy, A = (a;;) (4,5 = 2,3,4) is an invertible (3 x 3)-matrix on I,
(ao1,a11) # (0,0), and &2 = ¢ + d¢ with ¢,d € F,. Note that, since m = m/
is the unique line of ¥ through T, if ¢ € Aut(X)r, then p(m) = m. Let G
be the subgroup of LAut(X); whose elements are defined by matrices (7) with
apr = ag2 = agz3 = aps = 0. Fix the 3-dimensional subspace Q2 of ¥* with
equation zyp = 0 and denote by X*/T the quotient space of the lines of X*
through 7. The map w: n € ¥*/T — nNQ € Q is an isomorphism and the
group G induces on ) a group G isomorphic to PGL(4, q)¢, where @ is the point
w(m) = (0,1,0,0,0), acting on the points of . If P € w(£) then P, P, P,
P°’ are distinct, dim(P, P?, P°",P°") = 2 and {Q} = (P,P°" ) N (P°,P"").
Since G acts transitively on the planes of ¥ N Q through Q, we may fix such a
plane 7 and study the action of G on the set P, of points P of w(L) for which
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(P,P°,P” Py = . As G ~ (PGL(4,¢)0)x ~ PGL(3,q)q, it follows from
(iii) of Proposition 3.3 that G, acts transitively on P,. This means that G acts
transitively on w(£), and so G < LAut(X)r acts transitively on L. O

By Theorem 2.4 and by Proposition 4.1 we get the following result.

Proposition 4.2. In Case (B21), all Fy-linear blocking sets are isomorphic.

(B22) If m # m/, then exactly two lines m and m/, fixed by o, are projected
from [ to a point of By, i.e., |Bis| =¢* + ¢ +¢* —q+ 1.

By (3.2) we may assume S35 = (m,m') = {(xo, 1, 22,23,0) : z; € F,} and,
as Aut(X)s, acts transitively on the pairs of disjoint lines of S5, we may also
assume m = {(xo,21,0,0,0) : g, z1 € Fa} and m' = {(0,0,z2,23,0) : 2,23 €
F,4}. Moreover, by (v) of Proposition 3.4, we can put 7' = (1,£,0,0,0), with
¢ € Fpe \ Fy. Note that ((Aut(X).,)m )7 = (Aut(X),, )7 since m is the unique
line of ¥* through T fixed by o.

Let £’ be the set of lines I’ of S3 through T such that I’ N/’ = () and
m/ = (I',°y 0 (', I'""), then I intersects m/ in a point not belonging to ¥'.
Conversely, if I’ is a line of ¥* through T intersecting m’\¥’, then !’ € £’. There-
fore, it suffices to study the action of (Aut(X),, ) on the points of m'\ ¥’. Since
the elements of the group (Aut(X),, ) are defined by matrices of type (7) with
ap2 = ap3 = a12 = Q13 = A42 = Q43 = 0, (Aut(Z)m/)T induces on m’ a group
isomorphic to PGL(2,q) x Aut(F,); so by Theorem 2.4 we have proved the
following result.

Proposition 4.3. In Case (By2), the number of non-isomorphic IF-linear blocking
sets equals the number of orbits of the group PGL(2,q) x Aut(F ) acting on the
points of PG(1,¢*) \ PG(1, ¢?).

4.1.3 Blocking sets in case (B3)
(Bs) 1N17 =0 and dim(,17,17",1°") = 4.

In Case (B3) m = (T,7T7) is the unique line of ¥*, fixed by o, projected
from [ to a point of B;y, and hence |B; x| = ¢* + ¢* + ¢*> + 1. The planes
<l,l"2> and (l",l"3> intersect in a point R € X. As in the previous case, we
may assume that m = {(x0,21,0,0,0) : 29,21 € Fpa} and T' = (1,£,0,0,0),
§ € Fpe \ F,. It is not difficult to prove that (Aut(X),,)r = Aut(X)r acts
transitively on the points of ¥ which do not belong to m, hence we can put
R = (0,0,0,0,1). Let G be the subgroup of LAut(X)r defined in the proof
of Proposition 4.1, let 2 be the 3-dimensional subspace of ¥* with equation
xo = 0 and let £ be the set of lines I’ of * through 7T such that I’ N1’ = () and
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dim (!, 1'7,1'°° I’} = 4. Themapw: n € X*/T — nNS € Q is an isomorphism
and if P is a point of w(£), then P, P°, P°° P°" are distinct, {R} = (P, P ) N
(P°,P°"y and Q ¢ (P,P°,P°", P°") with Q = w(m). Also, the group Gp
induces on (2 a group G isomorphic to (PGL(4,q)g)r acting on the points of Q.

By (iv) of Proposition 3.4, G acts transitively on the points of w(L). Hence, G
acts transitively on the lines of £. So, by Theorem 2.4 we have the following.

Proposition 4.4. In Case (Bs), all F -linear blocking sets are isomorphic.

4.2 Blocking sets in Case (C)

In [9] the authors find eight classes of blocking sets of type (C), corresponding
to different geometric configurations of the lines I, 17, 1‘72, 1°° invariant under
the action of Aut(X). Hence, by Theorem 2.4, blocking sets of type (C) belong-
ing to different classes are not isomorphic.

4.2.1 Blocking sets in case (C;)

(C1) Suppose that [ is a line of ¥* such that dim(1, 17, l"2, l"S) =3 and let S5 =
(,1°, l"z,l"d). In this case By is of Rédei type with a unique Rédei line. By
Property (3.2) of Section 3 we can fix S3 = {(xo, 21,22, 23,0) : T, z1, 22,23 €
Fpa}.

(C11) Suppose that I N1° # § and let {P} =1N1°, so = (P, P°"). The unique
lines intersecting [, 1°, 1°° and 1°” are r = (P°", P) and r° = (P°", P7). Since
such lines are not fixed by o, there is no line of ¥* projected from [ to a point of
By, i.e., B;x has maximum size.

The line r is fixed by ¢* and, since 7 N 77 = ), r N X = (; hence by (i) and
(iii) of Proposition 3.4, we can fix r, P and, since | = (P, P"3>, we have the
following result.

Proposition 4.5. In Case (Ci1), all Fy-linear blocking sets are isomorphic.

In the sequel of this section, we will denote by v the Pliicker map from the
line-set of S3 = PG(3,¢*) to the point-set of the Klein quadric Q*(5,¢*) and
by L the polarity of PG(5, ¢*) defined by 9 (5, ¢*). Also, we will denote by 7
the semilinear collineation of PG(5,¢*) defined by 7: (2o, 21, T2, 23, T4, T5) —
(xd,2f, 23, 2% 29, 21). Since ¢ o 0 = 7 o), the lines of S3 N X are mapped
by 1 to the set of points of the Klein quadric Q*(5,q) = Fix(r) N @*(5,¢%),
where Fix(7) ~ PG(5, q). If we denote by G(q*) the subgroup of index two of
Pro*(6, ¢*) leaving both systems of generators of Q% (5, ¢*) fixed, we have that
PrL(4,q*) ~ G(q*) (see [4, Theorem 24.2.16]) and hence, since Aut(X)s, =
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PTL(4,¢*)zns,, we have that Aut(X) s, ~ G(¢*) g+ (5,9)- As Aut(X)s, induces on
S3 a group isomorphic to PI'L(4, q), the group G(¢*)g+ (5 4) induces on Q™ (5, q)
a group isomorphic to the subgroup of index 2, say G(q), of PTO™ (6, ¢) leaving
both systems of generators of Q1 (5,¢) invariant. Also, if G(q) is the group
G(q*) o+ (5,9)> we have that the action of Aut(X)g, on the lines of S is equivalent

to the action of G(q) on the points of Q*(5,¢*). Furthermore, the following
properties hold.

(D G(q) is transitive on the set of irreducible conics C contained in Q* (5, q)

and G(q). ~ PGL(2,q) x Aut(F ).

(ID) If Q™ (3, q) is a hyperbolic quadric contained in Q7 (5, ¢), then Wgﬂg,q) ~
PGO™(4,q) x Aut(F,u).

(1) 1f @~ (3, g) is an elliptic quadric contained in Q* (5, ¢), then G(g) g (5 ;) =
PGO™ (4, q) x Aut(Fys).

(IV) If M is a point of Q" (5,q), G(q),, acts transitively on the 3-dimensional
cones with vertex M contained in Q* (5, q).

Since the action of G(q) is equivalent to the action of PI'L(4, ¢) on PG(3, q), we
can easily prove the above properties by studying the corresponding geometric
configurations in PG(3, ¢) under the action of PT'L(4, ¢) (see [3, Table 15.10]).

Suppose [N 1° =1N1° = (; let R be the regulus of S3 determined by [, 1°
and 1°° and let R be the opposite regulus of R.

(C12) Suppose 1°° € R. Since R is fixed by o, RN X is a regulus of S3NX. This
implies that each transversal line to R N¥ is projected from [ to a point of B; 5.
Hence |B;s| = ¢* + ¢ + 1.

Let £’ be the set of lines I/ of £* such that I/ N ° = ' N I’" = () and such
that I/,1'”, 1", I°" belong to the same regulus. A line I’ of £ determines a point
S = (') of Q*(5,¢*) such that S, S, STQ, i belong to an irreducible conic
C of Q* (5, ¢*) fixed by 7. This means that C' N @ (5, ¢) is a conic and since, by
D, Wq) is transitive on the conics contained in Q7 (5, ¢), we can fix the conic
C. So, we have to study the action of G(q). on the set of points S of C' such

that S # S7 and S # S™ . By (I), we have the following result.

Proposition 4.6. In Case (C12), the number of non-isomorphic IF-linear blocking
sets equals the number of orbits of the group PGL(2,q) x Aut(F,4) acting on the
points of PG(1,¢*) \ PG(1, ¢?).

Now, suppose [°° ¢ R. A line m fixed by o and concurrent with /, is concur-
. 2 3 PO . 2
rent with [?, [ and [° and hence it is a transversal line of R, R?, R° and
3 . = = = 2 = L .« . .
R"d, e, me RNRNRT N R’ Note that two distinct reguli can have at
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most two transversal lines in common and that the intersection of R, R, R’
and R’ is fixed by o.

(C13) Suppose R, R°, R and R°" have two transversal lines, m and m/, in
common both fixed by . Then B, x. has size ¢* + ¢° + ¢ — ¢ + 1.

Since LAut(X)s, ~ PGL(4, q), Aut(X)s, acts transitively on the pairs of dis-
joint lines of S3 N ¥ and hence we can fix m and m’. Since m? = m and
(m')? = m/, the lines m and m' are mapped, under the Pliicker map v, into two
points, M and M’, of Q% (5, q).

Let £ be the set of lines !’ of Ss such that I’ N {7 = I'n 1°° = () and
such that the reguli R’ = R/(I',1",1°7), R'’, R'”" and R'® have the lines
m and m’ as the unique transversal lines in common. If F € (L), then
F,FT F™ F™ € (M,M)- N Q*(5,¢%), F, F™, F~', F™" are pairwise non-
collinear in Q*(3,¢*) and, since R’ # R, dim(F, F™,F™",F™) = 3. The line
(M, M') is a secant line to Q7 (5, ¢*), fixed by 7, hence the 3-dimensional space
(M, M")* meets the quadric Q* (5, ¢*) in the hyperbolic quadric Q7 (3, ¢*) fixed
by 7, ie., F,F™,F™  F™ € Q*(3,¢%) and Q*(3,¢*) N QT (5,q) = Q*(3,q) (see
[3, Table 15.10]). Hence, the study of the action of (Aut(X)s,){m,m} on the
lines of £ is equivalent to the study of the action of th mmy =G (q) (M, MYL =
@Qﬂg,q) on the points F of QT (3, ¢*) such that F € ¢(Z). By (II), we have
proved the following.

Proposition 4.7. In Case (Cy3), the number of non-isomorphic Fg-linear block-
ing sets equals the number of orbits of the subgroup PGO™(4,q) x Aut(F,) of
Prot*(4, ¢*), fixing Q*(3, ), acting on the points I of Q* (3, ¢*) such that F, F7,
F™, f™ are pairwise non-collinear on Q* (3, ¢*) and dim(F, F™, F™" | F™") = 3.

(C14) Suppose R, R?, R’ and R’ have two transversal lines m and m’ in
common, each one not fixed by o. In this case B, 5, has maximum size.

Since RNR° NR7 NR’ is fixed by o, we have m® = m’ and (m')” = m,
hence both m and m’ are fixed by o2. By (ii) of Proposition 3.4 we can fix
m. If M = ¢(m), then ¢(m') = M7 and the line (M, M™) determines a line
external to Q7 (5, ¢). This implies that the 3-dimensional subspace (M, MT)+ =
S% intersects Q1 (5, ¢) in an elliptic quadric Q~ (3, ¢) (see [3, Table 15.10]).

Let £’ be the set of lines I’ of S5 such that I'Nl’® = I'ni°” = ( and such that the
reguli R/ = R/(I',1'°,1'""), R'°, R'" and R"’S_have the lines m and m? as the
unique transversal lines in common. If V € ¢(£’), then (V, V™, V™" V™") = &},
V,V7, V™, VT are pairwise non-collinear in Q* (3, ¢*) = S4NQ* (5, ¢*). Hence
the action of (Aut(X)s, )., on the lines of S; of £’ is equivalent to the action of
G(@)y = G(Q)(M,IW) = G(Q)sg = G(Q)Qf(g,q)a subgroup of G(q4)g+(3,q4): on
the points V € ¢ (L'). By (III), we have the following.
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Proposition 4.8. In Case (Ci4), the number of non-isomorphic F-linear block-
ing sets equals the number of orbits of the subgroup PGO™ (4, q) x Aut(F,4) of
PrO™ (4, ¢*), fixing Q(3,q), on the points V € Q+(3,q¢*) such that V, V™, V™
and V™’ are pairwise non-collinear on Q% (3, ¢*) and dim(V, V", VTQ, VTS> =3.

(Ci5) Suppose R, R7, R and R°" have a unique transversal line m in com-
mon. Such transversal is fixed by o, so |B;x| = ¢* + ¢® + ¢® + 1.

By (3.2) of Section 3, we can fix the line m. The line m is mapped, under
the Pliicker map 1, to the point M of Q*(5,¢*) such that M7 = M, i.e., M €
Q% (5,q). Let L* be the set of lines I’ of S5 such that ' N 1’” = 'N1°" = () and

2 3
such that the reguli R/ = R'(/,1’°,1°), R’°, R’ and R’° have the line m as
unique transversal line in common.

If Z € (L), then 2,27, 27,27 € M+ and Sy = (Z,27,27°,Z7") is a
3-dimensional subspace of PG(5,¢*) fixed by 7. Then K, = S5 N QT (5,¢%)
is a cone with vertex M fixed by 7, ie., K; = K, N Q7 (5,¢) is a cone of
Q7 (5, ¢) with vertex M. By (IV), G(q),, = G(¢),,. acts transitively on the 3-
dimensional cones of Q" (5, ¢) with vertex M and so we can fix ;. Now, since
(G(q) 12 )k, = G(q*)k, we get the following.

Proposition 4.9. In Case (Cys5), the number of non-isomorphic [Fy-linear block-
ing sets equals the number of orbits of the group G(q*)x, acting on the points
Z € Ky such that Z, Z7, ZTZ, 7™ are pairwise non-collinear on K, and
dim(zZ, 27,27, 27") = 3.

(Ci6) Suppose R, R, R°” and R°" have no transversal line in common.

This case does not occur. Indeed, the transversal lines of the reguli R,
R?, R°", R°" correspond to the points of S* N Q* (5, %) where S is the 3-
dimensional space generated by P, P7, PTQ, P with P = (). Now, since S+
is fixed by 7, S+ determines a line over F,, and hence S cannot be external to
the extended quadric Q* (5, ¢?) of Q% (5, q), i.e., St N O+ (5,4¢*) # 0.

4.2.2 Blocking sets in case (C5)

(Cy) dim(l,17,1°°,1°°) = 4.

In such a case B,y is not of Rédei type. Also [,17, 1°° and 1°” are pairwise
disjoint. Let S5 = (I,1°) and let L = S5 NS¢ N Sg" NS, then dim L € {0,1}.
(C21) Suppose dim L = 1. In this case L is the unique line of ¥ projected from
ltoapointof By x. So |Bis| =q¢* +¢* +¢*+ 1.

By (3.2) of Section 3 we can fix L = {(20,%1,0,0,0) : zg,z1 € Fga}. Let
d be the duality of PG(4,q*) which maps the point (ag, a1, az,as,as) to the
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hyperplane with equation agxg + a1z1 + asws + aszrs + agzs = 0, and note
that d o 0 = o o d. The line L is mapped to the plane L¢ with equations
rg = z; = 0; L% is fixed by ¢ and Aut(X);, induces on L¢ a group isomor-
phic to PGL(3,q) x Aut(F,:). The 3-dimensional space S3 is mapped to a
point 5§ of L% for which (5S¢, (S9)°, (54)°",(54)°°) = L. By (iii) of Propo-
sition 3.3 we can fix 5§ = (0,0,&, —1,t) with € F2 \Fyand t € Fja \ Fe, ie.,
S3 = {(330, x1,Z2, 61‘2 + txy, .174) 1 20,%1,T2,Tq € Fq4}. It is not difficult to verify
that an element of (LAut(X))s, =LAut(X)g, is defined by a matrix of type

alg Q11 | a2 a1z a4 (8

where a;; € F,, I is the identity matrix of order 3 and agoai1 — api1a10 # 0.
3
Moreover, 7 = S3 N Sg = {(.%‘0,.1‘1,141‘4,31‘4,1‘4) P To,T1, X4 € qu;}’ where

A=Yt and B=¢A+t. Aline I’ of S such that dim(l',, 1”°,I'"") = 4 and
Ss = (I',1'?) is contained in 7 and intersects L in a point not belonging to ¥/,
hence [" has equations x, = 1o + cxy, 2 = Axy, x3 = Bxy wheren € Fja \ Fpe
and ¢ € F,. and we write I’ = [,,.. Let P’ = (1,7,0,0,0) be the point I’ N L
and consider the stabilizer of P’ in LAut(X)g,. An element of (LAut(X)s,)p- is
defined by a matrix of type (8) with agp = a11 # 0 and ag; = a1p = 0, and it
maps the line [, o to the line [,, . where

¢ = —n(ao2A + apsB + aps) + a12A + a13B + a14 . (%)

It is straightforward to prove that A, B,1 are independent on F,, hence the
[Fq-subspace W = (A, B, 1)p, of F,+ has dimension 3. If W' = W, then there
exists a (3 x 3)-matrix C' over F, having (A, B, 1) as an eigenvector whose eigen-
value is 7. This implies € F,2, a contradiction. From these we get that
nW + W = F,, and this implies that each element ¢ € F . can be written as
¢ = na+bwhere a,b € W, i.e., ¢ can be written as in (xx) for suitable elements
a;j € F,. Hence, (LAut(X)g,)p acts transitively on the lines of 7 through P’
different from L. This means that the action of Aut(X)s, = (Aut(X)s,)r on the
lines I, . with p € Fya \ Fy2, ¢ € Fy4 equals the action of the group induced by
Aut(X)s, on L acting on the points P’ € L\ ¥’. The group induced by Aut(X)sg,
on L is isomorphic to PGL(2,¢) x Aut(F,«). Indeed, if 3 € Aut(F,:), we can
write t? = s + rt where s,r € F, and r # 0. This implies that there exist

B .
a,b,a’,v',a",b" € Fy such that r = ﬁlbg, > =a +b'¢and 57 =a" 4+ V"¢, Since
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¢° ¢ Fy, ab” — a"b # 0. Hence a matrix of type

apo aplr  @o2 Qo3 Qo4
aip a1 a2 a3 a4

D=1 0 0 v —-b 9
0 0 —-d' a —d

0 0 0 0 1

where a;; € Fy and agoai1 — apiaio # 0, is non-singular and the semilinear
collineation ¢ defined by D with associated automorphism £ is an element of
Aut(X)g,, which induces on L the semilinear collineation defined by the ma-
. Q, a, . . .
trix ( 0o 01) and with associated automorphism 3. So we have proved the
aip A
following.

Proposition 4.10. In Case (Cs1), the number of non-isomorphic F,-linear block-
ing sets equals the number of orbits of the group PGL(2, q) x Aut(F,+) acting on
the points of PG(1, ¢*) \ PG(1, ¢?).

(C22) Suppose dim L = 0. In this case there is no line of ¥ projected from [ to
a point of B; 5. Hence B, 5; has maximum size.

By (3.2) of Section 3, we can fix L = (1,0,0,0,0). Under the duality d of
PG(4,q*) (see Case (Ca1)), the point L is mapped to a 3-dimensional space
L4 fixed by o and Aut(X) induces on L% a group isomorphic to PGL(4, q) x
Aut(F,+). The 3-dimensional space S3 is mapped to a point S§ of L¢ such that
L7 = (8¢,(89)7,(59)°°,(59)°°). By (i) of Proposition 3.4 we can fix ¢ =
(0, =&t t,—1,&) with € € F2 \ Fy, t ¢ F2 and ¢? = £t + 1, i.e., we can suppose
that S3 = {(3?0,.171,172,€$4 + t(.’L‘g — 5.%‘1),.1‘4) L Xo,T1,T2,T4 € Fq4}. An element
of (LAut(X))s, = LAut(X)g, is defined by a matrix of type

1 ao1 ao2 ao3 ao4

0 as3+aiz(c+d?) —d(as + as3) a3 —dais +ass a1z as3 — dais

0 c(az2s — dai3 + aas) as3 + cais a23 ca13 (10)
0 cais a3 ass ca43

0 a23 — dai3 a3 a43 a3z —dags

where a;; € Fyand 2 = ¢+ d¢, ¢, d € F,.
Also

v =85N85" = {(x0,21,Ex1,Ex4,74) : T0, X1, T4 € Fga}
and

T = ngsg3 = {(xo0, 21,22, —cBx1+(A—dB)x2, A1 — Bxa) : 2o, 01,22 € Fa}
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where A = % and B = t;q —¢- Hence

r=yNmr= {(mo,xl,fxl,ftqszl,tqszl) txg, 1 € Fa}.

Let £* be the set of lines I’ of S3 such that S3 = (I’,”). A line I’ of L* is
contained in 7 and intersects r in a point P’ # L. Since {1,¢ ,gtqs,tqs} is an
[F,-basis of IF 4, it is not difficult to prove that the subgroup of LAut(X)s,, whose
elements are defined by matrices of type (10) with a13 = as3 = a43 = 0, acts
transitively on the points P’ € r\{L}. Hence, we can fix P’ = (0,1,¢, ftqa , tq3) €
r\ {L}. Aline I’ of £* through P’ has equations

xo = a(fxy — x2), 3 = —cBxy + (A — dB)xa, x4 = Axy — Baa

where o € F 4, and we write I’ = [,. Also, since I’ N1’ = (), we have « # 0. An
element of (LAut(X)g,)p is defined by a matrix of type (10) with ag1 = a2 =
aps = agqg = 0, (alg, a23, 33, a43) 7é (0, 0,0, 0) and it maps the line [, to the line
lo where o/ = % with § = asz3 + cai3 — E(a23 —daisz + a43) + (a23 - Ealg)A +
(5(123 — Cca13 — dagg)B. Since we can write

0 = (azz — €ays) + carz — &(az3 — dayz) + (% —a13)(§A+cB), (©)

it is clear that ¢ belongs to the F.-subspace of F 4 generated by 1 and (A +
cB = t€. It is also not difficult to see that any element of F7. can be written
as in (o) for suitable elements a3, a3, ass, ass € Fy, not all zero. This means
that (LAut(X)g,)ps acts transitively on the lines !’ of 7 through P’ such that
"N 1" = (). Therefore, we have proved the following result.

Proposition 4.11. In Case (Ca2), all Fy-linear blocking sets are isomorphic.

5 Table

According to the different geometric configurations of the lines 7, 19, 1°° and I°,
discussed above, all F,-linear blocking sets B, 5; of PG(2, ¢*) are listed in the fol-
lowing table, whose columns contain, respectively, the following informations
about B 5;: geometric configuration; size; Rédei nature; canonical forms; num-
ber of non-isomorphic blocking sets.

By using the notation introduced in Subsection 4.2, the symbols n, n™, n™,
nx stand, respectively, for the number of orbits of the group PGL(2, ¢) x Aut(IF ;+)
acting on the points of PG(1,q*) \ PG(1,¢?), the number of orbits of the sub-
group PGO™ (4, ¢) x Aut(F,4) of PTO™ (4, ¢*) acting on the points P of 9% (3, ¢*)

such that P, P7, P, P are pairwise non-collinear on Q% (3, ¢*) and such that



CASE ORDER REDEI TYPE CANONICAL FORMS #
YES
(A) ¢+ +1 all Rédei lines Baer subplane 1
(B1) ¢ +q¢*+1 q—|—1RZ§§.i lines {(a,m,m+xq+zq2 +mq3) cx€Fu,aeF,} 1
(B21) ‘+e+d+1 YES {(a,x,xq—zqg):zqu4,a€Fq} 1
B, = {(—fzxo+z1,—nz2+23,24) : 3 € Fg},Vn € Foa \ F 2, for a fixed
B 4 3 2 1 1 ) ’ qJ>» q q?»
(B22) | ¢"+¢°+¢" —q+ YES element{ € F 2 \ F, "
q q2 _ q3 _ . 3 :
(Bs) PR S NO {(z%, z z,x ac) :x €Fa,a € IF;I}, where a is a fixed element of 1
F 4 such that a? # —a
C) | "+ +F+qg+1 YES {(a,z,29) : & € Fpa, 0 € Fy}
(C12) ¢+ +1 YES By = {(nzo — n°x1 + 22, —nz1 + 23, 74) 1 T; € Fg},Vn € Fpu \ F e n
: By, = {(xo+mze+x3 $1+T}71&73 x4):xs € Fg},Vm1,m2 € Foa\F 2
C 4 3 2 1 11,M2 ) 2 .7 . qfs ) q q +
Cu) | @ +a"+a —a+ YES such that 1,71, 72, —m172 are linearly independent on F,, "
By me = {(zo — (dm + m2)m2 + mxs, £1 + ez + n2w3, x4) 1 1 € Fy}
where ¢, d € F, are fixed elements such that f(z,y) = y? — ca® — dzy is
C) | P+ +@P+qg+1 YES irreducible on F, and 1, n2 € F 4 with (91, m2) € (F2 X F2), n”
1,m1,m2, f(m,n2) linearly independent on F, and
f(ng _7717773 _772) #O}Z: 152
: By, r :{(131—771.%3 —11X0 + X2 — N2T3 $4):$¢€]F } Vm €F4\F2
C 5 4 3 2 1 11,M2 7. ; ) . qS> q q
(C15) CHEreS YES and 2 € F 4 with 1,71, 72, —n7 linearly independent on F, e
By = {(-=nzo -SF T1, T2 — Az, 23 — Bra) : 2 € Fg},Vn € Fpa \ F2,
(Ca1) P+ +1 NO where A = ;fgqt, B = (A + ¢ for fixed elements £ € F 2 \ F,; and n
te ]Fq4 \qu
Co2) | "+ ++q+1 NO {(m,xq,zqg—oe):xqu4,a€Fq} 1

va

OUIIBAIOd 'O e ljlouog '
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dim(P, P7, PTQ,PTS> = 3, the number of orbits of the subgroup PGO™ (4, q) x
Aut(F,a) of PTO"(4,¢*) acting on the points P of Q*(3,¢*) such that P, P7,
P, P are pairwise non-collinear on Q% (3,¢*) and dim(P, PT,PTQ,PTS> =
3, the number of orbits of the group G(q4);cq acting on the points P € Ky
such that P, P7, PTQ, P are pairwise non-collinear on K, + and such that
dim(P, PT, P™’, P™") = 3,

Moreover, we remark that in Cases (B1), (B21), (B3), (C11), (Ca2) the canon-
ical forms of the F,-linear blocking sets B, s, of PG(2, ¢*), given in the table, are
constructed by using the canonical subgeometry ¥ = {(a, z, 2, xq2,:c‘13) ta €
Fq,x € Fga} of %, fixed by the semilinear collineation o: (o, 21, z2, %3, 24) —
(xd, 23, 21, 2%, 1) (see [9]).

References

[1] S. Ball, The number of directions determined by a function over a finite
field, J. Comb. Theory, Ser. A, 104, No. 2 (2003), 341-350.

[2] A. Blokhuis, S. Ball, A. E. Brouwer, L. Storme and T. SzOnyi, On the
number of slopes of the graph of a function defined on a finite field, J.
Comb. Theory, Ser. A, 86, No. 1 (1999), 187-196.

[3] J. W. P Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford
Mathematical Monographs, Oxford: Clarendon Press. x, 316 p. (1985).

[4] J. W. P Hirschfeld and J. A. Thas, General Galois Geometries, Oxford
Mathematical Monographs, Oxford: Clarendon Press. xii, 407 p. (1991).

[5] R. Lidl and H. Niederreiter, Finite Fields. Foreword by P M. Cohn. Ency-
clopedia of Mathematics and Its Applications, Vol. 20, Cambridge Univer-
sity Press. xx, 755 p. (1984).

[6] G.Lunardon, Normal spreads, Geom. Dedicata, 75 (1999), 245-261.

[7] , Linear k-blocking sets, Combinatorica, 21, No. 4 (2001), 571-581.

[8] G. Lunardon,P Polito and O. Polverino, A geometric characterization of
k-linear blocking sets, J. Geom., 74, No. 1-2 (2002), 120-122.

[9]1 B Polito and O. Polverino, Linear blocking sets in PG(2, ¢*), Australas. J.
Comb., 26 (2002), 41-48.

[10] O. Polverino, Blocking set nei piani proiettivi, Ph.D. Thesis, University of
Naples Federico II, 1998.



56 G. Bonoli e O. Polverino

[11] O. Polverino and L. Storme: Small minimal blocking sets in PG(2, ¢),
European J. Combin., 23 (2002), 83-92.

[12] T. SzOnyi, Blocking sets in Desarguesian affine and projective planes, Fi-
nite Fields Appl., 3 (1997), 187-202.

[13] P Sziklai, Small blocking sets and their linearity, manuscript.

Giovanna Bonoli

DIPARTIMENTO DI MATEMATICA, SECONDA UNIVERSITA DEGLI STUDI DI NAPOLI, VIA VIVALDIN. 43,
1-81100 CASERTA, ITALY

e-mail: giovanna.bonoli@unina2.it

Olga Polverino

DIPARTIMENTO DI MATEMATICA, SECONDA UNIVERSITA DEGLI STUDI DI NAPOLI, VIA VIVALDIN. 43,
1-81100 CASERTA, ITALY

e-mail: olga.polverinoQunina2.it



