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Abstract

We consider resolutions of projective geometries over finite fields. A
resolution is a set partition of the set of lines such that each part, which
is called resolution class, is a set partition of the set of points. If a reso-
lution has a cyclic automorphism of full length the resolution is said to be
point-cyclic. The projective geometry PG(5, 2) and PG(7, 2) are known to
be point-cyclically resolvable. We describe an algorithm to construct such
point-cyclic resolutions and show that PG(9, 2) has also a point-cyclic reso-
lution.
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1 Introduction

A pair (X,B) is called a t − (v, k, λ)-design if and only if X is a set with v

elements, called points, and if B is a collection of k-subsets, called blocks, such
that each t-subset is contained in exactly λ blocks. Let π be a permutation on
the set X . If π permutes the blocks, i. e. π(B) := {π(B) | B ∈ B} = B where
π(B) := {π(x) | x ∈ B}, then π is called an automorphism of (X,B). If (X,B)

has an automorphism acting transitively on X the design is called cyclic. A
resolution class S of (X,B) is a set of blocks S ⊆ B such that the point set X is
the disjoint union of those blocks, i. e. (X,S) is a 1− (v, k, 1)-design. If the set
of blocks in a design (X,B) can be partioned into resolution classes S1, . . . ,Sd
then the design is called resolvable, and R = {S1, . . . ,Sd} is called a resolution.
If a resolvable t− (v, k, λ)-design (X,B) has a cyclic automorphism π of length
v which satisfies π(R) := {π(S) | S ∈ R} = R then the design is said to be
point-cyclically resolvable.
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We consider designs associated with the projective geometry. Let Lk(n, q)

denote the set of k-subspaces of the n-dimensional vectorspace Fnq over the
finite field Fq with q elements. Its cardinality is

k−1∏

i=0

(qn − qi)/(qk − qi).

The (n− 1)-dimensional projective geometry over Fq, denoted by

PG(n− 1, q),

describes the inclusion of the subspaces of Fnq . The points of PG(n − 1, q) cor-
respond to the elements of L1(n, q), the lines correspond to the elements of
L2(n, q) and a point is on a line if and only if the corresponding 1-subspace is
contained in the corresponding 2-subspace.

From now on let X := L1(n, q) denote the set of points of PG(n − 1, q) and
let B := L2(n, q) denote the set of lines. The cardinality of X is

v := (qn − 1)/(q − 1), (1)

each element of B, as 2-subspace, contains exactly

k := q + 1 (2)

points, i. e. elements of B are k-subsets of X . Furthermore, two different points
in X , as 1-subspaces define a unique 2-subspace, i. e. a 2-subset of X is con-
tained in exactly one element of B.

The immediate consequence is that the projective geometry PG(n− 1, q) de-
fines a 2− (v, k, 1)-design (X,B) with

b :=
(
(qn − 1)(qn − q)

)/(
(q2 − 1)(q2 − q)

)
(3)

blocks.

Assume a resolutionR of the 2− (v, k, 1)-design (X,B), then we also call R a
resolution, a parallelism or a packing of PG(n− 1, q). Since each resolution class
(also called spread) S ∈ R is a 1− (v, k, 1)-design, it consists of

s := (qn − 1)/(q2 − 1) (4)

blocks and therefore the number of resolution classes is

d := (qn−1 − 1)/(q − 1). (5)
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2 Related work

Resolutions in projective geometries can be applied to construct difference sets
which arise in connection with code synchronization, a task in information the-
ory. A survey on that topic can be found in [8].

Beutelspacher [2] showed the existence of a resolution in PG(2i−1, q) for all
i ≥ 2. Baker [1] and Wettl [9] gave a construction of resolutions in PG(n− 1, q)

for n even.

Pentilla and Williams [5] studied the case PG(3, q) for q ≡ 2 mod 3 and
constructed regular resolutions subsuming the results presented in [4, 6].

Sarmiento [7] showed that the 2-design associated with PG(5, 2) is point-
cyclically resolvable and enumerated all inequivalent resolutions. Afterwards
Hishida and Jimbo [3] also showed that PG(7, 2) is point-cyclically resolvable.

In this paper we construct the first point-cyclic resolution of PG(9, 2) by a
computer search.

3 Point-cyclic automorphisms

From now on let n be a even number.

Let xn + an−1x
n−1 + . . . + a1x + a0 be a primitive polynomial of degree n

over Fq. Then the matrix

σ :=




0 −a0

1 −a1

. . .
...

1 −an−1




defines a cyclic subgroup 〈σ〉 ofGL(n, q) with order qn−1 and the property that
〈σ〉 acts transitively on the set X of 1-subspaces of Fnq . We call the group 〈σ〉
a Singer group. We consider 〈σ〉 in permutation representation, which yields a
subgroup of PGL(n, q) with order v = (qn − 1)/(q − 1).

From now on we investigate resolutions of PG(n− 1, q) admitting the Singer
group, i. e. these resolutions are point-cyclic.

The Singer group acts on the set of lines B = L2(n, q) via the mapping

〈σ〉 × B → B, (σm, B) 7→ σm(B) where σm(B) := {σm · v | v ∈ B}.

Here the term σm·v denotes the multiplication of the matrix σm with the column
vector v. The action yields the following orbits:
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Lemma 3.1. [7, Theorem 4] The set of 〈σ〉-orbits on B consists of (b− s)/v orbits
of length v and one orbit of length s.

Now let Ω1, . . . ,Ωl denote the

l := (b− s)/v (6)

orbits of length v, which are called long orbits and let Ω′ denote the one orbit
of length s, which is called the short orbit.

Lemma 3.2. [7, Section 2] The short orbit Ω′ forms a resolution class.

Point-cyclic resolutions may be divided into two classes based on whether the
short orbit is contained in the resolution or not:

• PCR1 := {point-cyclic resolutions R of PG(n− 1, q) with Ω′ ∈ R},
• PCR2 := {point-cyclic resolutions R of PG(n− 1, q) with Ω′ 6∈ R}.

In this paper we concentrate our interests on resolutions which belong to the
first class PCR1. Hence from now on we assume a point-cyclic resolution R
containing the short orbit Ω′ as a resolution class.

In the following the 〈σ〉-orbit of a resolution class S ∈ R will be denoted by

〈σ〉(S) := {σm(S) | 0 ≤ m < v}.

If S = Ω′ we have 〈σ〉(S) = {Ω′}. For the case S 6= Ω′ we obtain the following
lemma.

Here the symbol
·∪ means a disjoint union.

Lemma 3.3. Let R ∈ PCR1 and let S ∈ R with S 6= Ω′. Then
·⋃

S′∈〈σ〉(S)

S ′ =

·⋃

0≤m<v
σm(S) =

·⋃

1≤i≤l:
S∩Ωi 6=∅

Ωi.

Now we take a fixed resolution class S ∈ R with S 6= Ω′. A nonempty
intersection S ∩ Ωi with a long orbit Ωi defines by

Σi := {σm(S ∩ Ωi) | 0 ≤ m < v}

a set partition of Ωi, where each part σm(S ∩ Ωi) = σm(S) ∩ Ωi has the same
cardinality. Each long orbit has size v and therefore we obtain |Σi| · |S ∩Ωi| = v.
Since |Σi| = |〈σ〉(S)| is constant for all long orbits Ωi intersecting the fixed reso-
lution class S, the size of the S ∩Ωi is constant for all long orbits intersecting S.
Therefore we can define the number

β(S) := |S ∩ Ωi|



Construction of a point-cyclic resolution in PG(9, 2) 37

for arbitrarily chosen Ωi intersecting S. If

α(S) := |{i | 1 ≤ i ≤ l, S ∩ Ωi 6= ∅}|

denotes the number of long orbits intersecting S we obtain the formula:

s = α(S) · β(S).

Lemma 3.4. Let R ∈ PCR1, let S ∈ R with S 6= Ω′ and let Ωi be a long orbit
intersecting S. Then S ∩ Ωi is a 〈σu〉-orbit on Ωi where u = vα(S)/s.

Proof. The set partition Σi is the 〈σ〉-orbit of S ∩Ωi. Hence the cardinality of Σi

is the index of the stabilizer

〈σ〉S∩Ωi := {σm | 0 ≤ m < v, σm(S ∩ Ωi) = S ∩ Ωi}

which yields v = |Σi| · |〈σ〉S∩Ωi |. On the other hand we have v = |Σi| · |S ∩ Ωi|
and the consequence is then |〈σ〉S∩Ωi | = |S ∩ Ωi| = β(S). Since the stabilizer
of S ∩ Ωi, as subgroup of 〈σ〉, is cyclic of order β(S) it is generated by σu with
u = v/β(S) = vα(S)/s. As S ∩ Ωi is a block of imprimitivity with respect to Ωi,
i. e. σm(S ∩ Ωi) ∩ (S ∩ Ωi) = ∅ or σm(S ∩ Ωi) = S ∩ Ωi, it is an orbit of the
stabilizer 〈σ〉S∩Ωi on Ωi and hence we proved the statement.

Corollary 3.5. Let R ∈ PCR1 and let S ∈ R with S 6= Ω′. Then S is a union of
〈σu〉-orbits on B where u = vα(Sj)/s.

Since σ(R) = {σ(S) | S ∈ R} = R there exists a subset {S1, . . . ,St} ⊂ R
with t < d such that

R = {Ω′} ·∪ 〈σ〉(S1)
·∪ . . . ·∪ 〈σ〉(St).

The set of resolution classes {S1, . . . ,St} is called a transversal of the resolution
R ∈ PCR1. Without any restrictions the resolutions classes are numbered such
that α(S1) ≤ . . . ≤ α(St). Then the vector

Pat(R) :=
(
α(S1), . . . , α(St)

)

is called the pattern of R. This definition is well defined since the numbers
α(Sj) are independent of the chosen representative of the orbit 〈σ〉(Sj ).

Lemma 3.6. [7, Lemma 7] Let {S1, . . . ,St} be a transversal of a resolution R ∈
PCR1. Then the numbers α(S1), . . . , α(St) divide s. Furthermore, we have that
α(S1) + . . .+ α(St) = l and that the greatest common divisor of β(S1), . . . , β(St)
divides the greatest common divisor of s and q + 1.
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4 Constructing resolution classes

The Singer group 〈σ〉 acts transitively on each long orbit Ωi. A subgroup given
by 〈σu〉, u dividing v, splits the orbit Ωi into u orbits Ω

(u)
i,1 , . . . ,Ω

(u)
i,u , each of

length v/u.

Corollary 3.5 says that a resolution class S 6= Ω′ intersecting some long or-
bits Ωi, i ∈ I , for an index set I ⊆ {1, . . . , l} is the union of some orbits of
Ω

(u)
i,1 , . . . ,Ω

(u)
i,u , i ∈ I .

Our aim in this section is to describe an algorithm to construct all possible
resolution classes S for point-cyclic resolutions of PCR1 intersecting some long
orbits Ωi, i ∈ I , with a given intersection number α′ = α(S). For an easier
notation we assume without any restrictions I = {1, . . . , h} with h ≤ l.

Now we define L(I, α′) to be the set of all resolution classes of PG(n − 1, q)

with the following properties:

• The resolution classes ofL(I, α′) only intersect long orbits of the collection
Ωi, i ∈ I .

• The resolution classes of L(I, α′) are unions of 〈σu〉-orbits on long orbits
Ωi, i ∈ I , where u = vα′/s.

The idea behind the algorithm is to transform the construction problem of
L(I, α′) into a linear system of Diophantine equations which can be solved using
the LLL-algorithm [10].

Let u = vα′/s and let ω1, . . . , ωu denote the 〈σu〉-orbits on the set of points
X = L1(n, q) with corresponding representatives Ti ∈ ωi. Then we define the
following (u+ h)× (hu+ h) matrix M(u, I) by

M(u, I) :=

Ω
(u)
1,1 · · · Ω

(u)
1,u · · · Ω

(u)
h,1 · · · Ω

(u)
h,u Ω1 · · · Ωh

ω1

... m
(u)
x,y,z 0

ωu

Ω1 1 · · · 1 0 1

...
. . .

. . .
Ωh 0 1 · · · 1 1

where m(u)
x,y,z := |{B ∈ Ω

(u)
y,z | Tx ⊂ B}| for 1 ≤ x, z ≤ u and 1 ≤ y ≤ h. Note

that this entry m(u)
x,y,z is independent from the chosen representative Tx ∈ ωx.
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Theorem 4.1. Let u = vα′/s. Then the set L(I, α′) can be obtained from the set of
all 0-1-vectors x ∈ {0, 1}hu+h solving the linear system of Diophantine equations

M(u, I) · x =




1
...
1


 . (7)

If x = (x(1,1), . . .x(1,u), . . . ,x(h,1), . . . ,x(h,u),x1, . . . ,xh)t denotes such a solu-
tion, the corresponding resolution class S ∈ L(I, α′) is then defined to be:

S =
⋃

(y,z):x(y,z)=1

Ω(u)
y,z . (8)

Proof. Let x be a solution of (7). Then the first hu components of x determine a
selection of 〈σu〉-orbits on Ωi, i ∈ I . An arbitrary point T ∈ L1(n, q) is element
of an orbit ωx. Then from the corresponding row of the equation (7) which is

∑

(y,z)

m(u)
x,y,z · x(y,z) = 1

we obtain that T is contained in exactly one line of S, and hence S is a resolution
class. The rows of the matrix M(u, I) corresponding to Ω1, . . . ,Ωh serve that a
solution x hits exactly α′ long orbits.

Algorithm A. Given an index set I ⊆ {1, . . . , l} and the number α′ the algo-
rithm computes L(I, α′).

A1. [Initialize.] Set u← vα′/s, set L ← ∅ and compute the matrix M(u, I).

A2. [Solve.] Compute all 0-1-solutions x of (7).

A3. [Insert.] For each solution x compute the corresponding resolution class
S using (8) and insert S into L.

A4. [End.] Return L which is the set L(I, α′). ♦

Lemma 4.2. Let S ∈ L(I, α′). Then σ(S) ∈ L(I, α′) with σm(S) ∩ S = ∅ or
σm(S) = S for all 0 ≤ m < v.

Proof. The resolution class S is a union of some 〈σu〉-orbits with u = vα′/s, i. e.
there exists a subset T ⊂ B such that S =

⋃
B∈T 〈σu〉(B). Then we obtain

σ(S) =
⋃

B∈T
σ
(
〈σu〉(B)

)
=
⋃

B∈T
〈σu〉

(
σ(B)

)
=
⋃

B∈T ′
〈σu〉(B)
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where T ′ := {σ(B) | B ∈ T }. Hence σ(S) is also a union of 〈σu〉-orbits inter-
secting the same long orbits as S. In addition, σ(S) is also a resolution class
since the incidence between 1- and 2-subspaces is invariant under the action of
the Singer group 〈σ〉 and therefore σ(S) ∈ L(I, α′).

To show the second statement we consider two cases: First, u divides m,
i. e. σm ∈ 〈σu〉, which yields of course σm(S) = S since S is a union of 〈σu〉-
orbits. The remaining case is that m is not divisible by u, i. e. σm 6∈ 〈σu〉.
Here we show that σm(S) ∩ (S) = ∅. In order to prove that we assume an
element B ∈ σm(S) ∩ S. Since B is element of a long orbit Ωi we get that
B ∈ σm(S∩Ωi)∩(S∩Ωi). The part S∩Ωi is a 〈σu〉-orbit of a B′, i. e. 〈σu〉(B′) =

S∩Ωi. We obtainB ∈ σm
(
〈σu〉(B′)

)
∩〈σu〉(B′), i. e. there exist 0 ≤ p, q < v with

B = σmσpu(B′) = σqu(B′) which is equivalent to σmσ(p−q)u(B′) = B′. Hence
σmσ(p−q)u is contained in the stabilizer 〈σ〉B′ = {σj | 0 ≤ j < v, σj(B′) = B′}
of B′. Since |〈σ〉B′ | = |〈σ〉|/|Ωi| = v/v = 1, we have σmσ(p−q)u = id, i. e.
σm = σ(q−p)u ∈ 〈σu〉, which is a contradiction to σm 6∈ 〈σu〉. The assumption is
false and we proved σm(S) ∩ S = ∅.

As an immediate consequence we obtain:

Corollary 4.3. Let S ∈ L(I, α′). Then

·⋃

0≤m<v
σm(S) =

·⋃

i∈I:
S∩Ωi 6=∅

Ωi.

5 Constructing point-cyclic resolutions

With algorithm A we can now formulate an algorithm which computes resolu-
tions of PCR1.

First we prescribe an admissible pattern (α1, . . . , αt) and then compute for
α1 the set of resolution classes L(I, α1) with I := {1, . . . , l} the full index set of
long orbits. Then we choose an arbitrary resolution class S1 at random, remove
the corresponding full orbits and continue with the next αi. Here we look for
a resolution class on the remaining full orbits. If for an αi and the remaining
orbits there is no resolution class we stop the procedure since this time we failed
(that does not mean that there exist no such resolutions). Else if there exist
resolution classes S1, . . . ,St for each αi we have found a resolution R ∈ PCR1

with a transversal {S1, . . . ,St}.
The concrete algorithm is formulated as following:
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Algorithm B. The algorithm computes a resolution of PCR1 with prescribed
pattern (α1, . . . , αt). Either the algorithm terminates with such a resolution or
it terminates without any statement about the existence.

B1. [Initialize.] Set I ← {1, . . . , l} and set j ← 1.

B2. [Choose.] Compute L(I, αj) with algorithm A. If L(I, αj) 6= ∅ then termi-
nate without a resolution of PCR1. Otherwise choose a resolution class
Sj ∈ L(I, αj) at random.

B3. [Next.] If j = t then terminate with a resolution R ∈ PCR1 with pattern
Pat(R) = (α1, . . . , αt) and with transversal {S1, . . . ,St}. Otherwise deter-
mine the full index set I ′ ⊂ I such that Sj does not intersect any orbit Ωi

for all i ∈ I ′. Set I ← I ′ and set j ← j + 1 and go back to B2. ♦

Example. In order to demonstrate the algorithm B we are now going to con-
struct a point-cyclic resolution in PG(5, 2). Such resolutions are well-known and
their description can be found in [7]. We have the following parameters:

• The projective geometry parameters are n = 6 and q = 2.

• The number of points in L1(n, q) is v = 63 which is also the order of the
Singer group 〈σ〉 ≤ PGL(n, q).

• The number of lines in L2(n, q) is b = 651.

• The number of lines in a resolution class is s = 21.

• The number of resolution classes in a resolution is d = 31.

• The number of long orbits is l = 10.

• The Singer group is generated by the following matrix:

σ =




0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1



.

• A representative B of the short orbit Ω′ = 〈σ〉(B) = {σm(B) | 0 ≤ m < v}
is generated by the following generator matrix Γ whose columns are the
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basis vectors of B:

Γ =




1 0

1 0

1 0

0 0

1 0

0 1



.

Since the algorithm B requires a possible pattern for the resolution we prescribe

Pat = (α1, α2) = (3, 7).

(1) Now the index set is I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The set L(I, α1) is
nonempty, and a resolution class is S1 =

⋃3
j=1〈σ9〉(K(1)

j ) where K(1)
1 , K(1)

2 and

K
(1)
3 are generated by the following generator matrices:

Γ
(1)
1 =




0 0

0 0

0 0

0 0

1 0

0 1



, Γ

(1)
2 =




0 1

0 0

0 0

1 0

0 0

0 1



, Γ

(1)
3 =




1 1

1 1

0 0

1 0

0 0

0 1



.

Furthermore S1 intersects the orbits Ω1, Ω4, Ω10.

(2) Now I = {2, 3, 5, 6, 7, 8, 9} is the index set. L(I, α2) is also nonempty and
a resolution class is S2 =

⋃7
j=1〈σ21〉(K(2)

j ) where the generator matrices of the

spaces K(2)
j are the following ones:

Γ
(2)
1 =




0 0

0 0

0 0

1 0

0 0

0 1



, Γ

(2)
2 =




0 0

0 1

0 1

0 1

1 0

0 1



, Γ

(2)
3 =




0 0

0 0

1 1

0 0

1 0

0 1



, Γ

(2)
4 =




0 0

0 1

0 0

1 1

1 0

0 1



,

Γ
(2)
5 =




1 1

1 1

0 0

1 0

0 1

0 1



, Γ

(2)
6 =




0 0

0 1

1 0

0 1

0 1

0 0



, Γ

(2)
7 =




1 1

1 1

0 1

0 1

1 0

0 1



.
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Of course S2 intersects all remaining orbits Ω2, Ω3, Ω5, Ω6, Ω7, Ω8 and Ω9.
Hence we found a point-cyclic resolution

R = {Ω′} ∪ 〈σ〉(S1) ∪ 〈σ〉(S2).

(3) Now after this representation by spaces we also can represent the reso-
lution by point representation on the set of points {1, 2, . . . , 62, 63}. The Singer
group is then a subgroup of the symmetric group S63 and is generated by the
following cyclic permutation:

σ =
(
1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 35, 5, 10, 20, 40, 19, 38, 15, 30, 60, 59,

53, 41, 17, 34, 7, 14, 28, 56, 51, 37, 9, 18, 36, 11, 22, 44, 27, 54, 47, 29, 58,

55, 45, 25, 50, 39, 13, 26, 52, 43, 21, 42, 23, 46, 31, 62, 63, 61, 57, 49, 33
)
.

The corresponding Ω′, S1 and S2 have the following point representation:

Ω′ =
{
{1, 58, 59}, {2, 53, 55}, {4, 41, 45}, {8, 17, 25}, {16, 34, 50},
{7, 32, 39}, {3, 13, 14}, {6, 26, 28}, {12, 52, 56}, {24, 43, 51},
{21, 37, 48}, {9, 35, 42}, {5, 18, 23}, {10, 36, 46}, {11, 20, 31},
{22, 40, 62}, {19, 44, 63}, {27, 38, 61}, {15, 54, 57}, {30, 47, 49},
{29, 33, 60}

}

S1 =
{
{1, 2, 3}, {24, 40, 48}, {15, 17, 30}, {14, 18, 28}, {22, 44, 58},
{25, 43, 50}, {23, 46, 57}, {4, 33, 37}, {12, 35, 47}, {26, 38, 60},
{7, 56, 63}, {11, 16, 27}, {10, 39, 45}, {31, 42, 53}, {5, 49, 52},
{6, 59, 61}, {19, 32, 51}, {20, 34, 54}, {13, 36, 41}, {9, 55, 62},
{8, 21, 29}

}

S2 =
{
{1, 4, 5}, {18, 41, 59}, {23, 45, 58}, {2, 29, 31}, {20, 33, 53},
{11, 55, 60}, {3, 9, 10}, {14, 36, 42}, {13, 35, 46}, {6, 19, 21},
{28, 44, 48}, {26, 37, 63}, {7, 51, 52}, {12, 39, 43}, {24, 32, 56},
{8, 22, 30}, {17, 47, 62}, {25, 40, 49}, {15, 50, 61}, {16, 38, 54},
{27, 34, 57}

}
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6 The first point-cyclic resolution in PG(9, 2)

Now we present the main theorem:

Theorem 6.1. There exists a point-cyclic resolution in PG(9, 2).

We have the following parameters:

• The projective geometry parameters are n = 10 and q = 2.

• The number of points in L1(n, q) is v = 1023 which is also the order of the
Singer group 〈σ〉 ≤ PGL(n, q).

• The number of lines in L2(n, q) is b = 174251.

• The number of lines in a resolution class is s = 341.

• The number of resolution classes in a resolution is d = 511.

• The number of long orbits is l = 170.

• The Singer group is generated by the following matrix:

σ =




0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0




.

• A representative B of the short orbit Ω′ = 〈σ〉(B) = {σm(B) | 0 ≤ m < v}
is generated by the following generator matrix Γ whose columns are the
basis vectors of B:

Γ =




0 0

1 0

1 0

0 0

0 0

0 0

1 0

1 0

1 0

0 1




.
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• The prescribed pattern is:

Pat = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

11, 11, 11, 11, 11, 11, 11, 11, 11, 31) = (140, 1110, 311) .

Resolution classes S1, . . . ,S40: Each resolution class S1, . . . ,S40 is exactly
defined by one 〈σ3〉-orbit of a 2-subspace: Si := 〈σ3〉(K(i)). The following 40
matrices are the generator matrices of K(1), . . . ,K(40):




00

00

00

00

00

00

00

00

10

01







00

00

00

00

00

00

00

10

00

01







00

00

00

00

00

00

10

10

00

01







00

00

00

00

00

10

00

00

00

01







00

00

00

00

10

00

00

10

10

01







00

00

00

00

10

00

10

10

10

01







00

00

00

00

10

10

10

10

10

01







00

00

00

10

00

00

10

00

10

01







00

00

00

10

00

10

00

00

00

01







00

00

00

10

00

10

00

10

10

01







00

00

00

10

10

00

10

10

10

01







00

00

00

10

10

10

00

10

00

01







00

00

10

00

00

00

00

00

10

01







00

00

10

00

00

00

00

10

10

01







00

00

10

00

00

00

10

10

00

01







00

00

10

00

00

10

10

00

10

01







00

00

10

00

10

10

00

10

00

01







00

00

10

00

10

10

10

00

00

01







00

00

10

00

10

10

10

00

10

01







00

00

10

10

00

00

10

00

00

01







00

00

10

10

00

10

00

00

10

01







00

00

10

10

00

10

00

10

00

01







00

00

10

10

00

10

00

10

10

01







00

00

10

10

10

10

00

10

00

01







00

10

00

00

00

00

00

00

00

01







00

10

00

00

00

00

00

10

10

01







00

10

00

00

00

00

10

00

10

01







00

10

00

00

10

00

10

00

10

01







00

10

00

00

10

10

00

00

10

01







00

10

00

00

10

10

00

10

00

01







00

10

00

00

10

10

10

00

00

01







00

10

00

10

00

00

00

00

10

01







00

10

00

10

00

00

10

00

10

01







00

10

00

10

00

00

10

10

00

01







00

10

10

00

10

00

00

10

00

01







00

10

10

10

10

10

00

00

00

01







00

10

10

10

10

10

00

10

00

01







10

00

00

10

00

10

10

10

10

01







10

00

10

00

00

10

00

00

00

01







10

00

10

00

00

10

10

10

00

01






46 M. Braun

Resolution class S41 =
⋃11
j=1〈σ33〉(K(41)

j ), where K(41)
1 , . . . ,K

(41)
11 are defined

by the following generator matrices:
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Resolution class S42 =
⋃11
j=1〈σ33〉(K(42)

j ), where K(42)
1 , . . . ,K

(42)
11 are defined

by the following generator matrices:
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Resolution class S43 =
⋃11
j=1〈σ33〉(K(43)

j ), where K(43)
1 , . . . ,K

(43)
11 are defined

by the following generator matrices:
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Resolution class S44 =
⋃11
j=1〈σ33〉(K(44)

j ), where K(44)
1 , . . . ,K

(44)
11 are defined

by the following generator matrices:
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Resolution class S45 =
⋃11
j=1〈σ33〉(K(45)

j ), where K(45)
1 , . . . ,K

(45)
11 are defined

by the following generator matrices:
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Resolution class S46 =
⋃11
j=1〈σ33〉(K(46)

j ), where K(46)
1 , . . . ,K

(46)
11 are defined

by the following generator matrices:
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Resolution class S47 =
⋃11
j=1〈σ33〉(K(47)

j ), where K(47)
1 , . . . ,K

(47)
11 are defined

by the following generator matrices:
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Resolution class S48 =
⋃11
j=1〈σ33〉(K(48)

j ), where K(48)
1 , . . . ,K

(48)
11 are defined

by the following generator matrices:
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Resolution class S49 =
⋃11
j=1〈σ33〉(K(49)

j ), where K(49)
1 , . . . ,K

(49)
11 are defined

by the following generator matrices:
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Resolution class S50 =
⋃31
j=1〈σ93〉(K(50)

j ), where K(50)
1 , . . . ,K

(50)
31 are defined

by the following generator matrices:
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Remark 6.2. The running time of the computation of the point-cyclic resolution
in PG(9, 2) was only a few minutes on a 2 GHz Intel Pentium 4 machine, but
in the general case the running time is not predictable, since the crucial step
during the computation is to find solutions of the corresponding linear systems
of Diophantine equations which is an NP hard problem. Computations for n =

12 and q = 2 were cancelled after several days during the search for solutions
of the Diophantine equations.
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