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Abstract

A cap in PG(N, q) is said to have a free pair of points if any plane con-
taining that pair contains at most one other point from the cap. In an earlier
paper we determined the largest size of caps with free pairs forN = 3 and 4.
In this paper we use product constructions to prove similar results in dimen-
sions 5 and 6 that are asymptotically as large as possible. If q > 2 is even,
we determine exactly the largest size of a cap in PG(5, q) with a free pair.
In PG(5, 3) we give constructions of a maximal size 42-cap having a free
pair and of the complete 48-cap that contains it. Additionally, we give some
sporadic examples in higher dimensions.
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1 Introduction

Throughout we assume that q is a prime power, q > 2. The problem which we
study is solved for q = 2 [8, Theorem 2.2]. An n-cap C ⊂ PG(N, q) is a set of
n points no three of which are collinear. An n-cap is said to be complete if it
is not contained in an (n + 1)-cap in the same space. The largest size of a cap
in PG(N, q) is denoted m2(N, q), and the second-largest size of a complete cap,
m′2(N, q).

We say that {x, y} ⊂ C is a free pair of points if for each z ∈ C \ {x, y} the
plane xyz does not contain any other point of C.
∗Research supported by the Natural Sciences and Engineering Research Council of Canada

(NSERC) and MITACS NCE of Canada.
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Caps with free pairs of points are of great interest in the design of experi-
ments in statistics, specifically in the study of fractional factorial designs [17,
18]. Pairs of points not participating in any coplanar quadruple of points of C
have certain advantages. So, it is natural to ask what the maximum cardinality
is for a cap containing a free pair of points in a given projective space.

For given N and q, we use the notation m+
2 (N, q) for the maximum cardinal-

ity (number of points) of a cap in PG(N, q) that contains at least one free pair
of points. An upper bound for m+

2 (N, q) is known and is included in the next
section as Theorem 2.3.

One way to find large caps with free pairs is to use geometric or other argu-
ments to construct a cap while ensuring that one pair remains free; this is the
method employed in [8]. Another approach is to take known large caps (not
necessarily possessing a free pair) and to delete points from the cap until a pair
becomes free. We refer to Bierbrauer [3] for an excellent survey of large caps.
We present new results using this latter strategy. In particular, we show that
we asymptotically meet the upper bound in PG(5, q) and PG(6, q). Further, we
determine the exact value for m+

2 (5, q), for even q. For PG(5, 3), we are able
to give a construction of a m+

2 (5, 3)-cap with a free pair and of the complete
m′2(5, 3)-cap that contains it.

2 Known results

Theorem 2.1 (Theorem 10 in [5]). Assume there is an n-cap A ⊂ PG(k, q) and
an m-cap B ⊂ PG(`, q), each possessing a tangent hyperplane. Then there is an
(nm− 1)-cap in PG(k + `, q).

Specifically, the authors prove the following. Let (a : 1) and (b : 1) be the
typical representatives of the affine points of A and B, respectively. Denote
by (α : 0) the representative of A on the tangent hyperplane (assumed to be
xk = 0) and (β : 0) the representative of B on the tangent hyperplane. Then the
set

C1 = {(a : b : 1), (a : β : 0) and (α : b : 0)} (1)

forms a cap in PG(k + `, q).

The other result we need is the Mukhopadhyay product construction.

Theorem 2.2 (Mukhopadhyay [15]). Assume there is an n-cap A ⊂ AG(k, q)

and an m-cap B ⊂ PG(`, q). Then there is an nm-cap in PG(k + `, q).

The proof for this theorem is only slightly different than the first. Here, the
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set of points that is shown to be a cap is

C2 = {(a : b)}, (2)

where b is a typical representative of B and (a : 1), of A.

Finally, we mention the following upper bound from [8].

Theorem 2.3. For each N we have

m+
2 (N, q) ≤ qN−2 + qN−3 + · · ·+ q + 3. (3)

3 New results in dimensions 5 and 6

In [8] the bound in Theorem 2.3 is shown to be sharp for N ≤ 4. In this section
we show that the bound is attained asymptotically in projective dimensions 5

and 6. Secondly, we prove that for even q it is possible to precisely meet the
bound in PG(5, q).

We obtain these results as special cases of two more general theorems which
extend the product constructions of Theorems 2.1 and 2.2 for the purpose of
constructing caps with free pairs.

Theorem 3.1. Let A ⊂ PG(k, q) and B ⊂ PG(`, q) be caps, each possessing a
tangent hyperplane, and assume that |B| ≥ 3. Further assume that a tangent
hyperplane to the cap B exists at the point P ∈ B, and that Q is another point of
B. Let ν denote the number of distinct planes π ⊂ PG(`, q) such that {P,Q} ⊂ π

and |π ∩ B| ≥ 3. Then there exists a cap K ⊂ PG(k + `, q) such that |K| =

|A||B| − |B|+ ν + 1 and K contains a free pair of points.

Proof. Let us briefly outline the proof strategy. We begin with a large cap C1

of the type described by equation (1) in Theorem 2.1. We then fix a pair of
points {P1, P2} ⊂ C1 which we seek to make free. That is, for any plane ρ ⊂
PG(k + `, q) such that {P1, P2} ⊂ ρ we eliminate all but one of the points in
C1 ∩ ρ \ {P1, P2} from C1 in order to “liberate” the pair {P1, P2}.

We now present the details of the proof. We will work with concrete repre-
sentatives of the cap so that we may establish that two specific cap points form
a free pair. Throughout the paper the projective coordinates of PG(n, q) will be
denoted x0, x1, . . . , xn. By 0n we will denote the zero vector in Fnq . Without loss
of generality, we take

(α, 0) = (0k−1, 1, 0)

to be the point of A on the tangent hyperplane xk = 0 and

P = (β, 0) = (0`−1, 1, 0)
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to be the point of B on the tangent hyperplane x` = 0. Since |B| ≥ 3 by
assumption, we see that ` ≥ 2. Thus we can assume that

Q = (b, 1), b 6= 0`

is another point of B, and that the vectors (0k, 1) and (0`, 1) represent points on
A and B, respectively.

Let
P1 = (0k, β, 0) and P2 = (α, b, 0)

be the two fixed points that will form a free pair.

For the points P1, P2, P3 and P4 to be coplanar, we must have

λ1(0k, β, 0) + λ2(α, b, 0) + λ3P3 + λ4P4 = 0k+`+1, λi 6= 0. (4)

Since C1 is a cap, if any one of the λi is zero, they are all zero. For the remainder
of the proof, we choose explicit representatives for the projective points Pi.

The structure of the points in C1 naturally breaks the proof into cases:

Case 1: P3 = (a3, b3, 1), P4 = (a4, b4, 0). Since P3 is the only point with xk+` =

1, λ3 = 0.

Case 2: P3 = (a3, b3, 1), P4 = (a4, b4, 1). Then (4) implies λ2(α, 0) + λ3(a3, 1) +

λ4(a4, 1) = 0k+1. Since A is a cap, λ2 = 0.

Case 3: P3 = (a3, β, 0), P4 = (a4, β, 0). Then the second coordinate section of
(4) implies λ2(b) + (λ1 + λ3 + λ4)(β) = 0`. So (λ1 + λ3 + λ4)(β, 0) +

λ2(b, 1)− λ2(0`, 1) = 0`+1, which implies that λ2 = 0 since these three
vectors are all representatives of points in B and since B is a cap.

Case 4: P3 = (a3, β, 0), P4 = (α, b4, 0). Here the first coordinate section of (4)
implies λ3(a3) + (λ2 + λ4)(α) = 0k. So (λ2 + λ4)(α, 0) + λ3(a3, 1) −
λ3(0k, 1) = 0k+1, which implies that λ3 = 0 since A is a cap.

Case 5: P3 = (α, b3, 0), P4 = (α, b4, 0). The first coordinate section of (4) im-
plies λ2+λ3+λ4 = 0. Suppose then that λ2(b, 1)+λ3(b3, 1)+λ4(b4, 1) =

(u, 0), u ∈ F`q . We have a nontrivial solution to (4) if and only if
u = −λ1(β).
In other words, (4) has a nontrivial solution if and only if (b3, 1) and
(b4, 1) are on a secant plane π of the cap B through the points P = (β, 0)

and Q = (b, 1). In order to ensure that {P1, P2} is a free pair, for each
such plane π we must remove from C1 all points of the form (α, b∗, 0)

such that (b∗, 1) ∈ π∩B\{Q}, except for one. Let ν denote the number
of planes in PG(`, q) that contain P,Q and at least one other point of
B. Then we must remove |B| − ν − 2 points from C1.
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The cap K obtained this way has |C1| − (|B| − ν − 2) = |A||B| − |B| + ν + 1

points, and it contains the free pair {P1, P2}.

We can use Theorem 3.1 to reprove our earlier results:

Theorem 3.2 ([8]). For all q we have

(i) m+
2 (3, q) = q + 3 ,

(ii) m+
2 (4, q) = q2 + q + 3 .

Proof. For part (i) take for A and B two points in PG(1, q) and an oval, respec-
tively. Then apply Theorem 3.1 (with ν = 1) and note that the upper bound of
Theorem 2.3 is attained.

For part (ii) take for A and B two points in PG(1, q) and an ovoid, respec-
tively. Then apply Theorem 3.1 (with ν = q+ 1) and note that the upper bound
of Theorem 2.3 is attained.

A further application of Theorem 3.1 is in proving that the upper bound of
Theorem 2.3 is asymptotically tight in projective dimensions 5 and 6.

Theorem 3.3. For all q we have

(i) m+
2 (5, q) ≥ q3 + q2 + 2 ,

(ii) m+
2 (6, q) ≥ q4 + q2 + q + 2 .

Proof. For part (i) take forA and B an ovoid and an oval, respectively, and apply
Theorem 3.1 (with ν = 1). For part (ii) take for both A and B an ovoid and
apply Theorem 3.1 (with ν = q + 1).

Next, we modify Theorem 2.2 to apply to caps with free pairs. The reader
will notice that the theorem below has one requirement for the base caps that
Mukhopadhyay’s construction does not need, namely that the projective cap B
has a tangent hyperplane.

Theorem 3.4. Let A ⊂ AG(k, q) and B ⊂ PG(`, q) be caps, |B| ≥ 2. Further,
assume that a tangent hyperplane to the cap B exists at the point P ∈ B, and
assume that Q is another point of B. Let ν denote the number of distinct planes
π ⊂ PG(`, q) such that {P,Q} ⊂ π and |π ∩ B| ≥ 3. Then there exists a cap
K ⊂ PG(k+ `, q) such that |K| = |A||B|− |A|− |B|+ ν + 3 and K contains a free
pair of points.
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Proof. We begin with a large cap C2 of the type described by equation (2) in
Theorem 2.2. Again, our strategy will be to fix a particular pair of points of the
cap to make free.

Without loss of generality, we take

P = β = (0`−1, 1, 0)

to be the point of B on the tangent hyperplane x` = 0, and we assume that
no points of A lie in the hyperplane xk = 0. Also, we assume that (0k, 1) and
Q = (0`, 1) represent points on A and B, respectively. Recall that the points in
C2 are of the form (a : b), where (a : 1) ∈ A and b ∈ B.

Let
P1 = (0k+`, 1) and P2 = (0k, β) = (0k+`−1, 1, 0)

be the two fixed points that will form a free pair. For the points P1, P2, P3 and
P4 to be coplanar, we must have

λ1(0k+`, 1) + λ2(0k, β) + λ3P3 + λ4P4 = 0k+`+1, λi 6= 0. (5)

We break this proof into three cases. In both of the first two cases, we elimi-
nate points from C2. In Case 3 we show that no more points need to be removed.

Case 1: P3 = (0k, b3), P4 = (a4, b4). If a4 6= 0k, then λ4 = 0. So supposing
a4 = 0k, we see that λ1(0`, 1) + λ2β + λ3b3 + λ4b4 = 0`+1, i.e., b3 and
b4 lie on a secant plane of B through the points (0`, 1) and β.
As before, for each such plane containing (0`, 1), β and other points
from B (say b5, b6, b7, . . . ) we must remove from C2 the points corre-
sponding to b6, b7, . . . , namely (0k, b6), (0k, b7), . . . . Let ν denote the
number of planes in PG(`, q) that contain 0`, β and at least one other
point of B. Then we must remove |B| − ν − 2 points.
(Notice that this argument works properly also in the case ` = 1 since
then we have |B| = 2 by assumption, and the fact that no points are
removed from C2 when ` = 1 then corresponds to the natural definition
of ν = 0 for this special case.)

Case 2: P3 = (a3, 0
`, 1), P4 = (a4, b4), a3, a4 6= 0k. The second coordinate

section reveals that (λ1 + λ3)(0`, 1) + λ2β + λ4b4 = 0`+1. Hence, b4 =

(0`, 1) or b4 = β since B is a cap. If b4 = (0`, 1), then λ2 = 0. So, b4 = β.
Now, from the first coordinate section λ3a3 + λ4a4 = 0k, which is true
if and only if λ3(a3, 1) + λ4(a4, 1)− (λ3 + λ4)(0k, 1) = 0k+1. Since A is
a cap, a3 = a4. Hence, for each of the |A| − 1 choices for a3, we must
delete exactly one point from C2.
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Case 3: P3 = (a3, b3), P4 = (a4, b4), a3, a4 6= 0k, b3, b4 6= (0`, 1). Repeating
the argument based on the first coordinate section which was used in
Case 2 again yields a3 = a4, implying λ3 = −λ4. The second coordinate
section now gives λ1(0`, 1)+λ2β+λ3b3−λ3b4 = 0`+1. Clearly, b3 6= b4.
Since B is a cap, b3, b4 6= β. By examining the last coordinate of each
point, we see that λ1 + λ3 + λ4 = 0, implying λ1 = 0 since λ3 = −λ4.

The cap K obtained this way has |C2| − (|B| − ν − 2)− (|A| − 1) = |A||B| −
|A| − |B|+ ν + 3 points, and it contains the free pair {P1, P2}.

Theorem 3.5. For even q we have

m+
2 (5, q) = q3 + q2 + q + 3.

Proof. Take for A and B a hyperoval in AG(2, q) and an ovoid in PG(3, q). Ap-
plying Theorem 3.4 (with ν = q + 1) gives the desired result.

More applications of Theorems 3.1 and 3.4 are given in Section 5.

4 More results for PG(5, 3)

4.1 Background

Theorem 3.3 says that m+
2 (5, q) ≥ q3 + q2 + 2. This is the best known lower

bound for odd q except in the case of q = 3. In [8] we mentioned that a 42-
cap in PG(5, 3) with a free pair was found via a computer search. Hence, by
Theorem 2.3:

Theorem 4.1. We have m+
2 (5, 3) = 42.

The construction of this 42-cap was not presented in [8], and we present all
details of the construction in this section.

Interestingly, our 42-cap is contained in a complete 48-cap in PG(5, 3). This
is significant because it was recently shown [1] that 48 is the largest size of a
complete cap in PG(5, 3) other than the projectively unique 56-cap of Hill [10]
or, using the proper notation, that m′2(5, 3) = 48. To the best of our knowledge
only two papers in the literature describe complete 48-caps. Bierbrauer and
Edel construct a family of (q + 1)(q2 + 3)-caps in [5]. At that time it was not
known that m′2(5, 3) < 49, so the significance of this construction in the ternary
case was overlooked. A group of authors independently discovered a complete
48-cap via a computer search in [12]. Although it is claimed that two distinct
complete 48-caps were found in this manner [14], only one appears explicitly
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in the literature, and that one is projectively equivalent to the Bierbrauer-Edel
48-cap.

We note that a maximum subset of the Hill cap which contains a free pair of
points has 38 points only. For the other complete 48-cap this value is 37.

In keeping with the structure in the previous section, we will first describe
our complete 48-cap which contains a 42-cap with a free pair. In fact we give
both a combinatorial and a geometric construction of the 48-cap.

As a final introductory comment, we remark that searching for complete 48-
caps in PG(5, 3) in a naive way, say using a pure backtrack search, is extremely
unlikely to be fruitful. However, searching for 42-caps having a free pair is
much easier because of the added restriction. It is still currently computationally
impossible to find all such caps, but finding some is not unreasonable. Searching
for complete caps by first searching for caps with free pairs represents a new
paradigm that may be helpful in future study of caps.

4.2 The complete 48-cap: A combinatorial construction

There are similarities between the construction of our 48-cap and the descrip-
tion of the Hill cap given by Bierbrauer in Chapter 16 of [2]. In both cases the
caps are subsets of the elliptic quadricQ−(5, 3) = {x ∈ PG(5, 3) :

∑6
i=1 x

2
i = 0}.

For completeness we include a summary of Bierbrauer’s description here.

Let A be the sixteen points in PG(5, 3) of Hamming weight six and an even
number of entries that are 2. A second set B consists of all the weight three
points whose support is one of the triads in B1 or B2 defined as

B1 = {134, 136, 145, 235, 246}
B2 = {125, 126, 234, 356, 456}.

The set A ∪ B has 16 + 10 · 4 = 56 points and is, in fact, the Hill cap.

We need only a slight modification of this construction to create a complete
48-cap. Specifically, let C contain all of the weight three points whose support is
in B1 ∪ {156}. Additionally, C contains half of the points with support in

B3 = {123, 124, 125, 126},

specifically, the ones in which the first two coordinates are equal. So if S = A∪C,
then |S| = 16 + (6 · 4 + 4 · 2) = 48, and S has 40 points in common with the Hill
cap.

It is easy to verify computationally the following proposition1. The Magma
1For any reference we make to computational verification, we compiled a Magma source file

which will be permanently available from http://www.cecm.sfu.ca/∼lisonek/48cap.txt .
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code available at the address in the footnote also shows a set of 6 points whose
removal from S yields a 42-cap with a free pair.

Proposition 4.2. The set S constructed above is a complete 48-cap in PG(5, 3).

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1

1 2 1 1 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 2 1 1 2 2 0 0 0 0 1 1 2 2 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0

1 1 2 1 1 2 1 1 2 2 1 2 2 1 2 2 1 2 1 2 0 0 0 0 1 1 2 2 0 0 0 0 1 1 2 2 0 0 0 0 0 0 1 2 0 0 0 0

1 1 1 2 1 1 2 1 2 1 2 2 1 2 2 2 0 0 0 0 0 0 0 0 1 2 1 2 1 2 1 2 0 0 0 0 1 1 2 2 0 0 0 0 1 2 0 0

1 1 1 1 2 1 1 2 1 2 2 1 2 2 2 2 0 0 0 0 1 2 1 2 0 0 0 0 0 0 0 0 1 2 1 2 1 2 1 2 0 0 0 0 0 0 1 2

Table 1: An explicit representation of the 48-cap

4.3 The complete 48-cap: A geometric construction

4.3.1 Notes on ovals and ovoids in PG(3, 3)

We present three lemmas that lead to Theorem 4.6, which we utilize in Sec-
tion 4.3.3. The first lemma is proved by elementary counting while the second
and third lemmas follow from Lemma 18.4.3 and Lemma 16.1.6, respectively,
in [13]. We use the notation P +Q and P + 2Q to denote the two points on the
line PQ other than P and Q.

Lemma 4.3. If P and Q are points in PG(2, 3) and ` (`′) is a line through P (Q)
other than PQ, then there are precisely two ovals containing P and Q and having
` and `′ as tangent lines. Further, in one of the ovals P + Q is an external point,
and in the other, an internal point.

Lemma 4.4. Let π and π′ be planes in PG(3, 3) intersecting in the line PQ, and
let O be an oval in π containing P and Q and O′ be an oval in π′ containing
P and Q. If P + Q is both an external (internal) point of O and an internal
(external) point of O′, then there are exactly two ovoids in PG(3, 3) containing O
and O′. Otherwise, there is exactly one such ovoid.

Lemma 4.5. Let P and Q be two points on an ovoid O in PG(3, q), q odd. Then
each of the q + 1 planes through PQ intersects O in an oval, and P + Q is an
external point in exactly half of these cases.

Theorem 4.6. Fix the points P and Q in PG(3, 3), and let π (π′) be a plane
containing P (Q) but not the line ` = PQ. There are exactly six ovoids in PG(3, 3)

containing the points P and Q such that π and π′ are tangent planes. Further, any
one of these ovoids intersects one of the other ovoids only in {P,Q} and the other
four ovoids in six points.
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Proof. Let O be an ovoid satisfying the required criteria. Let π0 and π1 be dis-
tinct planes intersecting in `. Then π0 meets O in an oval containing P and Q
and having `p = π0 ∩ π and `q = π0 ∩ π′ as tangents. By Lemma 4.3, there
are two such ovals in π0, namely O0 with P + Q external and O′0 with P + Q

internal. Similarly, there are ovals O1 and O′1 in π1.

By Lemma 4.4 there are two ovoids containing O0 and O′1, two ovoids con-
taining O′0 and O1, one ovoid containing O0 and O1 and one ovoid containing
O′0 and O′1. This gives six ovoids total. If we denote the other two planes con-
taining ` by π2 and π3 and let O2, O′2, O3 and O′3 be ovals defined as above,
then Lemma 4.5 says that the six ovoids are:

O0 = O0 ∪ O1 ∪ O′2 ∪ O′3 O1 = O′0 ∪O′1 ∪ O2 ∪ O3

O2 = O0 ∪ O′1 ∪ O′2 ∪ O3 O3 = O′0 ∪O1 ∪ O2 ∪ O′3
O4 = O0 ∪ O′1 ∪ O2 ∪ O′3 O5 = O′0 ∪O1 ∪ O′2 ∪ O3.

Notice that O0 ∩ O1 = O2 ∩ O3 = O4 ∩ O5 = {P,Q}; otherwise, |Oi ∩ Oj | =

6, i 6= j.

Let A4B := (A \B) ∪ (B \ A) denote the symmetric difference of A and B.
Since |O04O1| = |O24O3| = |O44O5| = 16 and there are only 40− (2 · 13 −
4)− 2 = 16 points to choose from in PG(3, 3) \ (π ∪ π′ ∪ `), it follows that each
of these pairs of ovoids actually partitions the set of possible points. We will call
such a pair complementary.

4.3.2 The Γ4 cap in PG(4, 3)

In this section we review a cap in PG(4, 3) which we will use as an important
building block later. We note that a 3-flat is sometimes called a solid. Addi-
tionally, for a given cap, a k-solid or k-hyperplane is a solid or hyperplane that
intersects the cap in exactly k points.

In [16] Pellegrino showed that the largest cap in PG(4, 3) is a 20-cap. Hill [11]
later classified all 20-caps in PG(4, 3) into one of eight isomorphically distinct
types, for which he introduced the names Γ1, . . . ,Γ7 and ∆. The Γ caps are
constructed as follows. First take the ten points, Q1, . . . , Q10, of an ovoid in a
hyperplane, H0, and any point V0 not in H0. Choosing any two of the three
points other than V0 on the lines V0Qi, i = 1, . . . , 10 gives the points of the cap.
For example if one always chooses the two points not in H0, denoted Qi + V0

and Qi + 2V0, then the Γ2 cap is constructed (which makes it the largest cap in
AG(4, 3)). If exactly two points in H0, say Q1 and Q2, are selected in the place
of Q1 + V0 and Q2 + V0, then the Γ4 cap is constructed. This is the cap which
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we use. Let P1, . . . , P20 be the points of Γ4, with P1 and P3 being the two points
Q1 and Q2 from above, and let P2 = P1 + 2V0 and P4 = P3 + 2V0.

Figure 1: The Γ4 cap in PG(4, 3)

Each of the original ovoid points in H0 has exactly one plane in H0 that is
tangent to the ovoid at that point. The point V0 together with each of these ten
planes forms a 2-solid of Γ4. Also, the hyperplane H0 meets Γ4 in exactly two
points bringing the total number of such hyperplanes to eleven. The Γ4 cap is
the only 20-cap in PG(4, 3) with this feature; all others have exactly ten 2-solids.

Let π3 be the plane in H0 that is tangent to the base ovoid at P3. Then H0 is
the unique solid containing P1 and π3. Similarly, we name the solids formed by
joining the other three points on the line P1V0 to π3; specifically, H1 when P2

is joined to π3, H3 when V0 is joined to π3 and H2 when the fourth point, call
it V1, is joined to π3. Notice that H1 contains 10 points of Γ4 (namely, the base
ovoid projected through V0 into H1) and H2 contains nine points of Γ4 (which
taken together with V1 are the points of the base ovoid projected through V0

into H2). H0 and H3 are 2-solids of Γ4.

4.3.3 Moving into PG(5, 3)

In this section we describe how to use two Γ4 caps along with ten other points
to construct a complete 48-cap. To avoid confusion we use H to denote 4-flats
(hyperplanes) and T to denote 3-flats (solids).
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Figure 2: A 10-solid of the Γ4 cap Figure 3: A 9-solid of the Γ4 cap

To begin we take a Γ4 cap (hereafter Γ4a) in a hyperplane H4. Let P be
any point not in H4. In Section 4.3.2 H0, H1, H2 and H3 denoted hyperplanes
in PG(4, 3), i.e., solids. We extend these solids to 4-flats in PG(5, 3), keeping
the same notation, using P . Specifically, H0 now denotes the unique 4-flat
containing all the points of H0 in Section 4.3.2 as well as the point P , and
similarly for H1, H2 and H3. If we use T0 to denote the unique solid containing
the plane π3 (from Section 4.3.2) and P , then we note that H0, . . . , H3 are the
four hyperplanes containing T0. We are also interested in another hyperplane
H5, the unique 4-flat containing P and the 2-solid in H4 that intersects Γ4a in
exactly {P1, P2}.

We construct a second Γ4 cap (hereafter Γ4b) in H5 as follows. The base
ovoid will be in the solid T1 = H1 ∩ H5. Let P5 be one of the nine points,
including P , in (T1∩H0)\H4. For a fixed choice of P5, let P35 and P ′35 be points
on the line P3P5. Recall that the ten points of Γ4a in H1 are the projection of
Γ4a’s base ovoid through V0 into H1. Call this projection O. Then the projection
of O through P35 into H5 is the ovoid that we choose as a base ovoid for Γ4b.
Hence, we have 9× 2 = 18 (number of choices for P5 × number of choices for
P35) possible choices for Γ4b’s base ovoid. It turns out that regardless of which
choice is made here, the resulting 48-caps can be verified computationally to be
isomorphic under PGL(6, 3), so we may choose any one of them at this stage
and fix this choice for the rest of the construction. Notice that P2 projects to
itself since it is in T1 and, hence, it is a member of the base ovoid. The points
P2 and P5 will be the two points from the base ovoid included in Γ4b.

We continue constructing Γ4b by choosing an appropriate vertex. Recall that
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the point V0 is on the line P1P2. The fourth point on this line we have already
named V1 and now choose as the vertex of Γ4b. We must then take P1 to be a
point in Γ4b since choosing V0 would violate the cap conditions when Γ4a and
Γ4b are viewed together. The final choice to be made is for P6, the second point
on the line P5V1 to be included in Γ4b. We postpone this decision for now.

Modulo the choice for P6, we have created the 38-cap depicted in Figure 4.
While not drawn explicitly in Figures 4 and 5, H4 is on the left-hand side of the
figure and H5 on the right-hand side. The only points of consequence in their
intersection are the ones on the line P1P2, which we draw twice for clarity.

Figure 4: Γ4a and Γ4b form a 38-cap in PG(5, 3)

We now extend the 38-cap to a 46-cap by adding points from T0. More specif-
ically, since m2(4, 3) = 20 we cannot add any more points in either H4 or H5,
and we limit our focus to the 16 points in T0\((H4 ∪H5) ∪ P3P5). Before adding
one of these points to the current cap, we must be sure that it does not lie on
a line with any pair of the 38 points. With the exception of the pairs with one
of the points in Γ4a but not in (H0 ∪H1) and the other point in Γ4b but not in
(H0 ∪H1), all of the pairs obviously would not give rise to collinear triples with
one of the 16 candidate points. The following argument shows how to avoid the
exceptional pairs and still keep eight of the 16 candidate points.

Recall that the unique hyperplane containing T0 and V1 is H2 and that (H2 ∩
H4) is a 9-solid of Γ4a. In fact those nine points and V1 are the projection of
Γ4a’s base ovoid into H2; call this projection O1. Notice that P6, regardless of
the choice, is also in H2 since it is on the line P5V1.

This means that we can project O1 through P6 into T0, resulting in a new
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Figure 5: Γ4a and Γ4b with H2 and H3 highlighted

ovoid O′1. Clearly, under this projection V1 projects to P5, P3 projects to itself
and π3 is a tangent plane of O′1 at P3. Additionally, π5 = (T0 ∩H5) is a tangent
plane to O′1 at P5 since V1, P6 ∈ H5 and no other points of O1 are in H5. Hence,
O′1 is one of the six ovoids (see Theorem 4.6) in T0 having π3 as a tangent plane
at P3 and π5 as a tangent plane at P5.

Similarly, it can be seen that H3, the 4-flat containing T0 and V0, is a 9-solid
of Γ4b and that these nine points and V0 are points of an ovoid O2 which is a
projection of Γ4b’s base ovoid through V1 into H3. Since P4 ∈ H3 we can project
O2 through P4 into T0, again resulting in an ovoid, O′2, which is one of the six
ovoids in T0 with π5 tangent to it at P5 and π3 tangent at P3.

The immediate question is how O′2 compares with O′1. Computationally, we
observe that one of the choices for P6 causes O′1 = O′2 and the other choice
results in O′1 and O′2 being complementary, i.e., intersecting only in {P3, P5}.
We fix now the former choice for P6 so that O′1 = O′2, and we use O to denote
the complementary ovoid of O1.

By construction all the new points in O may be added to the 38-cap resulting
in the 46-cap depicted in Figure 6. It is of note that H0, H1, H2 and H3 are all
19-hyperplanes of this 46-cap. Hence, if any more points of PG(5, 3) can be
added to the 46-cap, there can be at most one from each of these hyperplanes.
It is an easy computation to locate one point in H2 and one point in H3 that
may be added to the cap, resulting in the final 48-cap. Incidentally, in both of
these hyperplanes, the new point extends the cap of the 19 old points to a Γ4

cap.
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Figure 6: The 46-cap in PG(5, 3) of Γ4a, Γ4b and O

4.4 A 42-cap with a free pair

Since we were not concerned with having a free pair in our cap, we chose all
eight additional points from the points of O in Section 4.3.3. However, if we
let π1, . . . , π4 be the four planes in T0 through P3P5 and we take one of the two
points in (O∩ πi) \ {P3, P5}, i = 1, . . . , 4, then we can make {P3, P5} a free pair
in T0 and in the entire 42-cap in PG(5, 3). As mentioned in the introduction,
this construction gives the same cap as was found by computer search in [8].

Figure 7: The entire 42-cap in PG(5, 3) with free pair {P3, P5}
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5 Higher dimensions

We use some of the largest known caps in higher dimensions and perform com-
puter searches to derive large caps with free pairs. Explicit representations of
many large caps can be found on Y. Edel’s homepage [4].

Example 5.1. The largest known cap in PG(7, 3) is a 248-cap discovered by
Bierbrauer and Edel [6] as an extension of the Calderbank-Fishburn cap in
AG(7, 3). By removing 34 points from the former cap, we obtain a 214-cap
in PG(7, 3) with a free pair.

Example 5.2. The largest cap in AG(4, 4) is of size 40 [7]. We use this cap
together with points from an ovoid in PG(3, 4) to create a large cap in PG(7, 4)

via the strategy in Theorem 2.2. It turns out that removing a set of 25 certain
points from this cap gives a cap of size 655 with a free pair.

Example 5.3. There is a 66-cap [6] in PG(4, 5) with two tangent hyperplanes.
Taking this for A and the ovoid for B, Theorem 3.1 gives a 1697-cap in PG(7, 5).

Example 5.4. There is a 208-cap [6] in AG(4, 8); let us call it C. The weight
distribution of the code generated by the matrix whose columns are the points
of C was computed by Edel [4]. It turns out that this code contains codewords
of weight 206 [4]. That means that there exists a 207-point subset of C which
has a tangent hyperplane. Taking this for A and the ovoid for B, Theorem 3.1
gives a 13400-cap in PG(7, 8). This cap has only 120 points less than the largest
known cap in PG(7, 8) [4].

Example 5.5. The Hill cap together with the q2 affine points of the ovoid in
PG(3, 3) can be used to create a 504-cap in PG(8, 3) via the strategy in Theo-
rem 2.2. By some clever arguments and with the help of a computer, Bierbrauer
and Edel [6] extend this cap to a 532-cap in PG(8, 3). It turns out that removing
a set of 7 certain points from this cap gives a free pair. Once these points are
removed, one other point may be added to achieve a 526-cap with a free pair.

In Table 2 we review the current bounds on m+
2 (N, q) for some small values

of N and q.

The upper bounds are obtained from Theorem 2.3. The lower bounds are
from:

(i) PG(5, 3)—Section 4.4

(ii) PG(5, 2r)—Theorem 3.5

(iii) PG(5, q), q odd—Theorem 3.3
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N q m+
2 (N, q) ≥ m+

2 (N, q) ≤
5 3 42 42

5 4 87 87

5 5 152 158

6 3 95 123

6 4 278 343

6 5 657 783

7 3 214 366

7 4 655 1367

7 5 1697 3908

7 8 13400 37451

8 3 526 1095

Table 2: Bounds on m+
2 (N, q).

(iv) PG(6, q)—Theorem 3.3

(v) PG(7, 3)—Example 5.1

(vi) PG(7, 4)—Example 5.2

(vii) PG(7, 5)—Example 5.3

(viii) PG(7, 8)—Example 5.4

(ix) PG(8, 3)—Example 5.5

In (iv)–(ix) above, the upper bound for m+
2 (N, q) is significantly greater than

the largest known caps in PG(N, q). Specifically,

(iv) 123 > 112 in PG(6, 3) (the doubled Hill cap) and q4 + q3 + q2 + q + 3 >

q4 + 2q2 when q > 3 (Theorem 2.1 applied to two ovoids);

(v) 366 > 248 in PG(7, 3) [6];

(vi) 1367 > 756 in PG(7, 4) (the product of a hyperoval with the Glynn cap [9]);

(vii) 3908 > 1715 in PG(7, 5) [6];

(viii) 37451 > 13520 in PG(7, 8) [6];

(ix) 1095 > 532 in PG(8, 3) [6].
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In other words, although we meet the upper bound exactly for N = 3, 4 and
meet it asymptotically for N = 5, 6, for higher dimensions we fail to come
close to the upper bound not because of problems inherent with caps having
free pairs but rather because of a lack of knowledge of any cap of the required
Θ(qN−2) cardinality in PG(N, q), where in the notation Θ(qN−2) we mean that
the dimension N is fixed and q is arbitrary. (We say that f(q) is Θ(g(q)) if
f(q)/g(q) is bounded from above and from below by positive real constants for
all q.)

6 Future work

The observation in the previous paragraph raises a provoking question. It has
been an open question for quite some time whether caps of size Θ(qN−1) exist
in PG(N, q) for N ≥ 4. From our work here and in [8], we have shown that
the upper bound of Theorem 2.3 is attainable asymptotically through dimen-
sion N = 6, thus giving reason to investigate whether it is true in general. It
is a reasonable suggestion, then, that some effort be focused on finding caps,
with or without free pairs, of size Θ(qN−2) in PG(N, q) for some fixed values
N ; perhaps such work could give insight leading to a solution of the original
question.
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