Transitive eggs

John Bamberg Tim Penttila

Abstract

We prove that a pseudo-oval or pseudo-ovoid (that is not an oval or ovoid) admitting an insoluble transitive group of collineations is elementary and arises over an extension field from a conic, an elliptic quadric, or a Suzuki-Tits ovoid.

Keywords: pseudo-oval, pseudo-ovoid, egg, translation generalised quadrangle, transitive
MSC 2000: 51E20

1 Introduction

An egg of the projective space $\operatorname{PG}(2 n+m-1, q)$ is a set \mathcal{E} of $q^{m}+1$ subspaces of dimension $(n-1)$ such that every three are independent (i.e., span a ($3 n-1$)-dimensional subspace), and such that each element of \mathcal{E} is contained in a common complement to the other elements of \mathcal{E} (i.e., each element of \mathcal{E} is contained in an $(n+m-1)$-dimensional subspace having no point in common with any other element of \mathcal{E}). The theory of eggs is equivalent to the theory of translation generalised quadrangles (see [20, Chapter 8]). If q is even, then $m=n$ or $m=2 n$ (see [20, 8.7.2]), and for q odd, the only known examples of eggs have $m=n$ or $m=2 n$. Now an ovoid of $\operatorname{PG}(3, q)$ is an example of an egg where $m=2 n=1$; hence an egg having $m=2 n$ is called a pseudo-ovoid. Likewise, an oval of $\mathrm{PG}(2, q)$ is an egg where $m=n=2$, and henceforth, a pseudo-oval is an egg with $m=n$. If \mathcal{O} is an oval of $\operatorname{PG}\left(2, q^{n}\right)$, then by field reduction from $\mathrm{GF}\left(q^{n}\right)$ to $\mathrm{GF}(q)$, one obtains a pseudo-oval of $\operatorname{PG}(3 n-1, q)$. Such pseudo-ovals are called elementary. Likewise, field reduction of an ovoid of $\mathrm{PG}\left(3, q^{n}\right)$ yields an elementary pseudo-ovoid of $\mathrm{PG}(4 n-1, q)$. All known pseudo-ovals are elementary, and in even characteristic, every known example of a pseudo-ovoid is elementary. There is some conflict over the definition of a
classical pseudo-ovoid. In [6] and [24], a classical pseudo-ovoid is one which arises by field reduction from an elliptic quadric. However, some authors (e.g., Cossidente and King [9]) also include the Suzuki-Tits ovoids in their definition of a classical ovoid. Such confusion will be avoided in this paper by not using the term classical at all; so we will take the perhaps cumbersome approach of stating our results explicitly.

By Segre's Theorem [22], every oval of $\mathrm{PG}(2, q), q$ odd, is a conic. Similarly, every ovoid of $\mathrm{PG}(3, q)$, for q odd, is an elliptic quadric, and this was proved independently by Barlotti [5] and Panella [19]. In the case where q is even, there also exist the Suzuki-Tits ovoids which are inequivalent to elliptic quadrics. The second author and O'Keefe, building on the work of Abatangelo and Larato, showed that the ovals of $\mathrm{PG}(2, q), q$ even, which admit a transitive subgroup of $\mathrm{PGL}_{3}(q)$ are conics (see [1] and [18]). Similarly, Bagchi and Sastry [2] showed that the ovoids of $\operatorname{PG}(3, q), q$ even, which admit a transitive subgroup of $\mathrm{PGL}_{4}(q)$ are elliptic quadrics or Suzuki-Tits ovoids. Brown and Lavrauw [6] have shown that an egg of $\operatorname{PG}(4 n-1, q), q$ even, contains a pseudo-conic if and only if it is elementary and arises from an elliptic quadric. Recently, J. A. Thas and K. Thas [24] have shown that every 2 -transitive pseudo-oval in even characteristic is elementary and arises from a conic. In this paper, we prove the following result:

Main Theorem. Suppose \mathcal{E} is a pseudo-oval or pseudo-ovoid (that is not an oval or ovoid) admitting an insoluble transitive group of collineations. Then \mathcal{E} is elementary and arises from a conic, an elliptic quadric, or a Suzuki-Tits ovoid.

2 The approach

A divisor x of $q^{d}-1$ (where $d \geqslant 3$) is primitive if x does not divide $q^{i}-1$ for each positive integer $i<d$. By a result of Zsigmondy [25], such divisors exist if $(q, d) \neq(2,6)$. Therefore, if G acts transitively on a set of size $q^{m}+1$ (and $(q, m) \neq(2,3))$, then a primitive prime divisor of $q^{2 m}-1$ divides the order of G. Such groups have an irreducible Sylow subgroup, and from this information, the structure of G can be described in great detail (see [12]). The authors have used this argument to classify m-systems of polar spaces which admit an insoluble transitive group (see [3]). From the definitions of a pseudo-ovoid and pseudo-oval, we can apply a similar argument here; which is dependent on the Classification of Finite Simple Groups.
Note. Suppose \mathcal{E} is a pseudo-oval (resp. pseudo-ovoid) of $\operatorname{PG}(2 n+m-1, q)$ where $q=p^{f}$ for some prime p. Under field reduction from $\operatorname{GF}(q)$ to $\operatorname{GF}(p)$,
there arises a pseudo-oval (resp. pseudo-ovoid) $\tilde{\mathcal{E}}$ of $\operatorname{PG}((2 n+m) f-1, p)$. If \mathcal{E} admits an insoluble transitive subgroup of $P \Gamma L_{2 n+m}(q)$, then $\tilde{\mathcal{E}}$ admits an insoluble transitive subgroup of $\operatorname{PLL}_{(2 n+m) f}(p)=\operatorname{PGL}_{(2 n+m) f}(p)$. We then apply the main result of this paper to $\tilde{\mathcal{E}}$ to establish that it is elementary, from which it follows that \mathcal{E} is elementary provided that it is not an oval or ovoid. Hence throughout this paper, we will assume without loss of generality that our given pseudo-oval or pseudo-ovoid admits an insoluble transitive subgroup of the homography group $\mathrm{PGL}_{2 m+n}(q)$.

3 The pseudo-oval case

A pseudo-oval of $\operatorname{PG}(d-1, q)$ (where d is a multiple of 3) is a set of $q^{e / 2}+1$ subspaces of dimension $d / 3-1$, where $e=\frac{2}{3} d$. This phrasing makes it clear how we apply the results of [4].

3.1 Even characteristic

If q is even, then the tangent spaces of a pseudo-oval \mathcal{E} all have a $(d / 3-1)$-space in common; the nucleus of \mathcal{E} (see [20, pp. 182]). Since G must fix the nucleus, we have that G acts reducibly in this case. Let \mathcal{N} be the the nucleus of \mathcal{E} and consider the quotient map π from $\operatorname{PG}(d-1, q)$ to $\operatorname{PG}(d-1, q) / \mathcal{N}$, and note that the codomain can be identified with $\mathrm{PG}(2 d / 3-1, q)$. The image of \mathcal{E} under π is a spread \mathcal{S} of $\mathrm{PG}(2 d / 3-1, q)$ (see [20, pp. 182]). Moreover, we have that G acts transitively on this spread, and by the Andre/Bruck-Bose construction, we obtain a flag-transitive affine plane admitting an insoluble group. By [7], this affine plane is Desarguesian or a Lüneburg plane, so in particular, it follows that \mathcal{E} admits a 2 -transitive group. So by [24, §8], we have that \mathcal{E} is an elementary pseudo-oval arising from a conic of $\operatorname{PG}\left(2, q^{d / 3}\right)$.

3.2 Odd characteristic

Let \mathcal{E} be a pseudo-oval of $\operatorname{PG}(d-1, q)$, where q is odd. Then each element E of \mathcal{E} is contained in a unique $2 d / 3-1$-subspace T_{E} of $\mathrm{PG}(d-1, q)$ which is called the tangent space at E. By [20, pp. 182], each point of $\mathrm{PG}(d-1, q)$ is contained in 0 or 2 tangent spaces of \mathcal{E}.

Theorem 3.1. Let $q=p^{f}$ where p is an odd prime, let d be an integer divisible by 3. If an insoluble subgroup G of $\mathrm{PGL}_{d}(q)$ acts transitively on a pseudo-oval \mathcal{E} of $\operatorname{PG}(d-1, q)$, then \mathcal{E} is elementary and is obtained by field reduction of a conic of $\operatorname{PG}\left(2, q^{d / 3}\right)$.

Proof. Let \mathcal{E} be a pseudo-oval of $\mathrm{PG}(d-1, q)$ admitting a group $G \leqslant \operatorname{PGL}_{d}(q)$ that is insoluble and acts transitively on \mathcal{E}, and let H be the stabiliser in G of an element of \mathcal{E}. Note that the number of elements of \mathcal{E} is $q^{e / 2}+1$ where $e=2 / 3 d$. We may assume that $q^{d / 3}>16$ as it was shown by the second author in [21] that if $q^{d / 3} \leqslant 16$, then \mathcal{E} is elementary and is obtained by field reduction of a conic of $\operatorname{PG}\left(2, q^{d / 3}\right)$. Let \hat{G} be a preimage of G in $\mathrm{GL}_{d}(q)$. Then there exists a subgroup \hat{H} of \hat{G} of index $q^{e / 2}+1$ such that the image of \hat{H} in $\mathrm{PGL}_{d}(q)$ is H. So we can apply [4, Theorem 3.1] to \hat{G}. There are six cases to consider from this theorem: the Classical, Imprimitive, Reducible, Extension Field (case (b)), Symplectic Type, and Nearly Simple examples. Straight away, we have that the Symplectic examples do not occur as d is a multiple of 3 . By [4, Lemma 13], \hat{G} is not in the Classical examples case. So we are left with four families to consider: the Reducible, Imprimitive, Extension Field, and the Nearly simple examples.

Let us first suppose we are in the Imprimitive examples case. So by [4, Theorem 3.1], we have that $d=9, q \in\{3,5\}$, and \hat{G} preserves a decomposition of $V_{9}(q)$ into 1 -spaces. So in particular, $\hat{G} \leqslant \mathrm{GL}_{1}(q)$ 乙 S_{9}. We treat both cases, $q=3$ and $q=5$, simultaneously. Let μ be the natural projection map from $\mathrm{GL}_{1}(q)$ 乙 S_{9} onto S_{9}. Now $\mu(\hat{G})$ is insoluble and primitive (of degree 9), and hence $\mu(\hat{G}) \in\left\{\mathrm{PSL}_{2}(8), \mathrm{P}_{2}(8), A_{9}, S_{9}\right\}$ (see [10, Appendix B]). Moreover, $\mu(\hat{G})$ is 3 -transitive in its degree 9 action. Let B be the kernel of μ. So $|B|=(q-1)^{9} \in\left\{2^{9}, 2^{18}\right\}$. Now $G \cap B$ is a nontrivial normal subgroup of G and hence $G \cap B$ contains the subgroup K of B consisting of diagonal matrices with entries ± 1. Since $|\hat{G}: \hat{H}| \in\{28,126\}$, we see that a subgroup J of K with index at most 2 , is contained in \hat{H}. The only J-invariant subspaces of $V_{9}(q)$ are the spans of vectors from the canonical basis; coordinate subspaces. Let E be an element of the pseudo-oval. We may assume (up to conjugacy) that E is J-invariant and so it is a coordinate plane. Now the action of $\mu(\hat{G})$ is 3 -transitive, and so the orbit of E under \hat{G} on planes is $\binom{9}{3}=84$. So the Imprimitive examples case does not arise.

Let us now suppose we are in the Nearly simple case. So $S \leqslant G \leqslant \operatorname{Aut}(S)$ where S is a finite nonabelian simple group, and \hat{G} is irreducible. By using the fact that $q^{d / 3} \geqslant 16$, we have only two subcases to consider: the Alternating group case and the Natural-characteristic case. In the former, we have $S=$ $A_{10}, d=9, q=3$, and the vector space $V_{9}(3)$ can be identified with the fully deleted permutation module for S_{10} over GF (3). It can be readily checked that G does not have a subgroup of index $3^{3}+1$, and so this case does not arise. In the Natural-characteristic case, we have that $d=9$ and $S=\mathrm{PSL}_{3}\left(q^{2}\right)$ (by [4, Theorem 2.1]). Now by [8], the minimum degree of a nontrivial representation of S is $\left(q^{6}-1\right) /\left(q^{2}-1\right)$. However

$$
q^{3}+1=\left(q^{6}-1\right) /\left(q^{3}-1\right)<\left(q^{6}-1\right) /\left(q^{2}-1\right)
$$

and so \hat{G} does not have a transitive action of degree $q^{3}+1$. Therefore, we have that \hat{G} is not in the Nearly Simple examples case.

Now suppose we are in the Field Extension examples case. We have that \hat{G} is irreducible and there is a divisor b of $2 d / 3$ (where $b \neq 1$) such that \hat{G} preserves a field extension structure $V_{d / b}\left(q^{b}\right)$ on $V_{d}(q)$. Moreover, $G \cap \mathrm{GL}_{d / b}\left(q^{b}\right)$ has a subgroup of index $\left(q^{e / 2}+1\right) / x$, for some x, and so if $d / b>3$, then we can apply [4, Theorem 3.2] to $G \cap \mathrm{GL}_{d / b}\left(q^{b}\right)$ with parameters $q^{b}, d / b$, and e / b playing the roles of q, d, and e respectively. So let us assume that $d / b>3$. Since $d / b \neq e / b$, we do not have the Classical examples case. Note that if \hat{G} fixes a subspace over the field extension q^{b}, then it also fixes a subspace that is written over the field $\mathrm{GF}(q)$. Hence $\hat{G} \cap \mathrm{GL}_{d / b}\left(q^{b}\right)$ is irreducible in its action on $\operatorname{PG}\left(d / b-1, q^{b}\right)$. We can also assume that $G \cap \mathrm{GL}_{d / b}\left(q^{b}\right)$ does not preserve a field extension structure by choosing b to be maximal. Since q^{b} is not prime, we can eliminate the Imprimitive examples, Symplectic Type examples, and the Nearly Simple examples. Therefore $d / b=3$ and $e / b=2$. By some old work of Mitchell [17], the only absolutely irreducible insoluble maximal subgroups of $\operatorname{PSL}_{3}\left(q^{b}\right)$ are
(i) $\operatorname{PSL}_{2}\left(q^{b}\right)$;
(ii) $\operatorname{PSU}_{3}\left(q^{b}\right)$ when q^{b} is a square;
(iii) A_{6} when $p \equiv 1,2,4,7,8,13 \bmod 15\left(\operatorname{and} \mathrm{GF}\left(q^{b}\right)\right.$ contains the squares of 5 and -3);
(iv) $\mathrm{PSL}_{2}(7)$ when $p \equiv 1,2,4 \bmod 7$.

In the case that $\mathrm{PSU}_{3}\left(q^{d / 3}\right) \leqslant G \cap \mathrm{PGL}_{3}\left(q^{d / 3}\right) \leqslant \mathrm{P}_{\mathrm{L}}\left(q^{d / 3}\right)$, we have $q^{d / 3}+1$ divides $q^{d / 2}\left(q^{d / 3}-1\right)\left(q^{d / 2}+1\right)$. This is a contradiction as $q^{d / 3}+1$ is coprime to $q^{d / 2}$ and $q^{d / 3}-1$ (note that q is odd). So this case does not arise. In the case that $A_{6} \leqslant G \cap \mathrm{PGL}_{3}\left(q^{d / 3}\right) \leqslant S_{6}$, we have $q^{d / 3}+1$ divides 6 ! (note that $q^{d / 3}+1$ is coprime to $\left.\left|G: G \cap \operatorname{PGL}_{3}\left(q^{d / 3}\right)\right|\right)$. However, $q^{d / 3}+1$ divides $6!$ only if $q=3$ and $d=6$ (so $b=2$). So this case does not arise as A_{6} does not embed in $\operatorname{P\Gamma L}_{3}\left(q^{b}\right)$ in characteristic 3. In the case that $\mathrm{PSL}_{2}(7) \leqslant G \cap \operatorname{PGL}_{3}\left(q^{d / 3}\right) \leqslant \mathrm{PGL}_{2}(7)$, we have $q^{d / 3}+1$ divides 336 . However, $q^{d / 3}+1$ divides 336 only if $q=3$ and $d=9$ (so $b=3$). So this case does not arise as $\mathrm{PSL}_{2}(7)$ does not embed in $\mathrm{P}_{\mathrm{L}}\left(q^{b}\right)$ in characteristic 3 . Hence $\operatorname{PSL}_{2}\left(q^{b}\right) \leqslant G$.

Let $J=\mathrm{PSL}_{2}\left(q^{d / 3}\right)$. It is a classical result, but can also be found in [8], that $\mathrm{PSL}_{2}\left(q^{d / 3}\right)$ (where $d>2$) has a unique conjugacy class of subgroups of index $q^{d / 3}+1$. It follows from [14, Proposition 4.3.17], that there is a unique characteristic class of subgroups of $\mathrm{PGL}_{d}(q)$ isomorphic to J (it is not true in general that there is a unique conjugacy class of such subgroups). Let
$\varphi: V_{3}\left(q^{d / 3}\right) \rightarrow V_{d}(q)$ denote the natural vector space isomorphism here, and let \mathcal{C} be a conic of $V_{3}\left(q^{d / 3}\right)$ admitting J. Let α and β be two distinct points of \mathcal{C}. Then $\varphi(\alpha)$ and $\varphi(\beta)$ are $d / 3$-dimensional vector subspaces of $V_{d}(q)$. Note that J has a unique conjugacy class of subgroups of index $q^{d / 3}+1$, and hence we can assume that the stabiliser of an element E of \mathcal{E} is identical to the stabiliser J_{α}. Now suppose we have a third vector v which is neither α nor β. Then

$$
\left|v^{J_{\alpha}}\right|=\left|J_{\alpha}: J_{\alpha, v}\right|=\left|J_{\alpha}: J_{\alpha, \beta}\right|\left|J_{\alpha, \beta}: J_{\alpha, \beta, v}\right|=q^{d / 3}\left|J_{\alpha, \beta}: J_{\alpha, \beta, v}\right| .
$$

Now J is a Zassenhaus group (i.e., a 2 -transitive group such that the stabiliser of any three points is trivial) and so $J_{\alpha, \beta, v}=1$. Therefore

$$
\left|v^{J_{\alpha}}\right|=q^{d / 3} \frac{q^{d / 3}-1}{\operatorname{gcd}\left(2, q^{d / 3}-1\right)}
$$

which is not a prime power. Now any J_{α}-invariant $d / 3$-subspace of $V_{d}(q)$ is a union of orbits of J_{α}. Therefore, it follows that the only J_{α}-invariant subspace of $V_{d}(q)$ is $\varphi(\alpha)$. Since W is J_{α}-invariant, we have that $W=\varphi(\alpha)$ and hence \mathcal{E} is the image of \mathcal{C} under φ. Therefore, \mathcal{E} is elementary and is obtained by field reduction of a conic of $\mathrm{PG}\left(2, q^{d / 3}\right)$.

Reducible examples

We have that \hat{G} fixes a subspace/quotient space U of $V_{d}(q)$ and $\operatorname{dim}(U)=u \geqslant$ $\frac{2}{3} d$. In fact, it follows that $u=2 / 3 d$ by noting that a primitive divisor of $q^{(2 / 3) d}-$ 1 also divides $|\hat{G}|$. So $\hat{G} \leqslant q^{u(d-u)} \cdot\left(\mathrm{GL}_{u}(q) \times \mathrm{GL}_{d-u}(q)\right)$. We may assume that U is a subspace, as for q odd, each point of U is in 0 or 2 tangent spaces of \mathcal{E}. Consider the set of intersections

$$
\mathcal{M}=\left\{T_{E} \cap U: E \in \mathcal{E}\right\} .
$$

Note that each element of \mathcal{M} has a common dimension as G acts transitively on \mathcal{M}, and thus $\operatorname{dim}\left(T_{E} \cap U\right)=d / 3$ for all $E \in \mathcal{E}$. Therefore \hat{G}^{U} acts transitively on a set of $\left(q^{d / 3}+1\right) / \delta$ subspaces of dimension $d / 3$ where $\delta=1,2$. This implies that \hat{G}^{U} has a subgroup of index $\left(q^{d / 3}+1\right) / \delta$, and so we can apply [4, Theorem 3.2] with $q, \frac{2}{3} d$, and $\frac{2}{3} d$ playing the roles of q, d, and e respectively. In the following subcases, we have that G has a normal insoluble subgroup S, which is given explicitly. Moreover, S must have a union of orbits on $(d / 3)$-spaces of U of size $\left(q^{d / 3}+1\right) / \delta$ where $\delta=1,2$.

Reducible/nearly simple examples

In this case, $S \leqslant G^{U} \cap \mathrm{PGL}_{d}(q) \leqslant \operatorname{Aut}(S)$ where S is a finite nonabelian simple group. Here we have four subcases.

Alternating group case

Here $S=A_{r}$ and the vector space $V_{u}(q)$ can be identified with the fully deleted permutation module for S_{r} over $\operatorname{GF}(q)$. We have that u is $r-1$ or $r-2$ (according to whether p does not or does divide n respectively), and $q^{u}=p^{u}=3^{6}, 5^{6}$. Suppose $S=A_{7}, u=6$, and $q=3$. Then S stabilises \mathcal{M} and hence S has a union of orbits on planes of $\operatorname{PG}(5,3)$ of size 14 or 28 . Now A_{7}, in its unique irreducible representation in $\operatorname{PG}(5,3)$ has the following orbit lengths on planes (n.b., the exponents denote multiplicities):

$$
\left[35^{2}, 105^{4}, 140^{3}, 210^{4}, 315^{6}, 420^{10}, 630^{6}, 840^{4}, 1260^{15}\right] .
$$

Therefore this case does not arise. Now suppose $q=5$. It can be shown using GAP [11] that the S-invariant sets of planes of size 63 or 126 do not cover every point either 0 or 2 times. Therefore this case does not arise.

Cross-characteristic case

The table below lists the possibilities for this case.

S	d	q	u
$\mathrm{PSL}_{2}(7)$	9	3	6
$\mathrm{PSL}_{2}(13)$	9	3	6
$\mathrm{PSU}_{3}\left(3^{2}\right)$	9	5	6

Now $\mathrm{PSL}_{2}(13)$ acts transitively on the points of $\operatorname{PG}(5,3)$, and so this case does not arise. Suppose $S=\mathrm{PSL}_{2}(7), u=6$, and $q=3$. Then S stabilises \mathcal{M} and hence S has a union of orbits on planes of $\operatorname{PG}(5,3)$ of size 14 or 28 . Now by using GAP [11] and the unique irreducible representation for S in $\operatorname{PG}(5,3)$, we have that S has the following orbit lengths on planes:

$$
\left[7^{4}, 21^{8}, 28^{12}, 42^{18}, 56^{12}, 84^{100}, 168^{140}\right] .
$$

None of the thirteen S-invariant sets of planes of size 28 have each point of $\mathrm{PG}(5,3)$ contained in a constant number (0 or 2) of elements of the set. Likewise, of all the six S-invariant sets of size 14 , none have each point of $\operatorname{PG}(5,3)$ contained in a constant number of elements of the set. Therefore, this case does not arise.

Now suppose $S=\operatorname{PSU}_{3}\left(3^{2}\right), u=6$, and $q=5$. Then S stabilises \mathcal{M} and hence S stabilises a set of points of size $\left(q^{u}-1\right) /(2(q-1))=1953$. However, by using GAP [11] one can calculate that S has the following orbit lengths on points of $\operatorname{PG}(5,5)$:

$$
\left[189^{2}, 1008^{2}, 1512\right] .
$$

Since 1953 cannot be partitioned into these numbers, this case does not arise.
So we are left now with just two more cases: the "Classical examples" and the "Extension field" examples, which can be unified naturally.

Reducible/classical and extension field examples

We have that \hat{G}^{U} preserves a (possibly trivial) field extension structure on U as a u / b-dimensional subspace over $\operatorname{GF}(b)$ where b is a proper divisor of $u=$ $(2 / 3) d$. So $\hat{G}^{U} \leqslant \Gamma \mathrm{~L}_{(2 / 3) d / b}\left(q^{b}\right)$ and we can apply [4, Theorem 3.2] to $\hat{G}^{U} \cap$ $\mathrm{GL}_{(2 / 3) d / b}\left(q^{b}\right)$ where $q^{b}, u / b$, and u / b play the roles of q, d, and e respectively. We simply have $d / b=6$ and $\operatorname{PSL}_{2}\left(q^{d / 3}\right) \leqslant \hat{G}^{U}$. Let $S=\operatorname{PSL}_{2}\left(q^{d / 3}\right)$ and note that the preimage of S acts transitively on the non-zero vectors of $V_{2}\left(q^{d / 3}\right)$. However, we have here that S stabilises a set of $q^{d / 3}+1$ subspaces, each of dimension $d / 3-1$, which is impossible for $d / 3>1$. So we conclude that G is irreducible.

4 The pseudo-ovoid case

A pseudo-ovoid of $\operatorname{PG}(d-1, q)$ (where d is a multiple of 4) is a set of $q^{d / 2}+1$ subspaces of dimension $d / 4-1$. Here we can also apply the results of [4], as we did in the pseudo-oval case.

Theorem 4.1. Let $q=p^{f}$ where p is a prime and let d be an integer divisible by 4. If an insoluble subgroup G of $\mathrm{PGL}_{d}(q)$ acts transitively on a pseudo-ovoid \mathcal{E} of $\operatorname{PG}(d-1, q)$, then \mathcal{E} is elementary and arises from an elliptic quadric or Suzuki-Tits ovoid.

Proof. Let H be the stabiliser of an element of \mathcal{E} in G, and let \hat{G} be a preimage of G in $\mathrm{GL}_{d}(q)$. Note that the number of elements of a pseudo-ovoid of $\operatorname{PG}(d-1, q)$ is $q^{e / 2}+1$ where $e=d$. So there exists a subgroup \hat{H} of \hat{G} of index $q^{d / 2}+1$ such that the image of \hat{H} in $\mathrm{PGL}_{d}(q)$ is H. Therefore we can apply [4, Theorem 3.2] to \hat{G}. First note that we can rule out the Reducible examples, Imprimitive examples, and case (a) of the Extension field examples. Recall that by [18], we can assume that $d>4$. Hence we have ruled out the Classical and Symplectic Type examples. Also note that d is a multiple of 4 , and so in the Nearly simple case, we have the following: $q=2, d=12$, and either
(a) $A_{13} \leqslant G \leqslant S_{13}$, or
(b) $S=\mathrm{PSL}_{2}(25) \leqslant G \leqslant \mathrm{PL}_{2}(25)$, and $S \cap H$ is isomorphic to S_{5} (there are two such conjugacy classes of S).

However in the first case, it is clear that G does not have a subgroup of index 65. In the second case, we know by [13] that $\mathrm{PSL}_{2}(25)$ has a unique 12dimensional irreducible representation (up to quasi-equivalence) over $\mathrm{GF}(2)$ and it has the following orbit lengths on points:

$$
\left[65,325^{2}, 650,780,1950\right] .
$$

Let \mathcal{B} be the set of points covered by the pseudo-ovoid \mathcal{E} of $\operatorname{PG}(11,2)$. Then \mathcal{B} has size $\left(q^{d / 4}-1\right)\left(q^{d / 2}+1\right)=\left(2^{3}-1\right)\left(2^{6}+1\right)=455$ and it must be a union of orbits of S as G acts transitively on \mathcal{E}. However, 455 cannot be partitioned into the orbit lengths displayed above, and hence this case does not arise.

That leaves us with the Extension field examples. Here we have that $\hat{G} \leqslant$ $\Gamma \mathrm{L}_{d / b}\left(q^{b}\right)$ where b is a divisor of d (where $b \neq 1$). If $d / b>2$, We can apply [4, Theorem 3.2] (for e / b even) and [4, Theorem 3.1] (for e / b odd) to $\hat{G} \cap \mathrm{GL}_{d / b}\left(q^{b}\right)$ with parameters $d / b, e / b$, and q^{b} playing the roles of d, e, and q respectively. We have the following subcases:
(i) $d / b=4$ and $\Omega_{4}^{-}\left(q^{d / 4}\right) 太 \hat{G} \cap \operatorname{GL}_{d / b}\left(q^{b}\right)$;
(ii) $d / b=4, q$ is even, and $\mathrm{Sz}\left(q^{d / 4}\right) \varangle \hat{G} \cap \mathrm{GL}_{d / b}\left(q^{b}\right)$;
(iii) $d / b=3, q^{d / 3}$ is a square, and $\mathrm{SU}_{3}\left(q^{d / 3}\right) 太 \hat{G} \cap \mathrm{GL}_{d / b}\left(q^{b}\right)$.
(i) Let us suppose we have the first case above, where $d / b=4$ and \mathcal{E} admits $\mathrm{P} \Omega_{4}^{-}\left(q^{d / 4}\right)$. Let $J=\mathrm{P} \Omega_{4}^{-}\left(q^{d / 4}\right)$. It is a classical result, but can also be found in [8], that $\operatorname{PSL}_{2}\left(q^{d / 2}\right)$ (where $d>2$) has a unique conjugacy class of subgroups of index $q^{d / 2}+1$. Note that $\mathrm{P} \Omega_{4}^{-}\left(q^{d / 4}\right)$ is isomorphic to $\operatorname{PSL}_{2}\left(q^{d / 2}\right)$, and by [14, Proposition 4.3.6], there is a unique conjugacy class of subgroups of $\mathrm{PGL}_{d}(q)$ isomorphic to $\mathrm{PSL}_{2}\left(q^{d / 2}\right)$. Therefore, there is a unique conjugacy class of subgroups of $\mathrm{PGL}_{d}(q)$ isomorphic to J.
Let $\varphi: V_{4}\left(q^{d / 4}\right) \rightarrow V_{d}(q)$ denote the natural vector space isomorphism here, and let \mathcal{Q} be an elliptic quadric of $V_{4}\left(q^{d / 4}\right)$ admitting J. Let α and β be two distinct points of \mathcal{Q}. Then $\varphi(\alpha)$ and $\varphi(\beta)$ are $d / 4$-dimensional subspaces of $V_{d}(q)$. Note that J has a unique conjugacy class of subgroups of index $q^{2}+1$ (see [8]), and hence we can assume that the stabiliser of an element E of \mathcal{E} is identical to the stabiliser J_{α}. Now suppose we have a third vector v which is neither α nor β. Then

$$
\left|v^{J_{\alpha}}\right|=\left|J_{\alpha}: J_{\alpha, v}\right|=\left|J_{\alpha}: J_{\alpha, \beta}\right|\left|J_{\alpha, \beta}: J_{\alpha, \beta, v}\right|=q^{d / 2}\left|J_{\alpha, \beta}: J_{\alpha, \beta, v}\right| .
$$

Now J is a Zassenhaus group and so $J_{\alpha, \beta, v}=1$. Therefore

$$
\left|v^{J_{\alpha}}\right|=q^{d / 2} \frac{q^{d / 2}-1}{\operatorname{gcd}\left(2, q^{d / 2}-1\right)}
$$

which is not a prime power. Now any J_{α}-invariant $d / 4$-subspace of $V_{d}(q)$ is a union of orbits of J_{α}. Therefore, it follows that the only J_{α}-invariant subspace of $V_{d}(q)$ is $\varphi(\alpha)$. Since W is J_{α}-invariant, we have that $W=$ $\varphi(\alpha)$ and hence \mathcal{E} is the image of \mathcal{Q} under φ. Therefore, \mathcal{E} is elementary and arises from an elliptic quadric.
(ii) By a similar argument to that above, it is not difficult to show that \mathcal{E} is the image of a Suzuki-Tits ovoid under field reduction. The key steps to note are that $\mathrm{Sz}\left(q^{d / 4}\right)$ is a Zassenhaus group, there is a unique conjugacy class of subgroups of $\mathrm{PGL}_{d}(q)$ isomorphic to $\mathrm{Sz}\left(q^{d / 4}\right)$, and $\mathrm{Sz}\left(q^{d / 4}\right)$ has a unique conjugacy class of subgroups of index $q^{2}+1$. In the seminal paper of Suzuki [23, $\S 15]$, it was shown that $\operatorname{Sz}\left(q^{d / 4}\right)$ is a Zassenhaus group and has a unique conjugacy class of subgroups of index $q^{d / 2}+1$ and this is the minimum non-trivial degree of $\mathrm{Sz}\left(q^{d / 4}\right)$. The uniqueness of its representation in $\mathrm{PGL}_{d}(q)$ needs more work. By a result of Lüneburg (see [16, 27.3 Theorem] or [15]), there is a unique conjugacy class of subgroups of $\mathrm{PGL}_{4}\left(q^{d / 4}\right)$ isomorphic to $\mathrm{Sz}\left(q^{d / 4}\right)$. Now by [14, Proposition 4.3.6], there is a unique conjugacy class of subgroups of $\mathrm{PGL}_{d}(q)$ isomorphic to $\mathrm{PGL}_{4}\left(q^{d / 4}\right)$. Therefore, there is a unique conjugacy class of subgroups of $\mathrm{PGL}_{d}(q)$ isomorphic to $\mathrm{Sz}\left(q^{d / 4}\right)$. Therefore, \mathcal{E} is elementary and arises from a Suzuki-Tits ovoid.
(iii) Now suppose we have the third case; $d / b=3, q^{d / 3}$ is a square, and \mathcal{E} admits $\operatorname{PSU}_{3}\left(q^{d / 3}\right)$. Now the smallest orbit of $\operatorname{PSU}_{3}\left(q^{d / 3}\right)$ on nonzero vectors consists of the non-singular vectors and has size $\left(q^{d / 3}-1\right)\left(q^{d / 2}+1\right)$. Since \mathcal{E} covers $\left(q^{d / 4}-1\right)\left(q^{d / 2}+1\right)$ vectors of $V_{d}(q)$, and this number is strictly smaller than the size of the smallest orbit of $\operatorname{PSU}_{3}\left(q^{d / 3}\right)$, we see that this case does not arise.
Suppose now that $d / b=2$. Since \hat{G} is an insoluble subgroup of $\Gamma L_{2}\left(q^{d / 2}\right)$, it follows from [4, Lemma 5] that \hat{G} contains $\mathrm{SL}_{2}\left(q^{d / 2}\right)$. However, $\mathrm{SL}_{2}\left(q^{d / 2}\right)$ is transitive on nonzero vectors and hence does not stabilise a set of $d / 4$ vector subspaces of size $q^{d / 2}+1$. Hence this case does not arise.

Remark 4.2. If a (presently unknown) pseudo-oval or pseudo-ovoid over $\operatorname{GF}(q)$ admitting a soluble transitive group G exists, then G is meta-cyclic; indeed G is a subgroup of $\Gamma \mathrm{L}_{1}\left(q^{b}\right)$, for an appropriate positive integer b.

References

[1] V. Abatangelo and B. Larato, A characterization of Denniston's maximal arcs, Geom. Dedicata 30 (1989), no. 2, 197-203.
[2] B. Bagchi and N. S. N. Sastry, Even order inversive planes, generalized quadrangles and codes, Geom. Dedicata 22 (1987), no. 2, 137-147.
[3] J. Bamberg and T. Penttila, A classification of transitive ovoids, spreads, and m-systems of polar spaces, preprint.
[4] _, Overgroups of cyclic sylow subgroups of linear groups, UWA Research Report 2005/09.
[5] A. Barlotti, Un'estensione del teorema di Segre-Kustaanheimo, Boll. Un. Mat. Ital. (3) 10 (1955), 498-506.
[6] M. R. Brown and M. Lavrauw, Eggs in $\mathrm{PG}(4 n-1, q), q$ even, containing a pseudo-pointed conic, European J. Combin. 26 (2005), no. 1, 117-128.
[7] F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck, and J. Saxl, Linear spaces with flag-transitive automorphism groups, Geom. Dedicata 36 (1990), no. 1, 89-94.
[8] B. N. Cooperstein, Minimal degree for a permutation representation of a classical group, Israel J. Math. 30 (1978), no. 3, 213-235.
[9] A. Cossidente and O. H. King, Group-theoretic characterizations of classical ovoids, In Finite geometries, volume 3 of Dev. Math., 121-131. Kluwer Acad. Publ., Dordrecht, 2001.
[10] J. D. Dixon and B. Mortimer, Permutation groups, Springer-Verlag, New York, 1996.
[11] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4, 2005. (http://www.gap-system.org).
[12] R. Guralnick, T. Penttila, C. E. Praeger, and J. Saxl, Linear groups with orders having certain large prime divisors, Proc. London Math. Soc. (3) 78 (1999), no. 1, 167-214.
[13] C. Jansen, K. Lux, R. Parker, and R. Wilson, An atlas of Brauer characters, London Mathematical Society Monographs, New Series 11, The Clarendon Press Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications.
[14] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series 129, Cambridge University Press, Cambridge, 1990.
[15] H. Lüneburg, Die Suzukigruppen und ihre Geometrien, Springer-Verlag, Berlin, 1965.
[16] __, Translation planes, Springer-Verlag, Berlin, 1980.
[17] H. H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 12 (1911), no. 2, 207-242.
[18] C. M. O'Keefe and T. Penttila, Symmetries of arcs, J. Combin. Theory Ser. A 66 (1994), no. 1, 53-67.
[19] G. Panella, Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito, Boll. Un. Mat. Ital. (3) 10 (1955), 507-513.
[20] S. E. Payne and J. A. Thas, Finite generalized quadrangles, Research Notes in Mathematics 110, Pitman (Advanced Publishing Program), Boston, MA, 1984.
[21] T. Penttila, Translation generalised quadrangles and elation laguerre planes of order 16, European J. Combin., to appear.
[22] B. Segre, Sulle ovali nei piani lineari finiti, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 17 (1954), 141-142.
[23] M. Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105-145.
[24] J. A. Thas and K. Thas, Translation generalized quadrangles in even characteristic, Combinatorica 26 (2006), 709-732.
[25] K. Zsigmondy, Zur theorie der potenzreste, Monatsh. für Math. u. Phys. 3 (1892), 265-284.

[^0]
[^0]: John Bamberg
 School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley W.A. 6009, Australia

 Department of Pure Mathematics, Ghent University, Galglaan 2, 9000 Gent, Belgium
 e-mail: bamberg@cage.ugent.be

 Tim Penttila
 School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley W.A. 6009, Australia
 Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
 e-mail: penttila@math.colostate.edu

