A characterisation of the lines external to a quadric cone in $\mathrm{PG}(3, q), q$ odd

Susan G. Barwick David K. Butler

Abstract

In this article, the lines not meeting a quadric cone in $\operatorname{PG}(3, q)$ (q odd) are characterised by their intersection properties with points and planes.

Keywords: projective space, quadric cone, lines, characterisation
MSC 2000: 51E20

1 Introduction

Recently, Durante and Olanda [4] and Di Gennaro, Durante and Olanda [3] have characterised the lines external to the non-singular quadrics in $\operatorname{PG}(3, q)$ using their combinatorial properties. These results are listed below.

Theorem 1.1 ([4]). Let \mathscr{L} be a set of lines in $\mathrm{PG}(3, q), q>2$ such that:
(i) Every point lies on 0 or $\frac{1}{2} q(q+1)$ lines of \mathscr{L};
(ii) Every plane contains q^{2} or $\frac{1}{2} q(q-1)$ lines of \mathscr{L}.

Then \mathscr{L} is the set of external lines to an ovoid of $\mathrm{PG}(3, q)$.
Theorem 1.2 ([3]). Let \mathscr{L} be a non-empty set of lines in $\operatorname{PG}(3, q)$, q odd such that:
(i) Every point lies on 0 or $\frac{1}{2} q(q-1)$ lines of \mathscr{L};
(ii) Every plane contains 0 or $\frac{1}{2} q(q-1)$ lines of \mathscr{L};
(iii) In every plane there are $0, \frac{1}{2}(q-1)$ or $\frac{1}{2}(q+1)$ lines of \mathscr{L} through any point.

Then the set of points on no lines of \mathscr{L} forms either one line, two skew lines or a hyperbolic quadric. In the last case, \mathscr{L} is precisely the set of external lines to the hyperbolic quadric.

Theorem 1.3 ([3]). Let \mathscr{L} be a non-empty set of lines in PG(3, q), q even, $q>2$ such that:
(i) In every plane there are 0 or $\frac{1}{2} q$ lines of \mathscr{L} through any point.

Then the set of points on no lines of \mathscr{L} forms either one line, two skew lines or a hyperbolic quadric. In the last case, \mathscr{L} is precisely the set of external lines to the hyperbolic quadric.

It is also possible to characterise the external lines to the singular irreducible quadric in $\operatorname{PG}(3, q)$. That is, the quadric cone. Barwick and Butler have provided this characterisation in the case when q is even:

Theorem 1.4 ([1]). Let \mathscr{L} be a non-empty set of lines in $\operatorname{PG}(3, q)$, q even, such that:
(i) Every point lies on 0 or $\frac{1}{2} q^{2}$ lines of \mathscr{L};
(ii) Every plane contains $0, q^{2}$ or $\frac{1}{2} q(q-1)$ lines of \mathscr{L}.

Then \mathscr{L} is the set of external lines to a hyperoval cone of $\operatorname{PG}(3, q)$, and hence is the set of external lines to $q+2$ oval cones.

In this article, we give a characterisation of the quadric cone when q is odd. In particular, we prove the following theorem:

Theorem 1.5. Let \mathscr{L} be a non-empty set of lines in $\operatorname{PG}(3, q)$ (q odd) such that:
(i) Every point lies on $0, \frac{1}{2} q(q+1)$ or $\frac{1}{2} q(q-1)$ lines of \mathscr{L};
(ii) Every plane contains $0, q^{2}$ or $\frac{1}{2} q(q-1)$ lines of \mathscr{L};
(iii) For any point P, if P is on two planes which contain the same number of lines of \mathscr{L}, then P is on the same number of lines of \mathscr{L} in both planes.

Then \mathscr{L} is the set of external lines to a quadric cone.
Note that a similar characterisation of the planes meeting a non-singular quadric of $\mathrm{PG}(4, q)$ in a conic is given in the preprint [2].

2 The proof of Theorem 1.5

Let \mathscr{L} be a set of lines as described in Theorem 1.5. We will prove that \mathscr{L} is the set of lines external to a quadric cone by a series of lemmas. In order to make the argument clearer, we will introduce some terminology:

- A point on 0 lines of \mathscr{L} will be called a black point; all other points will be called white points.
- A (white) point on $\frac{1}{2} q(q-1)$ lines of \mathscr{L} will be called an external point and a (white) point on $\frac{1}{2} q(q+1)$ lines of \mathscr{L} will be called an internal point.
- A plane containing 0 lines of \mathscr{L} will be called a 0 -plane.
- A plane containing q^{2} lines of \mathscr{L} will be called a V-plane.
- A plane containing $\frac{1}{2} q(q-1)$ lines of \mathscr{L} will be called a secant plane.

We show that the set of black points is a quadric cone \mathscr{C}, and that \mathscr{L} is precisely the set of external lines to \mathscr{C}. The 0 -planes are those planes containing a generator of \mathscr{C}, the V-planes are those planes that meet \mathscr{C} in only its vertex, and the secant planes are those planes that meet \mathscr{C} in a conic.

We are now ready to state the first lemma:
Lemma 2.1. For a white point P, every line of \mathscr{L} through P is on the same number of V-planes.

Proof. Let P be a white point and let L_{P} be the number of lines of \mathscr{L} through P. By Condition (iii) of Theorem 1.5, P lies on the same number of lines of \mathscr{L} in every secant plane through P. Let this number of lines be $L_{P s}$. Similarly, P lies on the same number of lines of \mathscr{L} in every V-plane through P. Let this number be $L_{P v}$.

Let ℓ be a line of \mathscr{L} through P and let v_{ℓ} be the number of V -planes through ℓ. Since a 0 -plane contains no lines of \mathscr{L}, there are no 0 -planes through ℓ. So, the number of secant planes through ℓ is ($q+1-v_{\ell}$). We will count the lines of \mathscr{L} through P by considering the lines of \mathscr{L} through P in each plane about ℓ.

Each V-plane through ℓ contains $L_{P v}$ lines of \mathscr{L} through P, including ℓ. Each secant plane through ℓ contains $L_{P s}$ lines of \mathscr{L} through P, including ℓ. Counting this way, we have included ℓ itself $q+1$ times. So:

$$
\begin{equation*}
L_{P}=v_{\ell} L_{P v}+\left(q+1-v_{\ell}\right) L_{P s}-q . \tag{1}
\end{equation*}
$$

In the above equation, $L_{P}, L_{P v}$ and $L_{P s}$ are constants, so v_{ℓ} is uniquely determined by P. That is, every line of \mathscr{L} through P lies on the same number of V-planes.

Lemma 2.2. A line of \mathscr{L} lies on at most two V-planes.
Proof. Let ℓ be a line of \mathscr{L}. Let v_{ℓ} be the number of V-planes through ℓ and I_{ℓ} the number of internal points on ℓ. Since ℓ contains no black points, there are ($q+1-I_{\ell}$) external points on ℓ; and since ℓ lies on no 0 -planes, there are
$\left(q+1-v_{\ell}\right)$ secant planes through ℓ. Let L_{ℓ} be the number of lines of \mathscr{L} meeting ℓ (not including ℓ itself). We will count these lines in two ways.

We first count L_{ℓ} by considering the lines of \mathscr{L} through each point on ℓ. Each internal point is on $\frac{1}{2} q(q+1)$ lines of \mathscr{L} (including ℓ), and each external point is on $\frac{1}{2} q(q-1)$ lines of \mathscr{L} (including ℓ). Counting this way, we have included ℓ itself $q+1$ times, so $L_{\ell}=\frac{1}{2} q(q+1) I_{\ell}+\frac{1}{2} q(q-1)\left(q+1-I_{\ell}\right)-(q+1)$.

On the other hand, we may also count L_{ℓ} by considering the lines of \mathscr{L} in each plane through ℓ. Each V-plane contains q^{2} lines of \mathscr{L} (including ℓ), and each secant plane contains $\frac{1}{2} q(q-1)$ lines of \mathscr{L} (including ℓ). Again, we have included ℓ itself $(q+1)$ times, so $L_{\ell}=q^{2} v_{\ell}+\frac{1}{2} q(q-1)\left(q+1-v_{\ell}\right)-(q+1)$.

Equating the above two expressions for L_{ℓ} and simplifying gives:

$$
\begin{equation*}
(q+1) v_{\ell}=2 I_{\ell} . \tag{2}
\end{equation*}
$$

Now $I_{\ell} \leq q+1$, so $(q+1) v_{\ell} \leq 2(q+1)$. Thus $v_{\ell} \leq 2$.
Lemma 2.3. Every point in a V-plane π is on 0 or q lines of \mathscr{L} in π.
Proof. Let π be a V-plane. We begin by showing that every point of π lies on at most q lines of \mathscr{L} in π. Suppose that P is a point of π on $q+1$ lines of \mathscr{L} in π. Let L_{P} be the total number of lines of \mathscr{L} through P and v_{P} be the number of V-planes through P. By Condition (iii) of Theorem 1.5, every V-plane through P contains the same number of lines of \mathscr{L} through P. That is, every V-plane through P contains $q+1$ lines of \mathscr{L} through P. Also, by Lemma 2.1, every line of \mathscr{L} through P lies on the same number of V-planes. Let this number be $v_{P \ell}$. By Lemma 2.2, $v_{P \ell} \leq 2$. However, since P lies on lines of \mathscr{L} in the V-plane π, every line of \mathscr{L} through P is on at least one V-plane. That is, $v_{P \ell}=1$ or 2 . We will form an equation relating L_{P}, v_{P} and $v_{P \ell}$ by counting a set of pairs.

Let $X=\{(\ell, \alpha) \mid \ell$ is a line of \mathscr{L} through P, α is a V-plane through $\ell\}$. Counting ℓ then α, we have L_{P} lines of \mathscr{L} through P and $v_{P \ell}$ V-planes through each. So $|X|=L_{P} v_{P \ell}$. Counting α then ℓ, we have v_{P} V-planes through P and $(q+1)$ lines of \mathscr{L} through P in each. So $|X|=(q+1) v_{P}$. Thus:

$$
\begin{equation*}
(q+1) v_{P}=L_{P} v_{P \ell} . \tag{3}
\end{equation*}
$$

Suppose $v_{P \ell}=1$. That is, suppose that there is exactly one V-plane through each line of \mathscr{L} containing P. Any V-plane α through P other than π will meet π in a line through P. Since all lines through P in π are lines of \mathscr{L}, the line $\alpha \cap \pi$ is a line of \mathscr{L} with two V-planes through it. However, each line of \mathscr{L} through P lies on exactly one V-plane. So, P lies on no V-plane other than π. That is $v_{P}=1$. Equation (3) now becomes $q+1=L_{P}$. Now $L_{P}=\frac{1}{2} q(q-1)$
or $\frac{1}{2} q(q+1)$, and neither of these can be equal to $q+1$ for odd integer q. Thus $v_{P \ell} \neq 1$ and hence $v_{P \ell}=2$.

Since every line of \mathscr{L} through P lies on two V-planes, the $q+1$ lines of \mathscr{L} in π define $q+1$ further V-planes. There can be no further V-planes through P as any plane through P other than π must meet π in a line through P. Thus $v_{P}=q+2$. Equation (3) now becomes $(q+1)(q+2)=2 L_{P}$. Now $2 L_{P}=q(q+1)$ or $q(q-1)$. Both of these are contradictions, so the point P cannot exist and every point of π lies on at most q lines of \mathscr{L} in π.

Let ℓ be a line of \mathscr{L} in π. Since every line in π meets ℓ, we may count the lines of \mathscr{L} in π by counting the lines of \mathscr{L} through each point on ℓ. For $i=1, \ldots, q$, let a_{i} be the number of points of ℓ on i lines of \mathscr{L}. (Recall that every point of π is on at most q lines of \mathscr{L} in π.) Counting this way, we have included ℓ itself $q+1$ times - once for each point on ℓ. Thus:

$$
\begin{equation*}
a_{1} \cdot 1+\cdots+a_{q-1} \cdot(q-1)+a_{q} \cdot q=q^{2}+q \tag{4}
\end{equation*}
$$

We also have:

$$
\begin{equation*}
a_{1}+\cdots+a_{q-1}+a_{q}=q+1 . \tag{5}
\end{equation*}
$$

Subtracting equation (4) from q times equation (5) gives:

$$
\begin{equation*}
(q-1) \cdot a_{1}+\cdots+1 \cdot a_{q-1}=0 . \tag{6}
\end{equation*}
$$

Now $q-1, \ldots, 1>0$ and $a_{1}, \ldots, a_{q-1} \geq 0$, so equation (6) is only possible if $a_{1}=\cdots=a_{q-1}=0$.

Hence, $a_{q}=q+1$ and all points on a line of \mathscr{L} in π are on q lines of \mathscr{L} in π. That is, all points of π are on 0 or q lines of \mathscr{L} in π.

Lemma 2.4. Every line of \mathscr{L} lies on one V-plane and q secant planes. Also, every line of \mathscr{L} contains $\frac{1}{2}(q+1)$ internal points and $\frac{1}{2}(q+1)$ external points.

Proof. Let ℓ be a line of \mathscr{L} lying on v_{ℓ} V-planes and containing I_{ℓ} internal points. Equation (2) in Lemma 2.2 states that $2 I_{\ell}=(q+1) v_{\ell}$. Also, by Lemma 2.2, $v_{\ell} \leq 2$. We will rule out the cases of $v_{\ell}=0,2$ by considering the lines through one point on ℓ.
Let P be a point on ℓ lying on L_{P} lines of \mathscr{L} in total and $L_{P s}$ lines of \mathscr{L} in each secant plane. If π is a V -plane through ℓ, then P lies on at least one line of \mathscr{L} in π. Lemma 2.3 implies that P lies on q lines in π, so by Condition (iii) of Theorem 1.5, P lies on q lines of \mathscr{L} in each V-plane. Using equation (1) in Lemma 2.1, we have:

$$
L_{P}=v_{\ell} \cdot q+\left(q+1-v_{\ell}\right) L_{P s}-q .
$$

If $v_{\ell}=0$, then from equation (2) in Lemma $2.2, I_{\ell}=0$, so all points on ℓ are external points. Thus $L_{P}=\frac{1}{2} q(q-1)$. Hence:

$$
\begin{aligned}
\frac{1}{2} q(q-1) & =(q+1) L_{P s}-q \\
L_{P s} & =\frac{1}{2} q
\end{aligned}
$$

But q is odd, so $\frac{1}{2} q$ is not an integer. This is a contradiction, so $v_{\ell} \neq 0$.
If $v_{\ell}=2$, then from equation (2) in Lemma 2.2, $I_{\ell}=q+1$, so all points on ℓ are internal points. Thus $L_{P}=\frac{1}{2} q(q+1)$. Hence:

$$
\begin{aligned}
\frac{1}{2} q(q+1) & =2 q+(q-1) L_{P s}-q \\
L_{P s} & =\frac{1}{2} q .
\end{aligned}
$$

This is a contradiction as before, so $v_{\ell} \neq 2$.
Hence $v_{\ell}=1$ and $I_{\ell}=\frac{1}{2}(q+1) \cdot 1=\frac{1}{2}(q+1)$. This leaves q secant planes through ℓ and $\frac{1}{2}(q+1)$ external points on ℓ.

Note that the above lemma ensures the existence of secant planes, V-planes, internal points and external points as \mathscr{L} is non-empty.

Lemma 2.5. An internal point lies on q lines of \mathscr{L} in every V-plane and $\frac{1}{2}(q+1)$ lines of \mathscr{L} in every secant plane. An external point lies on q lines of \mathscr{L} in every V-plane and $\frac{1}{2}(q-1)$ lines of \mathscr{L} in every secant plane.

Proof. Let P be a white point and let ℓ be a line of \mathscr{L} through P. By Lemma 2.4, ℓ is contained in a unique V-plane. Let this plane be π. In the plane π, P lies on at least one line of \mathscr{L}, and so by Lemma 2.3, P lies on q lines of \mathscr{L} in π. Condition (iii) of Theorem 1.5 implies that every V-plane through P contains the same number of lines of \mathscr{L} through P. Thus P lies on exactly q lines of \mathscr{L} in every V-plane.

Let $L_{P s}$ be the number of lines of \mathscr{L} through P in a secant plane and let L_{P} be the total number of lines of \mathscr{L} through P. We can now use equation (1) from Lemma 2.1. Through ℓ there are q secant planes and one V-plane, and the V-plane contains q lines of \mathscr{L} through P. Thus $L_{P}=q L_{P s}+1 \cdot q-q=q L_{P s}$. If P is an internal point, then $L_{P}=\frac{1}{2} q(q+1)$, and so $L_{P s}=\frac{1}{2}(q+1)$. If P is an external point, then $L_{P}=\frac{1}{2} q(q-1)$, and so $L_{P s}=\frac{1}{2}(q-1)$.

Lemma 2.6. A V-plane contains exactly one black point, and the lines of \mathscr{L} in the plane are exactly those lines not through this black point.

Proof. Let π be a V-plane and let W_{π} be the number of white points in π. Consider the set

$$
X=\{(P, \ell) \mid P \text { is a white point of } \pi, \ell \text { is a line of } \mathscr{L} \text { through } P \text { in } \pi\} .
$$

We will count the size of X in two ways.
Each line of \mathscr{L} in π contains $(q+1)$ white points, so $|X|=q^{2}(q+1)$. On the other hand, each white point is on q lines of \mathscr{L} in every V-plane by Lemma 2.5. So every white point in π lies on q lines of \mathscr{L} in π and $|X|=q W_{\pi}$. Thus $q W_{\pi}=q^{2}(q+1)$ and so $W_{\pi}=q^{2}+q$. This leaves one black point V in π. There are q^{2} lines of \mathscr{L} in π, none of which can pass through a black point. On the other hand, there are q^{2} lines of π not through V. Thus, the lines of π in \mathscr{L} are exactly those lines not through V.

Note that, since there must exist a V-plane, the above lemma ensures the existence of black points.

Lemma 2.7. There exists a unique (black) point V through which all 0-planes and V-planes pass. The secant planes are precisely those planes not containing V.

Proof. Let π be a V-plane and let its unique black point be V.
Let α be another V-plane and suppose that α does not pass through V. Then α must meet π in a line ℓ not through V. Since ℓ is a line of π not through V, it is a line of \mathscr{L}. But now we have a line of \mathscr{L} on two V-planes. This is a contradiction to Lemma 2.4, so α must pass through V.

Let β be a 0 -plane and suppose that β does not pass through V. Then β must meet π in a line ℓ not through V. Again, this line must be a line of \mathscr{L}. But now we have a line of \mathscr{L} in a 0-plane. This is a contradiction, so β must pass through V.

So we see that all 0-planes and all V-planes pass through V. Thus the planes not through V are all secant planes. To complete the proof we must show that there are no secant planes through V.

Let γ be a secant plane containing V and let ℓ be a line of \mathscr{L} in γ. Since V is a black point, ℓ does not pass through V. Now the q other planes through ℓ do not contain V, and so they must all be secant planes. But now ℓ is a line of \mathscr{L} on $q+1$ secant planes. This is a contradiction to Lemma 2.4, so γ cannot contain V.

The next three lemmas will complete the proof of Theorem 1.5.
Lemma 2.8. Let m be a line not in \mathscr{L}. If m passes through V, then m contains 1 or $q+1$ black points. If m does not pass through V, then m contains 1 or 2 black points.

Proof. Suppose m passes through V, and also suppose that there exists a black point P other than V on m. Let π be a plane through m. Since π contains V,
it is either a 0-plane or a V-plane by Lemma 2.7. Lemma 2.6 states that every V-plane contains a single black point. However, π contains two black points (P and V), so it cannot be a V-plane. Thus π is a 0 -plane. So, every plane through m is a 0-plane. Since none of these planes has any line of \mathscr{L}, there are no lines of \mathscr{L} meeting m. Hence, there are no lines of \mathscr{L} through any point on m. That is, m consists of $q+1$ black points. So, if m passes through V, it has 1 or $q+1$ black points.

Suppose m does not pass through V. Then exactly one plane through m contains V and q planes do not. These q planes are all secant planes by Lemma 2.7. In light of this, let π be a secant plane through m.

Let B_{m} be the number of black points on m, let E_{m} be the number of external points on m, and let I_{m} be the number of internal points on m. We count the number of lines of \mathscr{L} in π by considering the lines of \mathscr{L} through each point on m. There are no lines of \mathscr{L} through each black point, $\frac{1}{2}(q+1)$ through each internal point and $\frac{1}{2}(q-1)$ through each external point. Thus:

$$
\begin{align*}
\frac{1}{2} q(q-1) & =\frac{1}{2}(q+1) I_{m}+\frac{1}{2}(q-1) E_{m} \\
\frac{1}{2}(q-1)\left(q-E_{m}\right) & =\frac{1}{2}(q+1) I_{m} \tag{7}
\end{align*}
$$

Now $\frac{1}{2}(q+1)$ and $\frac{1}{2}(q-1)$ are coprime, so $\frac{1}{2}(q+1)$ divides $q-E_{m}$. That is, $E_{m} \equiv q \equiv-1\left(\bmod \frac{1}{2}(q+1)\right)$. Since $0 \leq E_{m} \leq q+1$, we have that $E_{m}=\frac{1}{2}(q-1)$ or q.

If $E_{m}=\frac{1}{2}(q-1)$, then by equation (7), we have $I_{m}=\frac{1}{2}(q-1)$ and so $B_{m}=q+1-\frac{1}{2}(q-1)-\frac{1}{2}(q-1)=2$. If $E_{m}=q$, then by equation (7), $I_{m}=0$ and so $B_{m}=q+1-0-q=1$. Thus if m does not pass through V, it contains 1 or 2 black points.

Lemma 2.9. The set of black points in a secant plane forms a conic.
Proof. Let π be a secant plane and let E_{π} be the number of external points in π. Let $X=\{(P, \ell) \mid P$ is an external point of π, ℓ is a line of \mathscr{L} in $\pi\}$. We will count X in two ways. Counting P first then ℓ, we have E_{π} choices for an external point in π and $\frac{1}{2}(q-1)$ choices for a line of \mathscr{L} in π through each by Lemma 2.5. So $|X|=E_{\pi} \cdot \frac{1}{2}(q-1)$. Counting ℓ first then P, we have $\frac{1}{2} q(q-1)$ choices for a line of \mathscr{L} in π and $\frac{1}{2}(q+1)$ choices for an external point on each by Lemma 2.4. So $|X|=\frac{1}{2} q(q-1) \frac{1}{2}(q+1)$. Thus $E_{\pi} \cdot \frac{1}{2}(q-1)=\frac{1}{2} q(q-1) \frac{1}{2}(q+1)$ and so $E_{\pi}=\frac{1}{2} q(q+1)$. A similar argument shows that there are $\frac{1}{2} q(q-1)$ internal points in π. The number of white points in π is thus $\frac{1}{2} q(q-1)+\frac{1}{2} q(q+1)=q^{2}$. This leaves $q+1$ black points in π. We will show that these $q+1$ points form an arc. That is, that no three are collinear.

A line of \mathscr{L} contains no black points, so let m be a line of π not in \mathscr{L}. No secant plane passes through V by Lemma 2.7, so the line m cannot contain V.

By Lemma 2.8, this implies that m contains 1 or 2 black points. Thus, the lines of π contain at most 2 black points and the set of black points is a $(q+1)$-arc. That is, the black points are an oval. By Segre [5], every oval in PG $(2, q), q$ odd, is a conic, so the set of black points in π forms a conic.

Lemma 2.10. The set of black points \mathscr{C} is a quadric cone and \mathscr{L} is the set of external lines to \mathscr{C}.

Proof. Let π be a secant plane and let \mathscr{O} the conic made by the black points in π. Let P be a point of \mathscr{O} and consider the line $V P$. This line passes through V and has more than one black point, so it has $q+1$ black points by Lemma 2.8. Thus, the set of black points \mathscr{C} contains the lines $V P$ for any $P \in \mathscr{O}$.

On the other hand, suppose that Q is any black point other than V. Then the line $V Q$ contains $q+1$ black points by the same argument as above. This line $V Q$ meets π in a single point, which is a black point since $V Q$ consists only of black points. Now the black points in π are precisely the points of the conic \mathscr{O}, so the line $V Q$ is a line $V P$ for some $P \in \mathscr{O}$. Thus \mathscr{C} is exactly the lines $V P$ for $P \in \mathscr{O}$. That is, \mathscr{C} is a quadric cone.

The lines of \mathscr{L} contain no black points and so are all external lines to the cone \mathscr{C}. Any line not in \mathscr{L} contains at least one black point by Lemma 2.8. So \mathscr{L} is precisely the set of external lines to the quadric cone \mathscr{C}.

References

[1] S. G. Barwick and D. K. Butler, A characterisation of the lines external to an oval cone in PG $(3, q), q$ even, J. Geom., to appear.
[2] , A characterisation of the planes meeting a non-singular quadric of $\mathrm{PG}(4, q)$ in a conic, preprint.
[3] R. Di Gennaro, N. Durante and D. Olanda, A characterization of the family of lines external to a hyperbolic quadric of $\mathrm{PG}(3, q)$, J. Geom. 80 (2004), 65-74.
[4] N. Durante and D. Olanda, A characterization of the family of secant or external lines of an ovoid of $\operatorname{PG}(3, q)$, Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 1-4.
[5] B. Segre, Ovals in a finite projective plane, Canad. J. Math. 7 (1955), 414-416.

Susan G. Barwick

School of Mathematical Sciences, The University of Adelaide, South Australia 5005, AUSTRALIA
e-mail: susan.barwick@adelaide.edu.au

David K. Butler
School of Mathematical Sciences, The University of Adelaide, South Australia 5005, AUSTRALIA
e-mail: david.butler@adelaide.edu.au

