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Abstract

A codistance in a building is a twinning of this building with one cham-

ber. We study this local situation and prove that affine Bruhat-Tits buildings

defined over p-adic numbers do not admit a codistance.
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1 Introduction

Twin buildings have been introduced by Ronan and Tits (see [13]) to give a

geometric interpretation of the Kac-Moody groups. Roughly, a twin building is

a pair of buildings of the same type endowed with a codistance between the

chambers of the different buildings. The codistance takes values in the corre-

sponding Coxeter group (the Weyl group of the buildings). The idea is that,

given a chamber c in one building, there is a set cop of chambers in the other

building opposite c, and the codistance to c measures the distance to this set cop

“in a consistent way”, i.e., according to some rules which are complementary to

the rules of the Weyl distance. As always happens with important mathematical

objects, people try to find axioms which characterize the objects, but which, at

the same time, are easier to check, or ostensibly weaker. For twin buildings,

the notion of a 2-twinning, introduced by the first author in [7], was important

in this direction, but Abramenko and the second author showed in [2] that a

1-twinning (which is weaker than a 2-twinning) is not sufficient for a twinning

(and they give a sufficient additional axiom). Now, 1- and 2-twinnings are still

global conditions in that all chambers play the same role. Another, local way,

to weaken the axioms is to fix one chamber and require the codistance axioms

only with respect to that chamber; this approach yields precisely the axioms of a

codistance on a given building. Up to now, it has been an open question whether
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such a codistance function on a building suffices for a twinning and there are

indeed results in this direction [5]. On the other hand, also the other extreme

seemed to be possible, i.e., that every building admits a codistance, as was re-

cently considered by Ronan [10]. Ronan’s question is the starting point of the

present note, the purpose of which is to disprove that every building admits a

codistance. In particular, it will follow from our Corollary 6.5 below that affine

buildings arising from p-adic fields do not admit any codistance (but our result

applies to a wider class of affine buildings, including non-classical ones).

Acknowledgment. Some of our original arguments have been considerably

simplified by P. Abramenko. We would like to thank him and A. Devillers for

their valuable comments on an earlier draft of this paper.

2 Preliminaries

We quickly review the notions of Coxeter groups, Coxeter systems and buildings.

A Coxeter system (W,S) consists of a group W presented by a set S of in-

volutions where the (only) relations express the order of the products of the

generators. The length of w ∈ W is the minimal number of elements of S

needed to write w as a product.

Let (W,S) be a Coxeter system and let ℓ : W → N denote the associated

length function. A subset J of S is called spherical if WJ := 〈J〉 is a finite

subgroup. If J is a spherical subset of S, then there is a unique longest element

in WJ , which is an involution and which we denote by rJ .

Let (W,S) be a Coxeter system. A building of type (W,S) is a pair B = (C, δ)

where C is a set whose elements are called chambers and where δ : C ×C → W

is a distance function satisfying the following axioms for arbitrary chambers

x, y, z:

(BU1) δ(x, y) = δ(y, x)−1;

(BU2) if δ(x, y) = w ∈ W and δ(y, z) = s ∈ S, then δ(x, z) ∈ {w,ws}, and if

ℓ(ws) > ℓ(w), then δ(x, z) = ws;

(BU3) If δ(x, y) = w ∈ W and s ∈ S, then there exists u ∈ C such that δ(y, u) = s

and δ(x, u) = ws.

Let B = (C, δ) be a building of type (W,S). Let c be a chamber and J ⊂ S.

The J-residue of c is the set RJ(c) := {d ∈ C | δ(c, d) ∈ WJ}. A J-residue of B is

a J-residue of some chamber. A residue of cotype j ∈ S is an S \ {j}-residue.

Let s ∈ S. An s-panel is an {s}-residue of B; a panel is an s-panel for some
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s ∈ S. We call c, d ∈ C s-adjacent if they are both contained in an s-panel. They

are called adjacent if they are s-adjacent for some s ∈ S.

A subset C ′ of C is called thick (firm, thin, meager) if for each panel P con-

taining a chamber of C ′ the set |P ∩C ′| contains at least 3 (at least 2, precisely 2,

at most 2, respectively) elements. The building B = (C, δ) is called thick (thin)

if C is thick (thin). Note that a building is firm by definition.

Let c, d ∈ C. We put ℓ(c, d) := ℓ(δ(c, d)). A gallery of length k from c to d

is a sequence of chambers c = c0, . . . , ck = d such that any two consecutive

chambers are adjacent. It is called minimal if k = ℓ(δ(c, d)). A subset C ′ of C

is called convex if it contains all minimal galleries between any two chambers

of C ′. An apartment of B is a thin convex subset of C.

The following lemmas are well known facts about buildings (see [9, 3]):

Lemma 2.1. Residues are convex.

Lemma 2.2. Let C ′ be a firm convex set. Then B
′ := (C ′, δ|C′×C′) is a building

of type (W,S). In particular, each apartment is a thin building.

Let J be a subset of S and let R be a J-residue. Then BR := (R, δ|R×R) is

a building of type (WJ , J). Moreover, if Σ is an apartment of B intersecting R

non-trivially, then R ∩ Σ is an apartment of BR.

Lemma 2.3. Let R be a J-residue and let x be a chamber. Then there exists a

unique chamber c in R such that δ(y, x) = δ(y, c)δ(c, x) and ℓ(y, x) = ℓ(y, c) +

ℓ(c, x), for all chambers y ∈ R.

The unique chamber c of the previous lemma is called the projection of x onto

R and it is denoted by projR x.

Lemma 2.4. Let C ′ be a convex set of chambers and R a residue containing some

chamber of C ′. Then projR x ∈ C ′ for all chambers x in C ′.

A subset α of C is called a root if there exists a chamber c ∈ α, an apartment

Σ of B containing c, and a panel P containing c satisfying

α := {x ∈ Σ | projP x = c} .

If c′ 6= c is the second chamber in P , then the root α′ = {x ∈ Σ | projP x = c′}
is called a complementary root to α. Note that α′ = Σ \ {α}. The set of panels

in Σ intersecting both α and α′ nontrivially is called a wall.

Lemma 2.5. If two apartments Σ1,Σ2 intersect in a root α, then Σ := (Σ1 \ α) ∪
(Σ2 \ α) is also an apartment of B.
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Proof. For i = 1, 2 let αi := Σi \ α and ri the unique reflection of Σi in-

terchanging α and αi. Put X = Σ1 ∪ Σ2 and consider the chamber system

X := (X, (∼s)s∈S). It is easily verified that there is an automorphism r̄i of X
whose restriction to Σi is ri and whose restriction to X \ Σi is the idendity for

i = 1, 2. Now, the automorphism r̄2 ◦ r̄1 maps Σ1 onto α1 ∪α2 which shows that

the chamber system induced on α1 ∪ α2 is isomorphic to the chamber system

induced on Σ1. This yields the claim. �

3 Systems of sectors and blow-ups

Let B = (C, δ) be a building of type (W,S) and let R ⊂ C be a J-residue where

J ⊂ S. The building B is called a blow-up of R if Σ ∩ R 6= ∅ for each apartment

Σ of B. A system of R-sectors is a family S = (Sc)c∈R such that for all c ∈ R one

has c ∈ Sc ⊂ proj−1
R

(c).

Let B, R, J be as before and let S = (Sc)c∈R be a system of R-sectors. An

apartment Σ of R is called S-admissible if

Σ :=
⋃

c∈Σ

Sc

is an apartment of B. The system S of R-sectors is admissible if all apartments

of R are S-admissible.

Proposition 3.1. Let B be a building of type (W,S), let J ⊂ S and let R be a

J-residue of B. Let S = (Sc)c∈R be an admissible system of R-sectors and put

CS :=
⋃

c∈R
Sc.

Then CS is a convex and firm subset of chambers and the building BS :=

(CS, δ|CS×CS
) is a blow-up of R.

Proof. Let c be any chamber in R and let Σ be an apartment of R containing c.

Since S is an admissible system of R-sectors we know that Σ :=
⋃

d∈Σ Sd is an

apartment containing Sc from which it readily follows that Sc is a meager subset

of C.

Now, let x, y ∈ CS and put c := projR x, d := projR y and let Σ̄ be an

apartment of R containing c and d. Since S is admissible the set Σ :=
⋃

e∈Σ Se

is an apartment of B. Moreover, we have x, y ∈ Σ ⊂ CS. Since Σ is convex, it

follows that each minimal gallery from x to y is contained in CS. Hence CS is a

convex subset of chambers. Moreover, the intersection of any panel containing

x with Σ has cardinality 2 and therefore any panel containing x contains at least

2 chambers in CS. This shows that CS is a firm subset of chambers. Hence BS

is a building.
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Now, let x be a chamber in CS which is not contained in R and put c :=

projR x. Let y be a chamber adjacent to x such that ℓ(c, y) = ℓ(c, x) − 1. Since

CS is convex it follows that y ∈ CS. Moreover, we have c = projR y and hence

x and y are both in Sc. Let x′ be any chamber in CS ∩ P where P is the unique

panel containing x and y. As x 6= y ∈ P and c = projR x = projR y it follows

that projR x′ = c. We deduce that x, y and x′ are all contained in Sc which is a

meager subset. Thus x′ = x or x′ = y. We conclude that any apartment of CS

containing x also contains y. An easy induction on the ℓ(x,projR x) shows now

that any apartment Σ of CS containing x also contains projR x and hence Σ∩R

is non-empty. This completes the proof of the proposition. �

4 A local criterion for admissibility

Throughout this section we assume that B = (C, δ) is a building of type (W,S)

and that R is a J-residue of B.

Lemma 4.1. Let S = (Sc)c∈R be a system of R-sectors and let Σ1,Σ2 be two

S-admissible apartments of R intersecting in a root α. For i = 1, 2 let αi := Σi \α.

Then Σ := α1 ∪ α2 is also an S-admissible apartment.

Proof. By Lemma 2.5 the set Σ is an apartement of R. For i = 1, 2 let Σi :=⋃
c∈Σi

Sc and α :=
⋃

c∈α
Sc. It follows that Σ1 ∩ Σ2 = α. We have Σ :=⋃

c∈Σ Sc = (Σ1 \α)∪ (Σ2 \α) which is an apartment by Lemma 2.5. Hence Σ is

an S-admissible apartment. �

Let S = (Sc)c∈R be a system of R-sectors. A chamber c ∈ R is called S-ad-

missible if each apartment of R containing c is S-admissible.

Proposition 4.2. Let S = (Sc)c∈R be a system of R-sectors and let c ∈ R be

S-admissible. Then any chamber d ∈ R adjacent to c is also S-admissible.

Proof. We may assume c 6= d and we denote the unique panel containing both

chambers by P . Let Σ be an apartment of R containing d, let α be the root of

Σ such that P ∩ α = {d} and put −α := Σ \ α. Let e be the unique chamber

in the intersection of −α and P . We have to show that Σ is admissible. This is

obvious if c = e because c is assumed to be admissible. Hence we may assume

that c 6= e. Let Σ1 be an apartment of R containing c and α and put α1 := Σ1\α.

Now, the intersection of Σ1 and Σ is the root α and therefore, by Lemma 2.5,

Σ2 := −α ∪ α1 is an apartment of R. As Σi contains the chamber c for i = 1, 2

it follows that both apartments are S-admissible. Now the claim follows from

Lemma 4.1. �
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Corollary 4.3. Let S be a system of R-sectors. If there exists an S-admissible

chamber in R, then S is admissible.

Proof. This follows by an obvious induction using the previous proposition. �

5 Codistances

Let B = (C, δ) be a building of type (W,S). A codistance on B is a mapping

δ∗ : C → W such that the following holds for any chamber c, where w := δ∗(c):

(CD1) If s ∈ S is such that ℓ(ws) = ℓ(w) − 1, then δ∗(d) = ws for all chambers

d 6= c which are s-adjacent to c.

(CD2) If s ∈ S is such that ℓ(ws) = ℓ(w) + 1, then there exists a unique chamber

d which is s-adjacent to c and such that δ∗(d) = ws.

Let δ∗ be a codistance on B. The following lemma is immediate from the

axioms.

Lemma 5.1. Let c, d ∈ C be such that δ(d, c) = δ∗(c), then δ∗(d) = 1W .

Lemma 5.2. Let c ∈ C be such that δ∗(c) = 1W , then Σ := {x ∈ C | δ∗(x) =

δ(c, x)} is an apartment of B.

Proof. Let d ∈ Σ and w := δ∗(d). Let s ∈ S and let P be the s-panel containing d.

If ℓ(ws) = ℓ(w) − 1, then d 6= projP c ∈ Σ. If ℓ(ws) = ℓ(w) + 1 then d = projP c

and there exists a unique chamber x in P with δ∗(x) = ws = δ(c, x). This shows

that Σ is a firm subset of C. Hence, it suffices to show that for each w ∈ W

there exists precisely one element d ∈ Σ such that δ(c, d) = w. This is seen by

an obvious induction on ℓ(w). �

The following lemma is Proposition 3.3 in [5].

Lemma 5.3. Let R be a spherical residue of B, then there is a unique chamber

c ∈ R such that δ∗(x)δ(x, c) = δ∗(c) and ℓ(δ∗(x)) + ℓ(x, c) = ℓ(δ∗(c)), for all

x ∈ R.

Let B = (C, δ) be a building of type (W,S) and let δ∗ : C → W be a codis-

tance. Put δ∗op := {c ∈ C | δ∗(c) := 1W } and let R be a spherical residue of

type J such that R ∩ δ∗op 6= ∅. For each chamber c in R put

Sc := {x ∈ C | δ∗(x) = δ∗(c)δ(c, x) and projR x = c}

and let S := (Sc)c∈R be the corresponding system of R-sectors. Let d ∈ R be

the unique chamber such that δ∗(d) = rJ (cf. Lemma 5.3).
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Proposition 5.4. With the notation above, the chamber d is an S-admissible

chamber. In particular, the system of R-sectors S is admissible.

Proof. Let Σ be an apartment of R containing d. Let d′ be the unique chamber in

Σ opposite d. As δ∗(d) = rJ , it follows that δ∗(d′) = 1W and that δ∗(c) = δ(d′, c)

for all c ∈ Σ. Since δ∗(d′) = 1W the set Σ := {x ∈ C | δ∗(x) = δ(d′, x)} is an

apartment of B by Lemma 5.2. Moreover, we have Σ = R ∩ Σ.

Let c ∈ Σ and x ∈ Sc. Then we have δ∗(x) = δ∗(c)δ(c, x) and projR x = c.

As δ∗(c) = δ(d′, c) ∈ WJ and projR x = c it follows δ∗(x) = δ∗(c)δ(c, x) =

δ(d′, c)δ(c, x) = δ(d′, x) and hence x is a chamber of Σ.

Conversely, if x is a chamber of Σ then c := projR x is contained in Σ∩R = Σ.

Moreover we have δ(y, x) = δ(y, c)δ(c, x) for all chambers y in R. This holds

in particular for y = d′. Since x is in Σ we have δ∗(x) = δ(d′, x) and hence

δ∗(x) = δ(d′, c)δ(c, x). As δ(d′, c) = δ∗(c) we conclude that x is contained

in Sc. This shows that Σ = ∪
c∈ΣSc and in particular that Σ is an S-admissible

apartment of R. Hence, the chamber d is an S-admissible chamber. The second

assertion follows now from Corollary 4.3. This completes the proof. �

Theorem 5.5. Let B = (C, δ) be a building of type (W,S) and let J be a spherical

subset of S. Let δ∗ : C → W be a codistance, let c be a chamber such that δ∗(c) =

1W and let R be the J-residue containing c. Then there exists a convex and firm

subset C ′ of C such that the the building B
′ := (C ′, δ|C′×C′) is a blow-up of R.

Proof. Let d be the unique chamber in R such that δ∗(d) = rJ . For each chamber

e of R put Se := {x ∈ C | projR x = e and δ∗(x) = δ∗(e)δ(e, x)}. It follows

by the previous proposition that the system of R-sectors (Se)e∈R is admissible.

Setting C ′ := ∪e∈RSe it follows by Proposition 3.1 that C ′ is a convex and firm

subset of C and that the building B
′ := (C ′, δ|C′×C′) is a blow-up of R. �

6 Codistances in affine buildings

In this section, we consider buildings B = (C, δ) of affine type. These are

buildings where the associated Coxeter group is an affine reflection group, see

for instance [3, 4, 9, 12]. The corresponding thin buildings can be realized in

real Euclidean spaces, in which one can interpret several notions of the theory

of buildings as certain sets of points. In particular, a chamber can be identified

with the ordinary convex closure of a simplex in any apartment; a wall can be

identified with a hyperplane of an apartment and a root is a half-space in an

apartment bounded by a wall. We say that two walls are parallel if there is an
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apartment containing both of them and if they are parallel in that apartment as

hyperplanes. We refer to [4] for details.

Let j ∈ S and let R be a residue of cotype j of an affine building B = (C, δ)

of type (W,S). Let Σ be an apartment of B intersecting R nontrivially. Then we

call R special if for every wall W in Σ there is a parallel wall W ′ containing a

panel both of whose chambers belong to R. This definition is independent of Σ.

The wall W ′ above is said to cut R in halves.

Let R be a special residue in B, and let Σ be an apartment meeting R non-

trivially (by which we mean that Σ and R have chambers in common). Let

c ∈ C belong to R and Σ. The intersection of all roots in Σ whose bounding

walls cut R in halves and which contain c is called a sector emerging from R.

The sectors emerging from R form the chamber set of a spherical building of

the same type as R. Two chambers of this spherical building are adjacent if

the corresponding sectors are contained in a common apartment and if they

contain respective adjacent chambers of B. This spherical building is called the

building at infinity and denoted by B∞. Its isomorphism type is independent of

the special residue R (and the canonical isomorphism between the buildings at

infinity defined using R and another special residue R′ maps a sector to a sector

in such a way that the intersection of these two sectors contains a sector itself).

In particular, B∞ can be represented with sectors emerging from any special

residue. Also, the family of apartments of B is in bijective correspondence with

the family of apartments of B∞. We refer to [4] and [12].

Lemma 6.1. Let B = (C, δ) be a building of affine type. Suppose there is a special

thick residue R such that B is a blow-up of R. Then the building B∞ = (C∞, δ∞)

at infinity is isomorphic to R.

Proof. There is a natural epimorphism η : B∞ → R mapping a chamber c∞
of B∞ emerging from R to the unique chamber in c∞∩R. Clearly, this mapping

preserves adjacency of chambers, and hence maps non-opposite chambers onto

non-opposite chambers. Now let c1
∞

and c2
∞

be two opposite chambers of B∞,

and let Σ∞ be an apartment of B containing c1
∞

and c2
∞

. Then there is a unique

apartment Σ of B containing sectors d1
∞

and d2
∞

at bounded distance from c1
∞

and c2
∞

, respectively. Since B is a blow-up of R, Σ∩R is nonempty and hence c1
∞

and c2
∞

are contained in Σ (as all ‘translates’ in Σ of d1
∞

and d2
∞

are at bounded

distance from d1
∞

and d2
∞

, respectively, and some translate emerges from R).

Since c1
∞

and c2
∞

are opposite, also the chambers R∩c1
∞

and R∩c2
∞

are opposite

(as the epimorphism mentioned above is bijective in the apartment Σ).

Hence η preserves opposition and non-opposition. By Corollary 5.2 of [1],

η extends uniquely to an isomorphism. �
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Actually, the condition of R being thick is redundant in the previous lemma,

as it follows rather easily that an epimorphism between two spherical buildings

of the same type, with the property that opposition, non-opposition and adja-

cency of chambers is preserved, extends uniquely to an isomorphism. Since we

will not need this more general version, we do not insist on a detailed proof.

Lemma 6.2. Let B = (C, δ) be an affine building, let C ′ be a firm convex sub-

set of C and put B
′ := (C ′, δ|C′×C′). Then the building at infinity of B

′ is a

subbuilding of the building at infinity of B.

Proof. This follows directly from the fact that every sector of B
′ is a sector

of B. �

Let B = (C, δ) be an affine building and let δ∗ : C → W be a codistance.

Choose a spherical residue R of B containing a chamber in δ∗op. By the previous

sections, there is a convex sub-building B
′ of B of the same type which is a blow-

up of R. The building at infinity of B
′ is canonically isomorphic with R and it

is a subbuilding of the building at infinity of B. So we have shown:

Theorem 6.3. Let B = (C, δ) be a thick affine building, and let δ∗ be a codistance

on B. Then every special residue containing a chamber of δ∗op is a subbuilding of

the building at infinity of B of the same type.

Our ultimate goal is to prove that an irreducible Bruhat-Tits building defined

over the p-adic numbers, and of rank at least 3, does not admit a codistance.

We will need the following fact about irreducible spherical Moufang buildings

of rank at least 2. A proof for the rank 2 case is Lemma 5.2.2 of [14]. The

arguments given there make implicit use of Tits’ rigidity theorem [11, Theo-

rem 4.1.1]. They generalize to the higher rank case without any problem.

Proposition 6.4. Let B = (C, δ) be an irreducible spherical Moufang building of

rank at least 2 and let C ′ be a thick convex subset of C. Then B
′ := (C ′, δ|C′×C′)

is a spherical Moufang building of the same type. Moreover, if α ⊂ C ′ is a root

of B
′ and U ′

α is the corresponding root group with respect to B
′, then α is also a

root of B and U ′

α injects canonically into the corresponding root group with respect

to B.

The irreducible spherical Moufang buildings of rank at least 2 are classified

and one easy consequence of this classification is the fact that one can associate

a characteristic to each such building. Its characteristic is defined to be 0 (p,

respectively) if the root groups are torsion free (p-groups, respectively). The

characteristic of the building at infinity B∞ of a Bruhat-Tits building B coin-

cides with the characteristic of the global field, whereas the characteristic of a
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special residue coincides with the characteristic of the residue field. Combining

Theorem 6.3 and Proposition 6.4 we obtain the following consequence.

Corollary 6.5. Let B = (C, δ) be a Bruhat-Tits building defined over a field F with

discrete valuation. If B admits a codistance, then the characteristic of the residue

field of F is the same as the characteristic of F.

In particular, Bruhat-Tits buildings defined over p-adic fields do not admit

any codistance, since the characteristic of the residue field is finite, and the

characteristic of the field is 0.

Remark 6.6. Replacing in the arguments leading to the proof of Theorem 6.3

the building at infinity by the “complex Ck(R) defined by the chambers at dis-

tance k from a certain special residue”, we can slightly do better than The-

orem 6.3 and prove that, if an affine building admits a codistance, then any

special residue is a substructure of the complex Ck(R). Of course, this is only

useful in the cases of affine buildings not of Bruhat-Tits type, and these only

exist in low rank. In cases Ã2 and C̃2, there is a precise notion of geometry at

distance k from a given special residue, which can play the role of the complex

Ck(R) here. Using Ronan’s construction of buildings [8], possibly rephrased for

type Ã2 as in [6], one sees that many non-classical buildings of these types do

not admit a codistance.
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