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Abstract

We complete the determination of all pairs (P, ∆), where P is a compact

projective plane with a 16-dimensional point set, ∆ is an automorphism

group of P of dimension at least 35, and ∆ does not fix exactly one point

and one line. If ∆ fixes two points and only one line, then ∆ contains a

15-dimensional translation group and a compact subgroup Spin
7
R; hence

dim ∆ ≥ 36. The planes are described by their coordinatizing Cartesian

fields, more explicitly for dim ∆ > 36.
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1 Introduction

Let P = (P,L) be a topological projective plane with a compact point set P of fi-

nite (covering) dimension d = dimP > 0. A systematic treatment of such planes

can be found in the book Compact Projective Planes [18]. Each line L ∈ L is ho-

motopy equivalent to a sphere Sℓ with ℓ | 8, and d = 2ℓ, see [18, (54.11)]. In

all known examples, L is in fact homeomorphic to Sℓ. Taken with the compact-

open topology, the automorphism group Σ= AutP (of all continuous colline-

ations) is a locally compact transformation group of P with a countable basis,

the dimension dim Σ is finite, cf. [18, (44.3 and 83.2)].

For ℓ ≤ 4, all sufficiently homogeneous planes are known explicitly, see [18,

Chaps. 7, 8]. In the case ℓ = 8 the aim is to determine all pairs (P,∆), where

∆ is a connected closed subgroup of Σ and dim∆ ≥ b for a suitable bound b.
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(If dim ∆ ≥ 27, then ∆ is always a Lie group [13].) Here, we deal with the case

that b = 35 and ∆ fixes exactly 3 elements (say two points and one line). This

completes the classification for b = 35 and all groups ∆ which do not fix exactly

two elements (a point and a line), cf. [17] for the other possible configurations

of fixed elements.

Theorem 1.1. If ∆ fixes exactly 2 points and one line and if dim∆ ≥ 34, then the

group T of translations in ∆ is at least 15-dimensional.

Either ∆ has a subgroup Υ ∼= Spin7R and dim∆ ≥ 36, or T is transitive, a max-

imal semi-simple subgroup of ∆ is isomorphic to SU4C ∼= Spin6R, and dim∆ = 34.

All planes satisfying the hypotheses of Theorem 1.1 with dim∆ ≥ 35 will be

described by coordinate methods in Theorems 3.1 and 3.3.

2 Structure of the group

Essential for the proof is the so-called stiffness:

The stabilizer of a quadrangle has dimension at most 14; see [18, (83.23)].

Particularly important is Bödi’s improvement [1]:

(♦) If the fixed elements of the connected Lie group Λ form a connected subplane

E , then Λ is isomorphic to the 14-dimensional compact group G2 or its sub-

group SU3C, or dim Λ < 8. If E is a Baer subplane (dim E = 8), then Λ is a

subgroup of SU2C. Moreover, Λ ∼= G2 implies dim E = 2.

If ∆ fixes 2 distinct points and dim∆ > 30, then it follows from other classifi-

cation results ([11, 12, 15]) that ∆ is not semi-simple and has no normal torus

subgroup. The main result of [16] can now be stated in the following form:

Lemma 2.1. If ∆ fixes exactly one line W and at least 2 points on W , and if

dim∆ ≥ 33, then ∆ has a minimal normal subgroup M ∼= R
t consisting of trans-

lations with axis W .

Two more facts will be needed repeatedly:

Lemma 2.2. Assume that Γ is a solvable Lie subgroup of ∆. Then Γ has a chain

of normal subgroups Γκ with dim Γκ+1/Γκ ≤ 2; see [2, I § 5, Th. 1, Cor. 4, p. 46].

If κ is the largest index such that aΓκ= a, if N = Γκ+1 and a 6= x ∈ aN, then

dimxΓa ≤ 2. In fact, xΓa ⊆ aN and dimxΓa ≤ dim N/Na ≤ dimN/Γκ.
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Notation. The connected component of a group Γ will be denoted by Γ1. Let u

and v be the two fixed points of ∆. For a point a /∈ W = uv we put ∇ = (∆a)1.

By Lemma 2.1 there exists a minimal ∇-invariant vector subgroup Θ ∼= R
t

consisting of translations in M. The radical P =
√

∆ is the largest solvable

normal subgroup of ∆. We write ∆ : Γ = dim ∆ − dim Γ and Γ|M for the group

induced by Γ on the Γ-invariant set M .

The dimension formula dim Γ = dim Γx+dim xΓ holds for any closed subgroup

Γ of ∆, see [18, (96.10)]. This fact will often be used without mention.

Lemma 2.3. If a maximal semi-simple subgroup Ψ of ∆ or of ∇ (a Levi comple-

ment of the radical) has a subgroup Λ ∼= G2 , then Ψ is almost simple, and Ψ = Λ

or there is a group Υ ∼= Spin7R with Λ < Υ ≤ Ψ. The central involution α ∈ Υ is

a reflection.

Proof. This follows from (♦) and the observation that (in the relevant dimension

range) each simple group which contains G2 is of type B or D or G2, see [7] for

details. By [18, (55.40)], any action of SO5R on a compact projective plane is

trivial. Hence Ψ 6∼= SO7R and α is not planar. ¤

Proof of Theorem 1.1. Recall that there exists a minimal ∇-invariant subgroup

Θ ∼= R
t which is contained in the group T of translations with axis W . But for

the last step, we may assume that dim T < 16.

1) The elements of Θ have center u or center v, and we may assume Θ≤T[v].

In fact, for v ∈ L 6= W the stabilizer ΘL consists of translations with cen-

ter v. The action of Θ on the pencil Lv shows that dimΘ[v] ≥ t − 8, cf. [18,

(61.11a)], and dim Θ[v] = 0 or Θ = Θ[v] by minimality. Therefore t ≤ 8.

Assume that 1 6= ϑ ∈ Θ[z] for some center z 6= u, v, and note that Θ[z] is con-

nected by [18, (61.9)]. Choose any point a /∈ W . If R ∼= Π ≤ Θ and ϑ ∈ Π,

then the connected component Λ of ∆a,aϑ centralizes each translation in Π

because ϑΛ = ϑ and Λ acts linearly on Θ. Thus, Λ fixes the orbit aΠ point-

wise and the fixed elements of Λ form a connected subplane E . Moreover,

∇:Λ = dim(aϑ)∇ ≤ dim aΘ ≤ 8 and dim Λ ≥ 18 − t. Hence the stiffness the-

orem (♦) shows that Λ ∼= G2. Consequently, t ≥ 4 and Λ acts non-trivially on

Θ by the last part of (♦). The action of any compact or semi-simple Lie group

on a real vector space is completely reducible, and each irreducible module

of G2 on R16 has a dimension divisible by 7, see [18, (95.10)]. Since ΠΛ = Π,

we conclude that t = 8 and dim∇ ≤ 22. Because Θ is minimal, ∇ acts ir-

reducibly on Θ. By Lemma 2.3, the group ∇ has a subgroup Υ ∼= Spin7R.

The central involution α ∈ Υ is a reflection and inverts each translation in

Θ. Thus, α has axis W and some center, which may be chosen as a. Now
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α∆α ⊆ T and dim T = dim a∆ ≥ 12, see [18, (61.19)]. The group Υ acts

faithfully on each invariant subgroup of T. This implies T[u]
∼= T[v]

∼= R
8

(cf. [18, (95.10)]) and then P is the classical Moufang plane O over the

octonions by [18, (81.17)], but we have assumed that dimT < 16.

Before continuing the proof of Theorem 1.1, we now prove the following

lemma.

Lemma 2.4. For the connected component Λ of the stabilizer of some quad-

rangle containing u, v, and an arbitrary point a , the radical P of ∆ satisfies

P : (Λ ∩ P)≤ 20. If dimΛ≥ 8, then Λ ∩ P=1; in this case, dimP= 20 implies

dimΘ≥ 2 and dim Pa =4.

Proof. Lemma 2.2, applied to the action of P on the line pencil Lv yields a

group X ≤ P fixing two lines av and bv such that P : X ≤ 10. Analogously,

the action of X on the line av provides a point c with X : Xa,c ≤ 10. As P is

solvable and ΘPa = Θ by step 1), there exists a minimal Xa-invariant vector

subgroup N ≤ Θ of dimension at most 2, and the argument of Lemma 2.2

shows that c can be chosen in aN. The fixed elements of Λ = (Pa,c,bv)1

form a connected subplane E since Λ acts linearly on N and centralizes the

translation ξ ∈ N with aξ = c. If dim Λ ≥ 8, then Λ is simple by (♦) and Λ∩P

is a solvable normal subgroup of Λ, hence trivial. ¤

2) Our aim is to show that one of the groups T[u] or T[v] is linearly transitive.

This will be accomplished in steps 2) – 15). Again let Θ ≤ T[v]. For a /∈ W

and w ∈ W r {u, v}, consider the connected component Ω of ∇w. The di-

mension formula gives dim Ω ≥ 10. As above, let R ∼= Π ≤ Θ, 1 6= ρ ∈ Π,

c = aρ, and put Λ = (Ωc)
1. Then Ω :Λ = dim cΩ ≤ dim aΘ. Because the

action of ∇ on Θ is linear, Λ ≤ Cs Π and (♦) applies.

3) For t = 1 this gives Λ ∼= G2. Put ∆ = PΨ, where P =
√

∆ is the radical and Ψ

is a maximal semi-simple subgroup of ∆. Lemma 2.4 shows that dim P≤ 19;

consequently, dimΨ> 14. According to Lemma 2.3 the Levi complement Ψ

has a subgroup Υ ∼= Spin7R. For t < 8 the central involution α ∈ Υ acts

trivially on Θ by [18, (95.10)] and α is a reflection whose axis is a line

through v and whose center is u. We may choose a on this axis. By the

dual of [18, (61.19b)] we get dimT[u] = dim(av)∆ > 0. The reflection α

inverts the elements of T[u], and the representation of Υ on T[u] is faithful.

This implies that T[u]
∼= R

8 is linearly transitive as claimed. Moreover, T[u] is

a minimal normal subgroup of ∆. The action of Υ on av is equivalent to a

linear action, see [18, (96.36)]. Hence Υ≤∇ for a suitable choice of a, so

that ∇ acts irreducibly on T[u].

4) From t = 2 it would follow that dimT= 16, contrary to the general assump-
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tion.

If a 6= c ∈ aΘ, then Γ = (∇c)
1 satisfies dim Γ ≥ 16. Consider a point

w ∈ W r {u, v} and the connected component Λ of the stabilizer Γw, and

note that dimΛ ≥ 8. By (♦) the group Λ is almost simple and hence acts

trivially on aΘ. Therefore, Λ 6∼= G2 and Λ ∼= SU3C. This implies that Γ acts

faithfully and transitively on W r {u, v}, see [18, (96.11)]. According to

[15, Lemma 5], the group Γ has a compact subgroup Φ ∼= SU4C of codimen-

sion 1. Consequently, Γ is not semi-simple and the commutator subgroup

Γ′ coincides with Φ. Moreover, dim∇ = 18 and the group ∆ is transitive

outside of W . Since Γ′ acts trivially on Θ, the central involution α of Γ′ is a

reflection with axis av. (Note that Γ′/〈α〉 ∼= SO6R cannot act on a Baer sub-

plane.) As before, T[u]
∼= R8 and Γ′ acts faithfully on T[u]. By [18, (95.6b)],

the centralizer ∇ ∩ Cs T[u] has positive dimension. Hence ∇ contains ho-

mologies with center v. The dual of [18, (61.20b)] shows that T[v] is also

linearly transitive.

5) The cases 3 ≤ t ≤ 6 lead to a contradiction.

Consider the subplane F = 〈aΘ, u, v, w〉; either F =P and Ω = (∇w)1 acts

faithfully on Θ, or F is a Baer subplane. In the latter case we write Ω|F =

Ω/K, where K denotes the kernel of the action of Ω on F . Recall from

(♦) that K is a compact group of dimension 3 or at most 1. The different

possibilities will be discussed separately. As before, Λ denotes the connected

component of the stabilizer of w, a and c ∈ aΘ, and dim Λ ≥ 10 − t.

6) If t = 3 and F = P, then Ω would be embeddable into GL3R. Hence t = 3

implies F 6= P. A group Λ of dimension ≥ 8 would act trivially on Θ and

on F , but this is impossible. Therefore, dimΛ= 7 and dimΩ= 10; moreover,

Ω acts transitively on Θ r {1} and Ω/K has a subgroup SO3R. The stiffness

result [18, (83.15)] shows that Λ : K≤ 5. Consequently, dim K =3 and Ω/K

is a 7-dimensional subgroup of GL3R. However, such a subgroup does not

exist because SO3R is a maximal subgroup of SL3R, see [18, (94.34)].

7) Now let t = 4 and F = P. If Ω is not transitive on Θ r {1}, then it follows

from (♦) that there is an orbit of dimension 3, and suitable stabilizers fix

subplanes of dimensions 4 and 8. By [18, (83.9)] and [5, XI.9.6], this implies

that Λ is a compact Lie group of rank at most 2, in fact, Λ ∼= SU3C, SO4R,

or dimΛ ≤ 4, see [14, (2.1)]. On the other hand, dimΛ ≥ 6 and Λ acts

faithfully on Θ and fixes a one-parameter subgroup. This is a contradiction.

Hence Ω is transitive on Θ r {1}, and Ω′ ∼= Sp4R, see [21] or [18, (95.10)].

In particular, Ω contains a central involution α, and α cannot be planar,

since the stabilizer of a degenerate quadrangle in an 8-dimensional plane

has dimension at most 7, see [18, (83.17)]. Therefore, α is a reflection
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with axis W , and α∆α ⊆ T, cf. [18, (23.20)]. Moreover, dimΩ ≤ 11 and

dim∇ ≤ 19. The dimension formula yields dimT ≥ dim a∆ ≥ 15. The

reflection α acts on T as −1. Because Ω is connected, α induces on T a map

of determinant 1; consequently, T ∼= R
16.

8) If t = 4 and F 6= P, the stiffness results [18, (83.17 and 22)] imply

dimΩ/K ≤ 7 and dimK ≤ 3, hence dimΩ = 10 and dim∇ = 18. Therefore,

dimw∇ = 8 for each choice of w, and ∇ is transitive on S = W r {u, v}.

According to [5, XI.9.5], the group Λ/K is compact, and then we have

Λ/K ∼= SO3R and Λ ∼= SO4R, cf. [14, (2.1)]. In particular, dim Λ = 6,

dim∇c = 14, and dimw∇c = 8, so that ∇c is also transitive on S. Let Φ be a

maximal compact subgroup of ∇c containing Λ and note that S is homotopy

equivalent to S7. The exact homotopy sequence

· · · → πq+1S → πqΛ → πqΦ → πqS → πq−1Λ → . . .

shows that π1Φ ∼= Z2, π3Φ ∼= Z
2, π5Φ ∼= Z

2
2 , and that π7Φ is infinite. By

[18, (94.36)], this implies that Φ is a semi-simple group having exactly two

almost simple factors. Moreover, Φ 6= Λ because π7Λ is finite. Since dimΦ <

dim∇c and π5SU3C ∼= Z, the group Φ has a factor B ∼= U2H, cf. [18, (94.33)]

and note that SO5R cannot act on a plane. For the same reason, the central

involution β ∈ B is a reflection; its axis is av, since, obviously, [B,Θ ] = 1.

From dim a∆ = 16 we infer that β∆β = T[u] is linearly transitive. Either

∇ acts faithfully on T[u] or ∇ contains homologies with axis au. In the

second case, T[v] is also linearly transitive, see [18, (61.20)], but then the

representation of B on T[v] would be trivial (use [18, (95.10)] and note that

[B,Θ ] = 1) and B would consist of homologies with center u. Consequently,

∇ acts on T[u] as a transitive subgroup of GL8R, and [21] shows that ∇ has

a transitive factor X ∼= SL2H. The stabilizer Xw = X ∩ Ω is a 7-dimensional

group which fixes F pointwise, a contradiction to (♦).

9) Thus the cases 2 ≤ t ≤ 4 cannot arise. Therefore, t > 4 and F = P. For

t < 7, we have Λ 6∼= SU3C and hence 10 ≤ dim Ω < t + 8. Since Θ is a

minimal ∇-invariant vector group, ∇ induces on Θ an irreducible group ∇̃
of dimension dim ∇̃ ≥ dimΩ ≥ 10.

10) Let t = 5. By [18, (95.6 and 10)], the commutator group ∇̃′ is an almost

simple group of dimension 10 or 24. In the latter case the dimension of

∇ would be too large. Hence ∇̃′ is locally isomorphic to a group O′
5(R, r)

and dim ∇̃ ≤ 11. Because of Brouwer’s Theorem [18, (96.30)] or [8], an

almost simple group of dimension > 3 has no subgroup of codimension 1.

Consequently, Ω′ ∼= ∇̃′ ∼= O′
5(R, r), and [18, (55.40)] implies r > 0. In the

notation of step 2), there is some ρ ∈ Θ such that Λ has a subgroup SO3R. By

[18, (83.10)], the group Λ is then compact, and [14, (2.1)] shows Λ ∼= SO4R
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(note that 4 < dimΛ < 8). Hence Ω′ is a hyperbolic motion group of the

4-dimensional projective space PΘ. The stabilizer E of an exterior point of

PΘ is not compact, but E contains a group SO3R; therefore, E has to be

compact for the same reason as Λ, a contradiction.

11) Suppose that t = 6 and that Ω acts irreducibly on Θ. The stiffness result

(♦) implies dimΛ < 8 and 10 ≤ dimΩ ≤ 13. With [18, (95.5 and 6)] it

follows that either dimΩ′ = 8 and the center Z(Ω) is isomorphic to C×, or

the action of Ω′ on Θ can be understood as the tensor product of the nat-

ural representations of A = SL2R and B = SL3R and Ω′ ∼= A×B. In both

cases, Ω contains a central involution ω. On a Baer subplane, Ω would in-

duce a group of dimension at most 7, see [18, (83.17)]. Therefore, ω is a

reflection with axis uv and center a. We have dim∇ ≤ 21. The hypothesis to-

gether with [18, (61.19)] implies 13 ≤ dim a∆ = dimT < 16. Consequently

dim∇ > 18, dimΩ > 10 and then dim Ω′ = 11. Because ω belongs to a con-

nected group and acts as −1 on T, both T[u] and T[v] have even dimension,

and T ∼= R
14. Hence one of the groups T[u] and T[v] is linearly transitive. Re-

call that Θ ≤ T[v]. By complete reducibility and [18, (95.10)], either B acts

irreducibly on T[u]
∼= R

8 or B centralizes a 2- dimensional subgroup of T.

In the latter case, the fixed elements of B would form a connected subplane

contrary to (♦). Since Ω fixes u and w, the factor A acts faithfully on T[u].

This contradicts the irreducibility of B, see [18, (95.4)].

12) If t = 6 and there is a minimal Ω-invariant vector subgroup H < Θ, and

if Λ = (Ωc)
1 for some c ∈ aH

r {a}, then 10 − dim H ≤ dim Λ < 8 by

(♦). Consider the action of Ω on the subplane FH = 〈aH, u, v, w〉 and the

connected component Φ of the kernel of this action. If dimH ≤ 4, then

it follows as in steps 6) and 7) that FH is an (Ω-invariant) Baer subplane

of P. Now dimΩ/Φ ≤ 7 by [18, (83.17)], and then [18, (83.22)] implies

Φ ∼= SU2C. Recall from step 5) that Ω acts faithfully on Θ. Since the action

of Φ on Θ is completely reducible, Φ acts faithfully on a complement of H

in Θ, but SU2C has no faithful representation in dimension < 4. Therefore,

dimH = 5 and the commutator group Ω′ is semi-simple and irreducible on H,

see [18, (95.6b)]. Inspection of the list [18, (95.10)] shows Ω′ ∼= O′
5(R, r),

and then Ω′ would centralize a complement of H in Θ in contradiction to

(♦). Hence t 6= 6.

13) Steps 3) – 12) yield the following conclusion.

Conclusion. If P is not a translation plane and if Θ ∼= R
t is a minimal ∇-in-

variant subgroup of T[v], then either t ≥ 7, or t = 1 and T[u]
∼= R8 is a minimal

normal subgroup of ∆.

14) Now let t = 7 and assume first that Ω acts irreducibly on Θ for each choice
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of w. By [18, (95.6)], the commutator group Ω′ is almost simple. Moreover,

9≤ dim Ω′ ≤ 15 (since Λ 6∼= G2). The list [18, (95.10)] shows that dimΩ′ =

14 and that Ω′ has torus rank 2. Because t is odd, each torus subgroup

of Ω′ fixes a non-trivial vector ρ ∈ Θ, and [18, (83.10)] implies that the

corresponding stabilizer Λ is compact. It follows that Λ ∼= SU3C and then

Ω′ ∼= G2 is also compact. Hence Λ ∼= SU3C for each c = aρ and arbitrary w.

Suppose that Ω′ is a Levi complement of P =
√

∆. Then Lemma 2.4 shows

that dimP = 20 and dim Pa = 4. This implies that [Pa,Ω′ ] = 1 = Pa ∩ Ω′.

The fixed elements of Ω′ ∼= G2 form a 2-dimensional subplane E by [18,

(96.35)] and Pa acts effectively on E , but the stabilizer of a triangle in E is

only 2-dimensional, see [18, (33.10)]. Hence Ω′ is not a Levi complement of

the radical. By Lemma 2.3, the group ∆ has a subgroup Υ ∼= Spin7R. Since

Υ induces the group SO7R on Θ ∼= R
7, the central involution α ∈ Υ is a

reflection with axis av and center u. As in step 3) it follows that T[u]
∼= R

8

is linearly transitive and is a minimal normal subgroup of ∆, and we may

assume that ∇ acts irreducibly on T[u].

15) Last alternative: t =7 and there is a minimal Ω-invariant vector subgroup

H< Θ. The proof follows a similar scheme as in the case of the action of ∇
on Θ. We have 1≤ s := dimH< 7. If s= 1, then dimΛ≥ 9 and Λ ∼= G2. As

G2 has no representation in dimension < 7, the group Λ would act trivially

on Θ and hence on 〈aΘ, u, w〉=P, a contradiction. In the case s= 2, the

stiffness theorem (♦) implies Λ ∼= SU3C. Again Λ would act trivially on Θ,

see [18, (95.3 and 10)]. The arguments of step 6) with H instead of Θ show

that s 6= 3. Next, let s=4 and assume first that Ω acts faithfully on H as an

irreducible subgroup of GL4R. Then Ω′ is a semi-simple group of dimension

≥ 8, see [18, (95.6b)]. Hence Ω′ is isomorphic to Sp4R or to SL4R. The

action of Ω′ on Θ is completely reducible, and H has an Ω′-invariant com-

plement X ∼= R3 in Θ. Consequently Ω′ induces the identity on the subplane

〈aX, u, w〉, but this contradicts (♦). Therefore 〈aH, u, w〉 is a Baer subplane of

P and Ω induces on H a group Ω/K, where K1 is isomorphic to a subgroup

of SU2C. Either K1 ∼= SU2C or dimK≤ 1. In both cases, the semi-simple

group Ω′ fixes a complement X of H in Θ and dim Ω′ ≥ 8. If K1 ∼=SU2C, then

K1|X ∼= SO3R, which is a maximal subgroup of SL3R, cf. [18, (94.34)]. Ac-

cordingly, Ω′|X ∼= SL3R, a contradiction. If dimK≤ 1, then dim Ω′|H > 7 and

Ω′ contains the group Sp4R. This is again impossible. It follows that s> 4

and that Ω acts faithfully on H. For s= 5, representation theory shows that

Ω′ ∼= O′
5(R, r), see [18, (95.10)], and Ω′ would act trivially on a complement

of H in Θ, a contradiction to (♦). In the case s= 6, finally, the semi-simple

group Ω′ fixes a unique complement X of H, and X is even Ω-invariant. This

has been excluded at the beginning of step 15).
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16) In any case, one of the groups T[u] or T[v] is linearly transitive, and we may

assume that Θ = T[v]
∼= R

8 and that ∇ induces an irreducible group on Θ.

By [5, XI.9.5 and 6], the stabilizer of an arbitrary quadrangle is compact

and Λ is always a compact connected Lie group of torus rank at most 2. If

4 < dim Λ < 8, then Λ ∼= SO4R, see [14, (2.1)] or [5, XI.9.9].

17) Put Γ = ∆au. Because Θ is transitive on av r {v}, it follows that ∆ = ΓΘ

and that Γ acts irreducibly on Θ. If dim∆ ≥ 40, then dimT = 16 or P is the

classical Moufang plane according to [18, (87.7)]. Hence our assumptions

imply 26 ≤ dim Γ ≤ 31. The centralizer Γ ∩ Cs Θ fixes each line in Lu and

consists of collineations with center u.

18) Let G be a closed, connected irreducible subgroup of SL8R. If dimG≥ 18, then

G′ is isomorphic to an almost direct product SL2R · SL4R or SU2C · SL2H , or

to one of the almost simple groups Sp4C, Spin7(R, r) with (r = 0, 3), O′
8(R, r),

SL4C, or dim G′ ≥ 36.

In fact, G′ is semi-simple and dim G′ ≥ 16 by [18, (95.6)]. Suppose that

G′ = AB is an almost direct product where A has minimal dimension. If B

acts irreducibly on V = R
8, then A∼= H

′ and B≤ SL2H. In the other case,

dimB≥ 8, and Clifford’s Lemma [18, (95.5)] shows that B acts faithfully

and irreducibly on a subspace U such that V = U ⊕Uα for some α ∈ A. By

[18, (95.10)], it follows that dimB 6= 8. Therefore, dimB> 9, and B contains

a group Sp4R. If 0 6= x ∈ U , then the fixed points of Bx form a 1-dimensional

subspace of U , and 〈x, xα〉 ∼= R
2 is A-invariant. Consequently, A ∼= SL2R and

dimB= 15. All possibilities for an almost simple group G′ are listed in [18,

(95.10)].

19) If Γ[u] = 1, then Γ acts faithfully on Θ; hence Γ′ is semi-simple and dim Γ′ ≥
24, see [18, (95.6)]. By the last step, Γ′ ∼= SL4C or Γ′ ∼= O′

8(R, r). In

the first case, the involution β = diag(1,−1) ∈ SL4C is not a reflection

and hence fixes a Baer subplane B pointwise, cf. [18, (55.29)]. The group

B = (1, SL2C) ≤ Cs β would induce on B a group of central collineations

with center u, but this is impossible by [18, (61.20)], as B is semi-simple.

If Γ∼= O′
8(R, r), the diagonal involution diag(1, 1, . . . , 1,−1,−1) would fix a

6-dimensional subset of Lu and hence would be neither a reflection nor a

Baer involution. This contradicts [18, (55.29)].

20) In the previous step it has been proved that Γ[u] 6= 1. Assume first that

Γ[u] contains homologies. We may choose a in such a way that Γ[u,av] 6= 1.

From the dual of [18, (61.20b)] it follows that s := dimT[u] = dim aΓ =

dim Γ−dim∇, and, hence, Γ=∇T1
[u]. Moreover, this is also the dimension of

the set of all axes of homologies in Γ with center u. We choose b∈ aT[u] r {a}
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and c ∈ av r {a} and put Λ= (∇b,c)
1. Then

26≤ dim Γ= dim∇+ s≤ dim Λ+ 8+ 2s≤ 22+ 2s and 1< s< 8.

The assumption s≤ 5 implies successively dim Λ≥ 8, Λ∼= SU3C or Λ∼= G2,

Λ acts trivially on T[u], Λ 6∼= G2, s= 5, Λ 6∼= SU3C, a contradiction. Asssume

that s= 6. Then Λ 6∼= SU3C because Λ fixes some elements of T[u]. Hence

Λ ∼= SO4R by step 16), and dim∇= 20. For any admissible b, the dimension

formula gives

12≤ dim∇c = dim b∇c + dim Λ≤ s+ 6= 12 ,

and dim∇c =12, dim b∇c =6. By [18, (96.11a)], the group ∇c acts tran-

sitively on T1
[u]
∼= R

6. The action is also effective since its kernel is trivial

on 〈aT
1
[u] , c, v〉 = P. On the other hand, the results in [21] (or in [18,

(96.19–22)]) show that a transitive subgroup G≤GL6R satisfies dim G≤ 10

or dimG≥ 16. Therefore, s= 7 and dim T= 15.

21) Now let Γ[u] = T[u] := H. If dimH = 1 and if a 6= b ∈ aH, then dim Γa,b ≥ 17,

and (♦) implies that Γ has a subgroup Λ ∼= G2. From the fact that

dim(Γ ∩ Cs Θ)= dimH= 1 ,

it follows with [18, (95.6)] that a maximal semi-simple subgroup Ψ of Γ acts

irreducibly on Θ, and that dim Ψ≥ 23. Because Γ contains G2 but has no

subgroup SO5R by [18, (55.40)], step 18) shows that Ψ ∼= Spin8(R, r) with

r ≤ 1, and Ψ induces on Θ a group O′
8(R, r) by [18, (95.10)]. Consequently,

Γ would contain a reflection with axis av, a possibility which has been dealt

with in step 20). Thus, we may assume that dimH= s> 1; recall that s< 8

by the assumption made at the beginning of the proof. As Λ fixes a subspace

of H and G2 has no non-trivial representation in dimension < 7, we conclude

that Λ 6∼= G2, dimΛ≤ 8 and dim∇≤ 23. The group ∇ acts faithfully and

irreducibly on Θ ∼= R
8. All possibilities for the semi-simple group ∇′ have

been listed in step 18). Only the first 5 groups of this list have a dimension

at most 23 and we conclude that 18≤ dim∇′ ≤ 21. If dim∇′ > 18, then ∇′

is almost simple and the representation of ∇′ on H shows that either s= 7,

or ∇′ fixes aH pointwise, but in the latter case dim∇′ ≤ 8+ dim Λ, which

is a contradiction. If dim∇′ =18, then dim∇≤ 19. We consider the group

Γ̃ ∼= Γ/H induced by Γ on Θ, which contains ∇. From 18) and the inequalities

26≤ dim Γ≤ 19+ 8 and dim Γ̃≤ 27− s

it follows that dim Γ̃′ ≤ 21. Assume that ∇′ is a proper subgroup of Γ̃′. Then

Γ̃′ is isomorphic to Spin7(R, r) or Sp4C, and a maximal compact subgroup
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K of Γ̃′ acts in the canonical way on the homogeneous space M = Γ̃′/∇′,

but this would imply dim K≤ 6 by [18, (96.13)]. (Note that the kernel N

of the action of K on M is contained in the intersection of all conjugates of

∇′ in Γ̃′, a proper normal subgroup of Γ̃′; hence dimN = 0.) Consequently,

dim Γ̃≤ 19 and then s≥ 7. Steps 19) – 21) complete the proof of the first

part of Theorem 1.1.

22) Assume now that H= T1
[u]

∼= R7. We will show that a maximal semi-simple

subgroup of ∆ is isomorphic to Spin7R. With the rôles of u and v inter-

changed, the Conclusion implies that either some 1-dimensional subgroup

Π < H is ∇-invariant or ∇ acts irreducibly on H. By hypothesis dim∇≥ 18.

Let ∇= ΨP, where Ψ is a maximal semi-simple subgroup of ∇ and P=
√
∇.

In the first case, the stabilizer Λ of a suitable quadrangle has dimension at

least 9; hence Λ ∼= G2 by (♦), and Ψ 6= Λ since ∇ acts irreducibly on Θ.

Lemma 2.3 implies that Ψ has a subgroup Υ∼= Spin7R. In the second case, ∇
induces an irreducible group ∇/N on Θ and an irreducible group ∇/K on H.

By [18, (95.6)] we have P : (N ∩ P)≤ 2 and P : (K ∩ P)≤ 1, hence dimP≤ 3

and dim Ψ≥ 15. As dimK≤ 8 and Ψ̂=Ψ/(K ∩ Ψ) is almost simple by [18,

(95.5)], the list [18, (95.10)] shows that Ψ̂ is a simple group of type G2 or

Ψ̂ ∼= O′
7(R, r). The kernel N ∩ Ψ is a product of some of the almost simple

factors of Ψ, and N ∩ Ψ acts freely on H. Consequently, dim(N ∩ Ψ)= 0 or

N∩Ψ ∼= Ψ̂, but the latter is impossible for reasons of dimension. In particular,

N1 ≤P and dim N≤ 1 as N1 injects into the centralizer of Ψ̂ in its represen-

tation on H. If dim Ψ̂ =14, then Ψ has a proper factor of type G2, but this

contradicts the fact that Ψ acts irreducibly on Θ. It follows that dimΨ≥ 21,

and then Ψ ∼= Spin7(R, r) with r = 0, 3 by step 18). The group Ψ is transitive

neither on Θ nor on H. Therefore dimΛ≥ 8 for a suitable quadrangle, and Λ

contains a group SU3C. This excludes the case r = 3.

Let Ψ be a Levi complement of
√

∆. From dimT= 15 and Theorem [18,

(87.5)] it follows that dim∆ < 40 and dimΨ≤ 24. If dimΨ > 21, then Ψ =ΥX,

where Υ∼= Spin7R and the 3-dimensional almost simple factor X centralizes

Υ. We may assume that Υ≤Ψ. Then X fixes the axis av of the reflection

in Υ and the unique fixed point a of Υ on aΘ. By [18, (95.6)] the group X

would induce the identity both on aΘ and aH, a contradiction.

23) Finally, let T ∼= R
16. By step 16), we may assume that the complement

∇= ∆a of T acts irreducibly on Θ= T[v]. Moreover, dim∇≥ 18 by hypothe-

sis. Because of Lemma 2.3, the assertion is true whenever ∇ has a subgroup

G2, in particular, if dim∇> 24. In the case dim∇= 24, it follows from [18,

(87.7)] that ∆ does not have two fixed points. Therefore, attention can

be restricted to dim∇≤ 23. If ∇ has no subgroup G2, we exploit the fact

that in a translation plane a maximal compact subgroup Φ of ∇ has codi-
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mension at most 2 and is normal in ∇, see [18, (81.8)]. Consequently,

dimΦ≥ 16. Consider the kernel N=∇ ∩ Cs Θ=∇[u] of the action of ∇ on

Θ and the irreducible subgroup ∇̃=∇/∇[u] of AutΘ. It is a special feature

of 16-dimensional translation planes that Φ[u] is finite, see [18, (81.20)].

Hence Φ̃ =Φ/Φ[u] satisfies dim Φ̃ = dimΦ. The large subgroups in the max-

imal compact subgroup SO8R of AutΘ are listed in [18, (95.12)]. Since

G2 6 →֒ ∇, we conclude that dim Φ= 16 and that Φ′ ∼= SU4C (recall from

step 21) that SO5R 6 →֒ Φ). Moreover, Φ′ acts faithfully and irreducibly on

Θ, see [18, (95.12c)]. Hence Φ ∼= U4C, dim∇= 18, and dim∆ = 34. This

completes the proof of Theorem 1.1. ¤

3 The planes and their automorphism groups

Now let dim ∆≥ 35. If T is transitive, then dim Σ[a] > 0 and the existence of

a subgroup Spin7R in ∆ implies dimΣ ≥ 38. All such planes are described

in [18, (82.5)]. We may assume, therefore, that T[u]
∼= R7 and T[v]

∼= R8,

cf. also [18, (61.12)]. The plane P can then be coordinatized by a ‘Cartesian

field’ (O,+, •), cf. [5, XI.4.2] or [18, (24.4)]. (Such linear ternary fields with

associative addition have also been called Cartesian groups even though they are

like rings rather than groups.) If the lines of the form y = s•x + t together with

the ‘verticals’ form an affine plane and if multiplication is continuous, then, by

[18, (43.6)], the Cartesian field indeed yields a compact projective plane.

Theorem 3.1. Consider a topological Cartesian field (R,+, ∗, 1) with unit ele-

ment, and assume that (−r)∗s = − (r∗s) holds identically. Let ρ : [0,∞) ≈ [0,∞)

be a homeomorphism with ρ(1) = 1. Write each octonion x ∈ O in the form

x = ξ + x, where ξ = Re x = 1
2 (x+x) and x = Pux = 1

2 (x−x), and define a new

multiplication on O by

s ⋄ x = |s|−1s
(
|s| ∗ ξ + ρ(|s|) · x

)
for s 6= 0 and 0 ⋄ x = 0 .

Then O⋄ = (O,+, ⋄, 1) is a topological Cartesian field with unit element 1. A plane

P can be coordinatized by such a Cartesian field if and only if P satisfies the

hypotheses of Theorem 1.1 with dim ∆ ≥ 35.

Remark 3.2. 1) An analogous construction can be applied to C and to H in-

stead of O.

2) Obviously, the multiplications ⋄ and ∗ coincide on R. It follows that O⋄ is a

quasi-field if and only if ∗ is the ordinary multiplication of the reals. These

quasifields and the corresponding translation planes are discussed in [6] and

in [18, (82.4 and 5)].



16-dimensional compact projective planes 225

Proof of Theorem 3.1. Part A. Suppose first that P has the properties of The-

orem 1.1 without being a translation plane. Then dim T = 15 and ∆ has a

subgroup Υ ∼= Spin7R.

1) We may assume that ∆ = TΥ and that the translation group T[v] with center

v is transitive. As remarked above, the affine plane PW can then be coordi-

natized with respect to any quadrangle 0= a, u, v, e in the usual way (as in

[18, § 22]) by a Cartesian field O⋄ = (O,+, ⋄), where + denotes the ordi-

nary addition of the octonions. (Call to mind that each translation can be

written in the form (x, y) 7→ (x+a, y+b); hence (O,+) ∼= T[v]
∼= R

8.)

2) If u is the other fixed point of ∆, then Ξ := T[u]
∼= R

7 is Υ-invariant. Thus,

there is a 7-dimensional vector subgroup V of (O,+) such that

Ξ = {(x, y) 7→ (x+c, y) | c ∈ V }.

3) The group Υ fixes a triangle and may be identified with ∇ = ∆a. Indeed,

∇ ∼= ∆a/Ta is isomorphic to a subgroup of ∆/T ∼= Υ. Since dim∇ ≥ 20 and

Υ has no proper subgroups of small codimension, ∇ ∼= Υ. By the Mal’cev–

Iwasawa Theorem [18, (93.10)], Υ and ∇ are conjugate in ∆.

4) Because Υ induces on Ξ the group SO7R, the central involution α ∈ Υ fixes

the orbit aΞ pointwise and α is a reflection with axis au, cf. [18, (55.29)]. In

coordinates, α has the form (x, y) 7→ (x,−y) since α inverts each translation

in T[v]. This implies that (−s) ⋄ x = −(s ⋄ x) holds identically in O⋄.

5) According to [18, (96.36)], the action of Υ on the (invariant) line au is

equivalent to a linear action, and the fixed point set is homeomorphic to S1.

Moreover, Υ acts trivially on the 1-dimensional quotient space au/Ξ. There-

fore, each Ξ-orbit in au r {u} is Υ-invariant and contains a unique fixed

point of Υ.

6) Since α has center v, the group Υ acts faithfully on av. The faithful represen-

tation of Spin7R on R
8 being unique up to a linear transformation of R

8, the

line av r {v} can be identified with {0}×O in such a way that Υ preserves

the ordinary norm of O.

7) Let e be chosen on a fixed line of Υ in the pencil Lv such that a, u, v, e is a

nondegenerate quadrangle. Then the stabilizer Λ = Υe is isomorphic to G2,

and Λ fixes a one-parameter subgroup (R,+) of the vector group O, corre-

sponding to a transitive group of ‘vertical’ translations of the 2-dimensional

plane E consisting of the fixed elements of Λ. Consequently, E is coordina-

tized by a Cartesian field R∗ = (R,+, ∗). In fact, R∗ is a Cartesian subfield

of O⋄, and ∗ is the restriction of the multiplication ⋄ to R. In particular,

(−s) ∗ x = −(s ∗ x) holds for all s, x ∈ R. Since Λ fixes the coordinate

quadrangle, Λ is a group of automorphisms of O⋄.
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8) In the coordinates introduced in 1), the line ae is given by the equation

y = x. Because the group Λ fixes this line, Λ acts in the same way on both

the coordinate axes. From ΞΛ ⊆ ΞΥ = Ξ it follows that V is Λ-invariant. In

fact, V is the unique Λ-invariant complement of R in O. Hence V coincides

with the vector space Pu O of the pure elements in O. The fixed point set of

Λ in its action on O is R. Consequently, 5) implies that the fixed point set of

Υ on O×{0} is R×{0}.

9) For s 6= 0, consider the line Ls of slope s with the equation y = s⋄x and note

that s ⋄ 1 = s and that x 7→ s ⋄ x is a homeomorphism of O. If s ∈ R, then

(1, s) is a fixed point of Λ and the line Ls is Λ-invariant. Therefore, also the

stabilizer H = TLs
is Λ- invariant. It is isomorphic to R

7 by [18, (61.11c)]

and has the form

{(x, y) 7→ (x+ c, y + ζ(c)) | c ∈ Pu O},

where ζ is an R-linear endomorphism of Pu O centralizing Λ. Since the

centralizer of Λ is isomorphic to R by Schur’s Lemma, there is a number

ρ(s) ∈ R
× such that

H = {(x, y) 7→ (x+ c, y + ρ(s)·c) | c ∈ Pu O}.

10) For s ∈ R, each point (ξ, s ∗ ξ) with ξ ∈ R belongs to Ls by 7). Hence

step 9) yields

Ls = {(ξ + x, s ∗ ξ + ρ(s)·x | ξ ∈ R ∧ x ∈ Pu O} .

In the following, the other lines will be obtained by applying transformations

ϕ ∈ Υ to the lines Ls with real s.

11) The group Υ acts on O×O in the same way as on the Moufang plane with

the same point set. By 6) this is true for {0}×O because R
8 and O have

been identified accordingly. The subgroup Λ acts identically on {0}×O and

O×{0}, see 8). Since the centralizer of the action of Λ on Pu O is the center

of GL7R, the action of Υ on O×{0} is uniquely determined by the restriction

to Λ and the fact that Υ fixes R×{0}.

12) The group Υ is transitive on the spheres of constant norm in {0}×O, and

for any s 6= 0 there is some ϕ ∈ Υ such that ϕ(e) = (1, |s|−1s). The map

ϕ has the form (x, y) 7→ (Ax,By) with A,B ∈ SO8R such that for some

C ∈ SO8R the equation B(s ·x) = Cs ·Ax holds identically with respect to

the ordinary multiplication · of the octonions, see [18, (17.12–16)]. Hence

Bx = |s|−1s ·Ax and ϕ maps L|s| onto the set
{
(ξ + Ax, |s|−1s (|s| ∗ ξ + ρ(|s|)·Ax) | ξ ∈ R ∧ x ∈ Pu O

}
.

Writing x instead of Ax, we obtain for Ls the equation y = s ⋄ x as claimed.
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Part B. The construction in Theorem 3.1 always yields a topological Cartesian

field.

Obviously, the multiplication O×O → O : (a, x) 7→ a ⋄ x is continuous. By

[18, (43.6)] it suffices, therefore, to show that for a 6= b the maps

λa,b : x 7→ −a ⋄ x + b ⋄ x and µa,b : x 7→ x ⋄ a − x ⋄ b

are bijections of O. For each x ∈ O we write x = |x|x1 = ξ + x.

1) For c = |c| c1 ∈ O the equation µa,b(x) = c has a unique solution: in fact, by

taking norms in O, we get the condition

(|x| ∗ α − |x| ∗ β)2 + ρ(|x|)2· | a − b |2 = |c|2.

The left hand side is monotone in |x| since (R,+, ∗) is a topological Cartesian

field and therefore r 7→ r ∗ α − r ∗ β is either a continuous bijection of R or

constant. Consequently, |x| is uniquely determined by c, in particular, c = 0

implies x = 0. In all other cases, x can be obtained from |x| and c. (Note

that x1( |x| ∗ α − |x| ∗ β + ρ(|x|)(a − b) )1 = c1.)

2) Injectivity of λa,b means −a ⋄x+ b ⋄x = −a ⋄ y + b ⋄ y ⇒ a = b ∨ x = y, and

this is equivalent to injectivity of µx,y.

3) In order to obtain surjectivity, we will show in the next steps that

limx→∞ λa,b(x) = ∞ (†)

in the one-point compactification Ô of O, i.e., that λa,b has a continuous

injective extension to Ô. Such an extension is necessarily a homeomorphism,

cf. also [18, (51.19)].

4) Condition (†) is true in the Cartesian field (R,+, ∗). Hence |a| < |b| implies

limξ→∞(|b| ∗ ξ − |a| ∗ ξ) = ∞.

5) It can easily be seen that (†) holds in each of the following cases:

a = 0 ∨ b = 0, |a| = |b|, a1 = ±b1.

6) If (†) is not true in general, then there is a sequence xν such that limν→∞ xν =

∞ and for some a, b ∈ O with |a| < |b| the sequence λa,b(xν) is bounded.

Here

λa,b(xν) = b1(|b| ∗ ξν + ρ(|b|) · xν) − a1(|a| ∗ ξν + ρ(|a|) · xν) .

7) Suppose that the sequence xν is bounded. Then limν→∞ ξν = ∞, and 6)

yields limν→∞(|a| ∗ ξν)(|b| ∗ ξν)−1 = a−1
1 b1. This is a positive number of

norm 1. Hence a1 = b1 contrary to step 5). An analogous argument shows

that the ξν are unbounded. Therefore we may assume that the ξν as well as

the xν converge to ∞ in Ô.
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8) The problem can be reduced to the 2-dimensional case as follows: we have

a−1b /∈ R by step 5). The automorphism group of O is transitive on the

sphere {x ∈ O | x2 = −1} in Pu O, and we can arrange that a1b1 = c ∈ C.

Write each element x ∈ O as x = x′ + x′′ with x′ ∈ C and x′′ ∈ C
⊥, the

orthogonal complement of C in O. Then

a1λa,b(xν) =

c (|b| ∗ ξν)−|a| ∗ ξν + (cρ(|b|)−ρ(|a|)) · xν
′ + (cρ(|b|)−ρ(|a|)) · xν

′′

is a bounded sequence. Hence also the sequence (cρ(|b|)−ρ(|a|)) · xν
′′ ∈ C⊥

is bounded and therefore limν→∞ xν
′ = ∞ by step 7).

9) Let c = p + iq with p2 + q2 = 1 and put xν
′ = iην . Taking conjugates if

necessary and selecting suitable subsequences, the possibilities can be re-

duced to limν→∞ ην = +∞ and the following cases: limν→∞ ξν = +∞ or

limν→∞ ξν = −∞. The sequence

p (|b| ∗ ξν)−|a| ∗ ξν − q ρ(|b|) ην + i
(
q (|b| ∗ ξν) + p ρ(|b|) ην − ρ(|a|) ην

)

is bounded, and so are the real and the imaginary part and the following

linear combinations of these:

|b| ∗ ξν − p (|a| ∗ ξν) − q ρ(|a|) ην (1)

and q (|a| ∗ ξν) + (ρ(|b|) − p ρ(|a|)) ην . (2)

Since ρ(|b|) − p ρ(|a|) > 0, boundedness of (2) implies limν→∞ q ξν = −∞,

but then the sequence (1) would not be bounded. This proves the claim of

Part B.

Part C. Consider a projective plane P coordinatized by a topological Cartesian

field O⋄ = (O,+, ⋄) as described in Theorem 3.1. It remains to show that AutP
contains a group ∆ fixing exactly two points such that dim∆ ≥ 35.

1) Obviously, {(x, y) 7→ (x + c, y + d) | c ∈ Pu O, d ∈ O} ≤ T and dim T ≥ 15.

2) The maps (x, y) 7→ (Ax,By) of O×O such that A,B ∈ Spin7R and identi-

cally B(s ·x) = Bs ·Ax form a group Υ of automorphisms of the Moufang

plane, they satisfy A1 = 1 and hence fix the set R×{0}, cf. A), step 9) or

[18, (17.14)]. The involution (x, y) 7→ (x,−y) is a reflection in Υ[v]. Conse-

quently, Υ ∼= Spin7R acts faithfully on {0}×O and induces on Pu O×{0} the

group SO7R. It follows that

B(s ⋄ x) = Bs1(|s| ∗ ξ + ρ(|s|) ·Ax) = Bs ⋄ Ax .

Therefore Υ ≤ AutP, the group ∆ = ΥT fixes exactly the points u, v, and

dim∆ = 36. ¤
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Theorem 3.3 (Automorphism groups). Assume that the plane P satisfies the

hypotheses of Theorem 1.1 with dim∆ ≥ 35 and let Σ = AutP be the full auto-

morphism group, Σ1 its connected component. If P is not the classical Moufang

plane, then

(a) dim Σ < 40 and each of the two fixed points of ∆ is also a fixed point of Σ.

Any subgroup Υ ∼= Spin7R of Σ fixes some point a /∈ uv.

(b) If dim Σ = 39, then P is a translation plane.

(c) The plane P is a translation plane if , and only if , it can be coordinatized

by a quasi-field O⋄ as in Theorem 3.1 where ∗ is the ordinary multiplication

of the reals. In this case dim Σ = 39 if , and only if , ρ is a multiplicative

homomorphism; otherwise dim Σ = 38.

If P is not a translation plane, then the following holds:

(d) dimΣ ≤ 38 and Σ = T1ΥZ, where Z denotes the centralizer of Υ in Σ.

(e) dim Σ = 38 if , and only if , P can be coordinatized by a Cartesian field O⋄ as

in Theorem 3.1 where

r ∗ s =

{
rs (s ≥ 0)

|r|γ rs (s < 0)
for some γ > 0 ,

and ρ : [0,∞) → [0,∞) is a multiplicative homomorphism.

Proof. (a) If dimΣ ≥ 40, then P can be coordinatized by a mutation of the

octonions and Σ has no subgroup Spin7R, see [18, (82.29) and (87.7)]. We

use the same notation as in the proof of Theorem 3.1. If W σ 6= W for some

σ ∈ Σ, then Σ : ∆ ≥ dimWσT ≥ 7 and dimΣ ≥ 43. Hence WΣ = W .

The group Υ < ∆ acts effectively on W and each point z ∈ W r {u, v} has

an orbit zΥ ≈ S7. Therefore vΣ ∈ {u, v}, or again dimΣ ≥ 43. If some

σ ∈ Σ interchanges u and v, then P is a translation plane. Consider a

Levi complement Ψ in a maximal compact subgroup of Σ1. All such groups

are conjugate in Σ1, see [18, (93.10) and (94.28)]. Therefore, Ψ contains

conjugates of Υ and of Υσ. The first acts effectively on the pencil Lu
∼=

R8, the second induces a group SO7R on Lu. The central involutions in

these groups are reflections with centers v and u respectively, their axes

are Ψ-invariant, or else Ψ would contain translations by the dual of [18,

(23.20)]. Consequently, Ψ fixes some point a /∈ W , and the kernel Ψ[u] of

the action of Ψ on Lu is finite by [18, (81.20)]. It follows that Ψ is almost

simple (cf. step 18) above) and has a proper subgroup Spin7R. The list [18,

(95.10)] shows that dimΨ = 28 and then dimΣ ≥ 44, a contradiction.

Therefore Σ fixes u and v. If Spin7R ∼= Υ < Σ, then the central involution

in Υ is a reflection and Υ fixes its axis X. Any action of the group Υ
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on a space X homeomorphic to R
8 is equivalent to a linear action ([18,

(96.36)]). Hence Υ has a fixed point a ∈ X.

(b) We have Υ≤∇ := Σ 1
a and dim∇≤ 24. Put X=∇∩Cs Υ. The representation

of Υ on the Lie algebra of ∇ shows that ∇= ΥX. The group X acts effec-

tively on the two-dimensional plane E of the fixed elements of a subgroup

Λ ∼= G2 of Υ. By [18, (32.10)] and the dimension formula, dim X ≤ 2,

dim∇ = 23, and dim aΣ = 16. Since the centralizer of Spin7R in GL8R is

isomorphic to R× (cf. [18, (95.10)]), the action of ∇ on av has a kernel

∇[u] of positive dimension. By the dual of [18, (61.20b)] it follows that

dimT[u] = 8.

(c) See [18, (82.5)].

(d) For each σ ∈ Σ there is some τ ∈ T1 such that aστ is Υ-invariant, cf. step 5)

of the proof of Theorem 3.1. Put στ = ω−1. It follows that Υω ≤∇. Since

∇= ΥX and all Levi complements in a connected group are conjugate (cf.

[18, (94.28c)]), we have Υω = Υ. Each automorphism of Υ is an inner

automorphism (see [20, 6.]). Consequently, ω ∈ ΥZ.

(e) Consider Λ < Υ and the subplane E consisting of the fixed elements of Λ

as in step 7) of the proof of Theorem 3.1. Suppose that dim Σ = 38. Then

dimZ = 2 by part (d), and dim Cs Λ = 3 as Λ also centralizes the vertical

translations of E . Moreover, Cs∆ Λ contains the central reflection α ∈ Υ

(with axis au). It follows from (♦) that Cs Λ acts effectively on E . By as-

sumption, P is not a translation plane; hence ∗ is not the ordinary multipli-

cation and E is not classical. All planes E admitting a 3-dimensional group

are known explicitly; this classification is summarized in [18, (38.1)], de-

tails are given in [18, §§ 34–37]. As the group fixes the points u and v, the

results just mentioned show that E is a plane over a Cartesian field of the

kind described in [18, (37.3)], which includes the Moulton planes. The re-

flection α induces on E the map (x, y) 7→ (x,−y). This is a collineation of E
if and only if (−s) ∗x = −(s ∗x) holds identically in R. An easy calculation

shows that the multiplication ∗ of [18, (37.3)] has indeed the form given in

(e), cf. also [18, (37.4 and 6)]. In particular, E is not a Moulton plane. Note

that the product ∗ is associative whenever the right or the middle factor is

positive.

The group Z1 induces on E the maps (x, y) 7→ ((r ∗ x)·s, y·s) with r, s > 0.

It can easily be seen that (x, y) 7→ (x·s, y·s), s< 0, x, y ∈O yields always

an automorphism of P. An element ζ ∈ Z which induces on E a map

(x, y) 7→ (r ∗ x, y) has necessarily the form (x, y) 7→ (ϕr(x), y) because Υ

acts irreducibly on T[v]
∼= R

8. This means that ζ is a homology with axis

av. Hence ζ(x, y) = (r ⋄ x, y). This map is a collineation if and only if
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a ⋄ (r ⋄ x) = (a ⋄ r) ⋄ x for all a, x ∈ O. Equivalently (since |a| ∗ r = |ar|),

|a| ∗ (r ∗ ξ) + ρ(|a|)ρ(r) x = (|a| ∗ r) ∗ ξ + ρ(|ar|) x .

Thus ρ is multiplicative. Conversely, the conditions in (e) imply dim Z = 2

and hence dimΣ = 38. If ρ is not multiplicative, then dimΣ = 37. ¤

The case dim Σ = 37. With the same notation as before, we have dimΣ = 37

if and only if Cs Λ acts on E as a 2-dimensional group with 2 fixed points. All

planes over a proper Cartesian field (R,+, ∗) admitting such a group have been

described. They depend on the choice of some suitable real functions rather

than a few real parameters. By [18, (32.8)], a quasi-field (R,+, ∗) is in fact a

field; therefore, E is not a translation plane. Only the Cartesian fields of those

planes E can be used which admit a reflection with an axis au. The connected

component Γ of Cs Λ is isomorphic to R
2 or to the linear group

L2 := {(t 7→ at + b) : R → R | a > 0}.

In the first case, Γau fixes each line of E through the point u, because Γ contains

all translations of E with center v. As E is not a translation plane, Γau induces a

one-parameter group of homologies of E with center u and a common axis. The

point a may be chosen on this axis; then Γ fixes exactly the elements u, v, av, uv

of E , and av is the axis of the elements of Γau. The planes E of this type have

been determined by Groh [4], cf. [10, 2.7.11.3].

Homologies of E with axis av have the form γr : (x, y) 7→ (r ∗ x, y). The

group Γau coincides with the connected component Z1 of Z = Cs Υ because Z

fixes the axis au of the unique central involution α∈Υ, and we have Z1 ≤ Γ

and dimZ = dim Γau. An element ζr ∈ Cs Υ which induces on E the homology

γr fixes necessarily each point on the line av because the centralizer of the

representation of Υ on R8 consists of real dilatations. Consequently ζr can be

written as (x, y) 7→ (r ⋄x, y), and the product ⋄ is associative whenever the

middle factor is a positive real number. The latter condition reduces to the

identity ρ(r ∗ s) = ρ(r)ρ(s) for r, s > 0. An admissible multiplication ∗ and a

homeomorphism ρ yield a plane P with dim Σ ≥ 37 if and only if ρ satisfies this

identity.

If Γ ∼= L2, there are the following possibilities:

(a) Γ acts transitively on the set of points not on uv,

(b) Γ fixes exactly two points and two lines,

(c) Γ fixes exactly two lines and more than two points, or dually

(c̃) Γ fixes exactly the points u and v and more than two lines through v.



232 H. Hähl • H. Salzmann

(a) Planes with a group Γ satisfying (a) have been studied by Groh [3], cf. [10,

2.7.5.2]. Those planes E which are symmetric with respect to a horizontal

line can be described in the half-plane (0,∞)×R as follows: Let L be the

graph of a strictly convex continuous function f : (0,∞) → R such that

limx→0 f(x) = ∞, limx→∞ f(x) = −∞, limx→∞ f ′(x) = 0 .

Then the images of L under the maps (x, y) 7→ (rx, ry+b), r ∈ R×, b ∈ R

together with the horizontals and verticals are the lines of an affine plane

of type (a). This can easily be translated into a representation in R
2 by

means of a Cartesian field R∗. In the latter representation Γ contains a one-

parameter subgroup of maps γt : (x, y) 7→ (ϕt(x), ety) acting transitively on

the X-axis. A line of slope s is mapped by γt onto a line of slope σt(s). The

fact that γt is a collineation of E is equivalent to the identity

et(s ∗ x) = σt(s) ∗ ϕt(x) − σt(s) ∗ ϕt(0) . (∗)

It remains to find a necessary and sufficient condition for γt to be induced

by a map ζt of O
2 in Z. (Note that again Γau is the connected component

of Z = Cs Υ since Z1 ≤ Γau and both groups are homeomorphic to R.)

From ζt ∈ Cs Υ it follows that ζt has the form (x, y) 7→ (ϕt(ξ)+ eκtx, ety).

Expressing the fact that the line y = s ⋄ x is mapped to a line

ety = c ⋄ (ϕt(ξ) + eκtx) − d

yields the condition

et|s|−1s
(
|s| ∗ ξ + ρ(|s|) x

)
= |c|−1c

(
|c| ∗ ϕt(ξ) − |c| ∗ ϕt(0) + eκtρ(|c|) x

)
.

If 0< s∈R, then |s|= s and c= σt(|s|)= |c|; comparison of the pure compo-

nents of the condition above gives

etρ(|s|) = eκtρ(σt(|s|)) . (†)

In general, we obtain in the same way that et|s|−1s ρ(|s|)= |c|−1c eκtρ(|c|),
which by (†) means |s|−1s eκt ρ(σt(|s|))= |c|−1c eκtρ(|c|). Passing to abso-

lute values, one obtains |c|= σt(|s|) and then |s|−1s= |c|−1c, so that finally

c = σt(|s|)|s|−1s. Because of (∗) and (†), the condition above is then satis-

fied.

We remark that κ 6= 1, or else σt(s) = s for all s > 0 and then also for

all s < 0, and E would be a translation plane. In particular, ρ is uniquely

determined by E .

(b) The classification of these planes has been obtained by Schellhammer [19],

cf. [10, 2.7.11.4]. For each multiplication ∗ defining such a plane there
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exists a one-parameter group of automorphisms γt : (x, y) 7→ (ϕt(x), ety) of

E fixing a and mapping a line of slope s to a line of slope σt(s), where

et(s ∗ x)= σt(s) ∗ ϕt(x). An extension of γt to a map ζt ∈ Cs Υ has again the

form (x, y) 7→ (ϕt(ξ)+ eκtx, ety). As before, this is a collineation of P if and

only if condition (†) holds. Each pair of an admissible multiplication ∗ and

a homeomorphism ρ which satisfies (†) yields a plane P with dimΣ ≥ 37.

(c) The description of the possible planes E is due to Pohl [9], cf. [10, 2.7.11.5].

The same calculations as in case (b) lead once more to condition (†). By

assumption there is some slope r > 0 such that σt(r)= r. It follows that

κ= 1 and then σt(|s|)= |s| for each s. As ΥΓa ≤ ∇, the central involution

α ∈ Υ (with axis au) commutes with the maps γt. Consequently, γt also

fixes the negative real slopes, and Γa induces homologies of E . Thus, planes

with dimΣ≥ 37 can be obtained in case (c) if and only if Γ fixes the line uv

pointwise; there is no condition on the homeomorphism ρ. The orbits of Γa

in E are rays beginning at the origin in the real affine plane. It follows that E
can be described by a Cartesian field multiplication of the form s∗x= sx for

x≥ 0 and s ∗ x=µ(s)x for x < 0, where µ : R ≈ R with µ(−s)= − µ(s) and

µ(1)= 1. Planes of this kind have been called generalized Moulton planes.

(c̃) Though the planes E are dual to those of case (c), the conclusions are not

because of the different rôles of the central reflection α ∈ Υ. As in the pre-

vious cases, the conditions et(s ∗x)= σt(s) ∗ϕt(x) and (†) must be satisfied.

In case (c̃) we may assume that ϕt(1)= 1. Then we obtain σt(s)= ets for

all s∈R, and (†) reduces to the condition that ρ is a multiplicative homo-

morphism.

Examples are given by the multiplications

s ∗ x =

{
sx (x ≤ 1)

s(|s|mx + 1 − |s|m) (x ≥ 1) ,
(m > 0).

In fact, ϕt(x)= x for x≤ 1 and ϕt(x)= e−mtx+ 1− e−mt for x≥ 1.

Thus in each of the cases there are large families of planes P with a group of

dimension 37 fixing exactly two points and the line joining them.
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[5] Th. Grundhöfer and H. Salzmann, Locally compact double loops and

ternary fields, in Quasigroups and Loops: Theory and Applications,

O. Chein, H. O. Pflugfelder, J. D. H. Smith (eds.), Chapter XI, pp. 313–

355, Berlin, Heldermann, 1990.
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[21] H. Völklein, Transitivitätsfragen bei linearen Liegruppen, Arch. Math. 36

(1981), 23–34.

Hermann Hähl
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