Innovations in Incidence Geometry Volume 11 (2010), Pages 139–155 ISSN 1781-6475

Deletions, extensions, and reductions of elliptic semiplanes

Marien Abreu Martin Funk Domenico Labbate Vito Napolitano[∗]

Abstract

We present three constructions which transform some symmetric configuration K of type n_k into new symmetric configurations of types $(n + 1)_k$, or n_{k-1} , or $((\lambda - 1)\mu)_{k-1}$ if $n = \lambda\mu$. Applying them to Desarguesian elliptic semiplanes, an infinite family of new configurations comes into being, whose types fill large gaps in the parameter spectrum of symmetric configurations.

Keywords: configurations, elliptic semiplanes, 1-factors, Martinetti extensions MSC 2000: 05B30

1 The parameter spectrum of configurations of type n_k

For notions from incidence geometry and graph theory, we refer to [10] and [7], respectively.

A *(tactical) configuration of type* (n_r, b_k) is a finite incidence structure consisting of a set of n points and a set of b lines such that (i) each line is incident with exactly k points and each point is incident with exactly r lines, (ii) two distinct points are incident with at most one line. If $n = b$ (or equivalently $r = k$), the configuration is called *symmetric* and its type is indicated by the symbol n_k .

The *deficiency* of a symmetric configuration C is $d := n - k^2 + k - 1$. The deficiency is zero if and only if C is a finite projective plane.

[∗]This research was carried out by M. Abreu, D. Labbate and V. Napolitano within the activity of INdAM-GNSAGA and supported by the Italian Ministry MIUR.

Symmetric configurations of a given type n_k may or may not exist, and we call the type n_k *realizable* or *unrealizable*, accordingly.

Let Σ be the set of realizable types n_k . We refer to Σ as the *parameter spectrum of symmetric configurations*. The parameter spectrum is often displayed by means of the parameters d and k , see Table 1, which gives some more information [14, 20]: in row k, the entries n, (n) and (n) indicate types n_k for which the answer to the existence problem of a configuration is positive, undecided and negative, respectively (cf. [14, 18, 19, 3, 13, 22]).

$k\backslash d$	$\mathbf{0}$		$\overline{2}$	3	4	5	6	7	8	9
3:	7	8	9	10	11	12	13	14	15	16
4 :	13	14	15	16	17	18	19	20	21	22
5 :	21	(22)	23	24	25	26	27	28	29	30
6:	31	(32)	(33)	34	35	36	37	38	39	40
7:	(43)	(44)	45	(46)	(47)	48	49	50	51	52
8 :	57	(58)	(59)	(60)	(61)	(62)	63	64	65	66
9:	73	(74)	(75)	(76)	(77)	78	(79)	80	81	82
10:	91	(92)	(93)	(94)	(95)	(96)	(97)	98	(99)	(100)
11:	(111)	(112)	(113)	(114)	(115)	(116)	(117)	(118)	(119)	120
12:	133	(134)	135	(136)	(137)	(138)	(139)	(140)	(141)	(142)

Table 1: The parameter spectrum of symmetric configurations

In the lower left triangle of Σ , the existence of instances is highly in doubt. As far as they exist, *elliptic semiplanes* dominate the region. Recall that an *elliptic semiplane of order* ν is a configuration of type $n_{\nu+1}$ satisfying the following axiom of parallels: given a non-incident point-line pair (p, l) , there exists at most one line l' through p parallel to l (i.e. l and l' are not concurrent) and at most one point p' on l parallel to p (i.e. p and p' are not collinear). Dembowski [10] provided a classification of elliptic semiplanes in types called O, C, L, D and B , which we will use in the sequel.

Consider any finite projective plane of order n. An *anti-flag* is a non-incident point-line pair (p,l). The *pencil (of lines) through a point* is the set of lines that are incident with that point. By removing from a projective plane P an antiflag (p, l) as well as the pencil through p and all the points on l, we obtain an elliptic semiplane ${\cal L}$ of type L [10] which is a configuration of type $(q^2-1)_q$ and deficiency $q - 2$. Since projective planes of order q exist for each prime-power q, this construction furnishes an infinite family of configurations of type $(q^2-1)_q$. If $P = PG(2, q)$ is Desarguesian, the corresponding Desarguesian semiplane of type L will be denoted by \mathcal{L}_q . We call them the *anti-flag* examples. They lie in the second upper diagonal of Σ (called *anti-flag diagonal*).

A *flag* of a projective plane of order *n* is a point-line pair (p, l) with $p \mid l$. By removing from a projective plane P a flag (p, l) as well as the pencil through p and all the points on l, we obtain an elliptic semiplane C of type C [10] which is a configuration of type $(q^2)_q$ with deficiency $q-1$. This construction furnishes an infinite family of configurations of type $(q^2)_q$. If $\mathcal{P} = PG(2, q)$ is Desarguesian, the corresponding Desarguesian semiplane of type C will be denoted by C_q . We call them the *flag* examples. They lie in the third upper diagonal of Σ (called *flag diagonal*).

There is a third series of elliptic semiplanes furnishing an instance for every $n = q^4 - q$, namely those of type D (cf. [10]), denoted by \mathcal{D}_{q^2} and obtained as complements of Baer subplanes in PG $(2, q^2)$, the first four being configurations of types 14_4 , 78_9 , 252_{16} , and 620_{25} .

For the region above the flag diagonal existence results are known for many types (cf. e.g. [14, 20, 23]), due to the following construction: a *Golomb ruler* of order k is a set of k positive integers $(\alpha_1, \ldots, \alpha_k)$ such that all the differences $|\alpha_i-\alpha_j|$ are pairwise distinct for $i, j = 1, \ldots, k$ with $i \neq j$. Its *length* is the largest integer $\alpha_i.$ A Golomb ruler is $\emph{optimal}$ if it has the smallest length among Golomb rulers of order k. Let l_k be the length of an optimal Golomb ruler of order k. In [14] Gropp pointed out that for each $k \geq 3$ there exists an integer $n_0(k)$ such that there is a configuration n_k for all $n \ge n_0(k)$, namely $n_0(k) := 2l_k + 1$ where l_k is the length of an optimal Golomb ruler of order k . By a *Golomb configuration* we mean a configuration of type $(2l_k + 1)_k$ coming from Gropp's construction. So far, values for the lengths of optimal Golomb rules have been computed for $4 \leq k \leq 25$, cf. e.g. [6, 24] and they give rise to Golomb configurations 7_3 , 13_4 , 23_5 , 35_6 , 51_7 , 69_8 , 89_9 , 111_{10} , 145_{11} , 171_{12} , 213_{13} , 255_{14} , 303_{15} , 355_{16} , 399_{17} , 433₁₈, 493₁₉, 567₂₀, 667₂₁, 713₂₂, 745₂₃, 851₂₄, and 961₂₅. Denote by $d_G(k)$ the deficiency of a Golomb configuration of type $(2l_k + 1)_k$. Hence, for each $d(k) \geq d_G(k)$, there exists a configuration with parameters $(k, d(k))$.

In Figure 1, page 142, we exhibit the region Δ of Σ bounded by the anti-flag diagonal below and the Golomb configurations above, for which the existence of symmetric configurations is unknown.

In this paper, we introduce three operations, namely 1*-factor deletions* (Section 2), *Martinetti extensions* (Section 3), and *reductions of polysymmetric configurations* (Section 4), that allow to construct new configurations. In particular, as our main result, we prove the existence of three infinite classes of symmetric configurations

for feasible values of α , β , and γ (cf. Theorems 6.2, 6.3, 6.4).

As a consequence, we prove that at least 1752 (out of a total number of 2176)

types n_k with $(k^2)_k \leq n_k < (2l_k+1)_k$ and $7 \leq k \leq 25$, whose deficiencies lie in the region Δ indicated in Table 2, are realizable (Section 7).

Figure 1: Small numbers indicate the deficiencies of configurations in the flag, diagonal and white dots the non-existence of such configurations. Big numbers indicate the deficiencies of Golomb configurations.

1**-Factor deletions in Levi graphs**

Let $K = (P, L, |)$ be a configuration of type n_k . The *Levi graph* (or *incidence graph*) $\Lambda(\mathcal{K})$ of $\mathcal K$ has vertex set $V(\Lambda(\mathcal{K})) = P \cup L$ such that two vertices $p \in P$ and $l \in L$ are adjacent if and only if $p \mid l$ (cf. [8, 15]). It is well known that $\Lambda(\mathcal{K})$ is a bipartite k-regular graph of girth ≥ 6 on $2n$ vertices. Vice versa, each such graph determines either a self-dual configuration of type n_k or a pair of non-isomorphic configurations, dual to each other.

A corollary to the famous Marriage Theorem by Ph. Hall [16] states: *every* k*-regular bipartite graph* Λ *is* 1*-factorable* (cf. e.g. [17, Theorem 3.2]). This implies that the edge set $E(\Lambda)$ can be partitioned into a union of k pairwise disjoint 1-factors F_i , $i = 1, \ldots, k$.

Let Λ be the Levi graph of some configuration $\mathcal K$ of type n_k and choose a 1-factor F_i of Λ , for some $i \in \{1, ..., k\}$. Let $\Lambda^{(1F)}$ be the subgraph of Λ with vertex set $V(\Lambda^{(1F)}) = V(\Lambda)$ and edge set $E(\Lambda^{(1F)}) = E(\Lambda) \backslash E(F_i)$. Obviously, $\Lambda^{(1F)}$ is a $(k\!-\!1)$ -regular bipartite graph on $2n$ vertices, which can be seen as the Levi graph of some configuration of type n_{k-1} . Since we are only interested in its type n_{k-1} being realizable, any such configuration will be denoted by $\mathcal{K}^{(1F)}$ and referred to as a configuration *obtained from* K *by a* 1*-factor deletion*.

This construction can be reiterated ν times for some $\nu \in \{1, \ldots, k-3\}$, for pairwise distinct 1-factors belonging to a fixed 1-factorisation of Λ. We denote the resulting configuration by $\mathcal{K}^{(\nu F)}$.

If we embed the parameter spectrum of symmetric configurations Σ into $\mathbb{R}^2,$ the realizable types n_k , n_{k-1} , ..., n_3 lie on a parabola since, for fixed n and k, the deficiency of the type $n_{k-\nu}$ seen as a function of $\nu = 0, \ldots, k-3$ reads

$$
d(k - \nu) = -\nu^2 + (2k - 1)\nu + d(k)
$$

where $d(k) = n - k^2 + k - 1$ is the deficiency of K and does not depend on ν . The vertex of the parabola is the point $(\frac{1}{2}, (k - \frac{1}{2})^2 + d(k))$, which lies outside of Σ . Hence distinct types out of $\{n_k, n_{k-1}, \ldots, n_3\}$ have distinct deficiencies.

3 Parallel flags in configurations and Martinetti extensions

Two distinct points (lines) of a configuration $\mathcal{K} = (P, L, \mathcal{K})$ are said to be *parallel* if there is no line (point) incident with both of them. We extend this concept and call two flags (p_1, l_1) and (p_2, l_2) , such that $p_1 \neq p_2$ and $l_1 \neq l_2$, *parallel* if both $\{p_1, p_2\}$ and $\{l_1, l_2\}$ make up pairs of parallel elements. A family of pairwise parallel flags in a configuration of type n_k is said to be a *hyperpencil* if it has cardinality $k - 1$.

Definition 3.1. Let $K = (P, L, \mathbf{I})$ be a configuration of type n_k and

$$
\mathcal{H} = \{(p_i, l_i) : p_i \mid l_i \text{ for } i = 1, \dots, k-1\}
$$

a hyperpencil of parallel flags in K. Then the *Martinetti extension* K_H of K is the incidence structure obtained from K by

- (i) deleting the incidences $p_i | l_i$, for $i = 1, ..., k 1$,
- (ii) adding a new flag, say (p_H, l_H) ,
- (iii) adding the new incidences $p_i \mid l_H$ and $p_H \mid l_i$ for $i = 1, \ldots, k 1$.

Remark 3.2. The case $k = 3$ has already been pointed out by Martinetti [21].

The following is a special case of [11, Proposition 2.5].

Proposition 3.3. *If* K *is a configuration of type* n_k *, then* K_H *is a configurations of type* $(n+1)_k$.

Given a configuration K of type n_k with a suitable hyperpencil of parallel flags, we are only interested in the existence of Martinetti extensions of K as configurations having realizable type $(n+1)_k$. Therefore any such configuration will be denoted by $\mathcal{K}^{(1M)}$.

Next we investigate the possibilities to iterate this construction.

Definition 3.4. Let K be a configuration of type n_k . Two hyperpencils

$$
\mathcal{F} = \{(r_i, l_i) : r_i | l_i \text{ for } i = 1, ..., k-1\} \text{ and } \mathcal{G} = \{(s_i, m_i) : s_i | m_i \text{ for } i = 1, ..., k-1\}
$$

of parallel flags are disjoint if all involved elements r_i, s_i and l_i, m_i are distinct in pairs.

Corollary 3.5. Let K be a configuration of type n_k and \mathcal{F}, \mathcal{G} be two disjoint hy*perpencils of parallel flags. Then* $(K_{\mathcal{F}})_{\mathcal{G}}$ *is isomorphic to* $(K_{\mathcal{G}})_{\mathcal{F}}$ *and is of type* $(n+2)_k$.

Proof. It is enough to apply $[11,$ Proposition 2.5].

Accordingly, any configuration obtained from a configuration K of type n_k by ν Martinetti extensions will be denoted by $\mathcal{K}^{(\nu M)}.$

4 Reducing polysymmetric configurations

Let A be a square $(0, 1)$ -matrix. We call A *doubly* k-stochastic if there are k entries 1 in each row and column. Recall that, with each permutation π in the symmetric group S_{μ} , we can associate its *permutation matrix* $P_{\pi} = (p_{ij})_{1 \le i,j \le \mu}$ which is defined by $p_{ij} = 1$ if $\pi(i) = j$, and $p_{ij} = 0$ otherwise. Distinct permutations $\pi, \rho \in S_\mu$ (as well as the corresponding permutation matrices P_π and P_{ρ}) are *disjoint* if $\pi(i) \neq \rho(i)$, for all $i = 1, \ldots, \mu$. A doubly k-stochastic $(0, 1)$ matrix is called (λ, μ) -*polysymmetric* if it admits a block matrix structure with λ square blocks in which each block is either zero or a sum of pairwise disjoint permutation matrices from S_μ .

Let K be a configuration. Fix a labelling for the points and lines of K and consider the *incidence matrix* H_K of K (cf. e.g. [10, pp. 17–20]): there is an entry 1 or 0 in position (i, j) of H_K if and only if the point p_i and the line l_j are incident or non-incident, respectively. A configuration K of type $(\lambda \mu)_k$ is said to be *polysymmetric* if it admits an incidence matrix H_K which is (λ, μ) *polysymmetric.* Obviously, H_K is doubly k-stochastic.

A concise representation for the incidence matrices of polysymmetric configurations can be obtained by the following Definition 4.1 and Proposition 4.2 which are generalizations of notions presented in [13]:

Definition 4.1. (i) A subset $S \subseteq S_\mu$ is *admissible* if its elements are pairwise disjoint. For $1 \leq i, j \leq \lambda$, let $S_{i,j}$ be a collection of admissible subsets of S_{μ} such that

$$
\sum_{i=1}^{\lambda}|S_{i,j}|=k=\sum_{j=1}^{\lambda}|S_{i,j}|
$$

for some k. Then the array $S = (S_{i,j})$ is called S_μ -scheme of rank k and *order* λ . An S_μ -scheme is called *quasi-simple of excess* ϵ if for each $1 \leq i \leq \lambda$ there is exactly one $j_i \in \{1, \ldots, \lambda\}$ such that $|S_{i,j_i}| = \epsilon = k - \lambda + 1$, and $|S_{i,j}| = 1$ for all $j \in \{1, \ldots, \lambda\} \setminus \{j_i\}.$

(ii) For $S \subseteq S_\mu$, we define $P(S) = \sum_{\pi \in S} P_\pi$. If $S = \emptyset$ then $P(S)$ is the zero matrix of order μ . If $\mathcal{S} = (S_{i,j})$ is an \mathcal{S}_{μ} -scheme, then the *blow up* of \mathcal{S} is the block matrix $A(S) = (\mathcal{P}(S_{i,j}))$.

Proposition 4.2. *Each doubly k-stochastic* (λ, μ) *-polysymmetric* $(0, 1)$ *-matrix* A *can be represented by an* S_{μ} *-scheme* $S = (S_{i,j})$ *of rank k and order* λ *and, conversely, each* Sµ*-scheme* S *of rank* k *and order* λ *induces a doubly* k*-stochastic* (λ, μ) -polysymmetric $(0, 1)$ -matrix $A(S)$.

Consider the cyclic subgroup of S_μ generated by the permutation (12 ... μ). We can identify this subgroup with the group \mathbb{Z}_{μ} of integers modulo μ , using the monomorphism

$$
i\in\mathbb{Z}_\mu\quad\mapsto\quad(1\quad 2\quad\ldots\quad \mu)^i\ \in\ \mathcal{S}_\mu.
$$

Thus, an S_μ -scheme all of whose entries belong to the subgroup generated by the permutation $(1 2 ... \mu)$ can be rewritten with entries in \mathbb{Z}_{μ} and will be called a \mathbb{Z}_{μ} -scheme. This definition of a \mathbb{Z}_{μ} -scheme is equivalent to the one given in [13].

Definition 4.3. Let $S = (S_{i,j})$ be a quasi-simple S_μ -scheme of order λ , rank k, and excess ϵ . If $\epsilon = 1$ choose any (i, j) with $1 \le i, j \le \lambda$. If $\epsilon \ne 1$ choose (i, j) such that either $S_{i,j} = \emptyset$ or $|S_{i,j}| > 1$. A *reduced* S_{μ} -scheme $S^{(i,j)}$ is an S_{μ} -scheme of order $\lambda - 1$, rank $k - 1$, and excess ϵ obtained from S by deleting the i^{th} row and the j^{th} column.

Proposition 4.4. Let S be a quasi-simple S_u -scheme of order λ , rank k, and *excess* ϵ *such that its blow up represents a polysymmetric configuration. Then the* blow-up of the reduced \mathcal{S}_{μ} -scheme $\mathcal{S}^{(i,j)}$ is a polysymmetric configuration of type $((\lambda - 1)\mu)_{k-1}.$

Proof. This follows from Proposition 4.2 and Definition 4.3. □

Hence, by Proposition 4.4, the process of reducing quasi-simple S_μ -schemes can be iterated. In particular, if S represents a polysymmetric configuration K of type $(\lambda \mu)_k$, iterated applications of Proposition 4.4 gives rise to a series of configurations of realizable types $((\lambda - \nu)\mu)_{k-\nu}$ for $\nu = 1, ..., \lambda - 1$. We denote any such configuration by $\mathcal{K}^{(\nu R)}$, since we are only interested in the reduced configurations as instances having realizable types $((\lambda - \nu)\mu)_{k-\nu}$.

If we embed the parameter spectrum of symmetric configurations Σ in \mathbb{R}^2 , the reduced polysymmetric configurations lie on a parabola. In fact, for fixed λ, μ , and k, the deficiency of the type $((\lambda - \nu)\mu)_{k-\nu}$ as a function of $\nu = 0, \dots, \lambda - 1$ reads

$$
d(k - \nu) = -\nu^2 + (2k - \mu - 1)\nu + d(k)
$$

where $d(k) = \lambda \mu - k^2 + k - 1$ is the deficiency of K and does not depend on *v*. The vertex of this parabola is the point $\left(\frac{\mu+1}{2}, \frac{(2k-\mu-1)^2}{2} + d(k)\right)$ that lies inside Σ. Hence configurations $\mathcal{K}^{(\nu R)}$ with distinct types may have one and the same deficiency.

5 Desarguesian elliptic semiplanes

In [1] and [2] we have found concise representations for incidence matrices of elliptic semiplanes of types C, L and D, for which in this section we describe how such representations can be read as \mathcal{S}_q , \mathcal{S}_{q-1} and \mathbb{Z}_{q^2+q+1} -schemes, respectively.

Notation 5.1. For elliptic semiplanes of types C and L we need modified multiplication and addition tables for $GF(q)$.

Let q be a fixed prime power and label the elements g_1, \ldots, g_q of $GF(q)$ in such a way that $g_1 = 1$ and $g_q = 0$. Let M'_q be the matrix of order $q - 1$

which represents the multiplication table of the multiplicative group $GF(q)^* =$ $GF(q) \setminus \{0\}$:

$$
M'_q := (m_{i,j})
$$
 with $m_{i,j} := g_i g_j$ for $i, j = 1, ..., q - 1$.

Similarly, let A'_q be the matrix of order q which represents the difference table of the additive group $GF(q)^+$:

$$
A'_q := (a_{i,j})
$$
 with $a_{i,j} := -g_i + g_j$ for $i, j = 1, ..., q$.

Finally, define the matrices

$$
M_q := \left(\begin{array}{c|c} & 0 \\ M'_q & \vdots \\ \hline 0 \dots 0 & 0 \end{array}\right) \quad \text{and} \quad A_q := \left(\begin{array}{c|c} & 1 \\ A'_q & \vdots \\ \hline 1 \dots 1 & 0 \end{array}\right)
$$

of orders q and $q + 1$, respectively.

With each element g of $GF(q)$, we associate an element $\pi_g \in S_q$: let

$$
(P_g^+)_{i,j} := \begin{cases} 1 & \text{if } a_{i,j} = g \text{ in } A'_q \\ 0 & \text{otherwise} \end{cases}
$$

be the *position matrix of the element* g *in* A'_q *.* Since P_g^+ is a permutation matrix of order q, there exists $\pi_g \in \mathcal{S}_q$ such that $P_g^+ = P_{\pi_g}$.

Similarly, with each element g of $GF(q) \setminus \{0\}$, we associate an element $\rho_g \in$ S_{q-1} as follows: let

$$
(P_g^*)_{i,j} := \begin{cases} 1 & \text{if } m_{i,j} = g \text{ in } M'_q \\ 0 & \text{otherwise} \end{cases}
$$

be the *position matrix of the element* g *in* M'_{q} *.* Again, P^*_{g} is a permutation matrix of order $q-1$, and hence there exists $\rho_g \in \mathcal{S}_{q-1}$ such that $P_g^* = P_{\rho_g}$.

Substituting each entry g by $\{\pi_g\}$, the matrix M_q over GF(q) becomes a quasisimple \mathcal{S}_q -scheme \mathcal{M}_q^+ , of rank q , order q , and excess 1. Similarly, substituting each entry $g \neq 0$ by $\{\rho_g\}$, and each 0 by \emptyset , the matrix A_q over $GF(q)$ becomes a quasi-simple \mathcal{S}_{q-1} -scheme \mathcal{A}_q^* , of rank q, order $q+1$ and excess 0.

The following two propositions have been proved, with a slightly different notation, in [1] and [2].

Proposition 5.2. *The blow up of* \mathcal{M}_q^+ *is a polysymmetric incidence matrix for the* Desarguesian elliptic semiplane \mathcal{C}_q of type C , and \mathcal{M}_q^+ is a quasi-simple \mathcal{S}_q -scheme *of rank q, order q, and excess 1, representing* C_q .

Proposition 5.3. *The blow up of* A[∗] q *is a polysymmetric incidence matrix for the Desarguesian elliptic semiplane* L^q *of type* L*, and* A[∗] q *is a quasi-simple* Sq−1*-scheme of rank* q, order $q + 1$ and excess 0, representing \mathcal{L}_q .

Notation 5.4. We need a representation for Desarguesian projective planes PG(2, q^2) in terms of a \mathbb{Z}_{q^2+q+1} -scheme. To this purpose recall the following:

- (i) each finite Desarguesian projective plane $PG(2, q^2)$ admits a tactical decomposition into $q^2 - q + 1$ copies of a Baer subplane isomorphic to PG(2, q);
- (ii) each finite Desarguesian projective plane of order q is cyclic and can be represented by a perfect difference set $D_q = \{s_0, \ldots, s_q\}$ modulo q^2+q+1 [5], which gives rise to a \mathbb{Z}_{q^2+q+1} -scheme of rank $q+1$, order 1 and excess $q + 1$, namely the scheme consisting of the unique entry $\{s_0, \ldots, s_q\}$ of cardinality $q + 1$.

Recall also that a *circulant matrix* $Circ(c_0, c_1, \ldots, c_{q-1})$ is the matrix $C = (c_{i,j})$, of order q, where $c_{i,j} = c_{j-i}$ (indices taken modulo q) [9].

For $q = 2, \ldots, 5$ consider the following perfect difference sets:

$$
D_2 = \{0, 1, 3\};
$$
 $D_3 = \{0, 1, 4, 6\};$ $D_4 = \{0, 1, 4, 14, 16\};$
 $D_5 = \{0, 1, 6, 18, 22, 29\}.$

In these four cases, by a computer search we have found that the incidence matrices of PG $(2,q^2)$ admit a concise representation as a circulant quasi-simple \mathbb{Z}_{q^2+q+1} -scheme of order q^2-q+1 , rank q^2+1 and excess $q+1$:

 $C_2 = \text{Circ}(D_2, 6, 6); \quad C_3 = \text{Circ}(D_3, 12, 8, 11, 11, 8, 12);$ $C_4 = \text{Circ}(D_4, 3, 20, 6, 12, 17, 5, 5, 17, 12, 6, 20, 3);$ $C_5 = \text{Circ}(D_5, 4, 5, 24, 13, 21, 28, 23, 7, 17, 26, 26, 17, 7, 23, 28, 21, 13, 24, 5, 4).$

Remark 5.5. The perfect difference sets in the main diagonal of these \mathbb{Z}_{q^2+q+1} -schemes highlight a decomposition of PG(2, q^2) into Baer subplanes.

6 Families of configurations obtained from elliptic semiplanes

In this section, we obtain new symmetric configurations by applying reductions of polysymmetric configurations, Martinetti extensions, and 1-factor deletions to Desarguesian elliptic semiplanes.

Reductions of schemes and 1-factor deletions can always be performed (within the obvious arithmetic bounds), while Martinetti extensions depend on the existence of parallel flags. The next lemma shows when a symmetric configuration, represented by a quasi-simple scheme, does have a set of parallel flags and how to choose such a set.

Lemma 6.1. Let C be an $(mq)_k$ configuration whose incidence matrix is the blow*up* $A(\mathcal{M})$ *of a quasi-simple* S_q -scheme $\mathcal{M} = (M_{i,j})$ *, of order q, rank q and excess* $\epsilon \leq 1$ *. Label the points and lines of C,* p_1, \ldots, p_{mq} *and* l_1, \ldots, l_{mq} *, with respect to the rows and columns of A(M). Let* $M_{i,j} = \sigma \in S_q$ *, for some* $i, j \in \{1, \ldots, m\}$ *, and consider the set*

$$
\mathcal{F}_{\sigma} = \{ (p_{(i-1)q+r}, l_{(j-1)q+\sigma(r)}) : r = 1, ..., q \}.
$$

Then the set \mathcal{F}_{σ} *is a set of q pairwise parallel flags in C.*

Proof. Let $M_{i,j} = \sigma \in S_q$ be the entry (i,j) of M. By definition of $A(\mathcal{M})$, the entry $A(\mathcal{M})_{((i-1)q+r,(j-1)q+\sigma(r))} = 1$ for each $r = 1, \ldots, q$. Therefore \mathcal{F}_{σ} is indeed a set of q flags. Now we show that they are pairwise parallel. Suppose that for some $s, t \in \{1, ..., q\}$ with $s \neq t$, the points $p_{(i-1)q+s}$ and $p_{(i-1)q+t}$ were joined by some line, say l_u , for some $u \in \{1, \ldots, mq\}$. Then there would be an entry 1 in positions $((i - 1)q + s, u)$ and $((i - 1)q + t, u)$ of $A(M)$; by the Euclidean algorithm $u = xq + u'$ with $u' < q$; put $y := x$ and $v := q$ if $u' = 0$, as well as $y := x - 1$ and $v := u'$ otherwise; then the blow-up of $M_{i,y}$ would have two entries 1 in its v^{th} column and no longer be only just one permutation matrix, a contradiction, since M is quasi-simple of excess $\epsilon \leq 1$. Analogously it can be shown that any two distinct lines $l_{(i-1)q+1}, \ldots, l_{(i-1)q+q}$ never meet. $□$

Theorem 6.2. *Let* C_q *be a Desarguesian elliptic semiplane of type C. Then, for each* $\alpha \in \{0,\ldots,q-3\}$, $\beta \in \{0,\ldots,q-\alpha\}$, and $\gamma \in \{0,\ldots,q-\alpha-3\}$, there exists a configuration $\mathcal{C}_q^{(\alpha R)(\beta M)(\gamma F)}$ of type $(q^2-\alpha q+\beta)_{q-\alpha-\gamma}.$

Proof. By Proposition 5.2, $M := \mathcal{M}_q^+$ is a quasi-simple \mathcal{S}_q -scheme of order q, rank q, and excess 1, representing an incidence matrix of C_q . Let \mathcal{M}_{α} be the quasi-simple S_q -scheme of excess 1 obtained by deleting α rows and columns of M. Then, by Proposition 4.4, the configuration $C_q^{(\alpha R)}$ whose incidence matrix is the blow-up of \mathcal{M}_{α} has type $((q - \alpha)q)_{q-\alpha}$. Since we deal only with configurations of type n_k with $k \geq 3$, the range of α is bounded by $q - 3$.

Next, we show that Martinetti extensions can be performed on the configuration $\mathcal{C}_q^{(\alpha R)}$. We choose β entries $\sigma_1,\ldots,\sigma_\beta$ in the quasi-simple \mathcal{S}_q -scheme \mathcal{M}_α of excess 1, no two of them in the same row or column. By Lemma 6.1, each set \mathcal{F}_{σ_i} is a set of q pairwise parallel flags in $\mathcal{C}_q^{(\alpha R)}$. Thus choosing, say the first $q - \alpha - 1$ flags

$$
\{(p_{(i-1)q+m}, l_{(j-1)q+\sigma(m)}) : m=1,\ldots,q-\alpha-1\}
$$

of \mathcal{F}_{σ_i} we get a hyperpencil of parallel flags in $\mathcal{C}_q^{(\alpha R)}$, and by Definition 3.1 we may perform the Martinetti extension on $\mathcal{C}_q^{(\alpha R)}.$ The way in which we have chosen the β entries in \mathcal{M}_{α} guarantees, by Definition 3.4 and Corollary 3.5 that we can simultaneously perform $\beta \leq q - \alpha$ such Martinetti extensions. Clearly, the resulting configuration $C_q^{(\alpha R)(\beta M)}$ has type $((q - \alpha)q + \beta)_{q-\alpha}$. Finally, we apply a finite number γ of 1-factor deletions on $\mathcal{C}_q^{(\alpha R)(\beta M)}$, for $\gamma \in \{0,\ldots,q-\alpha-3\}$. The resulting configuration $\mathcal{C}_q^{(\alpha R)(\beta M)(\gamma F)}$ has type $(q^2 - \alpha q + \beta)_{q-\alpha-\gamma}$.

Theorem 6.3. Let \mathcal{L}_q be a Desarguesian elliptic semiplane of type L. Then, for *each* $\alpha \in \{0,\ldots,q-3\}$, $\beta \in \{0,\ldots,q-\alpha\}$, and $\gamma \in \{0,\ldots,q-\alpha-3\}$, there exists a configuration ${\cal L}_q^{(\alpha R)(\beta M)(\gamma F)}$ of type $((q+1-\alpha)(q-1)+\beta)_{q-\alpha-\gamma}.$

Proof. Proposition 5.3 states that $\mathcal{N} := \mathcal{A}_q^*$ is a quasi-simple \mathcal{S}_{q-1} -scheme of order $q + 1$, rank q, and excess 0, representing an incidence matrix of \mathcal{L}_q . Reordering rows and columns, if necessary, we may suppose that the zero entries lie in the main diagonal of N. Let \mathcal{N}_{α} be the quasi-simple \mathcal{S}_{q} -scheme of excess 0, obtained by deleting, say the last α rows and columns of \hat{N} . Then, by Proposition 4.4, the configuration $\mathcal{L}_q^{(\alpha R)}$ whose incidence matrix is the blow-up of \mathcal{N}_{α} has type $((q + 1 - \alpha)q)_{q-\alpha}$. Since $k \ge 3$ the range of α is bounded by $q - 3$.

Next, we apply Martinetti extensions and 1-factor deletions as in the proof of Theorem 6.2. \Box

Theorem 6.4. Let $\mathcal{P}_{q^2} := PG(2, q^2)$, let D_q be a perfect difference set modulo q^2+q+1 and suppose that \mathcal{B}_{q^2} is a circulant quasi-simple \mathbb{Z}_{q^2+q+1} -scheme of order q^2-q+1 , rank q^2+1 and excess $q+1$ which represents an incidence matrix for \mathcal{P}_{q^2} . Then for each $\alpha \in \{0,\ldots,q^2-q\}$ and $\gamma \in \{0,\ldots,q^2-\alpha-2\}$, there exists a configuration $\mathcal{D}_q^{(\alpha R)(\gamma F)}$ of type $(q^4-\alpha(q^2+q+1))_{q^2+1-\alpha-\gamma}.$

Proof. By hypothesis, \mathcal{B}_{q^2} is a circulant quasi-simple \mathbb{Z}_{q^2+q+1} -scheme of order $q^2 - q + 1$, rank $q^2 + 1$ and excess $q + 1$ which represents an incidence matrix for \mathcal{P}_{q^2} . Let \mathcal{B}_{α} be the quasi-simple \mathbb{Z}_{q^2+q+1} -scheme of excess $q+1$, obtained by deleting, say the last α rows and columns of $\mathcal{B}_{q^2}.$ Then, by Proposition 4.4, the configuration $\mathcal{P}_{a^2}^{(\alpha R)}$ $q_2^{(\alpha A)}$ whose incidence matrix is the blow-up of \mathcal{B}_{α} has type $(q^4 - \alpha(q^2 + q + 1))_{q^2 + 1 - \alpha}$. Since $k \ge 3$ the range of α is bounded by $q^2 - q$. Next, we apply 1-factor deletions as in the proof of Theorem 6.2. \Box

Remark 6.5. Reductions, Martinetti extensions, and 1-factor deletions of elliptic semiplanes give rise to configurations which, in general, are no longer elliptic semiplanes, the only exception being $\mathcal{D}_{q^2} := \mathcal{P}_{q^2}^{(1R)}$ $q^{(1R)}_q$.

7 Applications and open problems

Applying Theorems 6.2, 6.3, and 6.4, we compute all the new realizable configuration types obtained from elliptic semiplanes within region ∆ of Figure 1. For each $\alpha \in \{0, \ldots, q-3\}, \ \beta \in \{0, \ldots, q-\alpha\}, \$ and $\gamma \in \{0, \ldots, q-\alpha-3\},$ Theorems 6.2 and 6.3 imply that the configurations types $n_k = (q^2 - \alpha q + q^2)$ $(\beta)_{q-\alpha-\gamma}$ and $n_k = ((q+1-\alpha)(q-1)+\beta)_{q-\alpha-\gamma}$ are realizable. The types $133_{11}, 183_{13}, 307_{17}, 381_{19}, 553_{23}$ are realizable as a 1-factor deletion $\mathcal{P}_q^{(1F)}$ of the finite Desarguesian projective plane P_q with $q = 11, 13, 17, 19, 23$. Theorem 6.4 and the explicit representation of \mathcal{P}_{q^2} (see Section 5) support the following types:

$$
231_{15}, 210_{14}, 189_{13} : P_{16}^{((\nu+1)R)} \text{ for } \nu = 1, 2, 3
$$

589₂₄, 558₂₃, 434₁₉, 403₁₈ : $\mathcal{P}_{25}^{((\nu+1)R)} \text{ for } \nu = 1, 2, 6, 7$

For $7 \leq k \leq 25$, the types lying in Δ that become realizable through our methods are listed in the following table:

\mathbf{k}	k^2-1	intervals of realizable types n_k	$(2l_k+1)_k$
$\overline{7}$	48	$48_7 \dots 50_7$	51 ₇
8	63	63_868_8	69 ₈
9	80	809889	899
10	99	110_{10}	111_{10}
11	120	120_{11} 133 ₁₁	145_{11}
12	143	$156_{12} \ldots 170_{12}$	171_{12}
13	168	$168_{13} \ldots 183_{13}; 189_{13}; 208_{13} \ldots 212_{13}$	213_{13}
14	195	210_{14} ; 224_{14} 254_{14}	255_{14}
15	224	231_{15} ; 240_{15} 302_{15}	303_{15}
16	255	$255_{16} \dots 354_{16}$	355_{16}
17	288	$288_{17} \ldots 307_{17}$; $323_{17} \ldots 380_{17}$; $391_{17} \ldots 398_{17}$	399_{17}
18	323	$342_{18} \ldots 380_{18}$; 403_{18} ; $414_{18} \ldots 432_{18}$	433_{18}
19	360	$360_{19} \ldots 381_{19}$; 434_{19} ; $437_{19} \ldots 492_{19}$	493_{19}
20	399	$460_{20} \ldots 566_{20}$	567_{20}
21	440	$483_{21} \dots 666_{21}$	66721
22	483	$506_{22} \ldots 712_{22}$	713_{22}
23	528	$528_{23} \ldots 553_{23}$; 558_{23} ; $575_{23} \ldots 744_{23}$	745_{23}
24	575	$589_{24}; 600_{24} \ldots 850_{24}$	85124
25	624	$624_{25} \ldots 650_{25}$; $675_{25} \ldots 960_{25}$	961 ₂₅

Table 2: Realizable types for $7 \leq k \leq 25$ obtained through our methods

Funk has found configurations of types 107_{10} , 108_{10} , 109_{10} , 110_{10} through a computer search using *cyclic difference sets* [12]. Performing further computer searches on cyclic difference sets we have found the following configurations:

Balbuena [4] constructed configurations of types 207_{13} , 223_{14} , 238_{15} , 239_{15} , 574_{23} , 598_{24} , 599_{24} , and the authors in [1] exhibited the existence of a configuration of type 231_{15} .

Taking into account all these existence results there remain the following 402 configuration types lying in region Δ , for which realizability is an open problem:

\boldsymbol{k}	$k^2 - 1$	no configuration known of type n_k	$(2l_k+1)_k$
10	99	$99_{10} \ldots 106_{10}$	111_{10}
11	120	134_{11}	145_{11}
12	143	$143_{12} \ldots 155_{12}$	171_{12}
13	168	$184_{13} \ldots 188_{13}$; $190_{13} \ldots 206_{13}$	213_{13}
14	195	$195_{14} \ldots 209_{14}$; $211_{14} \ldots 222_{14}$	255_{14}
15	224	$224_{15} \ldots 230_{15}$; $232_{15} \ldots 237_{15}$	303_{15}
16	255		355_{16}
17	288	$308_{17} \ldots 322_{17}$; $381_{17} \ldots 390_{17}$	399_{17}
18	323	$323_{18} \ldots 341_{18}$; $381_{18} \ldots 402_{18}$; $404_{18} \ldots 413_{18}$	433_{18}
19	360	$382_{19} \ldots 433_{19}$; 435_{19} ; 436_{19} ;	493_{19}
20	399	399_{20} 459 ₂₀	567_{20}
21	440	$440_{21} \ldots 482_{21}$	66721
22	483	$483_{22} \ldots 505_{22}$	713_{22}
23	528	$554_{23} \ldots 557_{23}; 559_{23} \ldots 573_{23}$	745_{23}
24	575	$575_{24} \ldots 588_{24}$; $590_{24} \ldots 597_{24}$	851_{24}
25	624	$651_{25} \ldots 674_{25}$	961_{25}

Table 3: Configurations for which realizability remains unknown in ∆

Figure 2 on page 153 illustrates how the gaps are bounded parabolically and that they are closely related to the distribution of prime powers.

References

- [1] **M. Abreu**, **M. Funk**, **D. Labbate** and **V. Napolitano**, On (minimal) regular graphs of girth 6, *Australasian J. Combin.* **35** (2006), 119–132.
- [2] , A (0, 1)-matrix framework for elliptic semiplanes, *Ars Combin.* **88** (2008), 175–191.
- [3] **R. D. Baker**, An elliptic semiplane, *J. Combin. Theory Ser. A* **25** (1978), 193–195.
- [4] **C. Balbuena**, Incidence matrices of projective planes and some regular bipartite graphs of girth 6 with few vertices, *SIAM J. Discrete Math.* **22** (2008), 1351–1363.
- [5] **L. D. Baumert**, *Cyclic Difference Sets*, Springer, Berlin-Heidelberg-New York, 1971.

Figure 2: Region Δ including our new results

- [6] **G. S. Bloom**, **S. W. Golomb**, **in** *Numbered Complete Graphs, Unusual Rulers, and Assorted Applications. Theory and Applications of Graphs* (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976), Lecture Notes in Math. **642**, Springer, Berlin-Heidelberg-New York (1978), pp. 53–65.
- [7] **J. A. Bondy** and **U. S. R. Murty**, *Graph Theory with Applications*, North Holland, New York-Amsterdam-London, 1976.
- [8] **H. S. M. Coxeter**, Self-dual configurations and regular graphs, *Bull. Amer. Math. Soc.* **56** (1950), 413–455.
- [9] **P. J. Davis**, *Circulant Matrices*, Chelsea Publ., New York, 1994.
- [10] **P. Dembowski**, *Finite Geometries*, Springer, Berlin-Heidelberg-New York, 1968 (reprint 1997).
- [11] **M. Funk**, On configurations of type n_k with constant degree of irreducibility, *J. Combin Theory Ser. A* **65** (1994), 173–201.
- [12] , Cyclic difference sets of positive deficiency, *Bull. Inst. Combin. Appl.* **53** (2008), 47–56.
- [13] **M. Funk**, **D. Labbate** and **V. Napolitano**, Tactical (de)compositions of symmetric configurations, *Discrete Math.* **309** (2009), 741–747.
- [14] **H. Gropp**, On the existence and non-existence of configurations n_k , *J. Comb. Inf. Syst. Sci.* **15** (1990), 34–48.
- [15] , Configurations and graphs, *Discrete Math.* **111** (1993), 269–276.
- [16] **Ph. Hall**, On representatives of subsets, *J. London Math. Soc.* **10** (1935), 26–30.
- [17] **D. A. Holton** and **J. Sheehan**, *The Petersen Graph*, Cambridge Univ. Press, Cambridge, 1993.
- [18] **P. Kaski** and **P. R. J. Östergård**, There exists no symmetric configuration with 33 points and line size 6, *Australasian J. Combin.* **38** (2007), 273–277.
- [19] **V. Krˇcadinac**, *Construction and Classification of Finite Structures by Computer* (in Croatian), Ph.D. Thesis, University of Zagreb, 2004.
- [20] **M. J. Lipman**, The existence of small tactical configurations, **in** *Graphs and Combinatorics* (R. A. Bari, F. Harary, eds), Lecture Notes in Math. **406**, Springer, Berlin-Heidelberg-New York (1974), pp. 319–324.
- [21] **V. Martinetti**, Sulle configurazioni piane μ_3 , *Ann. Mat.* **15** (1887), 1–26.
- [22] **R. Mathon**, Talk at the British Combinatorial Conference, 1987.
- [23] **N. S. Mendelsohn**, **P. Padmanabhan** and **B. Wolk**, Planar projective configurations I, *Note Mat.* **7** (1987), 91–112.
- [24] **J. B. Shearer**, IBM Personal communication, http://researchweb.watson.ibm.com/people/s/shearer/grtab.html.

Marien Abreu

DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÀ DEGLI STUDI DELLA BASILICATA, VIALE DELL'ATENEO LUCANO, I-85100 POTENZA, ITALY.

e-mail: marien.abreu@unibas.it

Martin Funk

DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÀ DEGLI STUDI DELLA BASILICATA, VIALE DELL'ATENEO LUCANO, I-85100 POTENZA, ITALY.

e-mail: martin.funk@unibas.it

Domenico Labbate

DIPARTIMENTO DI MATEMATICA, POLITECNICO DI BARI, VIA E. ORABONA, 4, I-70125 BARI, ITALY. *e-mail*: labbate@poliba.it

Vito Napolitano

DIPARTIMENTO DI INGEGNERIA CIVILE, FACOLTÀ DI INGEGNERIA, SECONDA UNIVERSITÀ DEGLI STUDI DI NAPOLI, REAL CASA DELL'ANNUNZIATA, VIA ROMA, 29, I-81031 AVERSA (CE), ITALY. *e-mail*: vito.napolitano@unina2.it