Innovations in Incidence Geometry Volume 11 (2010), Pages 139–155 ISSN 1781-6475

Deletions, extensions, and reductions of elliptic semiplanes

Marien Abreu Martin Funk Domenico Labbate Vito Napolitano^{*}

Abstract

We present three constructions which transform some symmetric configuration \mathcal{K} of type n_k into new symmetric configurations of types $(n + 1)_k$, or n_{k-1} , or $((\lambda - 1)\mu)_{k-1}$ if $n = \lambda \mu$. Applying them to Desarguesian elliptic semiplanes, an infinite family of new configurations comes into being, whose types fill large gaps in the parameter spectrum of symmetric configurations.

Keywords: configurations, elliptic semiplanes, 1-factors, Martinetti extensions MSC 2000: 05B30

1 The parameter spectrum of configurations of type n_k

For notions from incidence geometry and graph theory, we refer to [10] and [7], respectively.

A (tactical) configuration of type (n_r, b_k) is a finite incidence structure consisting of a set of n points and a set of b lines such that (i) each line is incident with exactly k points and each point is incident with exactly r lines, (ii) two distinct points are incident with at most one line. If n = b (or equivalently r = k), the configuration is called *symmetric* and its type is indicated by the symbol n_k .

The *deficiency* of a symmetric configuration C is $d := n - k^2 + k - 1$. The deficiency is zero if and only if C is a finite projective plane.

^{*}This research was carried out by M. Abreu, D. Labbate and V. Napolitano within the activity of INdAM-GNSAGA and supported by the Italian Ministry MIUR.

Symmetric configurations of a given type n_k may or may not exist, and we call the type n_k realizable or unrealizable, accordingly.

Let Σ be the set of realizable types n_k . We refer to Σ as the *parameter spectrum of symmetric configurations*. The parameter spectrum is often displayed by means of the parameters d and k, see Table 1, which gives some more information [14, 20]: in row k, the entries n, (n) and (n) indicate types n_k for which the answer to the existence problem of a configuration is positive, undecided and negative, respectively (cf. [14, 18, 19, 3, 13, 22]).

$k\backslash d$	0	1	2	3	4	5	6	7	8	9
3:	7	8	9	10	11	12	13	14	15	16
4:	13	14	15	16	17	18	19	20	21	22
5:	21	(22)	23	24	25	26	27	28	29	30
6 :	31	(32)	(33)	34	35	36	37	38	39	40
7:	(43)	(44)	45	(46)	(47)	48	49	50	51	52
8:	57	(58)	(59)	(60)	(61)	(62)	63	64	65	66
9 :	73	(74)	(75)	(76)	(77)	78	(79)	80	81	82
10:	91	(92)	(93)	(94)	(95)	(96)	(97)	98	(99)	(100)
11:	(111)	(112)	(113)	(114)	(115)	(116)	(117)	(118)	(119)	120
12:	133	(134)	135	(136)	(137)	(138)	(139)	(140)	(141)	(142)

Table 1: The parameter spectrum of symmetric configurations

In the lower left triangle of Σ , the existence of instances is highly in doubt. As far as they exist, *elliptic semiplanes* dominate the region. Recall that an *elliptic semiplane of order* ν is a configuration of type $n_{\nu+1}$ satisfying the following axiom of parallels: given a non-incident point-line pair (p, l), there exists at most one line l' through p parallel to l (i.e. l and l' are not concurrent) and at most one point p' on l parallel to p (i.e. p and p' are not collinear). Dembowski [10] provided a classification of elliptic semiplanes in types called O, C, L, Dand B, which we will use in the sequel.

Consider any finite projective plane of order *n*. An *anti-flag* is a non-incident point-line pair (p, l). The *pencil (of lines) through a point* is the set of lines that are incident with that point. By removing from a projective plane \mathcal{P} an antiflag (p, l) as well as the pencil through p and all the points on l, we obtain an elliptic semiplane \mathcal{L} of type L [10] which is a configuration of type $(q^2 - 1)_q$ and deficiency q - 2. Since projective planes of order q exist for each prime-power q, this construction furnishes an infinite family of configurations of type $(q^2 - 1)_q$. If $\mathcal{P} = \mathsf{PG}(2,q)$ is Desarguesian, the corresponding Desarguesian semiplane of type L will be denoted by \mathcal{L}_q . We call them the *anti-flag* examples. They lie in the second upper diagonal of Σ (called *anti-flag diagonal*).

A *flag* of a projective plane of order n is a point-line pair (p, l) with $p \mid l$. By removing from a projective plane \mathcal{P} a flag (p, l) as well as the pencil through p

and all the points on l, we obtain an elliptic semiplane C of type C [10] which is a configuration of type $(q^2)_q$ with deficiency q-1. This construction furnishes an infinite family of configurations of type $(q^2)_q$. If $\mathcal{P} = \mathsf{PG}(2,q)$ is Desarguesian, the corresponding Desarguesian semiplane of type C will be denoted by C_q . We call them the *flag* examples. They lie in the third upper diagonal of Σ (called *flag diagonal*).

There is a third series of elliptic semiplanes furnishing an instance for every $n = q^4 - q$, namely those of type D (cf. [10]), denoted by \mathcal{D}_{q^2} and obtained as complements of Baer subplanes in PG(2, q^2), the first four being configurations of types 14, 789, 252₁₆, and 620₂₅.

For the region above the flag diagonal existence results are known for many types (cf. e.g. [14, 20, 23]), due to the following construction: a Golomb ruler of order k is a set of k positive integers $(\alpha_1, \ldots, \alpha_k)$ such that all the differences $|\alpha_i - \alpha_j|$ are pairwise distinct for i, j = 1, ..., k with $i \neq j$. Its *length* is the largest integer α_i . A Golomb ruler is *optimal* if it has the smallest length among Golomb rulers of order k. Let l_k be the length of an optimal Golomb ruler of order k. In [14] Gropp pointed out that for each $k \ge 3$ there exists an integer $n_0(k)$ such that there is a configuration n_k for all $n \ge n_0(k)$, namely $n_0(k) := 2l_k + 1$ where l_k is the length of an optimal Golomb ruler of order k. By a Golomb configuration we mean a configuration of type $(2l_k + 1)_k$ coming from Gropp's construction. So far, values for the lengths of optimal Golomb rules have been computed for $4 \le k \le 25$, cf. e.g. [6, 24] and they give rise to Golomb configurations 7_3 , 13_4 , 23_5 , 35_6 , 51_7 , 69_8 , 89_9 , 111_{10} , 145_{11} , 171_{12} , 213_{13} , 255_{14} , 303_{15} , 355_{16} , 399_{17} , 433_{18} , 493_{19} , 567_{20} , 667_{21} , 713_{22} , 745_{23} , 851_{24} , and 961_{25} . Denote by $d_G(k)$ the deficiency of a Golomb configuration of type $(2l_k + 1)_k$. Hence, for each $d(k) \ge d_G(k)$, there exists a configuration with parameters (k, d(k)).

In Figure 1, page 142, we exhibit the region Δ of Σ bounded by the anti-flag diagonal below and the Golomb configurations above, for which the existence of symmetric configurations is unknown.

In this paper, we introduce three operations, namely 1-factor deletions (Section 2), *Martinetti extensions* (Section 3), and *reductions of polysymmetric configurations* (Section 4), that allow to construct new configurations. In particular, as our main result, we prove the existence of three infinite classes of symmetric configurations

$\mathcal{C}_q^{(\alpha R)(\beta M)(\gamma F)}$	of type	$(q^2 - \alpha q + \beta)_{q - \alpha - \gamma} ,$
$\mathcal{L}_q^{(lpha R)(eta M)(\gamma F)}$		$((q+1-\alpha)(q-1)+\beta)_{q-\alpha-\gamma},$
$\mathcal{D}_q^{(lpha R)(\gamma F)}$		$(q^4 - \alpha(q^2 + q + 1))_{q^2 + 1 - \alpha - \gamma},$

for feasible values of α , β , and γ (cf. Theorems 6.2, 6.3, 6.4).

As a consequence, we prove that at least 1752 (out of a total number of 2176)

types n_k with $(k^2)_k \le n_k < (2l_k + 1)_k$ and $7 \le k \le 25$, whose deficiencies lie in the region Δ indicated in Table 2, are realizable (Section 7).

Figure 1: Small numbers indicate the deficiencies of configurations in the flag, diagonal and white dots the non-existence of such configurations. Big numbers indicate the deficiencies of Golomb configurations.

2 1-Factor deletions in Levi graphs

Let $\mathcal{K} = (P, L, |)$ be a configuration of type n_k . The *Levi graph* (or *incidence graph*) $\Lambda(\mathcal{K})$ of \mathcal{K} has vertex set $V(\Lambda(\mathcal{K})) = P \cup L$ such that two vertices $p \in P$ and $l \in L$ are adjacent if and only if $p \mid l$ (cf. [8, 15]). It is well known that $\Lambda(\mathcal{K})$ is a bipartite k-regular graph of girth ≥ 6 on 2n vertices. Vice versa, each such graph determines either a self-dual configuration of type n_k or a pair of

non-isomorphic configurations, dual to each other.

A corollary to the famous Marriage Theorem by Ph. Hall [16] states: *every* k-regular bipartite graph Λ is 1-factorable (cf. e.g. [17, Theorem 3.2]). This implies that the edge set $E(\Lambda)$ can be partitioned into a union of k pairwise disjoint 1-factors F_i , i = 1, ..., k.

Let Λ be the Levi graph of some configuration \mathcal{K} of type n_k and choose a 1-factor F_i of Λ , for some $i \in \{1, \ldots, k\}$. Let $\Lambda^{(1F)}$ be the subgraph of Λ with vertex set $V(\Lambda^{(1F)}) = V(\Lambda)$ and edge set $E(\Lambda^{(1F)}) = E(\Lambda) \setminus E(F_i)$. Obviously, $\Lambda^{(1F)}$ is a (k-1)-regular bipartite graph on 2n vertices, which can be seen as the Levi graph of some configuration of type n_{k-1} . Since we are only interested in its type n_{k-1} being realizable, any such configuration will be denoted by $\mathcal{K}^{(1F)}$ and referred to as a configuration obtained from \mathcal{K} by a 1-factor deletion.

This construction can be reiterated ν times for some $\nu \in \{1, \ldots, k-3\}$, for pairwise distinct 1-factors belonging to a fixed 1-factorisation of Λ . We denote the resulting configuration by $\mathcal{K}^{(\nu F)}$.

If we embed the parameter spectrum of symmetric configurations Σ into \mathbb{R}^2 , the realizable types n_k , n_{k-1} , ..., n_3 lie on a parabola since, for fixed n and k, the deficiency of the type $n_{k-\nu}$ seen as a function of $\nu = 0, \ldots, k-3$ reads

$$d(k - \nu) = -\nu^2 + (2k - 1)\nu + d(k)$$

where $d(k) = n - k^2 + k - 1$ is the deficiency of \mathcal{K} and does not depend on ν . The vertex of the parabola is the point $(\frac{1}{2}, (k - \frac{1}{2})^2 + d(k))$, which lies outside of Σ . Hence distinct types out of $\{n_k, n_{k-1}, \ldots, n_3\}$ have distinct deficiencies.

3 Parallel flags in configurations and Martinetti extensions

Two distinct points (lines) of a configuration $\mathcal{K} = (P, L, |)$ are said to be *parallel* if there is no line (point) incident with both of them. We extend this concept and call two flags (p_1, l_1) and (p_2, l_2) , such that $p_1 \neq p_2$ and $l_1 \neq l_2$, *parallel* if both $\{p_1, p_2\}$ and $\{l_1, l_2\}$ make up pairs of parallel elements. A family of pairwise parallel flags in a configuration of type n_k is said to be a *hyperpencil* if it has cardinality k - 1.

Definition 3.1. Let $\mathcal{K} = (P, L, |)$ be a configuration of type n_k and

$$\mathcal{H} = \{(p_i, l_i) : p_i \mid l_i \text{ for } i = 1, \dots, k-1\}$$

a hyperpencil of parallel flags in \mathcal{K} . Then the *Martinetti extension* $\mathcal{K}_{\mathcal{H}}$ of \mathcal{K} is the incidence structure obtained from \mathcal{K} by

- (i) deleting the incidences $p_i \mid l_i$, for i = 1, ..., k 1,
- (ii) adding a new flag, say $(p_{\mathcal{H}}, l_{\mathcal{H}})$,
- (iii) adding the new incidences $p_i \mid l_H$ and $p_H \mid l_i$ for i = 1, ..., k 1.

Remark 3.2. The case k = 3 has already been pointed out by Martinetti [21].

The following is a special case of [11, Proposition 2.5].

Proposition 3.3. If \mathcal{K} is a configuration of type n_k , then $\mathcal{K}_{\mathcal{H}}$ is a configurations of type $(n+1)_k$.

Given a configuration \mathcal{K} of type n_k with a suitable hyperpencil of parallel flags, we are only interested in the existence of Martinetti extensions of \mathcal{K} as configurations having realizable type $(n+1)_k$. Therefore any such configuration will be denoted by $\mathcal{K}^{(1M)}$.

Next we investigate the possibilities to iterate this construction.

Definition 3.4. Let \mathcal{K} be a configuration of type n_k . Two hyperpencils

$$\mathcal{F} = \{ (r_i, l_i) : r_i \mid l_i \text{ for } i = 1, \dots, k-1 \} \text{ and} \\ \mathcal{G} = \{ (s_i, m_i) : s_i \mid m_i \text{ for } i = 1, \dots, k-1 \}$$

of parallel flags are *disjoint* if all involved elements r_i , s_i and l_i , m_i are distinct in pairs.

Corollary 3.5. Let \mathcal{K} be a configuration of type n_k and \mathcal{F}, \mathcal{G} be two disjoint hyperpencils of parallel flags. Then $(\mathcal{K}_{\mathcal{F}})_{\mathcal{G}}$ is isomorphic to $(\mathcal{K}_{\mathcal{G}})_{\mathcal{F}}$ and is of type $(n+2)_k$.

Proof. It is enough to apply [11, Proposition 2.5].

Accordingly, any configuration obtained from a configuration \mathcal{K} of type n_k by ν Martinetti extensions will be denoted by $\mathcal{K}^{(\nu M)}$.

4 Reducing polysymmetric configurations

Let A be a square (0,1)-matrix. We call A doubly k-stochastic if there are k entries 1 in each row and column. Recall that, with each permutation π in the symmetric group S_{μ} , we can associate its *permutation matrix* $P_{\pi} = (p_{ij})_{1 \le i,j \le \mu}$ which is defined by $p_{ij} = 1$ if $\pi(i) = j$, and $p_{ij} = 0$ otherwise. Distinct permutations $\pi, \rho \in S_{\mu}$ (as well as the corresponding permutation matrices P_{π} and P_{ρ}) are *disjoint* if $\pi(i) \neq \rho(i)$, for all $i = 1, ..., \mu$. A doubly *k*-stochastic (0, 1)matrix is called (λ, μ) -*polysymmetric* if it admits a block matrix structure with λ square blocks in which each block is either zero or a sum of pairwise disjoint permutation matrices from S_{μ} .

Let \mathcal{K} be a configuration. Fix a labelling for the points and lines of \mathcal{K} and consider the *incidence matrix* $H_{\mathcal{K}}$ of \mathcal{K} (cf. e.g. [10, pp. 17–20]): there is an entry 1 or 0 in position (i, j) of $H_{\mathcal{K}}$ if and only if the point p_i and the line l_j are incident or non-incident, respectively. A configuration \mathcal{K} of type $(\lambda \mu)_k$ is said to be *polysymmetric* if it admits an incidence matrix $H_{\mathcal{K}}$ which is (λ, μ) -polysymmetric. Obviously, $H_{\mathcal{K}}$ is doubly k-stochastic.

A concise representation for the incidence matrices of polysymmetric configurations can be obtained by the following Definition 4.1 and Proposition 4.2 which are generalizations of notions presented in [13]:

Definition 4.1. (i) A subset $S \subseteq S_{\mu}$ is *admissible* if its elements are pairwise disjoint. For $1 \leq i, j \leq \lambda$, let $S_{i,j}$ be a collection of admissible subsets of S_{μ} such that

$$\sum_{i=1}^{\lambda} |S_{i,j}| = k = \sum_{j=1}^{\lambda} |S_{i,j}|$$

for some k. Then the array $S = (S_{i,j})$ is called S_{μ} -scheme of rank k and order λ . An S_{μ} -scheme is called *quasi-simple of excess* ϵ if for each $1 \leq i \leq \lambda$ there is exactly one $j_i \in \{1, \ldots, \lambda\}$ such that $|S_{i,j_i}| = \epsilon = k - \lambda + 1$, and $|S_{i,j}| = 1$ for all $j \in \{1, \ldots, \lambda\} \setminus \{j_i\}$.

(ii) For $S \subseteq S_{\mu}$, we define $\mathcal{P}(S) = \sum_{\pi \in S} P_{\pi}$. If $S = \emptyset$ then $\mathcal{P}(S)$ is the zero matrix of order μ . If $S = (S_{i,j})$ is an S_{μ} -scheme, then the *blow up* of S is the block matrix $A(S) = (\mathcal{P}(S_{i,j}))$.

Proposition 4.2. Each doubly k-stochastic (λ, μ) -polysymmetric (0, 1)-matrix A can be represented by an S_{μ} -scheme $S = (S_{i,j})$ of rank k and order λ and, conversely, each S_{μ} -scheme S of rank k and order λ induces a doubly k-stochastic (λ, μ) -polysymmetric (0, 1)-matrix A(S).

Consider the cyclic subgroup of S_{μ} generated by the permutation $(12 \dots \mu)$. We can identify this subgroup with the group \mathbb{Z}_{μ} of integers modulo μ , using the monomorphism

$$i \in \mathbb{Z}_{\mu} \quad \mapsto \quad (1 \quad 2 \quad \dots \quad \mu)^i \in \mathcal{S}_{\mu}.$$

Thus, an S_{μ} -scheme all of whose entries belong to the subgroup generated by the permutation $(1 \ 2 \ \dots \ \mu)$ can be rewritten with entries in \mathbb{Z}_{μ} and will be called a \mathbb{Z}_{μ} -scheme. This definition of a \mathbb{Z}_{μ} -scheme is equivalent to the one given in [13].

Definition 4.3. Let $S = (S_{i,j})$ be a quasi-simple S_{μ} -scheme of order λ , rank k, and excess ϵ . If $\epsilon = 1$ choose any (i, j) with $1 \leq i, j \leq \lambda$. If $\epsilon \neq 1$ choose (i, j) such that either $S_{i,j} = \emptyset$ or $|S_{i,j}| > 1$. A reduced S_{μ} -scheme $S^{(i,j)}$ is an S_{μ} -scheme of order $\lambda - 1$, rank k - 1, and excess ϵ obtained from S by deleting the i^{th} row and the j^{th} column.

Proposition 4.4. Let S be a quasi-simple S_{μ} -scheme of order λ , rank k, and excess ϵ such that its blow up represents a polysymmetric configuration. Then the blow-up of the reduced S_{μ} -scheme $S^{(i,j)}$ is a polysymmetric configuration of type $((\lambda - 1)\mu)_{k-1}$.

Proof. This follows from Proposition 4.2 and Definition 4.3.

Hence, by Proposition 4.4, the process of reducing quasi-simple S_{μ} -schemes can be iterated. In particular, if S represents a polysymmetric configuration \mathcal{K} of type $(\lambda \mu)_k$, iterated applications of Proposition 4.4 gives rise to a series of configurations of realizable types $((\lambda - \nu)\mu)_{k-\nu}$ for $\nu = 1, \ldots, \lambda - 1$. We denote any such configuration by $\mathcal{K}^{(\nu R)}$, since we are only interested in the reduced configurations as instances having realizable types $((\lambda - \nu)\mu)_{k-\nu}$.

If we embed the parameter spectrum of symmetric configurations Σ in \mathbb{R}^2 , the reduced polysymmetric configurations lie on a parabola. In fact, for fixed λ, μ , and k, the deficiency of the type $((\lambda - \nu)\mu)_{k-\nu}$ as a function of $\nu = 0, \ldots, \lambda - 1$ reads

$$d(k - \nu) = -\nu^{2} + (2k - \mu - 1)\nu + d(k)$$

where $d(k) = \lambda \mu - k^2 + k - 1$ is the deficiency of \mathcal{K} and does not depend on ν . The vertex of this parabola is the point $\left(\frac{\mu+1}{2}, \frac{(2k-\mu-1)^2}{2} + d(k)\right)$ that lies inside Σ . Hence configurations $\mathcal{K}^{(\nu R)}$ with distinct types may have one and the same deficiency.

5 Desarguesian elliptic semiplanes

In [1] and [2] we have found concise representations for incidence matrices of elliptic semiplanes of types C, L and D, for which in this section we describe how such representations can be read as S_q , S_{q-1} and \mathbb{Z}_{q^2+q+1} -schemes, respectively.

Notation 5.1. For elliptic semiplanes of types C and L we need modified multiplication and addition tables for GF(q).

Let q be a fixed prime power and label the elements g_1, \ldots, g_q of GF(q) in such a way that $g_1 = 1$ and $g_q = 0$. Let M'_q be the matrix of order q - 1

which represents the multiplication table of the multiplicative group $GF(q)^* = GF(q) \setminus \{0\}$:

$$M'_q := (m_{i,j})$$
 with $m_{i,j} := g_i g_j$ for $i, j = 1, \dots, q-1$.

Similarly, let A'_q be the matrix of order q which represents the difference table of the additive group $GF(q)^+$:

$$A'_q := (a_{i,j})$$
 with $a_{i,j} := -g_i + g_j$ for $i, j = 1, \dots, q$

Finally, define the matrices

$$M_q := \begin{pmatrix} & 0 \\ M'_q & \vdots \\ & 0 \\ \hline 0 \dots 0 & 0 \end{pmatrix} \text{ and } A_q := \begin{pmatrix} & 1 \\ A'_q & \vdots \\ & 1 \\ \hline 1 \dots 1 & 0 \end{pmatrix}$$

of orders q and q + 1, respectively.

With each element g of GF(q), we associate an element $\pi_g \in S_q$: let

$$(P_g^+)_{i,j} := \begin{cases} 1 & \text{if } a_{i,j} = g \text{ in } A'_q \\ 0 & \text{otherwise} \end{cases}$$

be the *position matrix of the element* g in A'_q . Since P_g^+ is a permutation matrix of order q, there exists $\pi_g \in S_q$ such that $P_g^+ = P_{\pi_g}$.

Similarly, with each element g of $GF(q) \setminus \{0\}$, we associate an element $\rho_g \in S_{q-1}$ as follows: let

$$(P_g^*)_{i,j} := \begin{cases} 1 & \text{if } m_{i,j} = g \text{ in } M'_q \\ 0 & \text{otherwise} \end{cases}$$

be the position matrix of the element g in M'_q . Again, P^*_g is a permutation matrix of order q-1, and hence there exists $\rho_g \in S_{q-1}$ such that $P^*_g = P_{\rho_g}$.

Substituting each entry g by $\{\pi_g\}$, the matrix M_q over $\mathsf{GF}(q)$ becomes a quasisimple \mathcal{S}_q -scheme \mathcal{M}_q^+ , of rank q, order q, and excess 1. Similarly, substituting each entry $g \neq 0$ by $\{\rho_g\}$, and each 0 by \emptyset , the matrix A_q over $\mathsf{GF}(q)$ becomes a quasi-simple \mathcal{S}_{q-1} -scheme \mathcal{A}_q^* , of rank q, order q + 1 and excess 0.

The following two propositions have been proved, with a slightly different notation, in [1] and [2].

Proposition 5.2. The blow up of \mathcal{M}_q^+ is a polysymmetric incidence matrix for the Desarguesian elliptic semiplane \mathcal{C}_q of type C, and \mathcal{M}_q^+ is a quasi-simple \mathcal{S}_q -scheme of rank q, order q, and excess 1, representing \mathcal{C}_q .

Proposition 5.3. The blow up of \mathcal{A}_q^* is a polysymmetric incidence matrix for the Desarguesian elliptic semiplane \mathcal{L}_q of type L, and \mathcal{A}_q^* is a quasi-simple \mathcal{S}_{q-1} -scheme of rank q, order q + 1 and excess 0, representing \mathcal{L}_q .

Notation 5.4. We need a representation for Desarguesian projective planes $PG(2, q^2)$ in terms of a \mathbb{Z}_{q^2+q+1} -scheme. To this purpose recall the following:

- (i) each finite Desarguesian projective plane $PG(2, q^2)$ admits a tactical decomposition into q^2-q+1 copies of a Baer subplane isomorphic to PG(2, q);
- (ii) each finite Desarguesian projective plane of order *q* is cyclic and can be represented by a perfect difference set D_q = {s₀,..., s_q} modulo q²+q+1 [5], which gives rise to a Z_{q²+q+1}-scheme of rank q+1, order 1 and excess q + 1, namely the scheme consisting of the unique entry {s₀,..., s_q} of cardinality q + 1.

Recall also that a *circulant matrix* $Circ(c_0, c_1, \ldots, c_{q-1})$ is the matrix $C = (c_{i,j})$, of order q, where $c_{i,j} = c_{j-i}$ (indices taken modulo q) [9].

For q = 2, ..., 5 consider the following perfect difference sets:

$$D_2 = \{0, 1, 3\}; \quad D_3 = \{0, 1, 4, 6\}; \quad D_4 = \{0, 1, 4, 14, 16\};$$
$$D_5 = \{0, 1, 6, 18, 22, 29\}.$$

In these four cases, by a computer search we have found that the incidence matrices of $PG(2,q^2)$ admit a concise representation as a circulant quasi-simple \mathbb{Z}_{q^2+q+1} -scheme of order $q^2 - q + 1$, rank $q^2 + 1$ and excess q + 1:

$$\begin{split} C_2 &= \operatorname{Circ}(D_2, 6, 6); \quad C_3 &= \operatorname{Circ}(D_3, 12, 8, 11, 11, 8, 12); \\ C_4 &= \operatorname{Circ}(D_4, 3, 20, 6, 12, 17, 5, 5, 17, 12, 6, 20, 3); \\ C_5 &= \operatorname{Circ}(D_5, 4, 5, 24, 13, 21, 28, 23, 7, 17, 26, 26, 17, 7, 23, 28, 21, 13, 24, 5, 4). \end{split}$$

Remark 5.5. The perfect difference sets in the main diagonal of these \mathbb{Z}_{q^2+q+1} -schemes highlight a decomposition of $\mathsf{PG}(2, q^2)$ into Baer subplanes.

6 Families of configurations obtained from elliptic semiplanes

In this section, we obtain new symmetric configurations by applying reductions of polysymmetric configurations, Martinetti extensions, and 1-factor deletions to Desarguesian elliptic semiplanes.

Reductions of schemes and 1-factor deletions can always be performed (within the obvious arithmetic bounds), while Martinetti extensions depend on the existence of parallel flags. The next lemma shows when a symmetric configuration, represented by a quasi-simple scheme, does have a set of parallel flags and how to choose such a set.

Lemma 6.1. Let C be an $(mq)_k$ configuration whose incidence matrix is the blowup $A(\mathcal{M})$ of a quasi-simple S_q -scheme $\mathcal{M} = (M_{i,j})$, of order q, rank q and excess $\epsilon \leq 1$. Label the points and lines of C, p_1, \ldots, p_{mq} and l_1, \ldots, l_{mq} , with respect to the rows and columns of $A(\mathcal{M})$. Let $M_{i,j} = \sigma \in S_q$, for some $i, j \in \{1, \ldots, m\}$, and consider the set

$$\mathcal{F}_{\sigma} = \{ (p_{(i-1)q+r}, l_{(j-1)q+\sigma(r)}) : r = 1, \dots, q \}.$$

Then the set \mathcal{F}_{σ} is a set of q pairwise parallel flags in C.

Proof. Let $M_{i,j} = \sigma \in S_q$ be the entry (i, j) of \mathcal{M} . By definition of $A(\mathcal{M})$, the entry $A(\mathcal{M})_{((i-1)q+r,(j-1)q+\sigma(r))} = 1$ for each $r = 1, \ldots, q$. Therefore \mathcal{F}_{σ} is indeed a set of q flags. Now we show that they are pairwise parallel. Suppose that for some $s, t \in \{1, \ldots, q\}$ with $s \neq t$, the points $p_{(i-1)q+s}$ and $p_{(i-1)q+t}$ were joined by some line, say l_u , for some $u \in \{1, \ldots, mq\}$. Then there would be an entry 1 in positions ((i-1)q+s, u) and ((i-1)q+t, u) of $A(\mathcal{M})$; by the Euclidean algorithm u = xq + u' with u' < q; put y := x and v := q if u' = 0, as well as y := x - 1 and v := u' otherwise; then the blow-up of $M_{i,y}$ would have two entries 1 in its v^{th} column and no longer be only just one permutation matrix, a contradiction, since \mathcal{M} is quasi-simple of excess $\epsilon \leq 1$. Analogously it can be shown that any two distinct lines $l_{(j-1)q+1}, \ldots, l_{(j-1)q+q}$ never meet. □

Theorem 6.2. Let C_q be a Desarguesian elliptic semiplane of type C. Then, for each $\alpha \in \{0, \ldots, q-3\}$, $\beta \in \{0, \ldots, q-\alpha\}$, and $\gamma \in \{0, \ldots, q-\alpha-3\}$, there exists a configuration $C_q^{(\alpha R)(\beta M)(\gamma F)}$ of type $(q^2 - \alpha q + \beta)_{q-\alpha-\gamma}$.

Proof. By Proposition 5.2, $\mathcal{M} := \mathcal{M}_q^+$ is a quasi-simple \mathcal{S}_q -scheme of order q, rank q, and excess 1, representing an incidence matrix of \mathcal{C}_q . Let \mathcal{M}_α be the quasi-simple \mathcal{S}_q -scheme of excess 1 obtained by deleting α rows and columns of \mathcal{M} . Then, by Proposition 4.4, the configuration $\mathcal{C}_q^{(\alpha R)}$ whose incidence matrix is the blow-up of \mathcal{M}_α has type $((q - \alpha)q)_{q-\alpha}$. Since we deal only with configurations of type n_k with $k \geq 3$, the range of α is bounded by q - 3.

Next, we show that Martinetti extensions can be performed on the configuration $C_q^{(\alpha R)}$. We choose β entries $\sigma_1, \ldots, \sigma_\beta$ in the quasi-simple S_q -scheme \mathcal{M}_α of excess 1, no two of them in the same row or column. By Lemma 6.1, each set \mathcal{F}_{σ_i} is a set of q pairwise parallel flags in $C_q^{(\alpha R)}$. Thus choosing, say the first $q - \alpha - 1$ flags

$$\{(p_{(i-1)q+m}, l_{(j-1)q+\sigma(m)}) : m = 1, \dots, q - \alpha - 1\}$$

of \mathcal{F}_{σ_i} we get a hyperpencil of parallel flags in $\mathcal{C}_q^{(\alpha R)}$, and by Definition 3.1 we may perform the Martinetti extension on $\mathcal{C}_q^{(\alpha R)}$. The way in which we have chosen the β entries in \mathcal{M}_{α} guarantees, by Definition 3.4 and Corollary 3.5 that we can simultaneously perform $\beta \leq q - \alpha$ such Martinetti extensions. Clearly, the resulting configuration $\mathcal{C}_q^{(\alpha R)(\beta M)}$ has type $((q - \alpha)q + \beta)_{q-\alpha}$. Finally, we apply a finite number γ of 1-factor deletions on $\mathcal{C}_q^{(\alpha R)(\beta M)}$, for $\gamma \in \{0, \ldots, q - \alpha - 3\}$. The resulting configuration $\mathcal{C}_q^{(\alpha R)(\beta M)(\gamma F)}$ has type $(q^2 - \alpha q + \beta)_{q-\alpha-\gamma}$.

Theorem 6.3. Let \mathcal{L}_q be a Desarguesian elliptic semiplane of type *L*. Then, for each $\alpha \in \{0, \ldots, q-3\}$, $\beta \in \{0, \ldots, q-\alpha\}$, and $\gamma \in \{0, \ldots, q-\alpha-3\}$, there exists a configuration $\mathcal{L}_q^{(\alpha R)(\beta M)(\gamma F)}$ of type $((q+1-\alpha)(q-1)+\beta)_{q-\alpha-\gamma}$.

Proof. Proposition 5.3 states that $\mathcal{N} := \mathcal{A}_q^*$ is a quasi-simple \mathcal{S}_{q-1} -scheme of order q + 1, rank q, and excess 0, representing an incidence matrix of \mathcal{L}_q . Reordering rows and columns, if necessary, we may suppose that the zero entries lie in the main diagonal of \mathcal{N} . Let \mathcal{N}_α be the quasi-simple \mathcal{S}_q -scheme of excess 0, obtained by deleting, say the last α rows and columns of \mathcal{N} . Then, by Proposition 4.4, the configuration $\mathcal{L}_q^{(\alpha R)}$ whose incidence matrix is the blow-up of \mathcal{N}_α has type $((q + 1 - \alpha)q)_{q-\alpha}$. Since $k \geq 3$ the range of α is bounded by q - 3.

Next, we apply Martinetti extensions and 1-factor deletions as in the proof of Theorem 6.2. $\hfill \Box$

Theorem 6.4. Let $\mathcal{P}_{q^2} := \mathsf{PG}(2, q^2)$, let D_q be a perfect difference set modulo $q^2 + q + 1$ and suppose that \mathcal{B}_{q^2} is a circulant quasi-simple \mathbb{Z}_{q^2+q+1} -scheme of order $q^2 - q + 1$, rank $q^2 + 1$ and excess q + 1 which represents an incidence matrix for \mathcal{P}_{q^2} . Then for each $\alpha \in \{0, \ldots, q^2 - q\}$ and $\gamma \in \{0, \ldots, q^2 - \alpha - 2\}$, there exists a configuration $\mathcal{D}_q^{(\alpha R)(\gamma F)}$ of type $(q^4 - \alpha(q^2 + q + 1))_{q^2+1-\alpha-\gamma}$.

Proof. By hypothesis, \mathcal{B}_{q^2} is a circulant quasi-simple \mathbb{Z}_{q^2+q+1} -scheme of order $q^2 - q + 1$, rank $q^2 + 1$ and excess q + 1 which represents an incidence matrix for \mathcal{P}_{q^2} . Let \mathcal{B}_{α} be the quasi-simple \mathbb{Z}_{q^2+q+1} -scheme of excess q + 1, obtained by deleting, say the last α rows and columns of \mathcal{B}_{q^2} . Then, by Proposition 4.4, the configuration $\mathcal{P}_{q^2}^{(\alpha R)}$ whose incidence matrix is the blow-up of \mathcal{B}_{α} has type $(q^4 - \alpha(q^2 + q + 1))_{q^2+1-\alpha}$. Since $k \geq 3$ the range of α is bounded by $q^2 - q$. Next, we apply 1-factor deletions as in the proof of Theorem 6.2.

Remark 6.5. Reductions, Martinetti extensions, and 1-factor deletions of elliptic semiplanes give rise to configurations which, in general, are no longer elliptic semiplanes, the only exception being $\mathcal{D}_{q^2} := \mathcal{P}_{q^2}^{(1R)}$.

7 Applications and open problems

Applying Theorems 6.2, 6.3, and 6.4, we compute all the new realizable configuration types obtained from elliptic semiplanes within region Δ of Figure 1. For each $\alpha \in \{0, \ldots, q-3\}$, $\beta \in \{0, \ldots, q-\alpha\}$, and $\gamma \in \{0, \ldots, q-\alpha-3\}$, Theorems 6.2 and 6.3 imply that the configurations types $n_k = (q^2 - \alpha q + \beta)_{q-\alpha-\gamma}$ and $n_k = ((q+1-\alpha)(q-1) + \beta)_{q-\alpha-\gamma}$ are realizable. The types $133_{11}, 183_{13}, 307_{17}, 381_{19}, 553_{23}$ are realizable as a 1-factor deletion $\mathcal{P}_q^{(1F)}$ of the finite Desarguesian projective plane \mathcal{P}_q with q = 11, 13, 17, 19, 23. Theorem 6.4 and the explicit representation of \mathcal{P}_{q^2} (see Section 5) support the following types:

$$\begin{array}{rcl} 231_{15}, 210_{14}, 189_{13} & : & \mathcal{P}_{16}^{((\nu+1)R)} & \text{for } \nu=1,2,3\\ 589_{24}, 558_{23}, 434_{19}, 403_{18} & : & \mathcal{P}_{25}^{((\nu+1)R)} & \text{for } \nu=1,2,6,7 \end{array}$$

For $7 \le k \le 25$, the types lying in Δ that become realizable through our methods are listed in the following table:

$_{k}$	$k^{2} - 1$	intervals of realizable types n_k	$(2l_k + 1)_k$
7	48	$48_7 \dots 50_7$	517
8	63	$63_8 \dots 68_8$	69 ₈
9	80	$80_9 \dots 88_9$	89 ₉
10	99	11010	111_{10}
11	120	$120_{11} \dots 133_{11}$	145_{11}
12	143	$156_{12} \dots 170_{12}$	171_{12}
13	168	$168_{13} \dots 183_{13}; 189_{13}; 208_{13} \dots 212_{13}$	213_{13}
14	195	$210_{14}; 224_{14} \dots 254_{14}$	255_{14}
15	224	$231_{15}; 240_{15} \dots 302_{15}$	303_{15}
16	255	$255_{16} \dots 354_{16}$	355_{16}
17	288	$288_{17} \dots 307_{17}; 323_{17} \dots 380_{17}; 391_{17} \dots 398_{17}$	399_{17}
18	323	$342_{18} \dots 380_{18}; 403_{18}; 414_{18} \dots 432_{18}$	433_{18}
19	360	$360_{19} \dots 381_{19}; 434_{19}; 437_{19} \dots 492_{19}$	493_{19}
20	399	$460_{20} \dots 566_{20}$	567_{20}
21	440	$483_{21} \dots 666_{21}$	667_{21}
22	483	$506_{22} \dots 712_{22}$	713_{22}
23	528	$528_{23} \dots 553_{23}; 558_{23}; 575_{23} \dots 744_{23}$	745_{23}
24	575	$589_{24}; 600_{24} \dots 850_{24}$	851_{24}
25	624	$624_{25}\ldots 650_{25};\ 675_{25}\ldots 960_{25}$	961_{25}

Table 2: Realizable types for $7 \le k \le 25$ obtained through our methods

Funk has found configurations of types 107_{10} , 108_{10} , 109_{10} , 110_{10} through a computer search using *cyclic difference sets* [12]. Performing further computer searches on cyclic difference sets we have found the following configurations:

136_{11} :	$ \{ 0, 1, 3, 7, 23, 35, 49, 73, 78, 117, 125 \}^{(135)} \\ \{ 0, 1, 3, 7, 26, 35, 43, 55, 65, 76, 92 \}^{(136)} \\ \{ 0, 1, 3, 7, 12, 43, 60, 73, 93, 112, 122 \}^{(137)} $	141_{11} :	$ \begin{array}{l} \{0,1,3,7,12,27,44,58,80,93,122\} {}^{(140)} \\ \{0,1,3,7,15,20,52,61,79,108,118\} {}^{(141)} \\ \{0,1,3,7,12,27,45,67,92,113,126\} {}^{(142)} \end{array} $
138_{11} :	$\{0, 1, 3, 7, 19, 65, 86, 91, 106, 114, 128\}(138) \\\{0, 1, 3, 7, 12, 29, 39, 62, 86, 105, 126\}^{(139)}$	143_{11} :	$ \{0, 1, 3, 7, 12, 20, 55, 70, 84, 106, 116\} (143) \{0, 1, 3, 7, 12, 22, 40, 69, 96, 113, 121\} (144) $

Balbuena [4] constructed configurations of types 207_{13} , 223_{14} , 238_{15} , 239_{15} , 574_{23} , 598_{24} , 599_{24} , and the authors in [1] exhibited the existence of a configuration of type 231_{15} .

Taking into account all these existence results there remain the following 402 configuration types lying in region Δ , for which realizability is an open problem:

k	$k^2 - 1$	no configuration known of type n_k	$(2l_k + 1)_k$
10	99	$99_{10} \dots 106_{10}$	111110
11	120	134_{11}	145_{11}
12	143	$143_{12} \dots 155_{12}$	171_{12}
13	168	$184_{13} \dots 188_{13}; 190_{13} \dots 206_{13}$	213_{13}
14	195	$195_{14} \dots 209_{14}; 211_{14} \dots 222_{14}$	255_{14}
15	224	$224_{15} \dots 230_{15}; 232_{15} \dots 237_{15}$	30315
16	255	-	355_{16}
17	288	$308_{17} \dots 322_{17}; \ 381_{17} \dots 390_{17}$	39917
18	323	$323_{18} \ldots 341_{18}; 381_{18} \ldots 402_{18}; 404_{18} \ldots 413_{18}$	43318
19	360	$382_{19} \ldots 433_{19}; 435_{19}; 436_{19};$	49319
20	399	$399_{20} \dots 459_{20}$	567_{20}
21	440	$440_{21} \dots 482_{21}$	66721
22	483	$483_{22} \dots 505_{22}$	713_{22}
23	528	$554_{23} \dots 557_{23}; 559_{23} \dots 573_{23}$	745_{23}
24	575	$575_{24} \dots 588_{24}; 590_{24} \dots 597_{24}$	85124
25	624	$651_{25} \dots 674_{25}$	961_{25}

Table 3: Configurations for which realizability remains unknown in Δ

Figure 2 on page 153 illustrates how the gaps are bounded parabolically and that they are closely related to the distribution of prime powers.

References

- [1] M. Abreu, M. Funk, D. Labbate and V. Napolitano, On (minimal) regular graphs of girth 6, *Australasian J. Combin.* **35** (2006), 119–132.
- [2] _____, A (0,1)-matrix framework for elliptic semiplanes, *Ars Combin.* 88 (2008), 175–191.
- [3] R. D. Baker, An elliptic semiplane, J. Combin. Theory Ser. A 25 (1978), 193–195.
- [4] C. Balbuena, Incidence matrices of projective planes and some regular bipartite graphs of girth 6 with few vertices, *SIAM J. Discrete Math.* 22 (2008), 1351–1363.
- [5] L. D. Baumert, Cyclic Difference Sets, Springer, Berlin-Heidelberg-New York, 1971.

Figure 2: Region Δ including our new results

- [6] G. S. Bloom, S. W. Golomb, in Numbered Complete Graphs, Unusual Rulers, and Assorted Applications. Theory and Applications of Graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976), Lecture Notes in Math. 642, Springer, Berlin-Heidelberg-New York (1978), pp. 53–65.
- [7] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, North Holland, New York-Amsterdam-London, 1976.
- [8] H. S. M. Coxeter, Self-dual configurations and regular graphs, Bull. Amer. Math. Soc. 56 (1950), 413–455.
- [9] P. J. Davis, Circulant Matrices, Chelsea Publ., New York, 1994.
- [10] **P. Dembowski**, *Finite Geometries*, Springer, Berlin-Heidelberg-New York, 1968 (reprint 1997).
- [11] **M. Funk**, On configurations of type n_k with constant degree of irreducibility, *J. Combin Theory Ser. A* **65** (1994), 173–201.

- [12] _____, Cyclic difference sets of positive deficiency, *Bull. Inst. Combin. Appl.* **53** (2008), 47–56.
- [13] M. Funk, D. Labbate and V. Napolitano, Tactical (de)compositions of symmetric configurations, *Discrete Math.* 309 (2009), 741–747.
- [14] H. Gropp, On the existence and non-existence of configurations n_k , J. Comb. Inf. Syst. Sci. 15 (1990), 34–48.
- [15] _____, Configurations and graphs, *Discrete Math.* **111** (1993), 269–276.
- [16] **Ph. Hall**, On representatives of subsets, *J. London Math. Soc.* **10** (1935), 26–30.
- [17] D. A. Holton and J. Sheehan, *The Petersen Graph*, Cambridge Univ. Press, Cambridge, 1993.
- [18] P. Kaski and P. R. J. Östergård, There exists no symmetric configuration with 33 points and line size 6, Australasian J. Combin. 38 (2007), 273–277.
- [19] V. Krčadinac, Construction and Classification of Finite Structures by Computer (in Croatian), Ph.D. Thesis, University of Zagreb, 2004.
- [20] M. J. Lipman, The existence of small tactical configurations, in *Graphs and Combinatorics* (R. A. Bari, F. Harary, eds), Lecture Notes in Math. 406, Springer, Berlin-Heidelberg-New York (1974), pp. 319–324.
- [21] V. Martinetti, Sulle configurazioni piane μ_3 , Ann. Mat. 15 (1887), 1–26.
- [22] R. Mathon, Talk at the British Combinatorial Conference, 1987.
- [23] N. S. Mendelsohn, P. Padmanabhan and B. Wolk, Planar projective configurations I, *Note Mat.* 7 (1987), 91–112.
- [24] J. B. Shearer, IBM Personal communication, http://researchweb.watson.ibm.com/people/s/shearer/grtab.html.

Marien Abreu

DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÀ DEGLI STUDI DELLA BASILICATA, VIALE DELL'ATENEO LUCANO, I-85100 POTENZA, ITALY.

e-mail: marien.abreu@unibas.it

Martin Funk

Dipartimento di Matematica e Informatica, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano, I-85100 Potenza, Italy.

e-mail: martin.funk@unibas.it

Domenico Labbate

DIPARTIMENTO DI MATEMATICA, POLITECNICO DI BARI, VIA E. ORABONA, 4, I-70125 BARI, ITALY. *e-mail*: labbate@poliba.it

Vito Napolitano

DIPARTIMENTO DI INGEGNERIA CIVILE, FACOLTÀ DI INGEGNERIA, SECONDA UNIVERSITÀ DEGLI STUDI DI NAPOLI, REAL CASA DELL'ANNUNZIATA, VIA ROMA, 29, I-81031 AVERSA (CE), ITALY. *e-mail*: vito.napolitano@unina2.it