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Abstract

We present three constructions which transform some symmetric config-

uration K of type nk into new symmetric configurations of types (n + 1)k,

or nk−1, or ((λ − 1)µ)k−1 if n = λµ. Applying them to Desarguesian ellip-

tic semiplanes, an infinite family of new configurations comes into being,

whose types fill large gaps in the parameter spectrum of symmetric config-

urations.
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1 The parameter spectrum of configurations

of type nk

For notions from incidence geometry and graph theory, we refer to [10] and

[7], respectively.

A (tactical) configuration of type (nr, bk) is a finite incidence structure consist-

ing of a set of n points and a set of b lines such that (i) each line is incident with

exactly k points and each point is incident with exactly r lines, (ii) two distinct

points are incident with at most one line. If n = b (or equivalently r = k), the

configuration is called symmetric and its type is indicated by the symbol nk.

The deficiency of a symmetric configuration C is d := n − k2 + k − 1. The

deficiency is zero if and only if C is a finite projective plane.
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Symmetric configurations of a given type nk may or may not exist, and we

call the type nk realizable or unrealizable, accordingly.

Let Σ be the set of realizable types nk. We refer to Σ as the parameter spec-

trum of symmetric configurations. The parameter spectrum is often displayed by

means of the parameters d and k, see Table 1, which gives some more informa-

tion [14, 20]: in row k, the entries n, (n) and (n) indicate types nk for which

the answer to the existence problem of a configuration is positive, undecided

and negative, respectively (cf. [14, 18, 19, 3, 13, 22]).

k\d 0 1 2 3 4 5 6 7 8 9

3 : 7 8 9 10 11 12 13 14 15 16
4 : 13 14 15 16 17 18 19 20 21 22
5 : 21 (22) 23 24 25 26 27 28 29 30
6 : 31 (32) (33) 34 35 36 37 38 39 40
7 : (43) (44) 45 (46) (47) 48 49 50 51 52
8 : 57 (58) (59) (60) (61) (62) 63 64 65 66
9 : 73 (74) (75) (76) (77) 78 (79) 80 81 82

10 : 91 (92) (93) (94) (95) (96) (97) 98 (99) (100)

11 : (111) (112) (113) (114) (115) (116) (117) (118) (119) 120
12 : 133 (134) 135 (136) (137) (138) (139) (140) (141) (142)

Table 1: The parameter spectrum of symmetric configurations

In the lower left triangle of Σ, the existence of instances is highly in doubt. As

far as they exist, elliptic semiplanes dominate the region. Recall that an elliptic

semiplane of order ν is a configuration of type nν+1 satisfying the following

axiom of parallels: given a non-incident point-line pair (p, l), there exists at

most one line l′ through p parallel to l (i.e. l and l′ are not concurrent) and at

most one point p′ on l parallel to p (i.e. p and p′ are not collinear). Dembowski

[10] provided a classification of elliptic semiplanes in types called O, C, L, D

and B, which we will use in the sequel.

Consider any finite projective plane of order n. An anti-flag is a non-incident

point-line pair (p, l). The pencil (of lines) through a point is the set of lines that

are incident with that point. By removing from a projective plane P an anti-

flag (p, l) as well as the pencil through p and all the points on l, we obtain an

elliptic semiplane L of type L [10] which is a configuration of type (q2−1)q and

deficiency q−2. Since projective planes of order q exist for each prime-power q,

this construction furnishes an infinite family of configurations of type (q2 − 1)q.

If P = PG(2, q) is Desarguesian, the corresponding Desarguesian semiplane of

type L will be denoted by Lq. We call them the anti-flag examples. They lie in

the second upper diagonal of Σ (called anti-flag diagonal).

A flag of a projective plane of order n is a point-line pair (p, l) with p | l. By

removing from a projective plane P a flag (p, l) as well as the pencil through p
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and all the points on l, we obtain an elliptic semiplane C of type C [10] which is

a configuration of type (q2)q with deficiency q−1. This construction furnishes an

infinite family of configurations of type (q2)q. If P = PG(2, q) is Desarguesian,

the corresponding Desarguesian semiplane of type C will be denoted by Cq. We

call them the flag examples. They lie in the third upper diagonal of Σ (called

flag diagonal).

There is a third series of elliptic semiplanes furnishing an instance for every

n = q4 − q, namely those of type D (cf. [10]), denoted by Dq2 and obtained as

complements of Baer subplanes in PG(2, q2), the first four being configurations

of types 144, 789, 25216, and 62025.

For the region above the flag diagonal existence results are known for many

types (cf. e.g. [14, 20, 23]), due to the following construction: a Golomb ruler

of order k is a set of k positive integers (α1, . . . , αk) such that all the differences

|αi−αj | are pairwise distinct for i, j = 1, . . . , k with i 6= j. Its length is the largest

integer αi. A Golomb ruler is optimal if it has the smallest length among Golomb

rulers of order k. Let lk be the length of an optimal Golomb ruler of order k. In

[14] Gropp pointed out that for each k ≥ 3 there exists an integer n0(k) such

that there is a configuration nk for all n ≥ n0(k), namely n0(k) := 2lk +1 where

lk is the length of an optimal Golomb ruler of order k. By a Golomb configuration

we mean a configuration of type (2lk + 1)k coming from Gropp’s construction.

So far, values for the lengths of optimal Golomb rules have been computed for

4 ≤ k ≤ 25, cf. e.g. [6, 24] and they give rise to Golomb configurations 73, 134,

235, 356, 517, 698, 899, 11110, 14511, 17112, 21313, 25514, 30315, 35516, 39917,

43318, 49319, 56720, 66721, 71322, 74523, 85124, and 96125. Denote by dG(k)

the deficiency of a Golomb configuration of type (2lk + 1)k. Hence, for each

d(k) ≥ dG(k), there exists a configuration with parameters (k, d(k)).

In Figure 1, page 142, we exhibit the region ∆ of Σ bounded by the anti-flag

diagonal below and the Golomb configurations above, for which the existence

of symmetric configurations is unknown.

In this paper, we introduce three operations, namely 1-factor deletions (Sec-

tion 2), Martinetti extensions (Section 3), and reductions of polysymmetric config-

urations (Section 4), that allow to construct new configurations. In particular,

as our main result, we prove the existence of three infinite classes of symmetric

configurations

C
(αR)(βM)(γF )
q of type (q2 − αq + β)q−α−γ ,

L
(αR)(βM)(γF )
q of type ((q + 1 − α)(q − 1) + β)q−α−γ ,

D
(αR)(γF )
q of type (q4 − α(q2 + q + 1))q2+1−α−γ ,

for feasible values of α, β, and γ (cf. Theorems 6.2, 6.3, 6.4).

As a consequence, we prove that at least 1752 (out of a total number of 2176)



142 M. Abreu • M. Funk • D. Labbate • V. Napolitano

types nk with (k2)k ≤ nk < (2lk + 1)k and 7 ≤ k ≤ 25, whose deficiencies lie in

the region ∆ indicated in Table 2, are realizable (Section 7).
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Figure 1: Small numbers indicate the deficiencies of configurations

in the flag, diagonal and white dots the non-existence of such con-

figurations. Big numbers indicate the deficiencies of Golomb config-

urations.

2 1-Factor deletions in Levi graphs

Let K = (P,L, |) be a configuration of type nk. The Levi graph (or incidence

graph) Λ(K) of K has vertex set V (Λ(K)) = P ∪ L such that two vertices p ∈ P

and l ∈ L are adjacent if and only if p | l (cf. [8, 15]). It is well known that

Λ(K) is a bipartite k-regular graph of girth ≥ 6 on 2n vertices. Vice versa, each

such graph determines either a self-dual configuration of type nk or a pair of
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non-isomorphic configurations, dual to each other.

A corollary to the famous Marriage Theorem by Ph. Hall [16] states: every

k-regular bipartite graph Λ is 1-factorable (cf. e.g. [17, Theorem 3.2]). This

implies that the edge set E(Λ) can be partitioned into a union of k pairwise

disjoint 1-factors Fi, i = 1, . . . , k.

Let Λ be the Levi graph of some configuration K of type nk and choose a

1-factor Fi of Λ, for some i ∈ {1, . . . , k}. Let Λ(1F ) be the subgraph of Λ with

vertex set V (Λ(1F )) = V (Λ) and edge set E(Λ(1F )) = E(Λ)\E(Fi). Obviously,

Λ(1F ) is a (k−1)-regular bipartite graph on 2n vertices, which can be seen as the

Levi graph of some configuration of type nk−1. Since we are only interested in

its type nk−1 being realizable, any such configuration will be denoted by K(1F )

and referred to as a configuration obtained from K by a 1-factor deletion.

This construction can be reiterated ν times for some ν ∈ {1, . . . , k − 3}, for

pairwise distinct 1-factors belonging to a fixed 1-factorisation of Λ. We denote

the resulting configuration by K(νF ).

If we embed the parameter spectrum of symmetric configurations Σ into R
2,

the realizable types nk, nk−1, . . ., n3 lie on a parabola since, for fixed n and k,

the deficiency of the type nk−ν seen as a function of ν = 0, . . . , k − 3 reads

d(k − ν) = −ν2 + (2k − 1)ν + d(k)

where d(k) = n − k2 + k − 1 is the deficiency of K and does not depend on ν.

The vertex of the parabola is the point ( 1
2 , (k − 1

2 )2 + d(k)), which lies outside

of Σ. Hence distinct types out of {nk, nk−1, . . . , n3} have distinct deficiencies.

3 Parallel flags in configurations and Martinetti

extensions

Two distinct points (lines) of a configuration K = (P,L, |) are said to be parallel

if there is no line (point) incident with both of them. We extend this concept

and call two flags (p1, l1) and (p2, l2), such that p1 6= p2 and l1 6= l2, parallel

if both {p1, p2} and {l1, l2} make up pairs of parallel elements. A family of

pairwise parallel flags in a configuration of type nk is said to be a hyperpencil if

it has cardinality k − 1.

Definition 3.1. Let K = (P,L, |) be a configuration of type nk and

H = {(pi, li) : pi | li for i = 1, . . . , k − 1}

a hyperpencil of parallel flags in K. Then the Martinetti extension KH of K is

the incidence structure obtained from K by
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(i) deleting the incidences pi | li, for i = 1, . . . , k − 1,

(ii) adding a new flag, say (pH, lH),

(iii) adding the new incidences pi | lH and pH | li for i = 1, . . . , k − 1.

Remark 3.2. The case k = 3 has already been pointed out by Martinetti [21].

The following is a special case of [11, Proposition 2.5].

Proposition 3.3. If K is a configuration of type nk, then KH is a configurations

of type (n + 1)k. ¤

Given a configuration K of type nk with a suitable hyperpencil of parallel

flags, we are only interested in the existence of Martinetti extensions of K as

configurations having realizable type (n+1)k. Therefore any such configuration

will be denoted by K(1M).

Next we investigate the possibilities to iterate this construction.

Definition 3.4. Let K be a configuration of type nk. Two hyperpencils

F = {(ri, li) : ri | li for i = 1, . . . , k − 1} and

G = {(si, mi) : si | mi for i = 1, . . . , k − 1}

of parallel flags are disjoint if all involved elements ri, si and li,mi are distinct

in pairs.

Corollary 3.5. Let K be a configuration of type nk and F ,G be two disjoint hy-

perpencils of parallel flags. Then (KF )G is isomorphic to (KG)F and is of type

(n + 2)k .

Proof. It is enough to apply [11, Proposition 2.5]. ¤

Accordingly, any configuration obtained from a configuration K of type nk

by ν Martinetti extensions will be denoted by K(νM).

4 Reducing polysymmetric configurations

Let A be a square (0, 1)-matrix. We call A doubly k-stochastic if there are k en-

tries 1 in each row and column. Recall that, with each permutation π in the

symmetric group Sµ, we can associate its permutation matrix Pπ = (pij)1≤i,j≤µ

which is defined by pij = 1 if π(i) = j, and pij = 0 otherwise. Distinct per-

mutations π, ρ ∈ Sµ (as well as the corresponding permutation matrices Pπ and



Deletions, extensions, and reductions of elliptic semiplanes 145

Pρ) are disjoint if π(i) 6= ρ(i), for all i = 1, . . . , µ. A doubly k-stochastic (0, 1)-

matrix is called (λ, µ)-polysymmetric if it admits a block matrix structure with λ

square blocks in which each block is either zero or a sum of pairwise disjoint

permutation matrices from Sµ.

Let K be a configuration. Fix a labelling for the points and lines of K and

consider the incidence matrix HK of K (cf. e.g. [10, pp. 17–20]): there is an

entry 1 or 0 in position (i, j) of HK if and only if the point pi and the line lj
are incident or non-incident, respectively. A configuration K of type (λµ)k is

said to be polysymmetric if it admits an incidence matrix HK which is (λ, µ)-

polysymmetric. Obviously, HK is doubly k-stochastic.

A concise representation for the incidence matrices of polysymmetric config-

urations can be obtained by the following Definition 4.1 and Proposition 4.2

which are generalizations of notions presented in [13]:

Definition 4.1. (i) A subset S ⊆ Sµ is admissible if its elements are pairwise

disjoint. For 1 ≤ i, j ≤ λ, let Si,j be a collection of admissible subsets of

Sµ such that
λ

∑

i=1

|Si,j | = k =
λ

∑

j=1

|Si,j |

for some k. Then the array S = (Si,j) is called Sµ-scheme of rank k and

order λ. An Sµ-scheme is called quasi-simple of excess ǫ if for each 1 ≤ i ≤ λ

there is exactly one ji ∈ {1, . . . , λ} such that |Si,ji
| = ǫ = k − λ + 1, and

|Si,j | = 1 for all j ∈ {1, . . . , λ} \ {ji}.

(ii) For S ⊆ Sµ, we define P(S) =
∑

π∈S Pπ. If S = ∅ then P(S) is the zero

matrix of order µ. If S = (Si,j) is an Sµ-scheme, then the blow up of S is

the block matrix A(S) = (P(Si,j)).

Proposition 4.2. Each doubly k-stochastic (λ, µ)-polysymmetric (0, 1)-matrix A

can be represented by an Sµ-scheme S = (Si,j) of rank k and order λ and, con-

versely, each Sµ-scheme S of rank k and order λ induces a doubly k-stochastic

(λ, µ)-polysymmetric (0, 1)-matrix A(S). ¤

Consider the cyclic subgroup of Sµ generated by the permutation (1 2 . . . µ).

We can identify this subgroup with the group Zµ of integers modulo µ, using

the monomorphism

i ∈ Zµ 7→ (1 2 . . . µ)i ∈ Sµ.

Thus, an Sµ-scheme all of whose entries belong to the subgroup generated

by the permutation (1 2 . . . µ) can be rewritten with entries in Zµ and will be

called a Zµ-scheme. This definition of a Zµ-scheme is equivalent to the one given

in [13].
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Definition 4.3. Let S = (Si,j) be a quasi-simple Sµ-scheme of order λ, rank k,

and excess ǫ. If ǫ = 1 choose any (i, j) with 1 ≤ i, j ≤ λ. If ǫ 6= 1 choose

(i, j) such that either Si,j = ∅ or |Si,j | > 1 . A reduced Sµ-scheme S(i,j) is an

Sµ-scheme of order λ − 1, rank k − 1, and excess ǫ obtained from S by deleting

the ith row and the jth column.

Proposition 4.4. Let S be a quasi-simple Sµ-scheme of order λ, rank k, and

excess ǫ such that its blow up represents a polysymmetric configuration. Then the

blow-up of the reduced Sµ-scheme S(i,j) is a polysymmetric configuration of type

((λ − 1)µ)k−1.

Proof. This follows from Proposition 4.2 and Definition 4.3. ¤

Hence, by Proposition 4.4, the process of reducing quasi-simple Sµ-schemes

can be iterated. In particular, if S represents a polysymmetric configuration K
of type (λµ)k, iterated applications of Proposition 4.4 gives rise to a series of

configurations of realizable types ((λ− ν)µ)k−ν for ν = 1, . . . , λ− 1. We denote

any such configuration by K(νR), since we are only interested in the reduced

configurations as instances having realizable types ((λ − ν)µ)k−ν .

If we embed the parameter spectrum of symmetric configurations Σ in R
2, the

reduced polysymmetric configurations lie on a parabola. In fact, for fixed λ, µ,

and k, the deficiency of the type ((λ − ν)µ)k−ν as a function of ν = 0, . . . , λ − 1

reads

d(k − ν) = −ν2 + (2k − µ − 1)ν + d(k)

where d(k) = λµ − k2 + k − 1 is the deficiency of K and does not depend on

ν. The vertex of this parabola is the point
(

µ+1
2 ,

(2k−µ−1)2

2 + d(k)
)

that lies

inside Σ. Hence configurations K(νR) with distinct types may have one and the

same deficiency.

5 Desarguesian elliptic semiplanes

In [1] and [2] we have found concise representations for incidence matrices of

elliptic semiplanes of types C, L and D, for which in this section we describe how

such representations can be read as Sq, Sq−1 and Zq2+q+1-schemes, respectively.

Notation 5.1. For elliptic semiplanes of types C and L we need modified multi-

plication and addition tables for GF(q).

Let q be a fixed prime power and label the elements g1, . . . , gq of GF(q) in

such a way that g1 = 1 and gq = 0. Let M ′
q be the matrix of order q − 1
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which represents the multiplication table of the multiplicative group GF(q)∗ =

GF(q) \ {0}:

M ′
q := (mi,j) with mi,j := gigj for i, j = 1, . . . , q − 1.

Similarly, let A′
q be the matrix of order q which represents the difference table

of the additive group GF(q)+:

A′
q := (ai,j) with ai,j := −gi + gj for i, j = 1, . . . , q.

Finally, define the matrices

Mq :=











0

M ′
q

...

0

0 . . . 0 0











and Aq :=











1

A′
q

...

1

1 . . . 1 0











of orders q and q + 1, respectively.

With each element g of GF(q), we associate an element πg ∈ Sq: let

(P+
g )i,j :=

{

1 if ai,j = g in A′
q

0 otherwise

be the position matrix of the element g in A′
q. Since P+

g is a permutation matrix

of order q, there exists πg ∈ Sq such that P+
g = Pπg

.

Similarly, with each element g of GF(q) \ {0}, we associate an element ρg ∈
Sq−1 as follows: let

(P ∗
g )i,j :=

{

1 if mi,j = g in M ′
q

0 otherwise

be the position matrix of the element g in M ′
q. Again, P ∗

g is a permutation matrix

of order q − 1, and hence there exists ρg ∈ Sq−1 such that P ∗
g = Pρg

.

Substituting each entry g by {πg}, the matrix Mq over GF(q) becomes a quasi-

simple Sq-scheme M+
q , of rank q, order q, and excess 1. Similarly, substituting

each entry g 6= 0 by {ρg}, and each 0 by ∅, the matrix Aq over GF(q) becomes a

quasi-simple Sq−1-scheme A∗
q , of rank q, order q + 1 and excess 0.

The following two propositions have been proved, with a slightly different

notation, in [1] and [2].

Proposition 5.2. The blow up of M+
q is a polysymmetric incidence matrix for the

Desarguesian elliptic semiplane Cq of type C, and M+
q is a quasi-simple Sq-scheme

of rank q, order q, and excess 1, representing Cq. ¤
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Proposition 5.3. The blow up of A∗
q is a polysymmetric incidence matrix for the

Desarguesian elliptic semiplane Lq of type L, and A∗
q is a quasi-simple Sq−1-scheme

of rank q, order q + 1 and excess 0, representing Lq. ¤

Notation 5.4. We need a representation for Desarguesian projective planes

PG(2, q2) in terms of a Zq2+q+1-scheme. To this purpose recall the following:

(i) each finite Desarguesian projective plane PG(2, q2) admits a tactical de-

composition into q2−q+1 copies of a Baer subplane isomorphic to PG(2, q);

(ii) each finite Desarguesian projective plane of order q is cyclic and can be

represented by a perfect difference set Dq = {s0, . . . , sq} modulo q2 +q+1

[5], which gives rise to a Zq2+q+1-scheme of rank q+1, order 1 and excess

q + 1, namely the scheme consisting of the unique entry {s0, . . . , sq} of

cardinality q + 1.

Recall also that a circulant matrix Circ(c0, c1, . . . , cq−1) is the matrix

C = (ci,j), of order q, where ci,j = cj−i (indices taken modulo q) [9].

For q = 2, . . . , 5 consider the following perfect difference sets:

D2 = {0, 1, 3}; D3 = {0, 1, 4, 6}; D4 = {0, 1, 4, 14, 16};

D5 = {0, 1, 6, 18, 22, 29}.

In these four cases, by a computer search we have found that the incidence

matrices of PG(2, q2) admit a concise representation as a circulant quasi-simple

Zq2+q+1-scheme of order q2 − q + 1, rank q2 + 1 and excess q + 1:

C2 = Circ(D2, 6, 6); C3 = Circ(D3, 12, 8, 11, 11, 8, 12);

C4 = Circ(D4, 3, 20, 6, 12, 17, 5, 5, 17, 12, 6, 20, 3);

C5 = Circ(D5, 4, 5, 24, 13, 21, 28, 23, 7, 17, 26, 26, 17, 7, 23, 28, 21, 13, 24, 5, 4).

Remark 5.5. The perfect difference sets in the main diagonal of these

Zq2+q+1-schemes highlight a decomposition of PG(2, q2) into Baer subplanes.

6 Families of configurations obtained from elliptic

semiplanes

In this section, we obtain new symmetric configurations by applying reductions

of polysymmetric configurations, Martinetti extensions, and 1-factor deletions

to Desarguesian elliptic semiplanes.

Reductions of schemes and 1-factor deletions can always be performed

(within the obvious arithmetic bounds), while Martinetti extensions depend on
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the existence of parallel flags. The next lemma shows when a symmetric config-

uration, represented by a quasi-simple scheme, does have a set of parallel flags

and how to choose such a set.

Lemma 6.1. Let C be an (mq)k configuration whose incidence matrix is the blow-

up A(M) of a quasi-simple Sq-scheme M = (Mi,j), of order q, rank q and excess

ǫ ≤ 1. Label the points and lines of C, p1, . . . , pmq and l1, . . . , lmq, with respect to

the rows and columns of A(M). Let Mi,j = σ ∈ Sq, for some i, j ∈ {1, . . . ,m},

and consider the set

Fσ =
{

(p(i−1)q+r , l(j−1)q+σ(r)) : r = 1, . . . , q
}

.

Then the set Fσ is a set of q pairwise parallel flags in C.

Proof. Let Mi,j = σ ∈ Sq be the entry (i, j) of M. By definition of A(M),

the entry A(M)((i−1)q+r,(j−1)q+σ(r)) = 1 for each r = 1, . . . , q. Therefore Fσ is

indeed a set of q flags. Now we show that they are pairwise parallel. Suppose

that for some s, t ∈ {1, . . . , q} with s 6= t, the points p(i−1)q+s and p(i−1)q+t

were joined by some line, say lu, for some u ∈ {1, . . . ,mq}. Then there would

be an entry 1 in positions ((i − 1)q + s, u) and ((i − 1)q + t, u) of A(M); by the

Euclidean algorithm u = xq + u′ with u′ < q; put y := x and v := q if u′ = 0,

as well as y := x − 1 and v := u′ otherwise; then the blow-up of Mi,y would

have two entries 1 in its vth column and no longer be only just one permutation

matrix, a contradiction, since M is quasi-simple of excess ǫ ≤ 1. Analogously it

can be shown that any two distinct lines l(j−1)q+1, . . . , l(j−1)q+q never meet. ¤

Theorem 6.2. Let Cq be a Desarguesian elliptic semiplane of type C. Then, for

each α ∈ {0, . . . , q − 3}, β ∈ {0, . . . , q − α}, and γ ∈ {0, . . . , q − α − 3}, there

exists a configuration C
(αR)(βM)(γF )
q of type (q2 − αq + β)q−α−γ .

Proof. By Proposition 5.2, M := M+
q is a quasi-simple Sq-scheme of order q,

rank q, and excess 1, representing an incidence matrix of Cq. Let Mα be the

quasi-simple Sq-scheme of excess 1 obtained by deleting α rows and columns

of M. Then, by Proposition 4.4, the configuration C
(αR)
q whose incidence ma-

trix is the blow-up of Mα has type ((q − α)q)q−α. Since we deal only with

configurations of type nk with k ≥ 3, the range of α is bounded by q − 3.

Next, we show that Martinetti extensions can be performed on the configu-

ration C
(αR)
q . We choose β entries σ1, . . . , σβ in the quasi-simple Sq-scheme Mα

of excess 1, no two of them in the same row or column. By Lemma 6.1, each

set Fσi
is a set of q pairwise parallel flags in C

(αR)
q . Thus choosing, say the first

q − α − 1 flags

{

(p(i−1)q+m , l(j−1)q+σ(m)) : m = 1, . . . , q − α − 1
}
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of Fσi
we get a hyperpencil of parallel flags in C

(αR)
q , and by Definition 3.1

we may perform the Martinetti extension on C
(αR)
q . The way in which we

have chosen the β entries in Mα guarantees, by Definition 3.4 and Corol-

lary 3.5 that we can simultaneously perform β ≤ q − α such Martinetti exten-

sions. Clearly, the resulting configuration C
(αR)(βM)
q has type ((q −α)q + β)q−α.

Finally, we apply a finite number γ of 1-factor deletions on C
(αR)(βM)
q , for

γ ∈ {0, . . . , q − α − 3}. The resulting configuration C
(αR)(βM)(γF )
q has type

(q2 − αq + β)q−α−γ . ¤

Theorem 6.3. Let Lq be a Desarguesian elliptic semiplane of type L. Then, for

each α ∈ {0, . . . , q − 3}, β ∈ {0, . . . , q − α}, and γ ∈ {0, . . . , q − α − 3}, there

exists a configuration L
(αR)(βM)(γF )
q of type ((q + 1 − α)(q − 1) + β)q−α−γ .

Proof. Proposition 5.3 states that N := A∗
q is a quasi-simple Sq−1-scheme of

order q + 1, rank q, and excess 0, representing an incidence matrix of Lq. Re-

ordering rows and columns, if necessary, we may suppose that the zero entries

lie in the main diagonal of N . Let Nα be the quasi-simple Sq-scheme of excess 0,

obtained by deleting, say the last α rows and columns of N . Then, by Proposi-

tion 4.4, the configuration L
(αR)
q whose incidence matrix is the blow-up of Nα

has type ((q + 1 − α)q)q−α. Since k ≥ 3 the range of α is bounded by q − 3.

Next, we apply Martinetti extensions and 1-factor deletions as in the proof of

Theorem 6.2. ¤

Theorem 6.4. Let Pq2 := PG(2, q2), let Dq be a perfect difference set modulo

q2 + q + 1 and suppose that Bq2 is a circulant quasi-simple Zq2+q+1-scheme of

order q2 − q +1, rank q2 +1 and excess q +1 which represents an incidence matrix

for Pq2 . Then for each α ∈ {0, . . . , q2−q} and γ ∈ {0, . . . , q2−α−2}, there exists

a configuration D
(αR)(γF )
q of type (q4 − α(q2 + q + 1))q2+1−α−γ .

Proof. By hypothesis, Bq2 is a circulant quasi-simple Zq2+q+1-scheme of order

q2 − q + 1, rank q2 + 1 and excess q + 1 which represents an incidence matrix

for Pq2 . Let Bα be the quasi-simple Zq2+q+1-scheme of excess q + 1, obtained

by deleting, say the last α rows and columns of Bq2 . Then, by Proposition 4.4,

the configuration P
(αR)
q2 whose incidence matrix is the blow-up of Bα has type

(q4 − α(q2 + q + 1))q2+1−α. Since k ≥ 3 the range of α is bounded by q2 − q.

Next, we apply 1-factor deletions as in the proof of Theorem 6.2. ¤

Remark 6.5. Reductions, Martinetti extensions, and 1-factor deletions of elliptic

semiplanes give rise to configurations which, in general, are no longer elliptic

semiplanes, the only exception being Dq2 := P
(1R)
q2 .
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7 Applications and open problems

Applying Theorems 6.2, 6.3, and 6.4, we compute all the new realizable con-

figuration types obtained from elliptic semiplanes within region ∆ of Figure 1.

For each α ∈ {0, . . . , q − 3}, β ∈ {0, . . . , q − α}, and γ ∈ {0, . . . , q − α − 3},

Theorems 6.2 and 6.3 imply that the configurations types nk = (q2 − αq +

β)q−α−γ and nk = ((q + 1 − α)(q − 1) + β)q−α−γ are realizable. The types

13311, 18313, 30717, 38119, 55323 are realizable as a 1-factor deletion P
(1F )
q of the

finite Desarguesian projective plane Pq with q = 11, 13, 17, 19, 23. Theorem 6.4

and the explicit representation of Pq2 (see Section 5) support the following

types:

23115, 21014, 18913 : P
((ν+1)R)
16 for ν = 1, 2, 3

58924, 55823, 43419, 40318 : P
((ν+1)R)
25 for ν = 1, 2, 6, 7

For 7 ≤ k ≤ 25, the types lying in ∆ that become realizable through our

methods are listed in the following table:

k k2 − 1 intervals of realizable types nk (2lk + 1)k

7 48 487 . . . 507 517

8 63 638 . . . 688 698

9 80 809 . . . 889 899

10 99 11010 11110

11 120 12011 . . . 13311 14511

12 143 15612 . . . 17012 17112

13 168 16813 . . . 18313; 18913; 20813 . . . 21213 21313

14 195 21014; 22414 . . . 25414 25514

15 224 23115; 24015 . . . 30215 30315

16 255 25516 . . . 35416 35516

17 288 28817 . . . 30717; 32317 . . . 38017; 39117 . . . 39817 39917

18 323 34218 . . . 38018; 40318; 41418 . . . 43218 43318

19 360 36019 . . . 38119; 43419; 43719 . . . 49219 49319

20 399 46020 . . . 56620 56720

21 440 48321 . . . 66621 66721

22 483 50622 . . . 71222 71322

23 528 52823 . . . 55323; 55823; 57523 . . . 74423 74523

24 575 58924; 60024 . . . 85024 85124

25 624 62425 . . . 65025; 67525 . . . 96025 96125

Table 2: Realizable types for 7 ≤ k ≤ 25 obtained through our methods

Funk has found configurations of types 10710, 10810, 10910, 11010 through a
computer search using cyclic difference sets [12]. Performing further computer
searches on cyclic difference sets we have found the following configurations:

13511 : {0, 1, 3, 7, 23, 35, 49, 73, 78, 117, 125}(135) 14011 : {0, 1, 3, 7, 12, 27, 44, 58, 80, 93, 122}(140)

13611 : {0, 1, 3, 7, 26, 35, 43, 55, 65, 76, 92}(136) 14111 : {0, 1, 3, 7, 15, 20, 52, 61, 79, 108, 118}(141)

13711 : {0, 1, 3, 7, 12, 43, 60, 73, 93, 112, 122}(137) 14211 : {0, 1, 3, 7, 12, 27, 45, 67, 92, 113, 126}(142)

13811 : {0, 1, 3, 7, 19, 65, 86, 91, 106, 114, 128}(138) 14311 : {0, 1, 3, 7, 12, 20, 55, 70, 84, 106, 116}(143)

13911 : {0, 1, 3, 7, 12, 29, 39, 62, 86, 105, 126}(139) 14411 : {0, 1, 3, 7, 12, 22, 40, 69, 96, 113, 121}(144)
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Balbuena [4] constructed configurations of types 20713, 22314, 23815, 23915,

57423, 59824, 59924, and the authors in [1] exhibited the existence of a configu-

ration of type 23115.

Taking into account all these existence results there remain the following 402

configuration types lying in region ∆, for which realizability is an open problem:

k k2 − 1 no configuration known of type nk (2lk + 1)k

10 99 9910 . . . 10610 11110

11 120 13411 14511

12 143 14312 . . . 15512 17112

13 168 18413 . . . 18813; 19013 . . . 20613 21313

14 195 19514 . . . 20914; 21114 . . . 22214 25514

15 224 22415 . . . 23015; 23215 . . . 23715 30315

16 255 − 35516

17 288 30817 . . . 32217; 38117 . . . 39017 39917

18 323 32318 . . . 34118; 38118 . . . 40218; 40418 . . . 41318 43318

19 360 38219 . . . 43319; 43519; 43619; 49319

20 399 39920 . . . 45920 56720

21 440 44021 . . . 48221 66721

22 483 48322 . . . 50522 71322

23 528 55423 . . . 55723; 55923 . . . 57323 74523

24 575 57524 . . . 58824; 59024 . . . 59724 85124

25 624 65125 . . . 67425 96125

Table 3: Configurations for which realizability remains unknown in ∆

Figure 2 on page 153 illustrates how the gaps are bounded parabolically and

that they are closely related to the distribution of prime powers.
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