Elation switching in real parallelisms

Esteban Diaz Norman L. Johnson
Alessandro Montinaro*

Abstract

Switching techniques are developed that produce a variety of new parallelisms in $\mathrm{PG}(3, K)$, where K is a infinite field. When K is the field of real numbers, $2^{\chi_{0}}$ mutually non-isomorphic parallelisms are constructed.

Keywords: parallelisms, deficiency one, transitive groups
MSC 2000: primary: 51E23; secondary: 51A40

1 Introduction

A parallelism of a projective space $\mathrm{PG}(3, F)$, where F is a skew field, is an equivalence relation on the set of lines satisfying the Euclidean parallel postulate. This concept originated with Clifford's work [3] in 1873, where there are two parallelisms. Indeed, there are characterizations of parallelisms admitting what are called left and right parallelisms and having certain other properties (see, e.g. the work of Karzel [11] and Karzel and Kroll [12]). More recently, there are a variety of parallelisms constructed by Betten and Riesinger over PG $(3, \mathcal{R})$, where \mathcal{R} is the field of real numbers (see [1]). Indeed, there are also a variety of real parallelisms constructed by the second author and R. Pomareda in [10]. It might be mentioned that the equivalence classes of a parallelism, called spreads, define affine translation planes in the associated four dimensional vector space over F and analysis of affine geometry then provides a strong technical device for the study of parallelisms.

[^0]So, the concept of a parallelism is quite fundamental to the study of projective geometry and especially when the parallelisms are considered over infinite fields F.

In this article, the main focus is on new constructions of parallelisms in $\mathrm{PG}(3, K)$, where K is a subfield of the field of real numbers, although the field K actually need only be an ordered field. The construction involves a replacement procedure that we term switching of spreads. The authors [5] have developed this construction process previously for the finite case. Here, we consider a completely general procedure.

Previously, one of the authors (Johnson [7]) constructed a class of parallelisms in $\operatorname{PG}(3, K)$, where K is an arbitrary field which admits a quadratic extension. This particular construction uses a central collineation group G of a Pappian spread Σ lying in the parallelism so that G also acts as a collineation group of the parallelism and where G contains the full elation group E of Σ (or rather of the associated Pappian translation plane π_{Σ}) that fixes a given line ℓ pointwise, and where G acts transitively on the remaining spreads of the parallelism. There is a classification theorem of sorts that we might mention.

Theorem 1.1 (see Johnson and Pomareda [9]). Let K be a skew field, Σ a spread in $\mathrm{PG}(3, K)$ and \mathcal{P} a partial parallelism of $\mathrm{PG}(3, K)$ containing Σ.

If \mathcal{P} admits as a collineation group the full central collineation group G of Σ with a given axis ℓ that acts two-transitive on the remaining spread lines then
(1) Σ is Pappian,
(2) \mathcal{P} is a parallelism,
(3) the spreads of $\mathcal{P}-\{\Sigma\}$ are Hall, and
(4) G acts transitively on the spreads of $\mathcal{P}-\{\Sigma\}$.
(5) Moreover, \mathcal{P} is one of the parallelisms of the construction of Johnson.

Although we are mainly interested in infinite fields here, in the finite case, any such transitive deficiency one group G must contain the full elation group E that fixes a given line ℓ. The following result of the authors improves a similar theorem of Biliotti, Jha and Johnson [2], and whose work is required in the proof of the improvement.

Theorem 1.2 (Diaz, Johnson, Montinaro [4]; see also Biliotti, Jha and Johnson [2]). Let \mathcal{P}^{-}be a deficiency one partial parallelism in $\operatorname{PG}(3, q)$ that admits a collineation group in $P \Gamma L(4, q)$ acting transitively on the spreads of the partial parallelism. Let \mathcal{P} denote the unique extension of \mathcal{P}^{-}to a parallelism. Let the fixed spread be denoted by Σ_{0} (the socle) and let the remaining $q^{2}+q$ spreads of \mathcal{P}^{-}be denoted by Σ_{i}, for $i=1,2, \ldots, q^{2}+q$.
(1) Then Σ_{0} is Desarguesian and Σ_{i} is a derived conical flock spread for $i=$ $1,2, \ldots, q^{2}+q$.
(2) Furthermore, the associated group G in $\Gamma L(4, q)$ acting on the associated Desarguesian affine plane $\pi_{\Sigma_{0}}$ fixes a line ℓ of Σ_{0} and contains the full elation group E with axis ℓ as a normal subgroup.

Returning to the more general case for an arbitrary field K, there is something of a classical construction that we now mention.

Let Σ be any Pappian spread in $\mathrm{PG}(3, K)$ and let Σ^{\prime} any spread which shares exactly a regulus R with Σ such that Σ^{\prime} is derivable with respect to R. Assume that there exists a subgroup G^{-}of the central collineation group G with fixed axis L with the following properties:
(i) Every line skew to L and not in Σ is in $\Sigma^{\prime} G^{-}$,
(ii) G^{-}is transitive on the reguli that share L, and
(iii) if g is a collineation of G^{-}such that for each $L^{\prime} \in \Sigma^{\prime}$ also $L^{\prime} g \in \Sigma^{\prime}$, then g is a collineation of Σ^{\prime}.

Let $(R g)^{*}$ denote the regulus opposite to $R g$.
Theorem 1.3 (see Johnson [7]). Under the above assumptions,

$$
\Sigma \cup\left\{\left(\Sigma^{\prime} g-R g\right) \cup(R g)^{*} ; g \in G^{-}\right\}
$$

is a parallelism of $\mathrm{PG}(3, K)$ consisting of one Pappian spread Σ and the remaining spreads derived Σ^{\prime}-spreads.

Moreover, there are some related parallelisms, called the derived parallelisms.
Theorem 1.4 (see Johnson [6]). Assume that

$$
\Sigma \cup\left\{\left(\Sigma^{\prime} g-R g\right) \cup(R g)^{*} ; g \in G^{-}\right\}
$$

is a parallelism. Then

$$
\{\Sigma-R\} \cup R^{*} \cup \Sigma^{\prime} \cup\left\{\left(\Sigma^{\prime} g-R g\right) \cup(R g)^{*} ; g \in G^{-}-\{1\}\right\}
$$

is a parallelism. In this case, the spreads are Hall, Σ^{\prime} (undetermined) and derived Σ^{\prime} type spreads.

In this article, we develop a construction method that uses the full elation subgroup E of G^{-}as follows: Suppose that Σ_{2} is a spread in $\operatorname{PG}(3, K)$ such that $\Sigma_{2} E$ is a set of mutually line disjoint spreads. If Σ_{3} is a spread in $\mathrm{PG}(3, K)$
such that as a set of lines $\Sigma_{3} E=\Sigma_{2} E$ then it will turn out that $\Sigma_{3} E$ is a set of mutually line disjoint spreads. What this means for parallelisms (or partial parallelisms) containing $\Sigma_{2} E$, is that we may switch the sets of spreads $\Sigma_{2} E$ with sets of spreads $\Sigma_{3} E$. This process, called elation switching, produces a tremendous number of new parallelisms. If Σ_{2} is Desarguesian and K is finite isomorphic to $\operatorname{GF}(q)$ then it is possible to completely determine all spreads Σ_{3} such that $\Sigma_{3} E$ switches with $\Sigma_{2} E$. The authors show in [5] that Σ_{3} must be a Kantor-Knuth or Desarguesian spread. However, when the construction is applied to an arbitrary infinite field, there are very few restrictions on the type of spreads Σ_{3} that can be used. Our arguments center on conical flock spreads in the infinite case and the constructions given show that there are an enormous number of new parallelisms that may be constructed by this process. In particular, when K is the field of real numbers, there are uncountably many new parallelisms constructed.

2 Elation switching

As suggested previously, the application of this construction technique mentioned in the introduction has been applied most successfully when the spreads other than the Pappian spread are derived conical flock spreads and when the group contains a large normal subgroup that is a central collineation group. (By conical flock spreads, we intend to mean those spreads that correspond to flocks of quadratic cones.) The reader is directed to the Handbook [8] for the precise definitions and additional background.

Actually, there is a classification by procedure of such parallelisms.
Theorem 2.1 (see Johnson [6]). Let \mathcal{P} be a parallelism in $\operatorname{PG}(3, K)$, for K a field, that admits a Pappian spread Σ and a collineation group G^{-}fixing a line ℓ of Σ that acts transitively on the remaining spreads of \mathcal{P}.
(1) If K is finite and if G^{-}contains the full elation group with axis ℓ then the spreads of $\mathcal{P}-\{\Sigma\}$ are derived conical flock spreads.
(2) If G^{-}contains the full elation group with axis ℓ and, for ρ a spread of $\mathcal{P}-\{\Sigma\}$, G_{ρ}^{-}contains a non-trivial homology (i.e. homology in Σ) then the spreads of $\mathcal{P}-\{\Sigma\}$ are derived conical flock spreads.

In a previous article on the above constructed over infinite fields, the second author constructed a variety of parallelisms over the reals (when K is the field of real numbers, $K=\mathcal{R}$.

The main idea is as follows. Let a Pappian spread Σ_{1} defined as follows:

$$
x=0, y=x\left[\begin{array}{cc}
u & -t \\
t & u
\end{array}\right] \forall u, t \in \mathcal{R} .
$$

We let Σ_{2} be a spread in $\mathrm{PG}(3, \mathcal{R})$, defined by a function f :

$$
x=0, y=x\left[\begin{array}{cc}
u & -f(t) \\
t & u
\end{array}\right] \forall u, t \in \mathcal{R}
$$

where f is a function such that $f(t)=t$ implies that $t=0$ and $f(0)=0$.
Thus, if a spread exists then the two spreads Σ_{1} and Σ_{2} share exactly the regulus \mathcal{D} with partial spread:

$$
x=0, y=x\left[\begin{array}{cc}
u & 0 \\
0 & u
\end{array}\right] \forall u \in \mathcal{R}
$$

The following lemma of Johnson and Pomareda connects at least one of the groups G that we use for our construction.

Lemma 2.2 (Johnson and Pomareda [10]). Let f be any continuous strictly increasing function on the field of real numbers such that $\lim _{x \rightarrow \pm \infty} f(t)= \pm \infty$.
(1) Then Σ_{2} is a spread.
(2) Let $G^{-}=E H^{-}$where H^{-}denotes the homology group of Σ_{1} (or rather the associated affine plane) whose elements are given by

$$
\left\langle\left[\begin{array}{cccc}
u & -t & 0 & 0 \\
t & u & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; u^{2}+t^{2}=1\right\rangle,
$$

and where E denotes the full elation group with axis $x=0$.
(3) Then G^{-}is transitive on the set of reguli of Σ_{1} that share $x=0$.

Then for conditions that such spreads produce parallelisms along the same lines as when the second chosen spread is Pappian, we mention the following result:

Theorem 2.3 (Johnson and Pomareda [10]). Under the above assumptions, assume also that f is symmetric with respect to the origin in the real Euclidean 2 -space and $f\left(t_{o}+r\right)=f\left(t_{o}\right)+r$ for some t_{o} and r in the reals implies that $r=0$.
(1) Then

$$
\Sigma_{1} \cup \Sigma_{2}^{*} g ; g \in G^{-}
$$

is a partial parallelism \mathcal{P}_{f} in $\operatorname{PG}(3, \mathcal{R})$, where Σ_{2}^{*} denotes the derived spread of Σ_{2} by derivation of \mathcal{D}.
(2) The above construction produces a parallelism if and only if $f(t)-t$ is surjective.
(3) When the function f produces a partial parallelism \mathcal{P} and $f(t)-t$ is not an onto function then \mathcal{P} is a proper maximal partial parallelism.
(4) If \mathcal{P} is a proper maximal partial parallelism then so is any derived partial parallelism \mathcal{P}^{*}.

In this article, we shall replace the conditions on f, with much more general conditions that are valid over essentially any field K and completely generalize the parallelisms constructed in the previous theorem.

With this background, we may now define the main concept of this article.
Definition 2.4. Let Σ_{0} denote a Pappian spread in $\operatorname{PG}(3, K)$, where K is a field:

$$
\left\{x=0, y=x\left[\begin{array}{cc}
u & \gamma_{1} t \\
t & u
\end{array}\right] \forall u, t \in K\right\} \text {, where } \gamma_{1} \text { is a non-square in } K
$$

Let E denote the full elation group of Σ_{0} with axis $x=0$:

$$
\left.E=\left\langle\begin{array}{cccc}
1 & 0 & u & \gamma_{1} t \\
0 & 1 & t & u \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; u, t \in K\right\rangle
$$

Let Σ_{2} and Σ_{3} be distinct spreads of $\operatorname{PG}(3, K)$ that share exactly the regulus

$$
R=\left\{x=0, y=x\left[\begin{array}{ll}
u & 0 \\
0 & u
\end{array}\right] \forall u \in K\right\} .
$$

Assume the following two conditions:
(i) $\Sigma_{2} E=\Sigma_{3} E$,
(ii) a line ℓ of $\Sigma_{2} E$ is in a unique spread of $\Sigma_{2} E$ if and only if ℓ is in a unique spread of $\Sigma_{3} E$.

If the spreads Σ_{2} and Σ_{3} have properties (i) and (ii), we shall say that $\Sigma_{2} E$ and $\Sigma_{3} E$ are E-switches of each other (or that $\Sigma_{2} E$ has been switched by $\Sigma_{3} E$).

In the finite case, the authors have proved that if Σ_{2} is Desarguesian (Pappian in the infinite case) and Σ_{3} is a spread such that $\Sigma_{3} E$ switches with $\Sigma_{2} E$ then Σ_{3} is either Kantor-Knuth or Desarguesian. In this setting a matrix spread set may be chosen so that the spread Σ_{3} has the form

$$
\left\{x=0, y=x\left[\begin{array}{cc}
u+\alpha t+\beta f(t) & f(t) \\
t & u
\end{array}\right] \forall u, t \in K\right\},
$$

where f, g are functions on $K \simeq \operatorname{GF}(q), \alpha, \beta$ constants in K.
Then it turns out that f is completely determined as $f(t)=\gamma t^{\sigma}$, for $\gamma \in K$ and σ an automorphism of K. Furthermore, when K has even order $\sigma=1$ and the spread is Desarguesian. In the odd order case, the plane is said to be Kantor-Knuth, if σ is not 1 . Furthermore, in the odd order case, a change in basis can be made to further represent the spread as

$$
\left\{x=0, y=x\left[\begin{array}{cc}
u & F(t) \tag{*}\\
t & u
\end{array}\right] \forall u, t \in K\right\}
$$

where F is bijective on $K \simeq \operatorname{GF}(q)$, and $F(t)=\rho t^{\sigma}$, where ρ is a non-square and σ an automorphism of K.

But now in the infinite case, there are a wide variety of spreads that have the form of $(*)$ and these are the spreads that we now study in this article. We begin with a necessary and sufficient condition on the associated functions to have spreads of this form.

Theorem 2.5. Let K be any field. Then

$$
\Sigma_{f}=\left\{x=0, y=x\left[\begin{array}{cc}
u & f(t) \\
t & u
\end{array}\right] \forall u, t \in K\right\}
$$

where f is a function $K \rightarrow K$ such that $f(0)=0$ is a spread if and only if for each $z \in K, \rho_{z}$ is bijective where,

$$
\rho_{z}(t)=f(t)-z^{2} t .
$$

Proof. Let $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, for $x_{i}, y_{i} \in K, i=1,2 . \Sigma_{f}$ is a spread if and only it defines an exact cover of the vectors. If $y_{1}=y_{2}=0$ or $x_{1}=x_{2}=0$ then such points belong to $x=0$ and $y=0$ respectively. Suppose that $x\left[\begin{array}{cc}u & f(t) \\ t & u\end{array}\right]=$ $(0,0)$, for $x=\left(x_{1}, x_{2}\right)$ then

$$
\begin{array}{r}
x_{1} u+x_{2} t=0, \\
x_{1} f(t)+x_{2} u=0 .
\end{array}
$$

If $x_{1}=0$ then $x_{2} \neq 0$ and both $t=u=0$. If $x_{2}=0$ then $x_{1} \neq 0$ and $u=0=f(t)$. Hence, we must have $f(t)=0$ if and only if $t=0$.

In general,

$$
\begin{aligned}
x_{1} u+x_{2} t & =y_{1}, \\
x_{2} u+x_{1} f(t) & =y_{2} .
\end{aligned}
$$

for all $x_{1}, x_{2}, y, y_{2} \in K$. If $x_{1}=0$, clearly, there is a unique solution for (u, t) and hence a unique $y=x\left[\begin{array}{cc}u & f(t) \\ t & u\end{array}\right]$ that covers the given point.

If $x_{2}=0$ then $x_{1} f(t)=y_{2}$ provided f is bijective and again there is a unique solution for (u, t).

So, assume that $x_{1} x_{2} \neq 0$. Then,

$$
\begin{aligned}
u+z t & =y_{1}^{*}, \\
u+z^{-1} f(t) & =y_{2}^{*}
\end{aligned}
$$

where $z=x_{2} / x_{1}, y_{1}^{*}=y_{1} / x_{1}$ and $y_{2}^{*}=y_{2} / x_{2}$. Note that y_{1}^{*} and y_{2}^{*} and z are then completely independent. Thus,

$$
z t-z^{-1} f(t)=\frac{z^{2} t-f(t)}{z}
$$

Since $f(t)-z^{2} t$ is bijective for all elements z^{2}, we have a unique solution for t, which then produces a unique solution (u, t). This completes the proof of the theorem.

Now we shall be interested in spreads of the above form that share precisely a regulus with a Pappian spread

$$
\left\{x=0, y=x\left[\begin{array}{cc}
u & \gamma_{1} t \\
t & u
\end{array}\right] \forall u, t \in K\right\} \text {, where } \gamma_{1} \text { is a non-square in } K
$$

and such that the full elation subgroup of E that acts as a collineation group of the spread in question is
(i) $E^{-}=\left\langle\left[\begin{array}{llll}1 & 0 & u & 0 \\ 0 & 1 & 0 & u \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] ; u \in K\right\rangle$, where
(ii) the full elation of Σ_{1} with axis $x=0$ is

$$
E=\left\langle\left[\begin{array}{cccc}
1 & 0 & u & \gamma_{1} t \\
0 & 1 & t & u \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; u, t \in K\right\rangle, \text { and }
$$

(iii) such that for any elation $e \in E-E^{-}$then $\Sigma_{f} e \cap \Sigma_{f}$ is empty.

The following proposition is essentially immediate and is left to the reader to verify.

Proposition 2.6. A spread

$$
\Sigma_{f}=\left\{x=0, y=x\left[\begin{array}{cc}
u & f(t) \\
t & u
\end{array}\right] \forall u, t \in K\right\},
$$

shares exactly the regulus

$$
R_{0}=\left\{x=0, y=x\left[\begin{array}{ll}
u & 0 \\
0 & u
\end{array}\right] \forall u \in K\right\}
$$

with the Pappian spread Σ_{1} if and only if

$$
f(t)-\gamma_{1} t=0
$$

implies $t=0$.
Note that in the finite case, f is forced to be additive and so the above condition implies that the function $f-\gamma_{1}$ is bijective (injective will suffice in the finite setting). This injective condition turns out to be an important condition for elation switching.

Definition 2.7. If the function g defined by $g(t)=f(t)-\gamma_{1} t$ is injective, we shall say that the function f has the regulus property.

If the full elation group of a spread Σ_{f} of E is E^{-}, and for $e \in E-E^{-}$then $\Sigma_{f} e \cap \Sigma_{f}$ is empty, we shall say that the spread has the regulus-inducing property.

For example, if $f(t)=\gamma_{2} t$ and $\gamma_{2} \neq \gamma_{1}$ then f will turn out to have the regulus-inducing property. For the automorphism type function $f(t)=\gamma_{2} t^{\sigma}$ we need $\gamma_{2} t_{0}^{\sigma}=\gamma_{1} t_{0}$ for some t_{0} if and only if $t=0$.

More generally, we have the following description of spreads that have the regulus-inducing property.

Proposition 2.8. A spread

$$
\Sigma_{f}=\left\{x=0, y=x\left[\begin{array}{cc}
u & f(t) \\
t & u
\end{array}\right] \forall u, t \in K\right\}
$$

has the regulus-inducing property if and only if for $t_{0}, r \in K$

$$
f\left(t_{0}+r\right)=f\left(t_{0}\right)+\gamma_{1} r
$$

implies $r=0$.

Proof. Let $e=\left[\begin{array}{cccc}1 & 0 & u_{0} & \gamma_{1} r \\ 0 & 1 & r & u_{0} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \operatorname{map} y=x\left[\begin{array}{cc}u & f\left(t_{0}\right) \\ t_{0} & u\end{array}\right]$ to

$$
y=x\left(\left[\begin{array}{cc}
u & f\left(t_{0}\right) \\
t_{0} & u
\end{array}\right]+\left[\begin{array}{cc}
u_{0} & \gamma_{1} r \\
r & u_{0}
\end{array}\right]\right) .
$$

This line is back in the spread if and only if

$$
f\left(t_{0}+r\right)=f\left(t_{0}\right)+\gamma_{1} r .
$$

Hence, we wish this never to hold for non-zero values r, so we require that $r=0$ in this case.

Proposition 2.9. The regulus property implies the regulus-inducing property.
Proof. Now let $f(t)=\gamma_{1} t+g(t)$, so we have, by assumption, that g is injective. Then consider the equation

$$
f\left(t_{0}+r\right)=\gamma_{1}\left(t_{0}+r\right)+g\left(t_{0}+r\right)=f\left(t_{0}\right)+\gamma_{1} r=\gamma_{1} t_{0}+g\left(t_{0}\right)+\gamma_{1} r . \quad(* * *)
$$

So, for equation $(* * *)$ to imply that $r=0$ is equivalent to the condition that

$$
g\left(t_{0}+r\right)=g\left(t_{0}\right), \text { implies } r=0
$$

Since g is assumed to be injective, this condition is automatically satisfied. So, the regulus property implies the regulus-inducing property.

Corollary 2.10. The set of lines

$$
\Sigma_{f}=\left\{x=0, y=x\left[\begin{array}{cc}
u & f(t) \\
t & u
\end{array}\right] \forall u, t \in K\right\}
$$

is a spread admitting the regulus property, and regulus-inducing property if and only if
(i) $z \in K, \rho_{z}$ is bijective where

$$
\rho_{z}(t)=f(t)-z^{2} t ;
$$

(ii) the function g such that $g(t)=f(t)-\gamma_{1} t$ is injective.

These are the spreads that we shall use in the switching procedure, except that we shall further require that g is bijective.

Definition 2.11. Any spread admitting the properties (i), (ii) of the previous corollary with the extra condition that the function g is bijective shall be said to admit the switching property.

3 Main theorem on elation switching

Theorem 3.1. Let Σ_{0} denote a Pappian spread in $\operatorname{PG}(3, K)$, where K is a field:

$$
\left\{x=0, y=x\left[\begin{array}{cc}
u & \gamma_{1} t \\
t & u
\end{array}\right] \forall u, t \in K\right\} \text {, where } \gamma_{1} \text { is a non-square in } K .
$$

Let E denote the full elation group of Σ_{0} with axis $x=0$:

$$
E=\left\langle\left[\begin{array}{cccc}
1 & 0 & u & \gamma_{1} t \\
0 & 1 & t & u \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; u, t \in K\right\rangle
$$

Assume that Σ_{i} is a spread in $\operatorname{PG}(3, K)$ of the following form:

$$
\Sigma_{i}=\left\{x=0, y=x\left[\begin{array}{cc}
u & f_{i}(t) \\
t & u
\end{array}\right] \forall u, t \in K\right\} \text {, for } i=2,3
$$

where f_{i} is a function $K \rightarrow K$ and such that both spreads admit the switching property.

Then $\Sigma_{2} E$ switches with $\Sigma_{3} E$.
Proof. Note that $\Sigma_{2} E=\Sigma_{3} E$ if and only if Σ_{2} is in $\Sigma_{3} E$ and Σ_{3} is in $\Sigma_{2} E$. Note that

$$
y=x\left[\begin{array}{cc}
u & f_{i}(t) \\
t & u
\end{array}\right]
$$

maps to

$$
y=x\left\{\left[\begin{array}{cc}
u & f_{i}(t) \\
t & u
\end{array}\right]+\left[\begin{array}{cc}
u^{*} & \gamma_{1} t^{*} \\
t^{*} & u^{*}
\end{array}\right]\right\}, \forall u^{*}, t^{*} \in K
$$

by E and note that E fixes $x=0$ pointwise.
So consider, for $j \neq i$,

$$
\left[\begin{array}{cc}
u & f_{i}(t) \tag{*}\\
t & u
\end{array}\right]=\left[\begin{array}{cc}
u & f_{j}(s) \\
s & u
\end{array}\right]+\left[\begin{array}{cc}
0 & \gamma_{1}(t-s) \\
(t-s) & 0
\end{array}\right]
$$

Then

$$
f_{i}(t)=f_{j}(s)+\gamma_{1}(t-s)
$$

if and only if

$$
f_{j}(t)-\gamma_{1} t=f_{j}(s)-\gamma_{1} s
$$

Therefore, given t in K, then there exists a unique s in K such that

$$
f_{j}(t)-\gamma_{1} t=f_{i}(s)-\gamma_{1} s,
$$

since ϕ_{j} and ϕ_{i} are both bijective. Hence, given u and t, there is a solution to $(*)$. Note that the argument is symmetric. Now suppose for u and t, there is another solution

$$
\left[\begin{array}{cc}
u & f_{i}(t) \tag{**}\\
t & u
\end{array}\right]=\left[\begin{array}{cc}
u^{*} & f_{j}(s) \\
k & u^{*}
\end{array}\right]+\left[\begin{array}{cc}
w & \gamma_{1} d \\
d & w
\end{array}\right]
$$

it now follows easily that there is a unique solution to $(* *)$, namely the unique solution to ($*$).

Since the argument is symmetric, we have $\Sigma_{2} E=\Sigma_{3} E$. This establishes condition (i) of Definition 2.4.

Now take an element

$$
y=x\left[\begin{array}{cc}
u_{0} & f_{i}\left(t_{0}\right) \\
t_{0} & u_{0}
\end{array}\right]
$$

and assume that there is an element e in E such that the image of this element is back in Σ_{i}. Then

$$
\left[\begin{array}{cc}
u_{0} & f_{i}\left(t_{0}\right) \\
t_{0} & u_{0}
\end{array}\right]+\left[\begin{array}{cc}
w & \gamma_{1} r \\
r & w
\end{array}\right]=\left[\begin{array}{cc}
u_{0}+w & f_{i}\left(t_{0}\right)+\gamma_{1} r \\
t_{0}+r & u_{0}
\end{array}\right] .
$$

But, this means that $f_{i}\left(t_{0}+r\right)=f_{i}\left(t_{0}\right)+\gamma_{1} r$, so that $r=0$. Then this element e leaves $\Sigma_{f_{i}}$ invariant. Again, since the argument is symmetric, we have that $\Sigma_{2} E$ and $\Sigma_{3} E$ are unions of disjoint spreads. Therefore, we have that $\Sigma_{2} E$ switches with $\Sigma_{3} E$.

4 Deficiency one transitive groups

Let K be an ordered field such that all positive elements have square roots in K.
For example, if L is a subfield of the field of real numbers then the numbers L^{C} constructible from L by straight-edge and compass is such an ordered field.

So, let K be such an ordered field, and let Σ_{1} denote the Pappian spread

$$
\Sigma_{1}=\left\{x=0, y=x\left[\begin{array}{cc}
u & \gamma_{1} t \\
t & u
\end{array}\right] \forall u, t \in K\right\}
$$

where γ_{1} is a fixed negative element in K. Let

$$
H=\left\langle\left[\begin{array}{cc}
1 & 0 \\
0 & w
\end{array}\right] ; w=\left[\begin{array}{cc}
u & \gamma_{1} t \\
t & u
\end{array}\right] ; u^{2}-\gamma_{1} t^{2}=1\right\rangle
$$

and let

$$
\Sigma_{2}=\left\{x=0, y=x\left[\begin{array}{cc}
u & \gamma_{2} t \\
t & u
\end{array}\right] \forall u, t \in K\right\}
$$

where γ_{2} is a negative element in $K, \gamma_{2} \neq \gamma_{1}$. Let R_{0} denote the common regulus $\left\{x=0, y=x\left[\begin{array}{cc}u & 0 \\ 0 & u\end{array}\right] \forall u \in K\right\}$.
Theorem 4.1. $\Sigma_{1} \cup \Sigma_{2}^{*} E H$ is a parallelism in $\mathrm{PG}(3, K)$. Furthermore,

$$
E^{-}\left\langle\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\right\rangle
$$

is the subgroup of $E H$ that leaves Σ_{2} invariant, where

$$
E^{-}=\left\langle\left[\begin{array}{llll}
1 & 0 & u & 0 \\
0 & 1 & 0 & u \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; u \in K\right\rangle
$$

Proof. First of all we claim that $E H$ is transitive on the set of reguli of Σ_{1} that share $x=0$. We note that E is transitive on the components of $\Sigma_{1}-\{x=0\}$. So the question then is H transitive on the reguli that share $x=0$ and $y=0$. Any such regulus has the following form:

$$
R_{t}=\left\{x=0, y=0, y=x\left[\begin{array}{cc}
u & \gamma_{1} t \\
t & u
\end{array}\right] ; u \in K-\{0\}\right\} .
$$

So, the question is whether R_{0} can be mapped into R_{t} by an element of H. Hence, given $y=x\left[\begin{array}{cc}0 & \gamma_{1} t \\ t & 0\end{array}\right]$, we need to find an element $y=x\left[\begin{array}{ll}v & 0 \\ 0 & v\end{array}\right]$, v not zero, such that

$$
\left[\begin{array}{ll}
v & 0 \\
0 & v
\end{array}\right] w=\left[\begin{array}{cc}
u & \gamma_{1} t \\
t & u
\end{array}\right],
$$

for some $u \in K$.
Note that since clearly the reguli sharing $x=0, y=0$ are permuted by H, it just takes one appropriate image to establish that R_{0} is mapped onto R_{t}, as any three distinct components generate a unique regulus of Σ_{1}. Since w commutes with $\left[\begin{array}{ll}v & 0 \\ 0 & v\end{array}\right]$, we only need to show that for some element $\left[\begin{array}{cc}u & \gamma_{1} t \\ t & u\end{array}\right]$, for t not zero, there exist elements $\left[\begin{array}{ll}v & 0 \\ 0 & v\end{array}\right]$ and $\left[\begin{array}{cc}u^{*} & \gamma_{1} t^{*} \\ t^{*} & u^{*}\end{array}\right]$, where $u^{* 2}-\gamma_{1} t^{* 2}=1$ such that

$$
\left[\begin{array}{cc}
v & 0 \\
0 & v
\end{array}\right]\left[\begin{array}{cc}
u^{*} & \gamma_{1} t^{*} \\
t^{*} & u^{*}
\end{array}\right]=\left[\begin{array}{cc}
u & \gamma_{1} t \\
t & u
\end{array}\right] .
$$

Let $u^{2}-\gamma_{1} t^{2}=z$. Since $z>0$, let $v=\sqrt{z}$, which exists by assumption. Now let $u^{*}=u / v$ and $t^{*}=t / v$. Then $\left(v u^{*}, v t^{*}\right)=(u, t)$ and $u^{*}-\gamma_{1} t^{*}=$ $(u / v)^{2}-\gamma_{1}(t / v)^{2}=1$. This establishes the transitivity.

This means that if Σ_{2}^{*} denotes the derived spread then $\Sigma_{2}^{*} E H$ will contain all Baer subplanes of Σ_{1} that non-trivially intersect $x=0$. Furthermore, if a Baer subplane of R_{0} maps back into a Baer subplane of R_{0} under an element g of $E H$ then g leaves R_{0}^{*} invariant and hence leaves R_{0} invariant. The subgroup of $E H$ that leaves R_{0} invariant is $E^{-} H^{-}$, where

$$
E^{-}=\left\langle\left[\begin{array}{llll}
1 & 0 & u & 0 \\
0 & 1 & 0 & u \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; u \in K\right\rangle
$$

and

$$
H^{-}=\left\langle\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\right\rangle
$$

These elements are collineations of Σ_{2} and of Σ_{2}^{*}. Hence, it follows that there can be no line that non-trivially intersects $x=0$ that is in two distinct spreads.

The remaining 'lines' of $\mathrm{PG}(3, K)$, apart from the components of Σ_{1} are the Baer subplanes of Σ_{1} that do not intersect $x=0$. These have the basic form

$$
y=x\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] ; a, b, c, d \in K,
$$

where if $a=d$ then $b \neq \gamma_{1} c$. That is, either $a \neq d$ or $b \neq \gamma_{1} c$. Such a line will lie in a unique spread of $\Sigma_{2}^{*} E H$ if and only if it lies in a unique spread of $\Sigma_{2} E H$. Therefore, there must be an element of $\Sigma_{2}, y=x\left[\begin{array}{cc}u & \gamma_{2} t \\ t & u\end{array}\right]$ and an element $\rho \in E H$ such that

$$
\left(y=x\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \rho=\left(y=x\left[\begin{array}{cc}
u & \gamma_{2} t \\
t & u
\end{array}\right]\right) .
$$

Notice that we may apply an elation that adds $\left[\begin{array}{cc}-u & -\gamma_{1} t \\ -t & -u\end{array}\right]$, as

$$
\left[\begin{array}{cc}
u & \gamma_{2} t \\
t & u
\end{array}\right]+\left[\begin{array}{cc}
-u & -\gamma_{1} t \\
-t & -u
\end{array}\right]=\left[\begin{array}{cc}
0 & \left(\gamma_{2}-\gamma_{1}\right) t \\
0 & 0
\end{array}\right]
$$

This means that $y=x\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right]$, for any non-zero b does lie in a unique spread of $\Sigma_{2} E H$. Suppose we have

$$
\begin{aligned}
y & =x\left[\begin{array}{cc}
0 & b \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
w & \gamma_{1} s \\
s & w
\end{array}\right] ; w^{2}-\gamma_{1} s^{2}=1 \\
& =x\left[\begin{array}{cc}
b s & b w \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Choose any z and e in K, at least one non-zero. If $z^{2}-\gamma_{1} e^{2}=m=p^{2}$, then $(z / p)^{2}-\gamma_{1}(e / p)^{2}=1$. Then letting $b=p, w=z / p$ and $s=e / p$, we see that we obtain

$$
y=x\left[\begin{array}{ll}
e & z \\
0 & 0
\end{array}\right]
$$

for any e, z in K, not both zero, is in a unique spread of $\Sigma_{2} E H_{0}$. Then adding $\left[\begin{array}{cc}d & \gamma_{1} c \\ c & d\end{array}\right]$ (applying an elation), we obtain

$$
y=x\left[\begin{array}{cc}
e+d & z+\gamma_{1} c \\
c & d
\end{array}\right] .
$$

Let $e+d=a$ and $z+\gamma_{1} c=b$. Note that a, b, c, d are arbitrary except that if $a=d$, then $e=0$ so that z is not zero and hence $b \neq \gamma_{1} c$. This shows that every line of $\mathrm{PG}(3, K)$ is contained in a spread of $\Sigma_{2} E H$. To ensure that no line is in two spreads of $\Sigma_{2} E H$, we need only check that no line of $\Sigma_{2}-R$ is in two spreads or equivalently that if

$$
\left(y=x\left[\begin{array}{cc}
u & \gamma_{2} t \\
t & u
\end{array}\right]\right)=\left(y=x\left[\begin{array}{cc}
u^{*} & \gamma_{2} t^{*} \\
t^{*} & u^{*}
\end{array}\right]\right) \rho
$$

for t nonzero and $\rho \in E H$ then $\Sigma_{2} \rho=\Sigma_{2}$. Therefore, the question is whether there exist matrices $\left[\begin{array}{cc}r & \gamma_{1} s \\ s & r\end{array}\right]$ and $\left[\begin{array}{cc}w & \gamma_{1} k \\ k & w\end{array}\right]$, such that $w^{2}-\gamma_{1} k^{2}=1$ and

$$
\left[\begin{array}{cc}
u & \gamma_{2} t \\
t & u
\end{array}\right]\left[\begin{array}{cc}
w & \gamma_{1} k \\
k & w
\end{array}\right]=\left(\left[\begin{array}{cc}
u^{*} & \gamma_{2} t^{*} \\
t^{*} & u^{*}
\end{array}\right]+\left[\begin{array}{cc}
r & \gamma_{1} s \\
s & r
\end{array}\right]\right) .
$$

The elements that we are considering are now elements of Σ_{1}. The left hand side is

$$
\left[\begin{array}{cc}
u w+\gamma_{2} t k & \gamma_{1} u k+\gamma_{2} t w \\
t w+u k & \gamma_{1} t k+u w
\end{array}\right]
$$

and note that the matrix on the right hand side has equal $(1,1)$ and $(2,2)$ entries. Since $\gamma_{1} \neq \gamma_{2}$ it then follows that $t k=0$. Therefore, $k=0$ then
$w= \pm 1$. Now the only possible elements of E that map one element of the regulus R_{0} back into an element of R_{0} requires that $s=0$. But, now the element in question leaves Σ_{2}-invariant. This completes the proof of the theorem.

Theorem 4.2. Given any spread Σ_{f}, which is switchable (satisfies the switching property $f(t)-\gamma_{1} t$ bijective and $f(t)-z^{2} t$ bijective for all z).

If Σ_{2} is Pappian, then $\Sigma_{f} E$ switches with $\Sigma_{2} E$.
Proof. We need only check that $\gamma_{2} t-\gamma_{1} t$ and $\gamma_{2} t-z^{2} t=-\left(-\gamma_{2}+z^{2}\right) t$ define bijective functions, which is clear since $\gamma_{2} \neq \gamma_{1}$ and $\left(-\gamma_{2}+z^{2}\right)>0$.

5 The main theorem

We recall that our previous parallelism construction used the group $E H$ and two Pappian spreads Σ_{1} and Σ_{2}, where

$$
E^{-}\left\langle\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\right\rangle
$$

is the subgroup that leaves Σ_{2} invariant. We note that $E H$ is transitive on the reguli of Σ_{1} that share $x=0$. Hence, H is transitive on the reguli of Σ_{1} that share $x=0, y=0$. Let $\left\{h_{i} ; i \in \lambda\right\}$ be a coset representation set for

$$
\left\langle\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\right\rangle
$$

in H. Using this coset representation set, we may now give our main theorem on elation switching.

Theorem 5.1. Let K be any ordered field such the positive elements all have square roots. Let H denote the homology group with axis $y=0$ and coaxis $x=0$ of determinant 1 and let $\left\{h_{i} ; i \in \lambda\right\}$ be a coset representation set for

$$
\left\langle\left\langle\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\right\rangle
$$

in H. For each $i \in \lambda$, choose any function f_{i} such that the functions $\rho_{i, z}$ and ϕ_{i} are bijective for each $z \in K$, where $f_{i}(0)=0$ and

$$
\begin{aligned}
\rho_{i, z}(t) & =f_{i}(t)-z^{2} t \text { and } \\
\phi_{i}(t) & =f_{i}(t)-\gamma_{1} t .
\end{aligned}
$$

Let $\Sigma_{f_{i}}$ denote the following spread:

$$
\Sigma_{f}=\left\{x=0, y=x\left[\begin{array}{cc}
u & f_{i}(t) \\
t & u
\end{array}\right] \forall u, t \in K\right\} .
$$

Then

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{f_{i}}^{*} E h_{i}
$$

is a parallelism in $\mathrm{PG}(3, K)$.
Proof. We know that

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{2}^{*} E\left\langle\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\right\rangle h_{i}=\Sigma_{1} \cup \Sigma_{2}^{*} E H
$$

is a parallelism by Theorem 4.1. But then we also have that

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{2}^{*} E h_{i}
$$

is a parallelism. By Theorem 4.2, we know that $\Sigma_{f} E$ switches with $\Sigma_{2} E$, where f is any of the functions f_{i}. Choose any line ℓ of $\mathrm{PG}(3, K)$, then ℓ is in a unique spread of

$$
\Sigma_{1} \cup \Sigma_{2}^{*} E H=\Sigma_{1} \cup_{i \in \lambda} \Sigma_{2}^{*} E h_{i} .
$$

Either ℓ is a line of Σ_{1} or there exists a unique h_{j} such that

$$
\ell \in \Sigma_{2}^{*} E h_{i} .
$$

Assume that ℓ non-trivially intersects $x=0$. Then, ℓ is a Baer subplane of a $R g$, for $g \in E H$. We note that $(R g)^{*}$ for $g \in E H$ is also in

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{f_{i}}^{*} E h_{i} .
$$

Hence, we may assume that

$$
\ell \in\left(\Sigma_{2}^{*}-R\right) E h_{i} .
$$

Assume that there is a line $m \in \Sigma_{f} E$ that does not intersect $x=0$ that is in two spreads Σ_{f} and $\Sigma_{f} g$, for $g \in E$, then since $\Sigma_{f} E$ switches with $\Sigma_{2} E$, we have a contradiction. Hence, every line of $\mathrm{PG}(3, K)$ not in Σ_{1} is in a unique spread of $\Sigma_{2}^{*} E h_{i}$ and hence is in a unique spread of $\Sigma_{f_{i}}^{*} E h_{i}$. This completes the proof of the theorem.

6 Examples

Let F be any subfield of the field of real numbers and let $F^{C}=K$ denote the field of constructible numbers from F. If we let $\gamma_{1}=-1$, choose any function f_{i} where $f_{i}(t)=\gamma_{i} t$, for $\gamma_{i} \neq-1$. Then it is clear that the following define bijective functions:

$$
\begin{aligned}
\rho_{i, z}(t) & =f_{i}(t)-z^{2} t \text { and } \\
\phi_{i}(t) & =f_{i}(t)-\gamma_{1} t .
\end{aligned}
$$

Hence, we have the following result.
Theorem 6.1. Let $K=F^{C}$, a field of constructible numbers from a subfield F of the field of real numbers. Let Σ_{1} denote the Pappian spread

$$
\Sigma_{1}=\left\{x=0, y=x\left[\begin{array}{cc}
u & -t \\
t & u
\end{array}\right] \forall u, t \in K\right\}
$$

and let

$$
\begin{gathered}
E=\left\langle\left[\begin{array}{cccc}
1 & 0 & u & \gamma_{1} t \\
0 & 1 & t & u \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; u, t \in K\right\rangle, \\
H=\left\langle\left[\begin{array}{cc}
1 & 0 \\
0 & w
\end{array}\right] ; w=\left[\begin{array}{cc}
u & \gamma_{1} t \\
t & u
\end{array}\right] ; u^{2}-\gamma_{1} t^{2}=1\right\rangle .
\end{gathered}
$$

Let $\left\{h_{i} ; i \in \lambda\right\}$ be a coset representation for

$$
H^{-}=\left\langle\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\right\rangle
$$

in H. For each $i \in \lambda$, choose a negative number γ_{i} in K such that $\gamma_{i} \neq-1$ and finally let

$$
\Sigma_{i}=\left\{x=0, y=x\left[\begin{array}{cc}
u & \gamma_{i} t \\
t & u
\end{array}\right] \forall u, t \in K\right\}
$$

Then

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{i}^{*} E h_{i}
$$

is a parallelism in $\mathrm{PG}(3, K)$.

Remark 6.2. Let σ_{i} be an automorphism of K. We consider functions f_{i} such that $f_{i}(t)=\gamma_{i} t^{\sigma_{i}}$, where γ_{i} is a negative number. In order to obtain parallelisms in a manner similar to that of the previous theorem, we need to check that the following define bijective functions:

$$
\begin{aligned}
\rho_{i, z}(t) & =\gamma_{i} t^{\sigma}-z^{2} t \text { and } \\
\phi_{i}(t) & =\gamma_{i} t^{\sigma}-\gamma_{1} t .
\end{aligned}
$$

Note that first set of functions $\rho_{i, z}$ are always

$$
f_{i}(t)-z^{2} t=\gamma_{i} t^{\sigma_{i}}-z^{2} t=0
$$

if and only if $t=0$ since $\gamma_{i}<0$. Since the function is additive, we see $\rho_{i, z}$ is injective.

In general, the surjectivity of $\rho_{i, z}$ is not always guaranteed.

6.1 Examples over the reals

Let

$$
f(t)=\left\{\begin{array}{ll}
\gamma_{1} t-a^{t}+1, & t \geq 0 \\
\gamma_{1} t+b^{-t}-1, & t<0
\end{array}\right\}, a, b \text { both }>1 .
$$

We see that $f(0)=0, f$ is continuous at all elements t of the reals and consider $f(t)-z^{2} t$.

$$
f(t)-z^{2} t=\left\{\begin{array}{ll}
\gamma_{1} t-a^{t}+1-z^{2} t, & t \geq 0 \\
\gamma_{1} t+b^{-t}-1-z^{2} t, & t<0
\end{array}\right\}, a, b \text { both }>1
$$

Note that

$$
\lim _{t \rightarrow \pm \infty}-f(t)= \pm \infty,
$$

so that $f(t)-z^{2} t$ is continuous and hence surjective. We note that the $\lim _{t \rightarrow 0} f(t)=$ 0 and $f^{\prime}(t)$ for t non-zero is

$$
f^{\prime}(t)-z^{2}=\left\{\begin{array}{cc}
\gamma_{1}-a^{t} \ln a-z^{2}, & t \geq 0 \\
-1-b^{-t} \ln b-z^{2}, & t<0
\end{array}\right\}, a, b \text { both }>1,
$$

which is never 0 . Hence, $f(t)-z^{2} t$ is bijective for each z. Now $f(t)-\gamma_{1} t$

$$
f(t)-\gamma_{1} t=\left\{\begin{array}{cc}
-a^{t}+1, & t \geq 0 \\
b^{-t}-1, & t<0
\end{array}\right\}, a, b \text { both }>1,
$$

and clearly this function is bijective. For example, assume that the function is not injective. Then the only questionable case is where $b^{-t}-1=1-a^{s}$, for $t<0$ and $s \geq 0$. But, then $a^{s}+b^{-t}=2$ and both a and $b>1$, then $a^{s} \geq 1$ and $b^{-t}>1$, a contradiction.

The more general version of the above set of examples is given in the following.

Theorem 6.3. Let r be a strictly increasing continuous real function of the positive real numbers and let h be a strictly decreasing continuous real function on the negative real numbers. Choose any two real numbers a and $b>1$ (possibly equal). Then a function f defined as follows is switchable.

$$
\begin{aligned}
& f(t)=\left\{\begin{array}{ll}
\gamma_{1} t-a^{r(t)}+1, & t \geq 0 \\
\gamma_{1} t+b^{h(t)}-1, & t<0
\end{array}\right\}, a, b \text { both }>1, \\
& \lim _{t \rightarrow 0^{+}} a^{r(t)}=1=\lim _{t \rightarrow 0^{-}} b^{h(t)} .
\end{aligned}
$$

Proof. The function f is continuous on the field of real numbers, and we have $\lim _{t \rightarrow \infty}\left(1-a^{r(t)}\right)=-\infty$ and $\lim _{t \rightarrow-\infty}\left(-1+b^{h(t)}\right)=\infty$. This guarantees that $g(t)=f(t)-\gamma_{1} t$ is a surjective function. For $s>0$, note that $g(s)>0$, since r is strictly increasing. Similarly for $t<0, h(t)<0$ since $\lim _{t \rightarrow 0^{-}}\left(b^{h(t)}-1\right)=0$ and h is strictly decreasing on the negative real numbers. Then our above argument shows that it is not possible that $b^{h(t)}+a^{r(s)}=2$, so that g is injective.

For z fixed, $f(t)-z^{2} t$ defines a continuous function.

$$
f(t)-z^{2} t=\left\{\begin{array}{ll}
\gamma_{1} t-a^{r(t)}+1-z^{2} t, & t \geq 0 \\
\gamma_{1} t+b^{h(t)}-1-z^{2} t, & t<0
\end{array}\right\}, a, b \text { both }>1
$$

If t is non-zero, we may take the derivative

$$
f^{\prime}(t)-z^{2}=\left\{\begin{array}{ll}
\gamma_{1}-a^{r(t)} \ln a r^{\prime}(t)-z^{2}, & t \geq 0 \\
\left.\gamma_{1}+b^{h(t)} \ln a h^{\prime} t\right)-z^{2}, & t<0
\end{array}\right\}, a, b \text { both }>1 .
$$

It now follows exactly as in the previous example that we obtain bijective functions as required.

Theorem 6.4. Under the above assumptions, any such function f may be used to construct E-switchable spreads $\Sigma_{f} E=\Sigma_{2} E$ and thus

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{f_{i}}^{*} E h_{i}
$$

is a parallelism for any set of choices of functions f_{i}.

7 The derive-underive parallelisms

We may now construct parallelisms from any parallelism of the type

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{f_{i}}^{*} E h_{i} .
$$

as follows: Choose an element $e h_{j}$ of $E h_{j}$, for some $j \in \lambda$. There is a regulus $R_{e h_{j}}$ of Σ_{1} that is derived in $\Sigma_{f_{j}} e h_{j}$ to construct $\Sigma_{f_{j}}^{*} e h_{j}$. Derive $R_{e h_{j}}$ in Σ_{1} to construct the Hall plane $\Sigma_{1}^{R_{e h_{j}}^{*}}$ and underive $R_{e h_{j}}^{*}$ in $\Sigma_{f_{j}}^{*} e h_{j}$ to construct $\Sigma_{f_{j}} e h_{j}$.

Theorem 7.1.

$$
\Sigma_{1}^{R_{e h_{j}}^{*}} \cup_{i \in \lambda-\{j\}} \Sigma_{f_{i}}^{*} E h_{i} \cup_{g \in E-\{e\}} \Sigma_{f_{j}}^{*} E h_{j} \cup \Sigma_{f_{j}} e h_{j}
$$

is a parallelism.

8 The variety of parallelisms

We note that although our original parallelism admits the group $E H$, the collineation group of certain of the constructed parallelisms can be made so that only E is a collineation group. Furthermore, certain of the derive-underive parallelisms can be found that do not admit a non-trivial collineation.

We note that to construct parallelisms over the reals of the type here considered, it is sufficient to constructs functions f_{i} with the conditions given in Theorem 5.1. We have also constructed $2^{\chi_{0}}$ different functions f_{i} and therefore, we have also constructed $2^{\chi_{0}}$ distinct parallelisms of the type

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{f_{i}}^{*} E h_{i} .
$$

Any isomorphism between two parallelisms

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{f_{i}}^{*} E h_{i}
$$

and

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{g_{i}}^{*} E h_{i}
$$

of this type necessarily is a collineation group of Σ_{1}, the Pappian plane over the field of complex numbers (assuming that none of the derived conical flock spreads are Pappian). Since our parallelisms admit E, it follows that any isomorphism must be a collineation of Σ_{1} that leaves $x=0, y=0$ invariant and must permute the set of reguli of Σ_{1} sharing $x=0, y=0$ and so must permute the $\Sigma_{f_{i}}^{*} h_{i}$. Hence, there is a collineation of Σ_{1} that would map a function f_{i}
to a function g_{j}. But, this would mean that f_{i} and g_{j} are obtained as real linear combinations together with the automorphism of order 2. Clearly, it is easy to choose functions f_{i} and g_{j} that do not have this property and still produce parallelisms.

Theorem 8.1. When K is the field of real numbers, there are $2^{\chi_{0}}$ mutually nonisomorphic parallelisms of type

$$
\Sigma_{1} \cup_{i \in \lambda} \Sigma_{f_{i}}^{*} E h_{i}
$$

Remark 8.2. Similarly, if any of the derive-underive parallelisms are isomorphic, and if no derived conical flock spread can be a flock spread, any collineation would necessarily leave $\Sigma_{f_{j}} e h_{j}$ invariant and a conjugate would leave $\Sigma_{f_{j}}$ invariant. Similar arguments then would show that there are $2^{\chi_{0}}$ mutually non-isomorphic derive-underive parallelisms, none of which are isomorphic to any of the original parallelisms.

References

[1] D. Betten and R. Riesinger, Topological parallelisms of the real projective 3-space, Results Math. 47 (2005), 226-241.
[2] M. Biliotti, V. Jha and N. L. Johnson, Classification of transitive deficiency one parallelisms, Bulletin Belgian Math. Soc. - Simon Stevin 11 (2004), 1-21.
[3] W. K. Clifford, Preliminary sketch of biquaternions, in Mathematical Papers, R. Tucker, Ed., Chelsea Publishing Co., New York 1968 (reprint of the 1873 edition, Macmillan, London), pp. 181-200.
[4] E. Diaz, N. L. Johnson and A. Montinaro, Transitive deficiency one partial parallelisms, Adv. Appl. Discrete Math., to appear.
[5] , Coset switching in parallelisms, Finite Fields Appl. 14 (2008), 766-784.
[6] N. L. Johnson, Some new classes of finite parallelisms, Note Mat. 20 (2000/2001), 77-88.
[7] , Subplane Covered Nets, Monogr. Text. Pure Appl. Math. 222, Marcel Dekker, New York, 2000.
[8] N. L. Johnson, V. Jha and M. Biliotti, Handbook of Finite Translation Planes, Pure Appl. Math. (Boca Raton) 289, Chapman \& Hall/CRC, Boca Raton, FL, 2007.
[9] N. L. Johnson and R. Pomareda, Transitive partial parallelisms of deficiency one, European J. Combin. 232 (2002), 969-986.
[10] \qquad , Real parallelisms, Note Mat. 21 (2002), 127-135.
[11] H. Karzel, Kinematische Algebren und ihre geometrischen Ableitungen, Abh. Math. Sem. Univ. Hamburg 41 (1974), 158-171.
[12] H. Karzel and H.-J. Kroll, Eine inzidenzgeometrische Kennzeichnung projektiver kinematischer Räume, Arch. Math. 26 (1975), 107-112.

Esteban Diaz
Mathematics Dept., University of Iowa, Iowa City, Iowa 52242, USA
Norman L. Johnson
Mathematics Dept., University of Iowa, Iowa City, Iowa 52242, USA
e-mail: njohnson@math.uiowa.edu

Alessandro Montinaro
Dipartimento di Matematica Università di Lecce Via Arnesano, 73100 Lecce, italy
e-mail: alessandro.montinaro@unile.it

[^0]: *The ideas for this paper were conceived when the third author was visiting the University of Iowa during the Spring semester of 2007 . The authors are grateful to the university for support on this research.

