
Innovations in Incidence Geometry
Volume 11 (2010), Pages 115–137

ISSN 1781-6475

ACADEMIA

PRESS

Elation switching in real parallelisms

Esteban Diaz Norman L. Johnson

Alessandro Montinaro∗

Abstract

Switching techniques are developed that produce a variety of new par-

allelisms in PG(3, K), where K is a infinite field. When K is the field of
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1 Introduction

A parallelism of a projective space PG(3, F ), where F is a skew field, is an equiv-

alence relation on the set of lines satisfying the Euclidean parallel postulate.

This concept originated with Clifford’s work [3] in 1873, where there are two

parallelisms. Indeed, there are characterizations of parallelisms admitting what

are called left and right parallelisms and having certain other properties (see,

e.g. the work of Karzel [11] and Karzel and Kroll [12]). More recently, there

are a variety of parallelisms constructed by Betten and Riesinger over PG(3,R),

where R is the field of real numbers (see [1]). Indeed, there are also a variety of

real parallelisms constructed by the second author and R. Pomareda in [10]. It

might be mentioned that the equivalence classes of a parallelism, called spreads,

define affine translation planes in the associated four dimensional vector space

over F and analysis of affine geometry then provides a strong technical device

for the study of parallelisms.

∗The ideas for this paper were conceived when the third author was visiting the University of

Iowa during the Spring semester of 2007. The authors are grateful to the university for support on

this research.
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So, the concept of a parallelism is quite fundamental to the study of projec-

tive geometry and especially when the parallelisms are considered over infinite

fields F .

In this article, the main focus is on new constructions of parallelisms in

PG(3,K), where K is a subfield of the field of real numbers, although the field

K actually need only be an ordered field. The construction involves a replace-

ment procedure that we term switching of spreads. The authors [5] have devel-

oped this construction process previously for the finite case. Here, we consider

a completely general procedure.

Previously, one of the authors (Johnson [7]) constructed a class of paral-

lelisms in PG(3,K), where K is an arbitrary field which admits a quadratic

extension. This particular construction uses a central collineation group G of a

Pappian spread Σ lying in the parallelism so that G also acts as a collineation

group of the parallelism and where G contains the full elation group E of Σ

(or rather of the associated Pappian translation plane πΣ) that fixes a given

line ℓ pointwise, and where G acts transitively on the remaining spreads of the

parallelism. There is a classification theorem of sorts that we might mention.

Theorem 1.1 (see Johnson and Pomareda [9]). Let K be a skew field, Σ a spread

in PG(3,K) and P a partial parallelism of PG(3,K) containing Σ.

If P admits as a collineation group the full central collineation group G of Σ

with a given axis ℓ that acts two-transitive on the remaining spread lines then

(1) Σ is Pappian,

(2) P is a parallelism,

(3) the spreads of P − {Σ} are Hall, and

(4) G acts transitively on the spreads of P − {Σ}.

(5) Moreover, P is one of the parallelisms of the construction of Johnson.

Although we are mainly interested in infinite fields here, in the finite case,

any such transitive deficiency one group G must contain the full elation group E

that fixes a given line ℓ. The following result of the authors improves a similar

theorem of Biliotti, Jha and Johnson [2], and whose work is required in the

proof of the improvement.

Theorem 1.2 (Diaz, Johnson, Montinaro [4]; see also Biliotti, Jha and Johnson

[2]). Let P− be a deficiency one partial parallelism in PG(3, q) that admits a

collineation group in PΓL(4, q) acting transitively on the spreads of the partial

parallelism. Let P denote the unique extension of P− to a parallelism. Let the

fixed spread be denoted by Σ0 (the socle) and let the remaining q2 + q spreads of

P− be denoted by Σi, for i = 1, 2, ..., q2 + q.
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(1) Then Σ0 is Desarguesian and Σi is a derived conical flock spread for i =

1, 2, . . . , q2 + q.

(2) Furthermore, the associated group G in ΓL(4, q) acting on the associated De-

sarguesian affine plane πΣ0
fixes a line ℓ of Σ0 and contains the full elation

group E with axis ℓ as a normal subgroup.

Returning to the more general case for an arbitrary field K, there is some-

thing of a classical construction that we now mention.

Let Σ be any Pappian spread in PG(3,K) and let Σ′ any spread which shares

exactly a regulus R with Σ such that Σ′ is derivable with respect to R. Assume

that there exists a subgroup G− of the central collineation group G with fixed

axis L with the following properties:

(i) Every line skew to L and not in Σ is in Σ′G− ,

(ii) G− is transitive on the reguli that share L, and

(iii) if g is a collineation of G− such that for each L′ ∈ Σ′ also

L′g ∈ Σ′, then g is a collineation of Σ′.

Let (Rg)∗ denote the regulus opposite to Rg.

Theorem 1.3 (see Johnson [7]). Under the above assumptions,

Σ ∪
{

(Σ′g − Rg) ∪ (Rg)∗; g ∈ G−
}

is a parallelism of PG(3,K) consisting of one Pappian spread Σ and the remaining

spreads derived Σ′-spreads.

Moreover, there are some related parallelisms, called the derived parallelisms.

Theorem 1.4 (see Johnson [6]). Assume that

Σ ∪ {(Σ′g − Rg) ∪ (Rg)∗; g ∈ G−}

is a parallelism. Then

{Σ − R} ∪ R∗ ∪ Σ′ ∪
{

(Σ′g − Rg) ∪ (Rg)∗; g ∈ G− − {1}
}

is a parallelism. In this case, the spreads are Hall, Σ′ (undetermined) and derived

Σ′ type spreads.

In this article, we develop a construction method that uses the full elation

subgroup E of G− as follows: Suppose that Σ2 is a spread in PG(3,K) such

that Σ2E is a set of mutually line disjoint spreads. If Σ3 is a spread in PG(3,K)
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such that as a set of lines Σ3E = Σ2E then it will turn out that Σ3E is a set

of mutually line disjoint spreads. What this means for parallelisms (or partial

parallelisms) containing Σ2E, is that we may switch the sets of spreads Σ2E

with sets of spreads Σ3E. This process, called elation switching, produces a

tremendous number of new parallelisms. If Σ2 is Desarguesian and K is finite

isomorphic to GF(q) then it is possible to completely determine all spreads Σ3

such that Σ3E switches with Σ2E. The authors show in [5] that Σ3 must be a

Kantor–Knuth or Desarguesian spread. However, when the construction is ap-

plied to an arbitrary infinite field, there are very few restrictions on the type of

spreads Σ3 that can be used. Our arguments center on conical flock spreads in

the infinite case and the constructions given show that there are an enormous

number of new parallelisms that may be constructed by this process. In par-

ticular, when K is the field of real numbers, there are uncountably many new

parallelisms constructed.

2 Elation switching

As suggested previously, the application of this construction technique men-

tioned in the introduction has been applied most successfully when the spreads

other than the Pappian spread are derived conical flock spreads and when the

group contains a large normal subgroup that is a central collineation group. (By

conical flock spreads, we intend to mean those spreads that correspond to flocks

of quadratic cones.) The reader is directed to the Handbook [8] for the precise

definitions and additional background.

Actually, there is a classification by procedure of such parallelisms.

Theorem 2.1 (see Johnson [6]). Let P be a parallelism in PG(3,K), for K a

field, that admits a Pappian spread Σ and a collineation group G− fixing a line ℓ

of Σ that acts transitively on the remaining spreads of P.

(1) If K is finite and if G− contains the full elation group with axis ℓ then the

spreads of P − {Σ} are derived conical flock spreads.

(2) If G− contains the full elation group with axis ℓ and, for ρ a spread of P−{Σ},

G−
ρ contains a non-trivial homology (i.e. homology in Σ) then the spreads of

P − {Σ} are derived conical flock spreads.

In a previous article on the above constructed over infinite fields, the second

author constructed a variety of parallelisms over the reals (when K is the field

of real numbers, K = R.

The main idea is as follows. Let a Pappian spread Σ1 defined as follows:
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x = 0, y = x

[

u −t

t u

]

∀u, t ∈ R.

We let Σ2 be a spread in PG(3,R), defined by a function f :

x = 0, y = x

[

u −f(t)

t u

]

∀u, t ∈ R

where f is a function such that f(t) = t implies that t = 0 and f(0) = 0.

Thus, if a spread exists then the two spreads Σ1 and Σ2 share exactly the

regulus D with partial spread:

x = 0, y = x

[

u 0

0 u

]

∀u ∈ R.

The following lemma of Johnson and Pomareda connects at least one of the

groups G that we use for our construction.

Lemma 2.2 (Johnson and Pomareda [10]). Let f be any continuous strictly in-

creasing function on the field of real numbers such that limx→±∞ f(t) = ±∞.

(1) Then Σ2 is a spread.

(2) Let G− = EH− where H− denotes the homology group of Σ1 (or rather the

associated affine plane) whose elements are given by

〈









u −t 0 0

t u 0 0

0 0 1 0

0 0 0 1









;u2 + t2 = 1

〉

,

and where E denotes the full elation group with axis x = 0.

(3) Then G− is transitive on the set of reguli of Σ1 that share x = 0.

Then for conditions that such spreads produce parallelisms along the same

lines as when the second chosen spread is Pappian, we mention the following

result:

Theorem 2.3 (Johnson and Pomareda [10]). Under the above assumptions, as-

sume also that f is symmetric with respect to the origin in the real Euclidean

2-space and f(to + r) = f(to)+ r for some to and r in the reals implies that r = 0.

(1) Then

Σ1 ∪ Σ∗
2g; g ∈ G−

is a partial parallelism Pf in PG(3,R), where Σ∗
2 denotes the derived spread

of Σ2 by derivation of D.
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(2) The above construction produces a parallelism if and only if f(t) − t is surjec-

tive.

(3) When the function f produces a partial parallelism P and f(t) − t is not an

onto function then P is a proper maximal partial parallelism.

(4) If P is a proper maximal partial parallelism then so is any derived partial

parallelism P∗.

In this article, we shall replace the conditions on f , with much more general

conditions that are valid over essentially any field K and completely generalize

the parallelisms constructed in the previous theorem.

With this background, we may now define the main concept of this article.

Definition 2.4. Let Σ0 denote a Pappian spread in PG(3,K), where K is a field:

{

x = 0, y = x

[

u γ1t

t u

]

∀u, t ∈ K

}

, where γ1 is a non-square in K.

Let E denote the full elation group of Σ0 with axis x = 0:

E =

〈









1 0 u γ1t

0 1 t u

0 0 1 0

0 0 0 1









;u, t ∈ K

〉

.

Let Σ2 and Σ3 be distinct spreads of PG(3,K) that share exactly the regulus

R =

{

x = 0, y = x

[

u 0

0 u

]

∀u ∈ K

}

.

Assume the following two conditions:

(i) Σ2E = Σ3E,

(ii) a line ℓ of Σ2E is in a unique spread of Σ2E if and only if ℓ is

in a unique spread of Σ3E.

If the spreads Σ2 and Σ3 have properties (i) and (ii),we shall say that Σ2E and

Σ3E are E-switches of each other (or that Σ2E has been switched by Σ3E).

In the finite case, the authors have proved that if Σ2 is Desarguesian (Pappian

in the infinite case) and Σ3 is a spread such that Σ3E switches with Σ2E then

Σ3 is either Kantor–Knuth or Desarguesian. In this setting a matrix spread set

may be chosen so that the spread Σ3 has the form

{

x = 0, y = x

[

u + αt + βf(t) f(t)

t u

]

∀u, t ∈ K

}

,
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where f, g are functions on K ≃ GF(q), α, β constants in K.

Then it turns out that f is completely determined as f(t) = γtσ, for γ ∈ K

and σ an automorphism of K. Furthermore, when K has even order σ = 1

and the spread is Desarguesian. In the odd order case, the plane is said to be

Kantor–Knuth, if σ is not 1. Furthermore, in the odd order case, a change in

basis can be made to further represent the spread as

{

x = 0, y = x

[

u F (t)

t u

]

∀u, t ∈ K

}

(∗)

where F is bijective on K ≃ GF(q), and F (t) = ρtσ, where ρ is a non-square

and σ an automorphism of K.

But now in the infinite case, there are a wide variety of spreads that have

the form of (∗) and these are the spreads that we now study in this article. We

begin with a necessary and sufficient condition on the associated functions to

have spreads of this form.

Theorem 2.5. Let K be any field. Then

Σf =

{

x = 0, y = x

[

u f(t)

t u

]

∀u, t ∈ K

}

,

where f is a function K → K such that f(0) = 0 is a spread if and only if for each

z ∈ K, ρz is bijective where,

ρz(t) = f(t) − z2t.

Proof. Let (x1, x2, y1, y2), for xi, yi ∈ K, i = 1, 2. Σf is a spread if and only

it defines an exact cover of the vectors. If y1 = y2 = 0 or x1 = x2 = 0 then

such points belong to x = 0 and y = 0 respectively. Suppose that x

[

u f(t)

t u

]

=

(0, 0), for x = (x1, x2) then

x1u + x2t = 0,

x1f(t) + x2u = 0.

If x1 = 0 then x2 6= 0 and both t = u = 0. If x2 = 0 then x1 6= 0 and

u = 0 = f (t). Hence, we must have f(t) = 0 if and only if t = 0.

In general,

x1u + x2t = y1,

x2u + x1f(t) = y2.
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for all x1, x2, y, y2 ∈ K. If x1 = 0, clearly, there is a unique solution for (u, t)

and hence a unique y = x

[

u f(t)

t u

]

that covers the given point.

If x2 = 0 then x1f(t) = y2 provided f is bijective and again there is a unique

solution for (u, t).

So, assume that x1x2 6= 0. Then,

u + zt = y∗
1 ,

u + z−1f(t) = y∗
2 ,

where z = x2/x1, y∗
1 = y1/x1 and y∗

2 = y2/x2. Note that y∗
1 and y∗

2 and z are

then completely independent. Thus,

zt − z−1f(t) =
z2t − f(t)

z
.

Since f(t) − z2t is bijective for all elements z2, we have a unique solution for t,

which then produces a unique solution (u, t). This completes the proof of the

theorem. ¤

Now we shall be interested in spreads of the above form that share precisely

a regulus with a Pappian spread

{

x = 0, y = x

[

u γ1t

t u

]

∀u, t ∈ K

}

, where γ1 is a non-square in K,

and such that the full elation subgroup of E that acts as a collineation group of

the spread in question is

(i) E− =

〈









1 0 u 0

0 1 0 u

0 0 1 0

0 0 0 1









;u ∈ K

〉

, where

(ii) the full elation of Σ1 with axis x = 0 is

E =

〈









1 0 u γ1t

0 1 t u

0 0 1 0

0 0 0 1









;u, t ∈ K

〉

, and

(iii) such that for any elation e ∈ E − E− then Σfe ∩ Σf is empty.

The following proposition is essentially immediate and is left to the reader to

verify.
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Proposition 2.6. A spread

Σf =

{

x = 0, y = x

[

u f(t)

t u

]

∀u, t ∈ K

}

,

shares exactly the regulus

R0 =

{

x = 0, y = x

[

u 0

0 u

]

∀u ∈ K

}

with the Pappian spread Σ1 if and only if

f (t) − γ1t = 0

implies t = 0.

Note that in the finite case, f is forced to be additive and so the above con-

dition implies that the function f − γ1 is bijective (injective will suffice in the

finite setting). This injective condition turns out to be an important condition

for elation switching.

Definition 2.7. If the function g defined by g(t) = f(t) − γ1t is injective, we

shall say that the function f has the regulus property.

If the full elation group of a spread Σf of E is E−, and for e ∈ E − E− then

Σfe∩Σf is empty, we shall say that the spread has the regulus-inducing property.

For example, if f(t) = γ2t and γ2 6= γ1 then f will turn out to have the

regulus-inducing property. For the automorphism type function f(t) = γ2t
σ we

need γ2t
σ
0 = γ1t0 for some t0 if and only if t = 0.

More generally, we have the following description of spreads that have the

regulus-inducing property.

Proposition 2.8. A spread

Σf =

{

x = 0, y = x

[

u f(t)

t u

]

∀u, t ∈ K

}

,

has the regulus-inducing property if and only if for t0,r ∈ K

f(t0 + r) = f(t0) + γ1r

implies r = 0.
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Proof. Let e =









1 0 u0 γ1r

0 1 r u0

0 0 1 0

0 0 0 1









map y = x

[

u f(t0)

t0 u

]

to

y = x

([

u f(t0)

t0 u

]

+

[

u0 γ1r

r u0

])

.

This line is back in the spread if and only if

f(t0 + r) = f(t0) + γ1r.

Hence, we wish this never to hold for non-zero values r, so we require that

r = 0 in this case. ¤

Proposition 2.9. The regulus property implies the regulus-inducing property.

Proof. Now let f(t) = γ1t + g(t), so we have, by assumption, that g is injective.

Then consider the equation

f(t0 + r) = γ1(t0 + r) + g(t0 + r) = f(t0) + γ1r = γ1t0 + g(t0) + γ1r. (∗ ∗ ∗)

So, for equation (∗ ∗ ∗) to imply that r = 0 is equivalent to the condition that

g(t0 + r) = g(t0), implies r = 0.

Since g is assumed to be injective, this condition is automatically satisfied. So,

the regulus property implies the regulus-inducing property. ¤

Corollary 2.10. The set of lines

Σf =

{

x = 0, y = x

[

u f(t)

t u

]

∀u, t ∈ K

}

,

is a spread admitting the regulus property, and regulus-inducing property if and

only if

(i) z ∈ K, ρz is bijective where

ρz(t) = f(t) − z2t;

(ii) the function g such that g(t) = f(t) − γ1t is injective.

These are the spreads that we shall use in the switching procedure, except

that we shall further require that g is bijective.

Definition 2.11. Any spread admitting the properties (i), (ii) of the previous

corollary with the extra condition that the function g is bijective shall be said to

admit the switching property.
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3 Main theorem on elation switching

Theorem 3.1. Let Σ0 denote a Pappian spread in PG(3,K), where K is a field:

{

x = 0, y = x

[

u γ1t

t u

]

∀u, t ∈ K

}

, where γ1 is a non-square in K.

Let E denote the full elation group of Σ0 with axis x = 0:

E =

〈









1 0 u γ1t

0 1 t u

0 0 1 0

0 0 0 1









;u, t ∈ K

〉

.

Assume that Σi is a spread in PG(3,K) of the following form:

Σi =

{

x = 0, y = x

[

u fi(t)

t u

]

∀u, t ∈ K

}

, for i = 2, 3,

where fi is a function K → K and such that both spreads admit the switching

property.

Then Σ2E switches with Σ3E.

Proof. Note that Σ2E = Σ3E if and only if Σ2 is in Σ3E and Σ3 is in Σ2E. Note

that

y = x

[

u fi(t)

t u

]

maps to

y = x

{[

u fi(t)

t u

]

+

[

u∗ γ1t
∗

t∗ u∗

]}

, ∀u∗, t∗ ∈ K

by E and note that E fixes x = 0 pointwise.

So consider, for j 6= i,

[

u fi(t)

t u

]

=

[

u fj(s)

s u

]

+

[

0 γ1(t − s)

(t − s) 0

]

. (∗)

Then

fi(t) = fj(s) + γ1(t − s)

if and only if

fj(t) − γ1t = fj(s) − γ1s.

Therefore, given t in K, then there exists a unique s in K such that

fj(t) − γ1t = fi(s) − γ1s,
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since φj and φi are both bijective. Hence, given u and t, there is a solution

to (∗). Note that the argument is symmetric. Now suppose for u and t, there is

another solution
[

u fi(t)

t u

]

=

[

u∗ fj(s)

k u∗

]

+

[

w γ1d

d w

]

, (∗∗)

it now follows easily that there is a unique solution to (∗∗), namely the unique

solution to (∗).

Since the argument is symmetric, we have Σ2E = Σ3E. This establishes

condition (i) of Definition 2.4.

Now take an element

y = x

[

u0 fi(t0)

t0 u0

]

and assume that there is an element e in E such that the image of this element

is back in Σi. Then
[

u0 fi(t0)

t0 u0

]

+

[

w γ1r

r w

]

=

[

u0 + w fi(t0) + γ1r

t0 + r u0

]

.

But, this means that fi(t0 + r) = fi(t0) + γ1r, so that r = 0. Then this element e

leaves Σfi
invariant. Again, since the argument is symmetric, we have that Σ2E

and Σ3E are unions of disjoint spreads. Therefore, we have that Σ2E switches

with Σ3E. ¤

4 Deficiency one transitive groups

Let K be an ordered field such that all positive elements have square roots in K.

For example, if L is a subfield of the field of real numbers then the numbers

LC constructible from L by straight-edge and compass is such an ordered field.

So, let K be such an ordered field, and let Σ1 denote the Pappian spread

Σ1 =

{

x = 0, y = x

[

u γ1t

t u

]

∀u, t ∈ K

}

where γ1 is a fixed negative element in K. Let

H =

〈[

1 0

0 w

]

;w =

[

u γ1t

t u

]

;u2 − γ1t
2 = 1

〉

and let

Σ2 =

{

x = 0, y = x

[

u γ2t

t u

]

∀u, t ∈ K

}
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where γ2 is a negative element in K, γ2 6= γ1. Let R0 denote the common

regulus

{

x = 0, y = x

[

u 0

0 u

]

∀u ∈ K

}

.

Theorem 4.1. Σ1 ∪ Σ∗
2EH is a parallelism in PG(3,K). Furthermore,

E−

〈









1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1









〉

is the subgroup of EH that leaves Σ2 invariant, where

E− =

〈









1 0 u 0

0 1 0 u

0 0 1 0

0 0 0 1









;u ∈ K

〉

.

Proof. First of all we claim that EH is transitive on the set of reguli of Σ1 that

share x = 0. We note that E is transitive on the components of Σ1 − {x = 0}.

So the question then is H transitive on the reguli that share x = 0 and y = 0.

Any such regulus has the following form:

Rt =

{

x = 0, y = 0, y = x

[

u γ1t

t u

]

;u ∈ K − {0}
}

.

So, the question is whether R0 can be mapped into Rt by an element of H.

Hence, given y = x

[

0 γ1t

t 0

]

, we need to find an element y = x

[

v 0

0 v

]

, v not

zero, such that
[

v 0

0 v

]

w =

[

u γ1t

t u

]

,

for some u ∈ K.

Note that since clearly the reguli sharing x = 0, y = 0 are permuted by H, it

just takes one appropriate image to establish that R0 is mapped onto Rt, as any

three distinct components generate a unique regulus of Σ1. Since w commutes

with

[

v 0

0 v

]

, we only need to show that for some element

[

u γ1t

t u

]

, for t not

zero, there exist elements

[

v 0

0 v

]

and

[

u∗ γ1t
∗

t∗ u∗

]

, where u∗2 − γ1t
∗2 = 1 such

that
[

v 0

0 v

] [

u∗ γ1t
∗

t∗ u∗

]

=

[

u γ1t

t u

]

.
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Let u2 − γ1t
2 = z. Since z > 0, let v =

√
z, which exists by assumption.

Now let u∗ = u/v and t∗ = t/v. Then (vu∗, vt∗) = (u, t) and u∗ − γ1t
∗ =

(u/v)2 − γ1(t/v)2 = 1. This establishes the transitivity.

This means that if Σ∗
2 denotes the derived spread then Σ∗

2EH will contain all

Baer subplanes of Σ1 that non-trivially intersect x = 0. Furthermore, if a Baer

subplane of R0 maps back into a Baer subplane of R0 under an element g of

EH then g leaves R∗
0 invariant and hence leaves R0 invariant. The subgroup of

EH that leaves R0 invariant is E−H−, where

E− =

〈









1 0 u 0

0 1 0 u

0 0 1 0

0 0 0 1









;u ∈ K

〉

,

and

H− =

〈









1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1









〉

.

These elements are collineations of Σ2 and of Σ∗
2. Hence, it follows that there

can be no line that non-trivially intersects x = 0 that is in two distinct spreads.

The remaining ‘lines’ of PG(3,K), apart from the components of Σ1 are the

Baer subplanes of Σ1 that do not intersect x = 0. These have the basic form

y = x

[

a b

c d

]

; a, b, c, d ∈ K,

where if a = d then b 6= γ1c. That is, either a 6= d or b 6= γ1c. Such a line will lie

in a unique spread of Σ∗
2EH if and only if it lies in a unique spread of Σ2EH.

Therefore, there must be an element of Σ2, y = x

[

u γ2t

t u

]

and an element

ρ ∈ EH such that

(

y = x

[

a b

c d

])

ρ =

(

y = x

[

u γ2t

t u

])

.

Notice that we may apply an elation that adds

[

−u −γ1t

−t −u

]

, as

[

u γ2t

t u

]

+

[

−u −γ1t

−t −u

]

=

[

0 (γ2 − γ1)t

0 0

]

.
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This means that y = x

[

0 b

0 0

]

, for any non-zero b does lie in a unique spread of

Σ2EH. Suppose we have

y = x

[

0 b

0 0

] [

w γ1s

s w

]

;w2 − γ1s
2 = 1

= x

[

bs bw

0 0

]

.

Choose any z and e in K, at least one non-zero. If z2 − γ1e
2 = m = p2, then

(z/p)2 − γ1(e/p)2 = 1. Then letting b = p, w = z/p and s = e/p, we see that we

obtain

y = x

[

e z

0 0

]

,

for any e, z in K, not both zero, is in a unique spread of Σ2EH0. Then adding
[

d γ1c

c d

]

(applying an elation), we obtain

y = x

[

e + d z + γ1c

c d

]

.

Let e + d = a and z + γ1c = b. Note that a, b, c, d are arbitrary except that if

a = d, then e = 0 so that z is not zero and hence b 6= γ1c. This shows that every

line of PG(3,K) is contained in a spread of Σ2EH. To ensure that no line is

in two spreads of Σ2EH, we need only check that no line of Σ2 − R is in two

spreads or equivalently that if

(

y = x

[

u γ2t

t u

])

=

(

y = x

[

u∗ γ2t
∗

t∗ u∗

])

ρ

for t nonzero and ρ ∈ EH then Σ2ρ = Σ2. Therefore, the question is whether

there exist matrices

[

r γ1s

s r

]

and

[

w γ1k

k w

]

, such that w2 − γ1k
2 = 1 and

[

u γ2t

t u

] [

w γ1k

k w

]

=

([

u∗ γ2t
∗

t∗ u∗

]

+

[

r γ1s

s r

])

.

The elements that we are considering are now elements of Σ1. The left hand

side is
[

uw + γ2tk γ1uk + γ2tw

tw + uk γ1tk + uw

]

and note that the matrix on the right hand side has equal (1, 1) and (2, 2)-

entries. Since γ1 6= γ2 it then follows that tk = 0. Therefore, k = 0 then
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w = ±1. Now the only possible elements of E that map one element of the

regulus R0 back into an element of R0 requires that s = 0. But, now the element

in question leaves Σ2-invariant. This completes the proof of the theorem. ¤

Theorem 4.2. Given any spread Σf , which is switchable (satisfies the switching

property f(t) − γ1t bijective and f(t) − z2t bijective for all z).

If Σ2 is Pappian, then ΣfE switches with Σ2E.

Proof. We need only check that γ2t − γ1t and γ2t − z2t = −(−γ2 + z2)t define

bijective functions, which is clear since γ2 6= γ1 and (−γ2 + z2) > 0. ¤

5 The main theorem

We recall that our previous parallelism construction used the group EH and

two Pappian spreads Σ1 and Σ2, where

E−

〈









1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1









〉

is the subgroup that leaves Σ2 invariant. We note that EH is transitive on the

reguli of Σ1 that share x = 0. Hence, H is transitive on the reguli of Σ1 that

share x = 0, y = 0. Let {hi; i ∈ λ} be a coset representation set for

〈









1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1









〉

in H. Using this coset representation set, we may now give our main theorem

on elation switching.

Theorem 5.1. Let K be any ordered field such the positive elements all have square

roots. Let H denote the homology group with axis y = 0 and coaxis x = 0 of

determinant 1 and let {hi; i ∈ λ} be a coset representation set for

〈









1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1









〉
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in H. For each i ∈ λ, choose any function fi such that the functions ρi,z and φi

are bijective for each z ∈ K, where fi(0) = 0 and

ρi,z(t) = fi(t) − z2t and

φi(t) = fi(t) − γ1t.

Let Σfi
denote the following spread:

Σf =

{

x = 0, y = x

[

u fi(t)

t u

]

∀u, t ∈ K

}

.

Then

Σ1 ∪i∈λ Σ∗
fi

Ehi

is a parallelism in PG(3,K).

Proof. We know that

Σ1 ∪i∈λ Σ∗
2E

〈









1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1









〉

hi = Σ1 ∪ Σ∗
2EH

is a parallelism by Theorem 4.1. But then we also have that

Σ1 ∪i∈λ Σ∗
2Ehi

is a parallelism. By Theorem 4.2, we know that ΣfE switches with Σ2E, where

f is any of the functions fi. Choose any line ℓ of PG(3,K), then ℓ is in a unique

spread of

Σ1 ∪ Σ∗
2EH = Σ1 ∪i∈λ Σ∗

2Ehi.

Either ℓ is a line of Σ1 or there exists a unique hj such that

ℓ ∈ Σ∗
2Ehi.

Assume that ℓ non-trivially intersects x = 0. Then, ℓ is a Baer subplane of a Rg,

for g ∈ EH. We note that (Rg)∗ for g ∈ EH is also in

Σ1 ∪i∈λ Σ∗
fi

Ehi.

Hence, we may assume that

ℓ ∈ (Σ∗
2 − R)Ehi.

Assume that there is a line m ∈ ΣfE that does not intersect x = 0 that is

in two spreads Σf and Σfg, for g ∈ E, then since ΣfE switches with Σ2E, we

have a contradiction. Hence, every line of PG(3,K) not in Σ1 is in a unique

spread of Σ∗
2Ehi and hence is in a unique spread of Σ∗

fi
Ehi. This completes the

proof of the theorem. ¤
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6 Examples

Let F be any subfield of the field of real numbers and let FC = K denote the

field of constructible numbers from F . If we let γ1 = −1, choose any function

fi where fi(t) = γit, for γi 6= −1. Then it is clear that the following define

bijective functions:

ρi,z(t) = fi(t) − z2t and

φi(t) = fi(t) − γ1t.

Hence, we have the following result.

Theorem 6.1. Let K = FC , a field of constructible numbers from a subfield F of

the field of real numbers. Let Σ1 denote the Pappian spread

Σ1 =

{

x = 0, y = x

[

u −t

t u

]

∀u, t ∈ K

}

,

and let

E =

〈









1 0 u γ1t

0 1 t u

0 0 1 0

0 0 0 1









;u, t ∈ K

〉

,

H =

〈[

1 0

0 w

]

;w =

[

u γ1t

t u

]

;u2 − γ1t
2 = 1

〉

.

Let {hi; i ∈ λ} be a coset representation for

H− =

〈









1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1









〉

in H. For each i ∈ λ, choose a negative number γi in K such that γi 6= −1 and

finally let

Σi =

{

x = 0, y = x

[

u γit

t u

]

∀u, t ∈ K

}

.

Then

Σ1 ∪i∈λ Σ∗
i Ehi

is a parallelism in PG(3,K).
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Remark 6.2. Let σi be an automorphism of K. We consider functions fi such

that fi(t) = γit
σi , where γi is a negative number. In order to obtain parallelisms

in a manner similar to that of the previous theorem, we need to check that the

following define bijective functions:

ρi,z(t) = γit
σ − z2t and

φi(t) = γit
σ − γ1t.

Note that first set of functions ρi,z are always

fi(t) − z2t = γit
σi − z2t = 0

if and only if t = 0 since γi < 0. Since the function is additive, we see ρi,z is

injective.

In general, the surjectivity of ρi,z is not always guaranteed.

6.1 Examples over the reals

Let

f(t) =

{

γ1t − at + 1, t ≥ 0

γ1t + b−t − 1, t < 0

}

, a, b both > 1.

We see that f(0) = 0, f is continuous at all elements t of the reals and consider

f(t) − z2t.

f(t) − z2t =

{

γ1t − at + 1 − z2t, t ≥ 0

γ1t + b−t − 1 − z2t, t < 0

}

, a, b both > 1.

Note that

lim
t→±∞

−f(t) = ±∞,

so that f (t)−z2t is continuous and hence surjective. We note that the limt→0 f(t) =

0 and f ′(t) for t non-zero is

f ′(t) − z2 =

{

γ1 − at ln a − z2, t ≥ 0

− 1 − b−t ln b − z2, t < 0

}

, a, b both > 1,

which is never 0. Hence, f(t) − z2t is bijective for each z. Now f(t) − γ1t

f(t) − γ1t =

{

− at + 1, t ≥ 0

b−t − 1, t < 0

}

, a, b both > 1,
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and clearly this function is bijective. For example, assume that the function is

not injective. Then the only questionable case is where b−t − 1 = 1 − as, for

t < 0 and s ≥ 0. But, then as + b−t = 2 and both a and b > 1, then as ≥ 1 and

b−t > 1, a contradiction.

The more general version of the above set of examples is given in the follow-

ing.

Theorem 6.3. Let r be a strictly increasing continuous real function of the positive

real numbers and let h be a strictly decreasing continuous real function on the

negative real numbers. Choose any two real numbers a and b > 1 (possibly equal).

Then a function f defined as follows is switchable.

f(t) =

{

γ1t − ar(t) + 1, t ≥ 0

γ1t + bh(t) − 1, t < 0

}

, a, b both > 1,

lim
t→0+

ar(t) = 1 = lim
t→0−

bh(t).

Proof. The function f is continuous on the field of real numbers, and we have

limt→∞(1 − ar(t)) = −∞ and limt→−∞(−1 + bh(t)) = ∞. This guarantees that

g(t) = f(t)− γ1t is a surjective function. For s > 0, note that g(s) > 0, since r is

strictly increasing. Similarly for t < 0, h(t) < 0 since limt→0−(bh(t) − 1) = 0 and

h is strictly decreasing on the negative real numbers. Then our above argument

shows that it is not possible that bh(t) + ar(s) = 2, so that g is injective.

For z fixed, f(t) − z2t defines a continuous function.

f(t) − z2t =

{

γ1t − ar(t) + 1 − z2t, t ≥ 0

γ1t + bh(t) − 1 − z2t, t < 0

}

, a, b both > 1.

If t is non-zero, we may take the derivative

f ′(t) − z2 =

{

γ1 − ar(t) ln a r′(t) − z2, t ≥ 0

γ1 + bh(t) ln a h′t) − z2, t < 0

}

, a, b both > 1.

It now follows exactly as in the previous example that we obtain bijective func-

tions as required. ¤

Theorem 6.4. Under the above assumptions, any such function f may be used to

construct E-switchable spreads ΣfE = Σ2E and thus

Σ1 ∪i∈λ Σ∗
fi

Ehi

is a parallelism for any set of choices of functions fi.
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7 The derive-underive parallelisms

We may now construct parallelisms from any parallelism of the type

Σ1 ∪i∈λ Σ∗
fi

Ehi.

as follows: Choose an element ehj of Ehj , for some j ∈ λ. There is a regulus

Rehj
of Σ1 that is derived in Σfj

ehj to construct Σ∗
fj

ehj . Derive Rehj
in Σ1 to

construct the Hall plane Σ
R∗

ehj

1 and underive R∗
ehj

in Σ∗
fj

ehj to construct Σfj
ehj .

Theorem 7.1.

Σ
R∗

ehj

1 ∪i∈λ−{j} Σ∗
fi

Ehi ∪g∈E−{e} Σ∗
fj

Ehj ∪ Σfj
ehj

is a parallelism.

8 The variety of parallelisms

We note that although our original parallelism admits the group EH, the col-

lineation group of certain of the constructed parallelisms can be made so that

only E is a collineation group. Furthermore, certain of the derive-underive par-

allelisms can be found that do not admit a non-trivial collineation.

We note that to construct parallelisms over the reals of the type here con-

sidered, it is sufficient to constructs functions fi with the conditions given in

Theorem 5.1. We have also constructed 2χ0 different functions fi and there-

fore, we have also constructed 2χ0 distinct parallelisms of the type

Σ1 ∪i∈λ Σ∗
fi

Ehi.

Any isomorphism between two parallelisms

Σ1 ∪i∈λ Σ∗
fi

Ehi

and

Σ1 ∪i∈λ Σ∗
gi

Ehi

of this type necessarily is a collineation group of Σ1, the Pappian plane over

the field of complex numbers (assuming that none of the derived conical flock

spreads are Pappian). Since our parallelisms admit E, it follows that any iso-

morphism must be a collineation of Σ1 that leaves x = 0, y = 0 invariant and

must permute the set of reguli of Σ1 sharing x = 0, y = 0 and so must permute

the Σ∗
fi

hi. Hence, there is a collineation of Σ1 that would map a function fi
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to a function gj . But, this would mean that fi and gj are obtained as real lin-

ear combinations together with the automorphism of order 2. Clearly, it is easy

to choose functions fi and gj that do not have this property and still produce

parallelisms.

Theorem 8.1. When K is the field of real numbers, there are 2χ0 mutually non-

isomorphic parallelisms of type

Σ1 ∪i∈λ Σ∗
fi

Ehi.

Remark 8.2. Similarly, if any of the derive-underive parallelisms are isomor-

phic, and if no derived conical flock spread can be a flock spread, any collin-

eation would necessarily leave Σfj
ehj invariant and a conjugate would leave

Σfj
invariant. Similar arguments then would show that there are 2χ0 mutually

non-isomorphic derive-underive parallelisms, none of which are isomorphic to

any of the original parallelisms.
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