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1 Introduction

A chamber system over the set I consists of a set C and a system (Pi)i∈I of

partitions of C indexed by I. The elements of C are called chambers and, for

brevity, the system (C, (Pi)i∈I) will often be referred to as the chamber system C.

Two chambers which are both in the same member of Pj for some j ∈ I are

said to be adjacent chambers. The chamber graph of the chamber system C is

the graph with vertex set C and two (distinct) chambers are adjacent (in the

chamber graph) if they are adjacent chambers in C. (Note that a chamber is

not adjacent to itself in the chamber graph.) If two chambers c, c′ are both in

the same member of Pi (i ∈ I), then we say they are i-adjacent, and denote

this by c ∼i c′ (or c′ ∼i c). The rank of the chamber system is the cardinality

of I. An automorphism of C is a permutation σ of C which preserves each of the

partitions Pi, that is, whenever c ∼i c′ (c, c′ ∈ C, i ∈ I) then cσ ∼i c′σ.

We shall now concentrate on the following situation.

Hypothesis 1.1. C is a chamber system over I and G ≤ Aut C is such that

(i) G is transitive on C; and

(ii) for each i ∈ I, G is transitive on the members of the partition Pi .
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Suppose Hypothesis 1.1 holds, and let c0 be a fixed chamber of C. Let B

denote the stabilizer in G of c0, and for each i ∈ I let Pi be the stabilizer in G

of the member of Pi to which c0 belongs. Observe that B ≤
⋂

i∈I Pi. We may

now identify C with the set of (right) cosets of B in G with, for each i ∈ I, the

members of Pi being the sets of cosets of B which are contained in a coset of Pi.

In other words, for chambers Bg and Bh, Bg and Bh are i-adjacent whenever

gh−1 ∈ Pi. Such a chamber system will be denoted by C(G;B, (Pi)). Further,

we note that the valency of the chamber graph of C is one less than the number

of cosets of B in
⋃

i∈I Pi (counting multiplicities if we have Pi = Pj , for i 6= j).

Conversely, if we start with a group G, a subgroup B of G and a collection

of subgroups Pi of G (i ∈ I) each containing B we may define a chamber

system C by taking the (right) cosets of B as chambers and the partition Pi

to be given by taking right cosets of B contained in a right coset of Pi. Now

letting G act by right multiplication on the chambers of C, it is easily checked

that Hypothesis 1.1 holds for C with G/ coreG B playing the role of G.

A rich source of chamber systems is provided by geometries. We recall that

a geometry (over the set I) is a triple (Γ, τ, ∗) where Γ is a set, τ is an onto

map from Γ to I and ∗ is a symmetric relation on Γ with the property that for

x, y ∈ Γ x ∗ y implies τ(x) 6= τ(y). The relation ∗ is called the incidence relation

and x ∈ Γ is said to have type i if τ(x) = i. As is customary we shall just say

Γ is a geometry. A flag F of Γ is a set of pairwise incident elements of Γ —

the type of F , denoted τ(F ), is the set {τ(x) | x ∈ F}. The rank of Γ is |I|

and the rank of a flag F is |τ(F )|(= |F |). Now let F denote the set of maximal

flags of Γ — a flag F is maximal if its rank is |I|. For i ∈ I and F , F ′ ∈ F

we define F and F ′ to be i-adjacent if either F = F ′ or the rank of the flag

F ∩ F ′ is |I| − 1 and i /∈ τ(F ∩ F ′). This yields a partition Pi of F ; note that

a member of Pi consists of all maximal flags containing some fixed flag of type

I \ {i}. So F is a chamber system — we shall call this the chamber system of Γ.

(F is sometimes referred to as the flag complex of Γ.) An automorphism of the

geometry Γ is a permutation σ of Γ for which x ∗ y implies xσ ∗ yσ and τ(x) = i

implies τ(xσ) = i (where x, y ∈ Γ, i ∈ I). Now further suppose that G is a

subgroup of Aut Γ with G acting flag transitively on Γ (that is, if F and F ′ are

flags of Γ with τ(F ) = τ(F ′), then there exists g ∈ G such that Fg = F ′). Then

we see that G ≤ AutF and that Hypothesis 1.1 holds for G and F . Thus, as

discussed earlier, we may study the chamber system F within G.

Buildings afford an extensive supply of geometries and hence of chamber

systems. In fact the theory of buildings may be developed in the language of

chamber systems (see [9] and [18] for more on this). In this approach the

chamber graph underpins (pun intended) much of the conceptual framework

(for example, galleries, connectedness and thin subgeometries). An outgrowth
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of Tits’s pioneering work on buildings was the study of more general geome-

tries — usually ones associated with sporadic simple groups but also those aris-

ing from “small” Lie type groups of mixed characteristic. We will, from now

on, rather loosely, refer to this mixed bag of geometries as the “sporadic group

geometries”. This programme was initiated by Buekenhout [2, 3] in the late

seventies. Since then sporadic group geometries have received considerable at-

tention — some in the form of characterization theorems, some more concerned

with delving into geometric properties of particular geometries. However, com-

pared to the chamber graph of a building, there has been very little work on

the chamber graphs of the chamber systems associated with the sporadic group

geometries.

In this paper we gather, numerical data concerning chamber graphs for a

variety of sporadic group geometries, including minimal parabolic geometries

[16], maximal p-local geometries [15], Petersen geometries [8, 9], GABs [10]

and various Buekenhout geometries [4]. All the geometries we consider will

come equipped with a flag transitive automorphism group G and we will usually

study the chamber graph via C(G;B, (Pi)). Moreover we will only be studying

connected chamber graphs (this is equivalent to the condition G = 〈Pi | i ∈ I〉).

We will mostly examine rank 3 and 4 geometries, though we also include one

or two “notorious” rank 2 systems.

Before proceeding further, we need some notation. For c0 a fixed chamber of

a chamber system C, Di(c0) (i ∈ N) is the set of chambers at distance i from c0

in the chamber graph of C. We shall call Di(c0) the ith disc (of c0).

Many ideas and results concerning geometries have taken buildings as their

inspiration. So let us pause for a moment and consider the chamber graph of C

where C is the chamber system associated with the building which arises from

a finite group G of Lie type over GF (q). Let c0 be a fixed chamber of C. Now

c ∈ Di(c0) if and only if δ(c0, c) = w where w is an element of Weyl group W

of G and the length of w in W is i. (δ is the W -distance function — see [14,

Chapter 3] for further details of this approach to buildings.) For w ∈ W , Uw

acts simply transitively on the set of chambers such that δ(c0, c) = w. (Uw is

a certain subgroup of B = StabG c0 and |Uw| = qℓ(w) — again see [14, pp.

75,76]). Since

Di(c0) =
⋃

w∈W
l(w)=i

{c | δ(c0, c) = w} ,

the number of chambers in Di(c0) is

qℓ(w) × (size of the ith disc in the chamber system for W ).

The diameter d of C is the Coxeter number of W and |Dd(c0)| = |U | where

U is the unipotent radical of B. (This is because there is a unique w0 ∈ W with
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ℓ(w0) = d and Uw0
= U .) So in particular, we have that B acts transitively on

Dd(c0). In the chamber systems analyzed in this paper, this property is rarely

observed. However, there are some interesting instances when this property

does occur — for example in the M24 maximal 2-local geometry [17].

So, looking at the building case, we see that the sizes of discs, particularly the

last disc and the diameter of the chamber graph of a sporadic group geometry

are potentially interesting pieces of information relating to the group and the

geometry. It is these features of the chamber graph that we focus upon here.

Much of the data has been obtained using MAGMA [5] and extends to chamber

systems with up to about 400,000 chambers.

The aim of this exercise in data collection is to highlight those geometries

deserving of further detailed study. Indeed, in [17], combinatorial descriptions

of the discs for the M24 maximal 2-local geometry are obtained by hand — the

sizes of the discs agree with those given here in section 2.22 (Geometry 1)!

Section 2 tabulates the disc sizes of various geometries together with some

additional observations. The geometries we study are described either in terms

of some combinatorial structure or by means of an appropriate diagram [3, 4].

For a rank n geometry we shall take I = {0, 1, . . . , n−1}. We use Gi,...,ir
, where

{i1, . . . , ir} ⊆ I, to denote the stabilizer in G of a flag of type {i1, . . . , ir}, and

put B = G0···n−1 = G0 ∩ G1 ∩ ... ∩ Gn−1. Since we utilize the group in our

calculations we give Gi1···ir
for all subsets {i1, ..., ir} of I.

Throughout we use the Atlas [6] conventions and terminology when describ-

ing groups except that we use Dih(n), Sym(n) and Alt(n) to denote, respectively,

the dihedral group of order n, the symmetric group and alternating group of de-

gree n. Thus we shall (usually) only describe the groups Gi,...,ir
up to “shape”.

In section 3 we give some hand calculations for the d d d Alt(7)-ge-

ometry. This geometry, over the years has attracted a good deal of attention

[12, 13, 14]. These calculations uncover the structure of the last disc — the

chamber graph has diameter 5 and D5(c0) consists of 104 chambers.
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2 Disc structures

2.1 Group G = L2(11)

|G| = 22 · 3 · 5 · 11 = 660

GEOMETRY: Petersen Geometry

e e e

0 1 2

P

NUMBER OF CHAMBERS: 330

DIAMETER: 9

G0
∼= Alt(5), G1

∼= Dih(12) ∼= G2,

G01
∼= Sym(3), G02

∼= 22 ∼= G12,

B ∼= 2 (see [8, p. 944]).

DISC 1 2 3 4 5 6 7 8 9

SIZE 4 8 15 26 42 58 76 68 32

2.2 Group G = Ŝ6(∼= 3.Sym(6))

|G| = 24 · 33 · 5 = 2,160

GEOMETRY: 3-fold cover of the

Sp4(2)-quadrangle

e e

0 1

∼

NUMBER OF CHAMBERS: 135

DIAMETER: 8

G0
∼= 23Sym(3) ∼= G1,

B ∼= Dih(8) × 2.

This geometry appears as a residue in the minimal parabolic geometries for M24,

·1, M, He and Fi′24 — see [16].

DISC 1 2 3 4 5 6 7 8

SIZE 4 8 16 32 48 16 8 2

2.3 Group G = Alt(7)

|G| = 23 · 32 · 5 · 7 = 2,520
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1. GEOMETRY:

f f

0 1

NUMBER OF CHAMBERS: 315

DIAMETER: 8

G0
∼= Sym(4) ∼= G1,

B ∼= Dih(8).

Biduads (ab)(cd) and triduads (ab)(cd)(ef) are unordered pairs and triples

of disjoint duads of a 7-element set. This rank 2 geometry also appears as

a residue in a number of sporadic geometries; see [16].

DISC 1 2 3 4 5 6 7 8

SIZE 4 8 16 32 56 72 98 28

2. GEOMETRY:

C3-Geometry for Alt(7)

f f f

0 1 2

points lines planes

NUMBER OF CHAMBERS: 315

DIAMETER: 5

G0
∼= Alt(6), G1

∼= (3 × Alt(4))2, G2
∼= L3(2),

G01
∼= G02

∼= G12
∼= Sym(4),

B ∼= Dih(8).

The points are the points of a 7-element set Ω, the lines are all 3-element

subsets of Ω and the planes are one Alt(7)-orbit of PG(2, 2) on Ω. See

[16] and [12]. This geometry receives further attention in section 3.

DISC 1 2 3 4 5

SIZE 6 20 56 128 104

3. GEOMETRY: NUMBER OF CHAMBERS: 315

DIAMETER: 5

This chamber system is something of a hybrid of the chamber system in

Example 2. Starting with the chamber system C of the Alt(7) C3-geometry,

we choose a fixed µ ∈ Sym(7) \ Alt(7) and then define two chambers c,

d of C to be 0′- adjacent if cµ and dµ are 0-adjacent. Together with the

other 0-, 1- ,2-adjacencies of C, this delivers a rank 4 chamber system with

diagram
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f

@
@

@

f¡
¡

¡
f f

0

0′

1 2
(See [14, p. 54].)

B ∼= Dih(8),

Pi
∼= Sym(4) for i ∈ {0, 0′, 1, 2}.

DISC 1 2 3 4 5

SIZE 8 26 88 120 72

4. GEOMETRY:

Petersen Geometry

f f f

0 1 2

P

NUMBER OF CHAMBERS: 630

DIAMETER: 11

G0
∼= Sym(5), G1

∼= (3 × 22)2, G2
∼= Sym(4),

G01
∼= Dih(12), G02

∼= Dih(8) ∼= G12,

B ∼= 22 (see [8, p. 945]).

DISC 1 2 3 4 5 6 7 8 9 10 11

SIZE 4 8 15 26 42 58 76 104 136 144 16

5. GEOMETRY: Chamber system

of type Ã2

NUMBER OF CHAMBERS: 2,520

DIAMETER: 9

B = 1,

Pi
∼= 3, i ∈ {0, 1, 2}. (See [14, p. 53].)

DISC 1 2 3 4 5 6 7 8 9

SIZE 6 24 72 192 468 851 737 164 5

Remark 2.1. Taking P0 = 〈(123)(456)〉, P1 = 〈(124)(375)〉 and P2 =

〈(153)(276)〉 (and noting that the chambers are just the elements of Alt(7)

and c0 = 1), D9(c0) looks as follows:
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f f f f

f

@
@

¡
¡

(1372654)(1456273)

(12)(35)

(24)(37) (14)(57)
0 21

1 1

The labels on the edges indicate the i-adjacency.

2.4 Group G = Sym(7)

|G| = 24 · 32 · 5 · 7 = 5,040

GEOMETRY: Number 17 of [4]

f f f f

0 1 2 3

NUMBER OF CHAMBERS: 840

DIAMETER: 10

The type 0 objects are the elements of a 7-element set Ω and the objects of type

1, 2, 3 are, respectively, all the 2-, 3- and 4-element subsets of Ω.

G0
∼= Sym(6), G1

∼= 2 × Sym(5), G2
∼= Sym(3) × Sym(4) ∼= G3,

G01
∼= Sym(5), G02

∼= 2 × Sym(4) ∼= G12,

G03
∼= Sym(3) × Sym(3) ∼= G23, G13

∼= 22 × Sym(3),

G012
∼= Sym(4), G013

∼= G023
∼= G123

∼= 2 × Sym(3),

B ∼= Sym(3).

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 6 17 39 68 102 136 147 135 108 81

2.5 Group G = L2(25)

|G| = 23 · 3 · 52 · 13 = 7,800

GEOMETRY: Petersen Geometry

f f f

0 1 2

P

NUMBER OF CHAMBERS: 1,950

DIAMETER: 18

G0
∼= Sym(5), G1

∼= Dih(24), G2
∼= Sym(4),

G01
∼= Dih(12), G01

∼= G12
∼= Dih(8),

B ∼= 22. (See [8, p. 944].)
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DISC 1 2 3 4 5 6 7 8 9 10

SIZE 4 8 15 26 42 58 76 104 136 176

11 12 13 14 15 16 17 18

192 216 256 256 232 100 44 8

2.6 Group G = M11

|G| = 24 · 32 · 5 · 11 = 7,920

1. GEOMETRY: Number 27 of [4].

f f f f

0 1 2 3

⊂ ⊃

NUMBER OF CHAMBERS: 2,640

DIAMETER: 11

Considering M11 acting 3-transitively on the 12-element set Ω, we may

describe the geometry thus. The objects of type 0 and 1 are, respectively

all 1- and 2- subsets of Ω; those of type 2 are 3-element subsets of Ω of the

form FixΩ(g) where g is an element of order 3 in M11 and those of type 3

are one “half” of a total (that is, a 6-element subset of the 6 | 6 partition).

Incidence is symmetized containment.

G0
∼= L2(11), G1

∼= Sym(5), G2
∼= 3(Sym(3) × 2), G3

∼= Alt(6),

G01
∼= Alt(5) ∼= G03, G02

∼= 2 × Sym(3) ∼= G12, G13
∼= Sym(4),

G23
∼= 32 : 2,

G012
∼= G023

∼= G123
∼= Sym(3), G013

∼= Alt(4),

B ∼= 3.

DISC 1 2 3 4 5 6 7 8 9 10 11

SIZE 6 19 51 106 204 327 426 534 549 393 24

2. GEOMETRY:

f f f f

0 1 2 3

c c Af

NUMBER OF CHAMBERS: 3,960

DIAMETER: 10

Regarding M11 as the stabilizer of the S(12, 6, 5) Steiner system on a 12-

element set Ω and an element α of Ω, the geometry may be described
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as follows. The objects of type 0,1,2 are, respectively, all 1-, 2- and 3-

element subsets of Ω \ {α} and those of type 3 all the hexads of S(12, 6, 5)

containing α. See [13, pp. 72 and 94].

G0
∼= M10, G1

∼= M9 : 2, G2
∼= 2·Sym(4), G3

∼= Sym(5),

G01
∼= 32 : Q8, G02

∼= SDih(16) ∼= G12, G03
∼= Sym(4),

G13
∼= 2 × Sym(3) ∼= G23, G012

∼= Q8, G013
∼= Sym(3), G023

∼= 22 ∼= G123,

B ∼= 2.

(SDih(n) denotes the semidihedral group of order n.)

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 7 26 73 155 300 494 636 756 864 648

3. GEOMETRY: Petersen Geometry

f f f f

0 1 2 3

P

NUMBER OF CHAMBERS: 3,960

DIAMETER: 15

Again starting with M11 acting 3-transitively on a 12-element set Ω, we

take as our objects of type 0, 1, 2 to be, respectively, all 1-, 2- and 3- subset

of Ω and objects of type 3 to be 4 subsets of the form FixΩ(g) where g is

an involution of M11. Incidence being symmeterized inclusion.

G0
∼= L2(11), G1

∼= Sym(5), G2
∼= 3(Sym(3) × 2),

G3
∼= 2·Sym(4), G01

∼= Alt(5), G02
∼= G03

∼= G12
∼= G23

∼= 2 × Sym(3),

G13
∼= Dih(8), G012

∼= Sym(3), G013
∼= G023

∼= G123
∼= 22, B ∼= 2.

(See [8, p. 954].)

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 5 13 28 55 101 171 278 406 516 578

11 12 13 14 15

612 590 446 144 16
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2.7 Group G = A8

|G| = 26 · 32 · 5 · 7 = 20,160

GEOMETRY:

f f f f

0 1 2 3

c

NUMBER OF CHAMBERS: 2,520

DIAMETER: 8

Let Ω be an 8-element set. Then the objects of type 0,1,2 are, respectively the

elements, duads and 42 partitions of Ω. The 35 42 partitions of Ω may be iden-

tified with the lines of projective 3-space (see [13, Proposition 1]). Objects of

type 3 are the points of the projective 3-space which may be identified with a

set of seven 24 partitions of Ω (there are 105 = 7× 15 24 partitions of Ω). These

seven 24 partitions may also be viewed as the non-identity elements of O2(G3).

For the definition of incidence and more details see [12, Section 3].

G0
∼= Alt(7), G1

∼= Sym(6), G2
∼= (Alt(4) × Alt(4)) : 22,

G3
∼= 23 : L3(2),

G01
∼= Alt(6), G02

∼= (3 × Alt(4)) :2, G03
∼= L3(2),

G12
∼= 23 :Sym(3), G23

∼= 23 :Sym(4), G13
∼= Sym(4) × 2,

G012
∼= G013

∼= G023
∼= Sym(4), G123

∼= Dih(8) × 2,

B ∼= Dih(8).

DISC 1 2 3 4 5 6 7 8

SIZE 7 28 92 256 488 720 744 184

2.8 Group G = U4(2)

|G| = 26 · 34 · 5 = 25,920

GEOMETRY: Example 6 in

[11, Table 4]

f f f f f

0 1 2 3 4

NUMBER OF CHAMBERS: 25,920

DIAMETER: 12

For each i ∈ I, GJ
∼= 3 for J = I \ {i} and B = 1. (See [11] for the other

stabilizers.)
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DISC 1 2 3 4 5 6 7 8 9 10

SIZE 10 60 260 855 2190 4510 6930 6542 3325 1150

11 12

85 2

2.9 Group G = M12

|G| = 26 · 33 · 5 · 11 = 95,040

1. GEOMETRY: Number 5 of [4]

f f f

0 1 2

P

NUMBER OF CHAMBERS: 1,320

DIAMETER: 6

With G acting (5-transitively) on the 12-element set Ω, we take all 1-, 2-

and 3-sets of Ω to be the objects of type 0,1,2 of the geometry respectively.

G0
∼= M11, G1

∼= M10 : 2, G2
∼= 32 :2Sym(4),

G01
∼= M10, G02

∼= 32 : SDih(16) ∼= G12,

B ∼= 32 : Q8.

DISC 1 2 3 4 5 6

SIZE 11 29 118 189 243 729

2. GEOMETRY:

f f f f f

0 1 2 3 4

c Af

NUMBER OF CHAMBERS: 47,520

DIAMETER: 15

With Ω a 12-element set, the objects of type 0, 1, 2, 3 and 4 are, respectively

1-, 2-, 3-, 4-subsets of Ω and the hexads of the Steiner system S(12, 6, 5).

See [13, pp. 72 and 94].

G0
∼= M11, G1

∼= Alt(6).22 ∼= G4, G2
∼= 32 : 2Sym(4), G3

∼= 21+4
+ : Sym(3),

G0123
∼= Q8, G0124

∼= Sym(3), G0134
∼= G0234

∼= G1234
∼= 22, B ∼= 2.
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DISC 1 2 3 4 5 6 7 8 9 10

SIZE 8 34 107 263 574 1116 1887 2934 4280 5692

11 12 13 14 15

6504 6840 6912 6480 3888

2.10 Group G = U3(5)

|G| = 24 · 32 · 53 · 7 = 126,000

1. GEOMETRY:

f f

f f

3 2

0 1

NUMBER OF CHAMBERS: 15,750

DIAMETER: 10

See [7] and [12].

G0
∼= G1

∼= G2
∼= G3

∼= Alt(7), G01
∼= G23

∼= Alt(6),

G02
∼= G13

∼= (3 × Alt(4)) : 2, G03
∼= G12

∼= L3(2),

G012
∼= G013

∼= G023
∼= G123

∼= Sym(4), B ∼= Dih(8).

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 8 40 176 704 2080 4748 5680 2060 252 1

2. GEOMETRY:

f f

f f

3 2

0 1

NUMBER OF CHAMBERS: 15,750

DIAMETER: 10

See [7] and [19].

G0
∼= G1

∼= G2
∼= G3

∼= Alt(7), G01
∼= G03

∼= L3(2),

G02
∼= G13

∼= (3 × Alt(4)) : 2, G12
∼= L3(2), G23

∼= Alt(6),

G012
∼= G013

∼= G023
∼= G123

∼= Sym(4), B ∼= Dih(8).
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DISC 1 2 3 4 5 6 7 8 9 10

SIZE 8 40 168 624 1840 4628 6776 1620 44 1

2.11 Group G = J1

|G| = 23 · 3 · 5 · 7 · 11 · 19 = 175,500

GEOMETRY:

Number 28 of [4]

f f f

0 1 2

5 c

NUMBER OF CHAMBERS: 29,260

DIAMETER: 12

G0
∼= L2(11), G1

∼= 2 × Alt(5), G2
∼= Sym(3) × Dih(10),

G01
∼= Alt(5), G02

∼= G12
∼= 2 × Sym(3),

B ∼= Sym(3).

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 11 29 119 209 379 1260 2124 3960 9402 8196

11 12

3102 468

2.12 Group G = Alt(9)

|G| = 26 · 34 · 5 · 7 = 1,811,440

GEOMETRY:

Petersen Geometry

f f f f

0 1 2 3

P

NUMBER OF CHAMBERS: 22,680

DIAMETER: 18

See [8].

G0
∼= Sym(7), G1

∼= 2.Sym(5), G2
∼= Sym(4) × Sym(3), G3

∼= 23Sym(4),

|G012| = 233, |G013| = |G023| = |G123| = 24,

|B| = 23.
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DISC 1 2 3 4 5 6 7 8 9 10 11

SIZE 5 13 28 55 101 171 278 442 692 1038 1372

12 13 14 15 16 17 18

1724 2160 2760 3408 4032 3344 1056

2.13 Group G = M22

|G| = 27 · 32 · 5 · 7 · 11 = 443,520

1. GEOMETRY:

f f

0 1

NUMBER OF CHAMBERS: 3,465

DIAMETER: 5

If Ω is a 22-element set upon which G acts transitively, then the objects

of type 0 and 1 are, respectively, the two element subsets (duads) of Ω

and the triduads of Ω (that is, 23 partition of hexads of the Steiner sys-

tem S(22, 3, 6) on Ω). This is the minimal parabolic geometry for M22

(see [16]).

G0
∼= 24 : Sym(5), G1

∼= 26Sym(3),

G01
∼= 24 : Dih(8).

DISC 1 2 3 4 5

SIZE 16 56 432 1040 1920

2. GEOMETRY:

Number 43 of [4]

f f f

0 1 2

c

NUMBER OF CHAMBERS: 2,310

DIAMETER: 6

Assuming Ω is as in Geometry 1 above, the objects of type 0, 1, 2 are

respectively the elements, duads and hexads of Ω.

G0
∼= L3(4), G1

∼= 24 : Sym(5), G2
∼= 24 : Alt(6),

G01
∼= G02

∼= 24 : Alt(5), G12
∼= 24 : Sym(4),

B ∼= 24 : Alt(4).

DISC 1 2 3 4 5 6

SIZE 9 44 144 320 768 1024
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2.14 Group G = Aut M22

|G| = 28 · 32 · 5 · 7 · 11 = 887,040

GEOMETRY:

Petersen Geometry

f f f

0 1 2

P

NUMBER OF CHAMBERS: 6,930

DIAMETER: 13

It is convenient to describe this geometry by beginning with a 24-element set Ω,

assumed to be equipped with the Steiner system S(24, 8, 5). Now fix a duad D

(2-element subset) of Ω. Then StabM24
D ∼= Aut M22 and objects of type 0,1,2

of the geometry are, respectively, all octads in Ω \ D, all trios which have D

contained in one of its octads and all sextets which have D contained in one of

its tetrads. Incidence being given by compatibility of partitions (see [9]).

G0
∼= (23 : L3(2)) × 2, G1

∼= 21+4(22 × Sym(3),

G2
∼= 25 : Sym(5), G01

∼= G02
∼= (23 : Sym(4)) × 2,

G12
∼= 25 : Dih(8), B ∼= (23 : Dih(8)) × 2.

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 5 14 30 56 112 200 320 512 800 1248

11 12 13

1808 1696 128

Remark 2.2. D13(c0) is a B-orbit.

2.15 Group G = 3M22

|G| = 27 · 33 · 5 · 7 · 11 = 1,330,560

GEOMETRY:

f f

0 1

NUMBER OF CHAMBERS: 10,395

DIAMETER: 8

This is a 3-fold cover of the minimal parabolic geometry for M22 (see sec-

tion 2.13).

G0
∼= 24 : Sym(5), G1

∼= 26Sym(3), B ∼= 24 : Dih(8).
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DISC 1 2 3 4 5 6 7 8

SIZE 16 56 432 1056 3632 4304 872 26

2.16 Group G = 3M222

|G| = 28 · 33 · 5 · 7 · 11 = 2,661,120

GEOMETRY:

f f f

0 1 2

P

NUMBER OF CHAMBERS: 20,790

DIAMETER: 24

A 3-fold cover of the Petersen geometry given in section 2.14 (see also [9]).

G0
∼= (23 : L3(2)) × 2, G1

∼= 21+4(22 × Sym(3)),

G2
∼= 25 : Sym(5), G01

∼= G02
∼= (23 : Sym(4)) × 2,

G12
∼= 25 : Dih(8), B ∼= (23 : Dih(8)) × 2.

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 5 14 30 56 112 200 320 512 800 1248

11 12 13 14 15 16 17 18 19 20

1808 2368 3008 3968 3456 1216 736 464 248 120

21 22 23 24

60 28 10 2

Remark 2.3. Note that the sizes here of Di(c0) for 1 ≤ i ≤ 11 coincide with

those in section 2.14.

2.17 Group G = G2(3)

|G| = 26 · 36 · 7 · 13 = 4,245,696

1. GEOMETRY:

f f f

0 1 2

NUMBER OF CHAMBERS: 66,339

DIAMETER: 13

See [1].
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G0
∼= 23 : L3(2), G1

∼= 21+4
+ : 32.2,

G3
∼= G2(2), G01

∼= G02
∼= G12

∼= 25.Sym(3),

B ∼= 23·Dih(8).

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 6 20 56 144 384 960 2176 4864 10368 10972

11 12 13

21248 6976 64

2. GEOMETRY:

f f f

0 1 2

NUMBER OF CHAMBERS: 66,339

DIAMETER: 12

See [1].

G0
∼= G2(2) ∼= G2, G1

∼= 21+4
+ : 32.2,

G01
∼= G02

∼= G12
∼= 25.Sym(3),

B ∼= 23·Dih(8).

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 6 20 64 208 600 1728 4640 10368 17920 20416

11 12

9472 896

2.18 Group G = U4(3)2

|G| = 28 · 36 · 5 · 7 = 6,531,840

GEOMETRY:

f f f

0 1 2

NUMBER OF CHAMBERS: 25,515

DIAMETER: 10

This geometry is an example of a GAB — see [10, Section 3] for details.

G0
∼= 24.Sym(6), G1

∼= [26.].(Sym(3) × Sym(3)), G2
∼= 25.Alt(6),

G01
∼= G02

∼= G12
∼= [26].Sym(3),

B ∼= 24.(Dih(8) × 2).
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DISC 1 2 3 4 5 6 7 8 9 10

SIZE 6 20 64 176 416 1024 2432 5120 9088 7168

2.19 Group G = U5(2)

|G| = 210 · 35 · 5 · 11 = 13,685,760

GEOMETRY:

f f f

0 1 2

c

NUMBER OF CHAMBERS: 28,160

DIAMETER: 11

Number 20 of [4] (with n = 5).

G0
∼= 3 × U4(2), G1

∼= Sym(3) × (31+2 : SL2(3)), G2
∼= 34.Sym(5),

G01
∼= 34.SL2(3), G02

∼= 34.Sym(4), G12
∼= 35 : 22,

B = 35 : 2.

DISC 1 2 3 4 5 6 7 8 9 10 11

SIZE 7 27 99 270 594 1431 3051 5427 8019 8262 972

2.20 Group G = M23

|G| = 27 · 32 · 5 · 7 · 11 · 23 = 10,200,960

1. GEOMETRY:

f f f

0 1 2

NUMBER OF CHAMBERS: 79,695

DIAMETER: 7

Minimal parabolic “1-geometry” for M23 (see [16]).

G0
∼= M22, G1

∼= 24(3 × Alt(5))2, G2
∼= 24L3(2),

G01
∼= 24Sym(5), G02

∼= 24Sym(4) ∼= G12,

B ∼= 24Dih(8).

DISC 1 2 3 4 5 6 7

SIZE 18 92 664 3104 10728 36032 29056

Remark 2.4. M23 has two (non-isomorphic) minimal parabolic geome-

tries which are locally isomorphic (meaning all their residues are isomor-

phic). Globally they differ with the choice of an L3(2)-conjugacy class



88 P. J. Rowley

within Alt(7) — so producing two possible choices for G2 contained in

H = 24Alt(7) (the stabilizer in M23 of a heptad). In one case the L3(2)

leaves a 1-space (of O2(H)) invariant and in the other a 3-space (of

O2(H)); the former we refer to as the “1-geometry” and the latter, dealt

with next, the “3-geometry”.

2. GEOMETRY: NUMBER OF CHAMBERS: 79,695

DIAMETER: 7

Minimal parabolic “3-geometry” for M23 (see [16]) — object stabilizers as

for the “1- geometry”.

DISC 1 2 3 4 5 6 7

SIZE 18 92 664 3104 10728 36544 28544

Remark 2.5. The disc sizes of the 1-geometry and the 3-geometry differ

only in discs 6 and 7 — the 1-geometry has 512 fewer chambers in the

sixth disc and 512 more in the seventh disc (than the 3-geometry).

3. GEOMETRY:

f f f f

0 1 2 3

c

NUMBER OF CHAMBERS: 53,130

DIAMETER: 10

Number 44 of [4].

G0
∼= M22, G1

∼=: L3(4)2, G2
∼= 24 : (3 × Alt(5)) : 2,

G3
∼= 24 : Alt(7), G012

∼= G013
∼= 24Alt(5), G023

∼= G123
∼= 24Sym(4),

B ∼= 24Alt(4).

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 10 54 201 560 1552 3392 5376 9216 16384 16384

4. GEOMETRY:

Petersen Geometry

f f f f

0 1 2 3

P

NUMBER OF CHAMBERS: 159,390

DIAMETER: 14



Disc structure of certain chamber graphs 89

G0
∼= Alt(8), G1

∼= 23(L3(2) × 2), G2
∼= 24(3 × Alt(5))2,

G3
∼= M22,

G012
∼= G013

∼= G023
∼= 23 : Sym(4), G123

∼= 24 : Dih(8),

B ∼= 23 : Dih(8).

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 7 28 86 220 512 1128 2432 5152 10528 21024

11 12 13 14

38528 51840 26304 1600

2.21 Group G = 3U4(3)2

|G| = 28 · 37 · 5 · 7 = 19,595,520

GEOMETRY:

e e e

0 1 2

∼

NUMBER OF CHAMBERS: 76,545

DIAMETER: 11

This geometry is a triple cover of the geometry in section 2.18.

G0
∼= 24 : Sym(6), G1

∼= [26](Sym(3) × Sym(3)), G2
∼= 25.3Alt(6),

G01
∼= G02

∼= G12
∼= [27]Sym(3), B ∼= 24(Dih(8) × 2).

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 6 20 64 192 528 1424 3848 9658 19812 27680

11

13312

2.22 Group G = M24

|G| = 210 · 33 · 5 · 7 · 11 · 23 = 244,823,040

1. GEOMETRY:

Maximal 2-local

geometry (see [15])

f f f

0 1 2

NUMBER OF CHAMBERS: 79,695

DIAMETER: 10
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G0
∼= 24 : Alt(8), G1

∼= 26 : (L3(2) × Sym(3)), G2
∼= 26 : (3·Sym(6)),

G01
∼= 26 : (L3(2) × 2), G02

∼= 26 : (3·(Sym(4) × 2)) ∼= G12,

B ∼= [29] : Sym(3).

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 10 44 184 544 1536 4800 10368 22272 38400 1536

Remark 2.6. B is transitive on D10(c0) (see [17]).

2. GEOMETRY:

Minimal parabolic

geometry (see [16])

e e e

0 1 2

∼

NUMBER OF CHAMBERS: 239,085

DIAMETER: 17

G0
∼= 24 : 23 : L3(2), G1

∼= 26+2(Sym(3) × Sym(3)),

G2
∼= 26 : (3.Sym(6)),

G01
∼= G02

∼= G23
∼= [29] : Sym(3),

B ∼= 26 : (Dih(8) × 2).

DISC 1 2 3 4 5 6 7 8 9 10

SIZE 6 20 56 144 368 848 1800 3810 8040 16920

11 12 13 14 15 16 17

32832 55200 62336 47616 6656 2048 384

3 The last disc of the d d d Alt(7)-geometry.

Let G = Alt(7) act upon the set Ω = {1, 2, 3, 4, 5, 6, 7} and let Γ be the Alt(7)-

geometry with diagram

f f f

0 1 2

points lines planes

whose description we now give. The points, lines and planes of Γ (that is,

objects of type 1, 2 and 3) are, respectively, the elements of Ω, all the 3-element

subsets of Ω and one A7-orbit of projective planes defined on Ω. (So there are
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7 points, 35 lines and 15 planes.) For a point p, a line l and a plane P , p ∗ l

whenever p ∈ l, p ∗ P and whenever p ∈ P and l ∗ P whenever l is a line in the

plane P

We use the following labelled projective plane P (where Ω = {α, β, γ, δ, ǫ, λ, µ})

α β γ

λ
δ

ǫ

µ

to also stand for the chamber {{α} , {α, β, γ} , P}. So the left-most label of the

bottom line and the bottom line give the incident point and line of the maxi-

mal flag. Note that, as a projective plane is defined by its seven lines, that is

3-element subsets,

1 2 3

6
4

7

5

and

1 2 3

7
5

6

4

for example, denote the same chamber. Equally

1 2 3

6
7

5

4

and

1 2 3

5
6

4

7

are two chambers which have the same point and line — they are 3-adjacent.
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In the chamber system C obtained from the flag complex of Γ, two different

chambers are 1-adjacent if they have the same line and plane, are 2-adjacent if

they have the same point and plane and 3-adjacent if they have the same point

and line.

So as to view C from a group theoretic perspective, we set

H1 = StabG {1} , H2 = StabG {1, 2, 3} ,

B = 〈(23)(67), (23)(4657)〉 and H3 = 〈B, (625)(143)〉.

It is straightforward to check that H3 is the stabilizer in G of the projective

plane P ,

1 2 3

6
4

5

7

and that B is the stabilizer in G of the chamber c0 = {{1} , {1, 2, 3} , P}. If we

set P1 = H2∩H3, P2 = H1∩H3 and P3 = H1∩H2, then we obtain the chamber

system (G;B, (Pi)) over I = {1, 2, 3} isomorphic to C. We now investigate

D5(c0), the last disc of C; there are 104 chambers in D5(c0) (see section 2.3,

Geometry 2).

The group B has 13 orbits on D5(c0) and acts simply transitively on D5(c0);

orbit representatives c1, ..., c13 are given below.

c1

4 2 1

3
7

5

6

c2

2 5 3

6
4

1

7
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c3

3 5 1

6
4

2

7

c4

7 6 4

3
5

1

2

c5

5 6 4

7
3

1

2

c6

2 6 3

7
4

1

5

c7

7 6 2

3
4

1

5

c8

5 6 7

2
3

1

4

c9

5 7 4

2
3

1

6

c10

6 3 2

7
4

1

5
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c11

5 3 1

7
4

2

6

c12

6 4 2

5
3

1

7

c13

5 4 2

7
3

1

6

We next examine the induced subgraph (from the chamber graph) on D5(c0).

We name the elements of B as follows:

x1 = (1), x2 = (23)(67), x3 = (47)(65), x4 = (23)(4657),

x5 = (46)(57), x6 = (23)(4756), x7 = (45)(67), x8 = (23)(45).

In Table 1, the number j in brackets after each chamber indicates that the

chamber is j-adjacent to ci.

Remark 3.1. Using the action of elements of B, from Table 1 we may obtain

the edge set for the induced graph on D5(c0).

Theorem 3.2. The induced subgraph on D5(c0) is a connected graph.

Proof. Let E denote the connected component of c8 (see p. 93) in the subgraph

D5(c0). Also put E = StabB(E). From 1, c8 and c8(23)(67) are 3-adjacent and

so c8(23)(67) ∈ E . Hence (23)(67) ∈ E. Also, by Table 1, c11 is 2-adjacent to c8

and c11 is 2-adjacent to
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ci CHAMBERS IN D5(c0) ADJACENT TO ci

c1 c3xs(1); c9x8(2); c11x8(3).

c2 c3x8(3); c6x3(3); c10x4(2).

c3 c1x8(1); c2x8(2).

c4 c5x5(3); c8x8(1); c9x3(1); c9x4(3); c10x7(2).

c5 c4x5(3); c5x8(1); c9x2(3); c12x3(2).

c6 c2x3(2); c6x8(1).

c7 c13x3(1); c13x5(2).

c8 c4x8(1); c8x2(2); c9x6(1); c11x1 = c11(2); c13x1 = c13(2).

c9 c1x8(2); c4x3(1); c4x6(3); c5x2(3); c8x4(1).

c10 c2x6(1); c4x7(2); c10x8(3).

c11 c1x8(3); c8x1 = c8(2); c13x1 = c13(2).

c12 c5x3(2).

c13 c7x3(1); c7x5(3); c8x1(2); c11x1 = c11(2).

Table 1: Adjacency of chambers in D5(c0)

c1x8 =

5 3 1

2
7

4

6

Therefore c1x8 ∈ E . Again from Table 1, c8 is 1-adjacent to

c9x6 =

6 5 7

3
2

1

4
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Now c9x6 is 2-adjacent to

c1x5 =

6 2 1

3
5

7

4

So c1x5 ∈ E . Since (23)(4657) sends c1x5 to c1x8, (23)(4657) ∈ E. Thus, as

B = 〈(23)(67), (23)(4657)〉, E = B. Inspecting Table 1 we see that there is

a path in D5(c0) from c8 to a chamber in each cB
i (i ∈ {1, ..., 13}). Therefore

E = D5(c0), and this completes the proof. ¤
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