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1 Introduction

Generalized polygons were introduced in 1959 by Tits in the appendix of his

celebrated paper on triality [23]. Ever since they have played a key role in alge-

braic and combinatorial geometry. Among the generalized polygons, the finite

generalized quadrangles (GQs) occupy a special place, in particular because of

the existence of several classical and non-classical examples which can be stud-

ied in a geometric, algebraic as well as combinatorial way; they are connected

with a broad collection of other interesting objects from Galois geometry and al-

gebra, such as polarities, (pseudo-)ovals, (pseudo-)ovoids, q-clans, flocks, fans,

fibrations, herds, 4-gonal families, BN-pairs, . . . Since their introduction several

authors have been interested in the study of substructures of finite GQs, in par-

ticular in the existence of spreads and ovoids (see further for a formal introduc-

tion to these objects). As there already is an extensive literature on this subject

containing some good surveys, we will only tersely overview some of the most
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important (recent) results on (partial) spreads and ovoids of finite GQs and re-

fer the interested reader to the literature. More recently people have become

interested in the existence, the construction and bounds on the size of maximal

partial ovoids and spreads of finite GQs. In this paper we will contribute to this

theory by providing some new results. The GQs encountered will mostly be the

finite classical GQs, although if possible we will try to extend results to general

finite GQs of order (s, t).

2 Generalized quadrangles

A finite GQ Q of order (s, t) is a finite point-line incidence geometry such that

• two distinct lines intersect in at most one point;

• every line is incident with exactly s + 1 points and every point is incident

with exactly t + 1 lines;

• given any point p not on a given line L, there exists a unique line M

containing p and intersecting L. (The unique point on L collinear with p

will be denoted by projL p.)

Sometimes a GQ will be denoted by Q = (P,B, I), when we want to specify

the point set P , the line set B and the incidence relation I.

If s > 1 and t > 1, then Q will be called thick, otherwise Q will be called

thin. If s = t, then Q will be said to be of order s.

3 Spreads and ovoids

In this short section we will briefly mention results concerning the (non-)exis-

tence of spreads and ovoids in finite classical GQs, and provide some references.

We first define the objects which will form the core of this article. A spread

S of a GQ Q is a set of lines of Q partitioning the points of Q. Dually an ovoid

O of Q is a set of points such that each line of Q meets O in a unique point. A

partial spread M of Q is a set of mutually disjoint lines of Q. A partial spread

is called maximal if it cannot be extended to a larger partial spread. Dually a

partial ovoid is a set of mutually non-collinear points of Q; it is called maximal

if it cannot be extended to a larger partial ovoid.

A k-arc K of a GQ S of order (s, t), s 6= 1 6= t, is a set of k mutually non-

collinear points, that is, a partial ovoid of size k. One easily observes that

k ≤ st + 1 (see, e.g., [13]), and if k = st + 1, then K is an ovoid of S. A k-arc
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is complete if it is not contained in a k′-arc with k′ > k. Dually, one defines dual

k-arcs and complete dual k-arcs.

Throughout this paper, if M is a set of lines of a GQ, we will denote by M̃
the set of all points covered by the lines of M.

Theorem 3.1 ([13, 1.8.3]). A GQ S of order (s, t), s 6= 1 6= t and t > s2 − s, has

no ovoid. Dually, a GQ S of order (s, t), s 6= 1 6= t and s > t2 − t, has no spread.

First note that a spread or an ovoid of a finite GQ of order (s, t) clearly con-

tains st + 1 lines, respectively points.

The GQ Q(4, q) has spreads if and only if q is even [16] and has ovoids for all

values of q (every Q−(3, q) ⊂ Q(4, q) is an ovoid of Q(4, q)). Dualizing yields

the corresponding results for the GQ W(q).

The GQ Q(5, q) has spreads for all values of q [17], but never has ovoids

[18]; see also Theorem 3.1. Dualizing yields the corresponding results for the

GQ H(3, q2).

The (non-)existence of spreads of the GQ H(4, q2) is a long-standing open

problem. The only thing known so far is that H(4, 4) does not admit a spread

(by an unpublished computer result of A. Brouwer).

Finally the GQ H(4, q2) does never admit an ovoid [18].

We synthesize some of these (and other) results in the following theorem.

Theorem 3.2 ([13, 3.4.1, 3.4.2 and 3.4.3]; see also [20] for (v)).

(i) The GQ Q(4, q) always has ovoids. It has spreads if and only if q is even.

(ii) The GQ T2(O) of Tits always has ovoids.

(iii) The GQ Q(5, q) has spreads but no ovoids.

(iv) The GQ T3(O) of Tits has no ovoid but always has spreads.

(v) Each TGQ T (O), where O is good at some element π, has spreads.

(vi) The GQ H(4, q2) has no ovoid. For q = 2 it has no spread.

(vii) The GQ P(S, x) of Payne always has spreads. It has an ovoid if and only if

S has an ovoid containing x.

For a good reference on the existence question of spreads and ovoids in (not

necessarily classical) finite GQs we refer to Thas and Payne [20].



22 S. De Winter • K. Thas

4 Small maximal partial spreads and ovoids

Theorem 4.1 ([4]). (i) The second smallest maximal partial ovoids K of W(q2),

q = ph, p > 3 prime, h ≥ 1, contain at least s(q2) + 1 points, where s(q2)

denotes the cardinality of the second smallest non-trivial minimal blocking

sets in PG(2, q2). If q = p > 2, then K contains at least 3(p2 + 1)/2 + 1

points.

(ii) The second smallest maximal partial ovoids K of W(q3), q = ph, p ≥ 7

prime, h ≥ 1, contain at least q3 + q2 + q +1 points. If |K| = q3 + q2 + q +1,

then K consists of the point set of a subgeometry PG(3, q) of PG(3, q3).

In [4] the existence of maximal partial ovoids of W(q3) of size q3 + q2 + q +1

was posed as an open problem. It was J. A. Thas who suggested to the authors

to try to use the Klein correspondence in order to prove the (non-)existence of

such a partial ovoid. We will now use this correspondence to prove its non-

existence. We mention the following lemma which will be used without further

notice.

Lemma 4.2. Consider a hyperplane π of PG(5, q3) and a subspace Ω := PG(5, q)

of PG(5, q3). Then π intersects Ω in at least a plane PG(2, q). ¤

Theorem 4.3. The GQ W(q3), q = ph, p ≥ 7, does not admit a maximal partial

ovoid of size q3 + q2 + q + 1.

Proof. Assume that W(q3) admits a maximal partial ovoid K of size q3 + q2 +

q + 1. We consider W(q3) in its natural representation in PG(3, q3). Then K
corresponds to some PG(3, q)-subgeometry of PG(3, q3). Using the Klein corre-

spondence the lines of PG(3, q3) are mapped onto the points of Q+(5, q3), the

lines of PG(3, q) onto the points of some Q+(5, q) ⊂ Q+(5, q3) and the lines of

W(q3) onto the points of some Q(4, q3) ⊂ Q+(5, q3). It is easily seen, since K
is a partial ovoid, that Q(4, q3) ∩ Q+(5, q) = ∅ (as point sets). However, the

PG(4, q3) determined by Q(4, q3) and the PG(5, q) determined by Q+(5, q) must

intersect in at least a plane PG(2, q). As in PG(5, q) every plane has nonempty

intersection with Q+(5, q), K cannot be a partial ovoid. ¤

Concerning small maximal partial ovoids of W(q), it is interesting to note

that computer searches [4], exhaustive for q ∈ {2, 3, 4, 5} and heuristic for q ∈
{7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27}, suggest that the second smallest maximal

partial ovoids of W(q) will probably have size 2q + 1. A maximal partial ovoid

of this size can easily be constructed by taking all points except one point r on

a hyperbolic line H in W(q), together with one arbitrary point (not collinear

with one of the remaining points of H) from each of the q + 1 lines of W(q)
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through r. In [4] also a theoretical construction of a maximal partial ovoid of

size 3q − 1 is given for every q > 3.

In view of the isomorphism relations between the GQs under consideration in

this section, the only case not handled yet is the one of maximal partial spreads

of W(q), for odd q. In [4] a counting technique first introduced in [8] is used

to prove the following bound. It is also explained how a fine tuning of this

technique can in some cases slightly improve this result.

Theorem 4.4 ([4]). Suppose that M is a maximal partial spread of W(q), q odd.

Then |M| ≥ ⌈1, 419q⌉.

Here as well, the theoretical obtained bound is rather small compared to the

results obtained by computer for small q, which seem to point in the direction

of a bound of order q
√

q; see [4].

4.1 The GQs Q(5, q) and H(3, q
2)

In [7] the following lower bound on the size of maximal partial ovoids of Q(5, q)

was proved using a counting technique analogous to the one used to prove

Theorem 4.4. Recall that the trivial lower bound equals q + 1.

Theorem 4.5 ([7]). Let K be a maximal partial ovoid of Q(5, q). Then |K| ≥
2q + 1. If q ≥ 4, then |K| ≥ 2q + 2.

As far as constructions of small maximal partial ovoids of Q(5, q) are con-

cerned for general q, the best known construction provides such a partial ovoid

of size q2 + 1. This goes as follows. Consider any elliptic quadric Q−(3, q) ⊂
Q(5, q). Then it is easily seen that the q2 + 1 points of Q−(3, q) form a max-

imal partial ovoid (see also [7]). Using a recent result of Ball [3] we can see

that in fact every ovoid of Q(4, q) ⊂ Q(5, q) determines a maximal partial ovoid

of Q(5, q) (Ball shows that every Q−(3, ph) ⊂ Q(4, ph) intersects an ovoid of

Q(4, ph) in 1 (mod p) points). Also in [1] constructions of maximal partial

ovoids of Q(5, q) of size q2 + 1 are provided. There however the authors show,

using the computer, the existence of maximal partial ovoids of Q(5, q) of size

strictly less than q2 + 1, for q = 7, 8. Very recently, in [5], Cimrakova and Fack

showed by computer the existence of several maximal partial ovoids of size

strictly less than q2 + 1 for all q ∈ {4, 5, 7, 8, 9, 11, 13}. However, these maximal

partial ovoids are still “much” larger than the bound from Theorem 4.5, so there

still remains a lot of work to be done.

When it comes to the existence of small maximal partial spreads of Q(5, q),

we know from the foregoing that the existence of spreads of Q(4, q) implies the
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existence of maximal partial spreads of size q2 + 1 (the trivial lower bound) of

Q(5, q), and this bound is reached if and only if q is even. So, if q is odd, a

maximal partial spread contains at least q2 + 2 lines. The size of small maximal

partial spreads of Q(5, q) is discussed in [2]. The best known result is the next

one.

Theorem 4.6 ([11]). A maximal partial spread of Q(5, q) has size at least equal

to q2 + 4
9q + 1.

In an appendix to this paper, we give a proof of the fact that Q(5, q) (q ≥ 5)

does not admit maximal partial spreads of size less than q2+4. (This was a result

contained in a first version of the paper, before [11] was written.) Although it

is now worse than Metsch’s theorem, we hope that its (elementary) proof still

might be useful.

In [5] the best known results on the size of maximal partial spreads can be

found for q ∈ {3, 4, 5, 7, 8} (computer results). The best theoretical construction

(based on an idea of J. A. Thas) can be found in [2], where the authors prove,

starting from a small maximal partial spread of PG(3, q), the existence for odd q

of a maximal partial spread of size (m+1)q2 +1, with m = ⌈2 log2(q)⌉. Another

way to construct small maximal partial spreads of Q(5, q), might be to start with

a large partial spread (which is not a spread) of Q(4, q) ⊂ Q(5, q) and then add

lines. For a maximal partial spread of Q(4, q) of size q2− ǫ this yields a maximal

partial spread of Q(5, q) of size at most q2+(ǫ+1)(q+1). Unfortunately not much

is known about large maximal partial spreads of Q(4, q), and the largest known

such partial spread is still much smaller than the theoretical bound q2 − q + 1,

q odd. Finally it is interesting to note that in [9] Hirschfeld and Korchmáros

construct maximal partial spreads of Q(5, q) (in fact they construct maximal

partial ovoids of H(3, q2)) from GF(q2)-maximal curves for even q. However,

their examples have size q2 + 1 + 2gq, where g is the genus of the curve used,

which is also still much larger then our obtained lower bound (except for the

trivial case of rational algebraic curves which have genus 0 and yield maximal

partial ovoids of size q2 + 1).

4.2 The GQ H(4, q
2)

Consider a fixed H(3, q2) ⊂ H(4, q2) and a fixed H(2, q2) ⊂ H(3, q2). Of course

H(2, q2) is an ovoid of H(3, q2), and since every other H(2, q2) ⊂ H(3, q2) con-

tains at least 1 point of the fixed H(2, q2) it is clear that H(2, q2) is a maximal

partial ovoid of H(4, q2). It has size q3 +1, which is the trivial lower bound, and

so it is a smallest maximal partial ovoid of H(4, q2). To the authors’ knowledge

not much more is known about small maximal partial ovoids of H(4, q2).
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We now turn to small maximal partial spreads. Since H(3, q2) is the only

subGQ of order (q2, q) of H(4, q2) and H(3, q2) does not admit a spread, it fol-

lows that a smallest maximal partial spread of H(4, q2) contains at least q3 + 2

lines. (Note that if the size would have been q3+1, the points on the lines of the

partial spread would form the point set of a subGQ of order (q2, q).) However

using an analogous technique as was used in [2] to show the non-existence of

a maximal partial spread of size q2 + 2 of Q(5, q), we can easily exclude the

existence of such a maximal partial spread.

Theorem 4.7. The GQ H(4, q2) does not admit a maximal partial spread of size

q3 + 2.

Proof. Suppose that M is a maximal partial spread of size q3 + 2, and let X

be the set of points of H(4, q2) not covered by M. Then |X| = q7 − q3 − q2 −
1. Further, through every point of X there is a unique line intersecting M̃ in

exactly 2 points (while all other lines through such a point intersect M̃ in 1

point). Consequently the number of lines intersecting M̃ in 2 points equals

|X|/(q2 − 1). This quantity can never be an integer, a contradiction. ¤

The best known result is the following.

Theorem 4.8 ([12]). A maximal partial spread of the GQ H(4, q2) has more than

q3 + q
√

q − q/2 − 3/8
√

q + 7/8 lines.

5 Partial ovoids of Q(4, q) of size q
2 − 1 for

q ∈ {2, 3, 5, 7, 11}, and beyond

Partial ovoids of Q(4, q) of size q2 − 1 are only known for q ∈ {2, 3, 5, 7, 11}.

For q = 2 there is, up to isomorphism, a unique 3-arc of Q(4, 2), see, e.g., [21].

For q = 3 an 8-arc can easily be constructed as follows. Consider any elliptic

quadric Q−(3, 3) ⊂ Q(4, 3) and any point p /∈ Q−(3, 3). Then p is collinear with

exactly 4 points of Q−(3, 3), and these points determine a conic C. The set C⊥

contains two points (among which p). It is easily seen that (Q−(3, 3) \C) ∪C⊥

is a complete 8-arc of Q(4, 3). It has longtime been thought that these were the

only values of q for which (q2 − 1)-arcs of Q(4, q) existed. However in 2003

Penttila disproved this by showing with the computer the existence of (q2 − 1)-

arcs of Q(4, q) for q ∈ {5, 7, 11} [14]. In [4] Cimrakova and Fack confirmed

these results, also with the use of the computer. Their searches were heuristic

and so by no means exclude the existence of (q2 − 1)-arcs of Q(4, q) for other

values of odd q. It is important to note that no computer free constructions

are known of (q2 − 1)-arcs for q ∈ {7, 11}. It is however possible to describe
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the above construction of an 8-arc of Q(4, 3) in a slightly different way and

then generalize this construction for q = 5. We first provide the “alternative”

construction of the 8-arc.

Consider a fixed Q(3, 3) ⊂ Q(4, 3) and consider any point p ∈ Q(4, 3) \
Q(3, 3). Then the points collinear with p in Q(3, 3) form a conic C. Clearly

C⊥ consists of two points, say p and p′. Now let K′ be the set of all points

of Q(4, 3) \ Q(3, 3) not contained in one of the cones pC and p′C. It is easily

seen that K := K′ ∪ {p, p′} is an 8-arc of Q(4, 3) (isomorphic to the higher

described 8-arc). We now generalize this construction for q = 5. A conic C of

Q(3, q) ⊂ Q(4, q) will be called doubly subtended if |C⊥| = 2. Again consider

a fixed Q(3, 5) ⊂ Q(4, 5). Let Ci, i = 1, 2, 3, 4, be a collection of four doubly

subtended conics of Q(3, 5), with the property that |Ci ∩ Cj | = 2 if i 6= j. Let

{pi, p
′
i} := C⊥

i , i = 1, 2, 3, 4.

Theorem 5.1. With the above notation, the set

K := Q(4, 5) \
(
Q(3, 5) ∪i (piCi ∪ p′iCi)

)
∪i {pi, p

′

i}

is a 24-arc of Q(4, 5).

Proof. We first show that |K| = 24. Consider a cone p(′)

i Ci (here p(′)

i means pi or

p′i). Then there are exactly 6 cones pjCj , p′jCj intersecting p(′)

i Ci \ ({p(′)

i } ∪ Ci)

in exactly 4 points. As |p(′)

i Ci \ ({p(′)

i } ∪ Ci)| = 24 this implies that every point

of p(′)

i Ci \ ({p(′)

i }∪Ci) is contained in an average of 2 of the 8 cones pjCj , p′jCj ,

j = 1, 2, 3, 4. Assume that there would exist such a point x, contained in at

least 3 of the considered cones. First notice that the four conics C1, C2, C3, C4

cover exactly 12 points of Q(3, 5), and that each of these points is contained

in precisely 2 conics Ci. Further, because of our assumption, the point x is

collinear with at least 3 distinct points of
⋃

i Ci. This implies the existence of

a conic Ck, k ∈ {1, 2, 3, 4}, such that x is collinear with 2 points of Ck, while

x is contained in either pkCk or p′kCk, a contradiction. Consequently every

point of p(′)

i Ci \ ({p(′)

i } ∪ Ci), i = 1, 2, 3, 4, is contained in exactly 2 of the 8

considered cones. From this we now easily deduce that |⋃i(p
⊥
i ∪p′⊥i )\Q(3, 5)| =

104. It follows that |K| = 24. We now proceed by proving that the set K
is a partial ovoid. We already know from the construction that the 8 points

pi, p
′
i, i = 1, 2, 3, 4, are two by two non-collinear, while for every other point

p ∈ K we have that p 6∼ pi and p 6∼ p′i, i = 1, 2, 3, 4. Assume that p ∼ p′ with

p, p′ ∈ K and p 6= p′. Then the line pp′ intersects Q(3, 5) in a point z /∈ ⋃
i Ci.

Consequently every pi and p′i is collinear with one of the points of pp′ \{p, p′, z}.

As |pp′ \ {p, p′, z}| = 3 we find a point of pp′ \ {p, p′, z} that is contained in at

least 3 of the cones piCi, p′iCi, a contradiction in view of the first part of the

proof. Finally it is easily seen that K is maximal. ¤
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The previous theorem implies that in order to construct a 24-arc in Q(4, 5) it

is sufficient to find 4 doubly subtended conics in some Q(3, 5) ⊂ Q(4, 5) which

intersect two by two in exactly 2 points. In order to do so consider Q(4, 5) in

PG(4, 5) determined by X2
0 +X1X2+X3X4 = 0 and the Q(3, 5) ⊂ Q(4, 5) in the

hyperplane X0 = 0. Then the conics in the hyperplane X0 = 0 with equations

C1 :

{
X1 = X2

X2
1 + X3X4 = 0

C2 :

{
X1 = −X2

−X2
1 + X3X4 = 0

C3 :

{
X3 = X4

X2
3 + X1X2 = 0

C4 :

{
X3 = −X4

−X2
3 + X1X2 = 0

are quickly seen to be doubly subtended and satisfy the desired property (i.e.

|Ci ∩ Cj | = 2 if i 6= j). Consequently we have constructed a 24-arc in Q(4, 5).

One might wonder whether it is possible to generalize this construction for

other values of q, and at least in theory this seems to be possible for q ∈ {7, 11}.

Suppose that for q = 7 we find a set of 12 doubly subtended conics C1, . . . , C12

in Q(3, 7) ⊂ Q(4, 7) such that |Ci ∩ Cj | ∈ {0, 2}, C1, . . . , C12 cover exactly 32

points of Q(3, 7) and such that each of these 32 points is contained in exactly

3 conics Ci. Then a construction analogous to the one for q = 5 would yield

a 48-arc of Q(4, 7). However it is not clear whether such a set of conics exists.

Finally, also for q = 11 one could obtain a generalization (60 conics covering

completely Q(3, 11) ⊂ Q(4, 11)), but here as well the existence of such a set is

not known. It may be interesting to study the link between such sets of conics

and (partial) flocks of Q(3, q) (cf. [19]).

Tim Penttila has noted to us in a private communication [14] that the exam-

ples K of complete (q2 − 1)-arcs of Q(4, q) which were constructed by him for

q = 5, 7, 11 all satisfy the following property:

(q2 − 1)2 divides the size of Aut(Q(4, q))K. (∗)

We end our paper by showing that, conversely, if such an arc satisfies (∗), we

necessarily have q ∈ {5, 7, 11}. We do not consider the case q = 3, as then all

maximal 8-arcs are known.

Recall Dickson’s classification of the subgroups of PSL(2, q), with q = ph,

p a prime (see [10, Hauptsatz 8.27, p. 213]); we list the possible subgroups

H ≤ PSL(2, q), as follows:

(i) H is an elementary abelian p-group;

(ii) H is a cyclic group of order k, where k divides (q ± 1)/r, where r =

gcd(q − 1, 2);
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(iii) H is a dihedral group of order 2k, where k is as in (ii);

(iv) H is the alternating group A4, where p > 2 or p = 2 and h ≡ 0 mod 2;

(v) H is the symmetric group S4, where p2h − 1 ≡ 0 mod 16;

(vi) H is the alternating group A5, where p = 5 or p2h − 1 ≡ 0 mod 5;

(vii) H is a semidirect product of an elementary abelian group of order pm with

a cyclic group of order k, where k divides pm − 1 and ph − 1;

(viii) H is a PSL(2, pm), where m divides h, or a PGL(2, pn), where 2n divides h.

Let K be a complete (q2 − 1)-arc of Q(4, q), q odd and q > 3. Suppose the

size of G = Aut(Q(4, q))K is divisible by (q2 − 1)2. Note that G fixes the grid

S(K) which consists of the lines skew from K and the points incident with these

lines. Put

|G| = (q2 − 1)2r,

where r is natural. We remark that in PGL(5, q)Q(4,q), the stabilizer of S(K) has

size 2(q3 − q)2, and inside PSL(5, q)Q(4,q), this stabilizer restricted to its action

on S(K) (so after modding out the kernel) has size
(q3

−q)2

4 ; it is isomorphic to

the direct product

PSL(2, q) × PSL(2, q).

There is a unique involution fixing S(K) pointwise, and we denote the group it

generates by N . Suppose H is the subgroup of GN/N inside PSL(5, q); then

|H| = (q2 − 1)2r′,

where r′ ≥ r
8h

. Then H can be written as

H = H1 × H2 ≤ PSL(2, q) × PSL(2, q),

where H1 is the linewise stabilizer of one regulus (L1) of S(K) in H, and H2

the linewise stabilizer of the other regulus (L2).

Assume that p (the odd prime divisor of q) divides |H|; then the subgroup of

PSL(5, q)Q(4,q) that induced H on S(K) has a p-element θ, and this necessarily

is a symmetry about some line M of S(K) by work of W. M. Kantor and K. Thas

(see Chapter 7 of [22]). Suppose U ∼ M is a line not in S(K); then U ∩ K is

a point u. As θ fixes U , uθ 6= u is a point collinear with u while being in K, a

contradiction. So there are no p-elements in H, and this means that cases (i),

(vii) and (viii) of the subgroup list of PSL(2, q) are ruled out.

For now, we suppose not to be in the cases (iv), (v), (vi), so (ii) and (iii)

remain to be handled. Suppose we are in one of these cases. Clearly there is an
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i ∈ {1, 2} such that, if Ni is the elementwise stabilizer of Li in H, we have

|H/Ni| ≥
(q2 − 1)

√
r

2
√

2h
,

while

2(q + 1) ≥ |H/Ni|.
So p = 5 and h = 1. Now we look at the cases (iv), (v), (vi). In the same way

as for the cases (ii) and (iii), we obtain

(q2 − 1)
√

r

2
√

2h
≤ |H/Ni|,

where H/Ni ∈ {A4,A5,S4}, so |H/Ni| ∈ {12, 24, 60}. When H/Ni = A4, we

easily obtain h = 1 and p = 5. When H/Ni = S4, we obtain h = 1 and

p ∈ {5, 7}. When H/Ni = A5, we obtain p ∈ {5, 7, 11, 13} and h = 1. Now

suppose p = 13. Then

60 divides (132 − 1)2r′ = 1682r′,

so r′ is a multiple of 5.1 This provides us with the desired contradiction, and

ends the proof of the result.

Note that a direct corollary of the proof is the same result under the as-

sumption of a transitive action on the arc of a group contained in the linewise

stabilizer of one of the reguli in S(K).

Let us finally mention that in a recent paper [6], De Beule and Gács show the

following:

Theorem 5.2 ([6]). Complete (q2 − 1)-arcs of Q(4, q) do not exist when q is not

a prime.

Appendix

In the appendix we show that Q(5, q), q ≥ 5, cannot admit a maximal partial

spread of size q2 + 3. We first prove the following lemma.

Lemma 5.3. If a partial spread M of Q(5, q) which does not contain a spread of

some Q(4, q) ⊂ Q(5, q) covers all points of some Q(4, q) ⊂ Q(5, q), then |M| ≥
q2 + q + 1 if q is even, and |M| ≥ 2q2 + q if q is odd.

1One could also note that 13
2 −1 = 168 is not a multiple of 5, an observation which contradicts

the description of case (vi).
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Proof. For q even this is trivial. For odd q this follows immediately from the fact

that a maximal partial spread of Q(4, q) contains at most q2 − q + 1 lines if q is

odd [15]. ¤

Theorem 5.4. The GQ Q(5, q) does not admit a maximal partial spread of size

q2 + 3 if q ≥ 5.

Proof. Assume that M is a maximal partial spread of Q(5, q) of size q2 + 3.

Consider a line L of Q(5, q) that contains at least 4 points of M̃ and suppose

that there is a point p on L not belonging to M̃. As |M| = q2 + 3 it follows

that there exists a line through p not intersecting M̃, a contradiction. Hence a

line of Q(5, q) intersects M̃ in either 1, 2, 3 or q + 1 points. Further, if a point p

does not belong to M̃, then there is either a unique line through p intersecting

M̃ in 3 points, while all other lines through p intersect M̃ in exactly 1 point,

or there are exactly 2 lines through p intersecting M̃ in 2 points, and all other

lines through p intersect M̃ in a unique point. We will denote the set of points

of the former type by X1 and the set of points of the latter type by X2. Also

define xi := |Xi|, i = 1, 2. Finally denote by F the set of lines of Q(5, q) not in

M that are completely covered by M̃; here we put f := |F|. An easy counting

argument shows that there are (q2x1 +(q2−1)x2)/q lines having exactly 1 point

in M̃, that there are x1/(q − 2) lines having exactly 3 points in M̃, and that

there are 2x2/(q− 1) lines having exactly 2 points in M̃. Considering the points

not covered by M̃ and the lines not in M, we obtain:





x1 + x2 = q4 − q2 − 2q − 2 ;
(
q +

1

q − 2

)
x1 +

(q2 − 1

q
+

2

q − 1

)
x2 + f = (q2 + 1)(q3 + 1) − q2 − 3 .

Solving for x1 and x2 in function of f , we obtain:

x2 =
1

2
(q − 1)q(2q3 + q2 − q4 + 4q − 6 + (q − 2)f).

As x2 ≥ 0 we obtain that

f ≥ q3 − q − 6 − 6

q − 2
.

Next we count in two ways the ordered triples (K,L,M) with K,M ∈ M,

K 6= M , L ∈ F and K ∼ L ∼ M . We obtain

f(q + 1)q = (q2 + 3)(q2 + 2)y,

where y is the average number of transversals in F of two distinct lines of M.

Using the above obtained bound for f , we deduce that y > 2 (recall that q > 3).
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This implies the existence of two distinct lines K and M of M with the property

that at least 3 of their q + 1 transversals are lines of F . These lines determine in

a unique way some Q(3, q) ⊂ Q(5, q). Assume that not all points of this Q(3, q)

would belong to M̃, say p ∈ Q(3, q)\M̃. Then the two lines through p in Q(3, q)

intersect M̃ in respectively at least 2 and at least 3 points, a contradiction.

Consequently all q+1 transversals of K and M belong to F and we have shown

the existence of a Q(3, q) ⊂ Q(5, q) which is completely covered by M̃. Consider

such a fixed Q(3, q). The (q2 + 3)(q + 1)− (q + 1)2 remaining points of M̃ have

to be partitioned by the q + 1 Q(4, q) subGQs on Q(5, q) which contain Q(3, q).

This implies that there exists a Q(4, q) containing Q(3, q) which is such that

the set Z of points of M̃ in Q(4, q) not in Q(3, q), contains at least q2 − q + 2

points. Consider such a (fixed) Q(4, q). We count in two ways the pairs (u, v)

with u ∈ Q(4, q) \ (Q(3, q) ∪ Z), v ∈ Z and u ∼ v. We obtain

[
q(q2 − 1) − |Z|

]
h = |Z|z,

where h is the average number of points of Z collinear with a given point of

Q(4, q) \ (Q(3, q) ∪Z) and where z is the average number of points of Q(4, q) \
(Q(3, q) ∪ Z) collinear with a given point of Z. It is clear that h ≤ 2, and since

|Z| ≥ q2 − q + 2, we deduce that

z ≤ 2
q3 − q2 − 2

q2 − q + 2
.

First suppose that q > 5. Then the above inequality implies the existence

of a point v of Z such that at least q − 1 of the lines of Q(4, q) through v

belong to F . Let C be v⊥ ∩ Q(3, q). Then C⊥ ∩ Q(4, q) either consists of

2 points or a single point, depending on whether q is odd or even. Let w be

a point of Q(4, q) \ (Q(3, q)∪C⊥) and suppose that w does not belong to Z. As

w⊥ ∩ v⊥ ∩ Q(3, q) contains at most 2 points, there are at least q − 3 > 2 points

of Z collinear with w on at least q − 3 distinct lines through w (the q − 3 points

mentioned are points of v⊥). This contradicts the fact that there are at most 2

lines through w which contain more than 1 point of M̃ (recall that the points

of Q(3, q) are covered by M̃). Consequently w ∈ Z. One now easily shows

that also all points of C⊥ ∩Q(4, q) must belong to Z, and finally it then follows

that all points of Q(4, q) belong to Z, that is, Q(4, q) is covered by M̃. By the

foregoing lemma it follows that |M| > q2 + 3, a contradiction.

Finally suppose that q = 5. Then the above inequality implies the existence

of a point v ∈ Z, such that v is collinear with at most 8 points which do not

belong to Z. Hence, at least 4 of the lines of Q(4, q) through v belong to F .

With the notation of the above paragraph C⊥ ∩ Q(4, q) consists of two points v

and w. Let u 6= w be any point of Q(4, q) \ Q(3, q) which is collinear with w.
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Then u is collinear with exactly 1 point of C. Consequently there are at least 3

points of Z collinear with u on 3 distinct lines incident with u, yielding at least

3 lines through u containing at least 2 points of M̃. This implies that u ∈ Z.

Consequently all points of the cone wC belong to M̃. The proof can now be

finished in a similar way as in the first part of the proof. ¤
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