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Abstract

For each simplicial arrangement in the real projective plane of the cata-

logue of Grünbaum [4], we determine the minimal extension of the ratio-

nals over which there exists a realization of its incidence structure. For the

infinite families we use the symmetries of the incidence. For the sporadic

arrangements we give an algorithm that uses Gröbner bases.
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1 Introduction

Recently I. Heckenberger and the author have classified the so-called finite Weyl group-

oids of rank three [3]. A Weyl groupoid is a generalization of the Weyl group, see [2]

for an introduction. It was B. Mühlherr who noticed that the root systems of rank three

Weyl groupoids yield simplicial arrangements in the real projective plane. Thanks to the

catalogue of B. Grünbaum [4], it was easy to identify them: It turned out that 53 of

the 67 sporadic arrangements in the large component of his Hasse diagram come from

Weyl groupoids. This is motivation enough to investigate simplicial arrangements from

this new viewpoint, especially since it is still an open question whether the catalogue of

Grünbaum is complete.

To the Weyl groupoids are associated certain root systems. With respect to the simple

roots, the coefficients of the roots are rational integers. The Weyl groups are obtained

as a special case, but for example the Coxeter group of type H3 is not included in this

setting. One reason is that there is no arrangement over the rationals with the same

incidence structure as the arrangement of type H3. Thus as a first step, it is important to

understand which number fields are required to “realize” the incidence structure of an

arrangement.



50 M. Cuntz

In this note, we develop a technique to compute these fields of definition. For the in-

finite series, we use the symmetry of the incidence structure to deduce that the solutions

are in fact unique up to projectivity. The known sporadic arrangements are dealt by an

algorithm that uses Gröbner bases to obtain enough restrictions to determine the field

extension.

The infinite families R(1), R(2) require the following fields of definition (see Theo-

rem 3.6 and Corollary 3.7 for details):

Q(ζ) ∩ R for ζ a root of unity.

The known sporadic arrangements all have a realization over one of (see Theorem 4.1

for details):

Q, Q(
√
2), Q(

√
3), Q(

√
5) or Q[X]/(X3 − 3X + 25).

This note is organized as follows. We start with a section in which we prove that any

simplicial arrangement has a realization over an algebraic number field. In the following

section we compute the fields of definition for the infinite series. In the last section we

treat the sporadic arrangements.

Acknowledgment. I wish to thank J. Maslowski and G. Malle for helpful discussions.

2 Algebraic realizations

We first recall some definitions (cfr. [5, 1.2, 5.1]).

Definition 2.1. Let K be a field and V a finite dimensional vector space over K. A

projective arrangement (A, V ) is a finite set of projective hyperplanes in P(V ). Let L(A)
be the set of all nonempty intersections of elements ofA. IfK ⊆ R and every component

of the complement of
⋃

H∈AH in V ⊗K R is an open simplicial cone, then we call A a

simplicial arrangement.

Throughout this note, all simplicial arrangements will be in the projective plane over

a subfield of R, i.e. K ⊆ R, V = K3. We write “( , )” for the usual inner product on R3.

Definition 2.2. An incidence structure is a triple (P,L, I) where P is a finite set of

“points”, L is a finite set of “lines” and I ⊆ P × L is the incidence relation.

Definition 2.3. Given an incidence structure I, we call a realization of I over K an ar-

rangement (A,K3) such that the poset L(A) (with respect to inclusion) is given exactly

by I. Conversely, from an arrangement A we obtain an incidence structure from the

poset L(A).
We will say that K ⊂ R is a field of definition of the incidence I of A if I has a

realization over K and K is contained in all fields over which I can be realized.
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Proposition 2.4. If I is the incidence of an arrangement in P(R3), then there exists a finite

field extension K of Q such that K ⊂ R and such that I admits a realization over K.

The same holds for simplicial arrangements: There exists a finite field extension K ⊂ R of

Q such that I admits a simplicial realization over K for which the same triples of lines give

open simplicial cones.

Proof. Let v1, . . . , vn ∈ R3 be normal vectors of the n planes of an arrangement. If

gi,j 6= 0 is an element of the intersection of v⊥i and v⊥j , then

(gi,j , vi) = 0 = (gi,j , vj), (2.1)

and without loss of generality, we may assume

(gi,j , gi,j) = 1. (2.2)

For each k such that gi,j is not on plane k we have

(gi,j , vk)xi,j,k = 1 (2.3)

for some xi,j,k ∈ R, and if gi,j is in the intersection of v⊥k and v⊥l , then we may assume

gi,j = gk,l. (2.4)

Equations (2.1), (2.2), (2.3), (2.4) define an ideal I in the polynomial ring over Q with

the coordinates of all vi, gi,j and xi,j,k as indeterminates. If the corresponding variety

(over R) is non-empty, then we have at least one algebraic solution:

Assume first that I has dimension 0. Then clearly all points on the variety V(I)
have algebraic coordinates, so if V(I) 6= ∅ then we also have an algebraic solution.

Now assume that the dimension of I is greater than 0. Since V(I) 6= ∅, there exists a

hyperplane which has non trivial intersection with V(I). But Q is dense in R, so in the

space of hyperplanes that meet V(I) there also exists one defined by a rational form.

Adding this to the ideal we get an ideal of dimension dim(I)−1; by induction we obtain

an algebraic solution.

For the case of simplicial arrangements it remains to translate the fact that we need a

triangulation. Each triple (i, j, l) of planes that yields an open simplicial cone gives a set

of inequalities:

Write a vk with respect to the basis (vi, vj , vl). Notice that for this we need to in-

clude the generator det(vi, vj , vl)x = 1 for some new variable x to our ideal, otherwise

(vi, vj , vl) is not a basis. The base change takes place over our polynomial ring, since x

is the inverse of the determinant.

Now view all vectors with respect to the basis (vi, vj , vl):

vk = ak,ivi + ak,jvj + ak,lvl

for k = 1, . . . , n. Then for all k = 1, . . . , n either ak,i, ak,j , ak,l ≥ 0 or ak,i, ak,j , ak,l ≤ 0

if and only if the open simplicial cone

C = {v ∈ R
3 | (v, vi) > 0, (v, vj) > 0, (v, vk) > 0}
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given by the planes v⊥i , v
⊥
j , v

⊥
l intersects trivially with any hyperplane of A (cfr. [1,

Lemma 2.2]): Assume first that w is on plane k, i.e. (w, vk) = 0, and that the coordinates

of vk are all greater or equal to 0. Then (w, ak,ivi) + (w, ak,jvj) + (w, ak,lvl) = 0, thus

either w = 0 or two of the inner products have different signs, say (w, vi)(w, vj) < 0, so

w /∈ C. The same holds for the case in which all coordinates of vk are less or equal to

0. Conversely, assume that (w, vk) = 0 implies w /∈ C. Denote v∨i , v
∨
j , v

∨
l a dual basis

to vi, vj , vl. If without loss of generality ak,iak,j < 0, then for w = ak,jv
∨
i − ak,iv∨j we

have either w ∈ C or −w ∈ C although (w, vk) = 0.

Thus for each open simplicial cone we obtain a set of inequalities. But each inequality

f ≥ g becomes an equality f = g + x2 by introducing a new variable x. The same

argument as for arbitrary arrangements gives: Either there is no solution, or there exists

an algebraic solution. �

3 The infinite families

There are three known infinite families of simplicial arrangements in P(R3). They are

denoted byR(0), R(1), R(2) in [4]. FamilyR(0) consists of near pencils. It is clear from

definition that all near pencils may be realized over Q, hence we will ignore them in this

note.

Family R(1) consists of the following arrangements: Starting with a regular convex

n-gon in the Euclidean plane, the arrangement A(2n, 1) is obtained by taking the n lines

determined by the sides of the n-gon together with the n lines of mirror symmetry of

that n-gon (see Figure 1 for an example).

Finally for n = 4m + 1, from A(4m, 1) one obtains a new arrangement by adjoining

the “line at infinity”. These are the arrangements in the family R(2).

Definition 3.1. We will need the arrangement A(2n, 1) more explicitly, so here is a

more precise definition. We write In for its incidence structure. Let ζ = exp(2πi/n).

We choose our labels for the points in such a way that 1 is the point in the center and

2, . . . , n+ 1 are the vertices of the n-gon in counterclockwise ordering: p1 := (0 : 0 : 1)

and the n-gon has vertices

pi+2 := (Re(ζi) : Im(ζi) : 1)

for i = 0, . . . , n−1. For the next lemma, we need some information about the incidence:

Consider Figure 2 as a part of the n-gon and identify p1, . . . , p5 with w, u, v, x, y. Using

symmetries of the n-gon one can check that the incidences between the points p, q, r, s

and the lines of the figure do not depend on n.

Lemma 3.2. A realization of the incidence structure In is uniquely determined by the choice

of points p1, . . . , p5 in P(R3), where pi corresponds to the intersection point labeled by i.

Proof. First observe that the complete image is given by the points labeled 1, . . . , n+ 1.

We show that if the points labeled 1, r, . . . , r+3 for 1 < r ≤ n−4 are given, then one can
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Figure 1: The arrangement A(18, 1)
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Figure 2: Proof of Lemma 3.2
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construct the point r+4. Identify the points p1, pr, . . . , pr+3 with w, u, v, x, y in Figure 2.

If we write ι(a, b, c, d) for the intersection point of the lines (a, b) and (c, d), then

p = ι(u, v, x, w), q = ι(v, x, y, w),

r = ι(v, x, p, y), s = ι(u, v, w, r).

Thus the next point pr+4 is z = ι(p, y, s, q). By induction we obtain the claim. �

Definition 3.3. Call a tuple (p1, . . . , p5) of points in P(R3) a solution for In, if the con-

struction of Lemma 3.2 leads to the incidence structure In. We write

N : P(R3)5 → P(R3), (w, u, v, x, y) 7→ z,

i.e. N(w, u, v, x, y) = z is the next point according to Lemma 3.2 or Figure 2.

Remark 3.4. If ζ = exp(2πik/n) for some k with gcd(k, n) = 1, then the points p1 =

(0 : 0 : 1) and

pi+1 = (Re(ζi) : Im(ζi) : 1)

for i = 1, . . . , 4 are a solution for In.

Lemma 3.5. Given a realization of In, the points labeled 1, r, r + 1, r + 2 are in general

position for 1 < r < n− 1.

Proof. If three different points with labels in {1, r, . . . , r + 2} were not in general posi-

tion, then they would lie on a common line. �

Theorem 3.6. Let n ∈ N, n > 2 and K ⊆ R a field. If p1, . . . , pm ∈ P(K3) are a

realization of In, then Q(Re(ζ)) = Q(ζ) ∩ R ⊆ K, where ζ = exp(2πi/n). Moreover, up

to projectivity there exists only one realization of In.

Proof. Assume that p1, . . . , p5 are a solution to the indicence structure In. Applying a

projectivity, we may assume without loss of generality that p1 = (0 : 0 : 1), p2 = (1 : 0 : 1),

p3 = (0 : 1 : 1), p4 = (1 : 1 : 1) and that p5 = (x : y : z) is an indeterminate point. Since

p1, . . . , p4 have rational coordinates, this really is a projectivity on P(K3).

We first construct a map D : P(K3) → P(K3) in the following way: Let p6 =

N(p1, . . . , p5) be the unique next point given by Lemma 3.2. Consider the projectivity π

given by (notice that the points are in general position by Lemma 3.5)

p1 7→ p1, p3 7→ p2, p4 7→ p3, p5 7→ p4.

Since p1, p3, p4, p5, p6 are a solution to the incidence structure, the points p1, p2, p3, p4,

π(p6) will be a solution as well. Hence we have now two different possible choices for a

fifth point: p5 and π(p6) which we will denote D(p5) := π(p6).

We now compute D(p5) for p5 = (x : y : z). We certainly have x 6= 0 because

otherwise p5 = (0 : y : z) ∈ 〈(0 : 0 : 1), (0 : 1 : 1)〉 which contradicts In. One computes

p6 =
(

(x− y + z)(x+ y − z) : xy − y2 + 2yz − z2 : xz − 2y2 + 4yz − 2z2
)
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and π(p6) = D(p5) is

(

x :
(x− y + z)(x+ y − z)

x
:
x2 − xy + xz − y2 + 2yz − z2

x

)

.

Evaluating these functions it turns out that D(D(p5)) = D(p5) i.e. D2 = D. This

means that D(p5) is a solution fixed by D and we thus obtain a projectivity ψ such

that p1, p2, ψ(p2) = p3, ψ
2(p2) = p4, ψ

3(p2) = D(p5) is a solution and ψ(p1) = p1,

ψn(p2) = p2.

Let ϕ be a linear map R3 → R3 with ψ = P(ϕ). Since p1, p2, ψ(p2), ψ
2(p2) are in

general position and are fixed by ψn, we have ϕn = λid for some λ ∈ R×. Choose an

ε ∈ C with εn = 1/λ; we may assume ε ∈ R if n is odd or λ > 0, and ε ∈ iR otherwise.

But then εϕ = diag(ξ, η, 1) with respect to some basis (b1, b2, b3) and for suitable

ξ, η ∈ C with ξk = ηm = 1, n = lcm(k,m). The constant term in the minimal polynomial

of ϕ|〈b1,b2〉 is ξηε−2 and has to be real, thus ξ = ±η−1. In both cases, there exists a basis

(b̃1, b̃2, b3) such that (εϕ)|〈b̃1,b̃2〉 is a rotation of order n. Thus for a solution fixed by D,

there exists a projectivity π′

q1 7→ p1, q2 7→ p2, q3 7→ p3, q4 7→ p4,

where q1, q2, q3, q4, q5 is our prefered solution from Remark 3.4 for ζ = exp(2πi/n), and

such that π(p6) = π′(q5), explicitly:

π′(q5) =

(

ζ + ζ−1 :
ζ4 + ζ2 + 1

ζ(ζ2 + 1)
:
ζ4 − ζ3 + ζ2 − ζ + 1

ζ(ζ2 + 1)

)

.

(Notice that we only need to know that ζ(ζ2 + 1) 6= 0 to compute this expression, the

relation ζn = 1 is not used.) Using D(p5) = π′(q5) we obtain

x = ζ + ζ−1, y = z + 1,

thus at least Q(Re(ζ)) ⊆ K. For the uniqueness consider the projectivity (reflection) σ

given by

p1 7→ p1, p5 7→ p2, p4 7→ p3, p3 7→ p4.

This maps p2 to

σ(p2) = (x(z − y) : yz − y2 : x2 − xy − y2 + yz),

again a new solution different from p5. One computes

D(σ(p2)) =
(

(y − z)2 : (z − x)(x− 2y + z) : −x2 + xy + xz + y2 − 3yz + z2
)

which is a solution fixed by D and thus equal to π′(q5). Collecting these relations yields

a 0-dimensional ideal in R[x, y, z] with exactly one solution, (x : y : z) = π′(q5), so in

fact D = id. �

Corollary 3.7. Let I be the incidence structure of A(4m+ 1, 1), an arrangement of family

R(2). If A is a realization of I over a field K ⊆ R, then Q(Re(ζ)) = Q(ζ)∩R ⊆ K, where

ζ = exp(2πi/(4m)). Moreover, there exists a realization of I over Q(Re(ζ)), thus this is

the field of definition.
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Proof. Since A(4m+1, 1) is a descendant of A(4m, 1), it follows from Theorem 3.6 that

Q(Re(ζ)) = Q(ζ) ∩ R ⊆ K, where ζ = exp(2πi/(4m)). The second assertion holds by

Remark 3.4 since adding the line at infinity does not enlarge the required field. �

4 The known sporadic arrangements

Theorem 4.1. For each connected component of the Hasse diagram of sporadic arrange-

ments [4, Figure 4] exists a well defined unique field of definition K:

1. The component of A(6, 1) has K = Q.

2. The component of A(16, 1) has K = Q(
√
2).

3. The component of A(24, 1) has K = Q(
√
3).

4. The component of A(10, 1) has K = Q(
√
5).

5. The component of A(15, 5) has K = Q(x)/(x3 − 3x + 25). This field is not Galois

over Q; its splitting field is Q(x)/(x6 + 3x5 + 5x4 + 5x3 + 5x2 + 3x + 1) and has

Galois group S3.

Proof. For each minimal and maximal arrangement in [4, Figure 4], we compute the

fields of definition by the algorithm below. These are:

1. A(10, 1), A(13, 4), A(14, 4), A(16, 5), A(31, 1) for the component on the left.

2. A(21, 4), A(21, 6), A(25, 2), A(37, 3) for the component in the middle.

3. A(16, 1), A(17, 8), A(25, 5), A(15, 5), A(21, 7), A(24, 1), A(37, 2) for the remain-

ing components.

Notice that for the component in the middle the field of definition is always Q, so we do

not need to consider the minimal arrangements. �

Remark 4.2. The only maximal arrangement in the large component in the middle

which does not come from a Weyl groupoid is A(21, 6). The fields of definition for the

arrangements A(10, 1), A(16, 1), A(24, 1) are given by Theorem 3.6.

4.1 A procedure to determine fields of definition

Definition 4.3. We will say that an incidence structure I is generated by points λ1, . . . , λm

if the set of all points is the smallest set P with

1. λ1, . . . , λm ∈ P ,

2. for all λ, µ, ν, ρ ∈ P such that 〈λ, µ〉, 〈ν, ρ〉 are lines in I we have 〈λ, µ〉∩〈ν, ρ〉 ∈ P .
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The main part of the procedure determines a set of polynomials:

Algorithm 4.4. FindRelations(I)

Computes equations which have solutions over the field of definition of an arrangement.

Input: an incidence structure I.

Output: the Gröbner basis of an ideal I of relations satisfied by the coordinates of the

points of I.

1. Find a small set of labels λ1, . . . , λm which generate the incidence structure and

such that λ1, . . . , λ4 are in general position (for this use the incidence structure:

if two points are on the same line and a third is not, then we know that their

coordinates are linearly independent).

2. The points p1, . . . , p4 corresponding to the labels λ1, . . . , λ4 may be chosen in gen-

eral position with coordinates in Q; p5, . . . , pm have indeterminate coordinates:

pi = (xi : yi : zi).

3. Over F = Q(x5, y5, z5, . . . , xm, ym, zm), compute the intersection spaces and new

hyperplanes until we have them all. An intersection space is stored as 〈v〉 for some

v ∈ F 3. Multiplying v by the least common multiple of the denominators of the

coordinates of v if necessary, we obtain an element of Q[x5, . . . , zm]3.

4. For each pair of planes, compute the “difference” of the intersection space 〈v〉 and

the space 〈w〉 computed in the last step:

• Either they have a common non-zero entry, say v1 6= 0 6= w1. Then the

“differences” are v2w1 − w2v1 and v3w1 − w3v1.

• Or else viwi = 0 for all i = 1, 2, 3. Then the “differences” are v1 − w1,

v2 − w2, v3 − w3.

Collect these differences in a set R ⊂ Q[x5, . . . , zm].

5. Compute a Gröbner basis of the ideal I generated by the elements of R.

6. For each triple of points q1, q2, q3 in general position (use the incidence structure),

compute the determinant of the matrix with rows q1, q2, q3. Collect these in a

set D.

7. Let B be the basis of I. As long as an element f of B is divisible by an element g

of D, replace f by f/g. We obtain a new set B′.

8. Compute the ideal I′ generated by B′ and its basis B′′. If I′ 6= I then go back to

step 7 with I← I
′, B ← B′′.

9. Return B′′.

Remark 4.5. It appears that in practice, if I is the incidence structure of a simplicial

arrangement then we always have m = 5 in step 1.

Remark 4.6. The elements of D are polynomials which must be different from 0. The

usual technique is to add a new variable v for each f ∈ D and the equation fv = 1. But
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hereD is a very large set, so this would increase the number of variables considerably. Of

course, one could also add only one variable v and consider the equation v
∏

f∈D
f = 1,

but this is a polynomial of very high degree.

After using this algorithm, it remains to perform the steps:

(1) Examine the resulting Gröbner basis B′′. We obtain a subfield K of the field of

definition.

(2) Compute a realization of the incidence structure over K. Then we are sure that K

is minimal.

Ad (1). If the ideal 〈B′′〉 has dimension 0 then it easy to determine the field. If the ideal

has dimension > 0 then we can hope to extract some information about the field

extension fromB′′: For instance, we can consider the cases that a given coordinate

of (x5, y5, z5) is 0 or not, and hence without loss of generality 0 or 1. In both cases

we eliminate a variable and obtain an ideal in a smaller ring. This is sufficient to

treat all simplicial arrangements of the catalogue.

Ad (2). This is the easiest part. Since we have a generating set of points given by step 1

of the algorithm, it suffices to choose a solution over K for λ1, . . . , λm and to

check that it realizes the incidence structure.

Remark 4.7. The above algorithm is also applicable to arrangements which are not

simplicial.

4.2 Some examples

4.2.1 A(10, 1)

This is the incidence structure I for A(10, 1) (the sets of lines going through the points

1, . . . , 16):

{1, 2, 3, 4, 5}, {4, 9}, {1, 10}, {3, 6}, {5, 7}, {2, 8}, {5, 9, 10}, {2, 6, 10}, {4, 6, 7},
{1, 7, 8}, {3, 8, 9}, {4, 8, 10}, {1, 6, 9}, {3, 7, 10}, {5, 6, 8}, {2, 7, 9}.

Our algorithm suggests to start with the points labeled by

1, 8, 9, 10, 11.

For the first four points, we choose

(1 : 0 : 0), (1 : 1 : 0), (1 : 0 : 1), (1 : 1 : 1);

the fifth point will be (x : y : z). The ideal is generated by 9 polynomials in x, y, z. It has

a Gröbner basis with 2 generators: x− 2z, y2 − yz − z2. Now either x 6= 0 or x = 0. For

x = 0 the only solution is (x, y, z) = (0, 0, 0), hence x 6= 0, say x = 2. But then z = 1

and

f(y) = y2 − y − 1 = 0.

The polynomial f is the minimal polynomial of −ζ5 − ζ−1

5 , thus a field of definition

should include
√
5. This agrees with Theorem 3.6.
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4.2.2 A(15, 5)

This is the incidence structure I for A(15, 5) (the sets of lines going through the points

1, . . . , 34)

{1, 2, 3, 15, 8}, {1, 14, 4}, {1, 5, 6}, {1, 7}, {1, 9}, {1, 13, 10}, {11, 1, 12}, {2, 4},
{2, 13, 6}, {11, 2, 14, 7, 10}, {12, 2, 9}, {12, 13, 3, 4, 7}, {3, 5, 10}, {11, 3, 9},
{3, 14}, {4, 5}, {4, 6, 9}, {4, 8, 10}, {11, 4, 15}, {5, 7, 8}, {14, 5, 9}, {11, 13, 5},
{12, 15, 5}, {15, 6, 7}, {11, 6, 8}, {12, 6, 10}, {14, 6}, {13, 8, 9}, {12, 14, 8},
{15, 9, 10}, {13, 14, 15}, {2, 5}, {3, 6}, {7, 9}.

Our algorithm suggests to start with the points labeled by

1, 2, 19, 22, 28.

Again, for the first four points we choose

(1 : 0 : 0), (1 : 1 : 0), (1 : 0 : 1), (1 : 1 : 1);

the fifth point will be (x : y : z). The ideal is generated by 40 polynomials in x, y, z.

It has a Gröbner basis (computed for instance with MAGMA) with 8 generators. There

are 3105 determinants which may be used to reduce this basis, and 8 more come from

the fact that certain points are different. After three cycles of steps 7, 8 of the above

algorithm, we obtain an ideal with basis

x− 2y, y3 − 5y2z + 4yz2 − z3.
Now either x = 1 or x = 0. For x = 0 the only solution is (x, y, z) = (0, 0, 0), hence

x = 1. But then y = 1/2 and

f(z) = z3 − 2z2 + 5/4z − 1/8 = 0.

The polynomial f is irreducible, thus a solution would at least contain a root α of f .

After computing a solution over Q(α), one checks that it is indeed simplicial.

The usual simplification algorithm on f yields the nicer polynomial z3 − 3z + 25

defining the same number field (evaluate f at x/6 + 2/3 and multiply by 216).

4.2.3 A(37, 2)

We omit the incidence structure I forA(37, 2) because it takes too much space. The ideal

is generated by 489 polynomials in x, y, z. MAGMA computes a Gröbner basis with 5 gen-

erators. Since there are 971970 potential determinants, we concentrate on those given

by the five starting points. Together with the polynomials coming from the differences

of points we get 287 polynomials which must be different from 0. After three cycles of

steps 7, 8 of the above algorithm, we obtain an ideal with basis

x− 5y + 5z, y2 − 6yz + 6z2.

Again, if x = 0 then (x, y, z) = (0, 0, 0), hence x = 1. But then

y − z − 1/5 = 0, z2 − 4/5z + 1/25 = 0,

thus the field of definition is Q(
√
3).
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