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of a polarity, with the consequence that any such abelian projective plane is
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1 Introduction

A projective plane is Desarguesian if any two centrally perspective triangles are

axially perspective. It is well-known that a Desarguesian plane can be coordi-

natized by a division ring. Since any finite division ring is a Galois field, the

order of a finite Desarguesian projective plane is a prime power. Although non-

Desarguesian planes exist, all known cases have order a prime power. This leads

to the following famous long-standing conjecture:

Conjecture 1.1. Any finite projective plane is of prime power order.

In terms of number theoretic properties, the most general result about the

conjecture is the Bruck-Ryser-Chowla Theorem [7, 8] which states that if a pro-

jective plane of order n exists and n ≡ 1, 2 (mod 4), then n is a sum of two

squares. The first case not ruled out by the result is order 10. The nonexistence

of a projective plane of order 10 has been shown by Lam, Thiel and Swiercz

[18] by exhaustive computer search. The next general case, which is 12, re-

mains open.

A cyclic projective plane (CPP) is a finite projective plane which admits a cyclic

Singer group of collineations, i.e. a collineation group which is sharply transi-

tive on points. Singer [24] has proven that any finite Desarguesian plane is a

cyclic projective plane. The converse is another long-standing conjecture:
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Conjecture 1.2. Any cyclic projective plane is Desarguesian.

This conjecture is equivalent to the combination of two statements (see [5]):

(i) Any cyclic projective plane is of prime power order. (Prime Power Conjec-

ture for CPP.)

(ii) Any cyclic projective plane of prime power order is unique up to isomor-

phism.

Statement (i) has been verified up to order 2 × 109 in [2, 9]. Statement

(ii) has been first verified for the order m and m2 by Bruck [5], where m =

2, 3, 5, 7, 8, 9. Recently, Law and Wong [19] have extended Bruck’s result to

m = 11, 16. Furthermore, Huang and Schmidt [14] have shown that for n < 41

and for n ∈ {121, 125, 128, 169, 256, 1024}, every CPP of order n is Desarguesian.

More generally, a finite projective plane which admits an abelian Singer

group of collineations is called an abelian projective plane (APP). In this paper,

we isolate a mild necessary and sufficient condition, configurational in nature,

for an APP of odd order to be Desarguesian. Essential to our approach is the re-

sult of Ott [21] together with its generalization to the abelian case by Ho [13],

and the classic characterization of the multiplier group by Bruck [4], which

combine to give the conclusion that an APP π with abelian Singer group G is

either Desarguesian or G is normal in the full automorphism group Aut(π). We

shall construct a polarity on an odd order APP satisfying our condition so that

its composition with the Hall polarity associated to an APP defines a collineation

which is not in the normalizer of G in Aut(π).

We shall be using the techniques of abelian difference sets. As is well-

known, two cyclic projective planes are isomorphic if and only if the associated

cyclic difference sets are equivalent. Furthermore, this result extends to abelian

groups by Jungnickel [16]. Accordingly, our configurational condition is given

in terms of the difference set defining the APP under investigation. Our proofs

depend essentially on the classification of points and lines of a plane with re-

spect to ovals and the use of multipliers. For consistency in notation and ease of

reference, we have included the discussion of some basic results in the following

sections.

2 Arcs and ovals in an abelian projective plane

In this section, we study arcs and ovals and use them to classify the points and

lines in an abelian projective plane.
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We begin by working in a finite projective plane and then later specialize to

an abelian one. Let π be a finite projective plane. An arc of lines (respectively

points) is a set of lines (respectively points) which are in general position. An

oval is an arc whose cardinality is the largest among all arcs. Note that this

definition of an oval is different from the usual one which is given as q+1 lines

in general position in a plane of order q (see [15], cfr. also [11].)

Definition 2.1. Given an arc of linesA of π, a point is called, respectively, a zero

point, single point, double point if it is incident on, respectively, 0, 1, 2 lines in A.

The sets of zero points, single points and double points are denoted respectively

by Z, S,D.

Definition 2.2. Given an arc of lines A of π, a line is called, respectively, a zero

line, single line, double line if it is incident on, respectively, 0, 1, 2 single points of

A. The sets of zero lines, single lines and double lines are denoted respectively

by Z,S ,D.

We have the usual dual version of the above definitions for a given arc of

points.

We first discuss the size and content of an oval of lines. However, all results

hold if we consider points instead.

Since any line l has q+1 points and distinct lines of an arc containing l must

intersect l at distinct points, it follows that the cardinality of an oval cannot

exceed q + 2. On the other hand, if there are q + 2 lines in the oval, then each

line in it contains only double points. It follows that a line not in the oval must

intersect the lines of the oval in (q+2)/2 double points, and so q is even. In fact,

it is a remarkable result of Qvist [23] that any arc of q + 1 lines in a projective

plane of even order q can be extended to an oval of q + 2 lines.

Now suppose O is an oval of q + 1 lines in a plane π of odd order. It is

easy to see that each line in O has 1 single point and q double points, and each

line outside O has s single points and d double points where s + 2d = q + 1.

In particular, s 6= 1 and the set of single lines S = O. Thus, we may write

O = {l0, l1, . . . , lq}, and the set of single points S = {P0, P1, . . . , Pq}, where Pi

is on li, i = 0, 1, . . . , q, and li is the only single line with respect to O on Pi.

Counting the lines on Pi we conclude that Pi.Pj , where j = 0, 1, . . . , î, . . . , q,

are q distinct lines, so that S is an arc of points. It follows that any line in π

contains at most two single points.

We summarize the above discussion on planes of odd order in the following

structure theorem (cfr. [11, 12].)

Theorem 2.3. Let O be an oval of q+1 lines in a projective plane π of odd order q.

The points and lines of π are classified with respect to O as follows:
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(i) every point of π is either a zero, a single, or a double point, with card(Z) =

q(q − 1)/2, card(S) = q + 1, and card(D) = q(q + 1)/2; S is an oval;

(ii) every line of π is either a zero, a single, or a double line, with card(Z) =

q(q − 1)/2, card(S ) = q + 1, and card(D) = q(q + 1)/2; O = S ;

(iii) for the pencil of lines through a point P in π:

(a) on P ∈ Z, there are (q + 1)/2 zero lines and (q + 1)/2 double lines,

(b) on P ∈ S, there is 1 single line and there are q double lines,

(c) on P ∈ D, there are (q − 1)/2 zero lines, 2 single lines, and (q − 1)/2

double lines;

(iv) for the points on a line l in π:

(a) on l ∈ Z, there are (q + 1)/2 zero points and (q + 1)/2 double points,

(b) on l ∈ S , there is 1 single point and there are q double points,

(c) on l ∈ D, there are (q− 1)/2 zero points, 2 single points, and (q− 1)/2

double points.

We now specialize to abelian projective planes. Let π be an abelian projective

plane of order q with points given by an abelian Singer group G of order q2+q+1

and lines the translates of an abelian difference set Dq = {d0, d1, . . . , dq} of G.

We write π = π(Dq). LetW(Dq) = {Dq,Dq+d1−d0, . . . ,Dq+dq−d0}. Since Dq

is an abelian difference set,W(Dq) is an arc of q + 1 lines. From the discussion

above on the size of an oval we note that if O is an oval of lines in an abelian

projective plane π(Dq), then the cardinality of O is q + 1 if q is odd, and q + 2 if

q is even.

On the other hand, −Dq is an arc of q+1 points, again since Dq is an abelian

difference set [6, 17]. Indeed, −di and −dj determine uniquely the line Dq −

di − dj . If −dk ∈ Dq − di − dj , then −dk = dl − di − dj , contradicting the

definition of a difference set. Thus we have the same conclusion on the size of

an oval of points in π(Dq).

Note that in case O is W(Dq), where q is odd, 2Dq is an oval of points.

Indeed, the single points ofW(Dq) are given by 2Dq−d0, and the result follows

from Theorem 2.3 (cfr. [12].)

3 Ovals, polarities, and polar ovals

We begin by summarizing some standard facts about polarities and ovals in a

finite projective plane which can be found in Hughes and Piper [15]. Recall that



On polar ovals in abelian projective planes 39

a correlation α of a projective plane π is a one-to-one mapping of the points onto

the lines and the lines onto the points such that P is on l if and only if lα is on

Pα. Thus a projective plane admits a correlation if and only if it is self-dual.

A polarity is a correlation of order two and it is not known whether a self-dual

plane must admit a polarity. However, by Hall [10], a cyclic projective plane

π(Dq) is self-dual and it always admits the polarity α given by

α : x←→ Dq − x. (1)

More generally, we consider the case of an abelian projective plane π(Dq), and

the polarity α given by (1) will be called the Hall polarity.

If α is a polarity of a projective plane π then a point P (line l) is called

absolute if P is on Pα (lα is on l). For example, the absolute points of the Hall

polarity is the set 1

2
Dq, where 1

2
(x) = ((q2 + q + 2)/2)x for x ∈ π(Dq). The next

result shows the configuration of absolute points and absolute lines.

Lemma 3.1 ([15, Lemma 12.1]). Let α be a polarity of a projective plane π. Then

every absolute point of α is on a unique absolute line and, dually, every absolute

line contains a unique absolute point.

The next result shows that the set of absolute points 1

2
Dq are in general

position and is therefore an oval if q is odd. Since this oval is the absolute

points of a polarity α, we call such an oval a polar oval with respect to α.

Lemma 3.2 ([15, Theorem 12.6]). Let α be a polarity of a finite projective plane

of odd order q. If α has exactly q + 1 absolute points then the absolute points of α

are in general position.

In the rest of this section we shall be concerned with an abelian projective

plane π = π(Dq), of odd order q, as described in Section 2, and without loss

of generality we may assume that d0 = 0; otherwise the insignificant term −d0
will appear and complicate the notations. Recall that 2Dq is an oval of single

points with respect to the oval of single lines W(Dq). We study the question of

whether the oval 2Dq is a polar oval.

Suppose 2Dq is a polar oval. Let β be a polarity of π such that the absolute

points of β are 2Dq. Since the lines on each 2di of 2Dq are all double lines except

for the single line Dq + di (Theorem 2.3; this result will be used freely below

and no further specific reference will be made of it), it follows from Lemma 3.1

that the absolute lines of β are the single lines. Thus the single points and single

lines must correspond under β, i.e.

β : 2di ←→ Dq + di (2)

for i = 0, 1, . . . , q.
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As for the double points and double lines, they must also correspond in a

one-to-one manner under β. Indeed, the double point di + dj is the intersection

of the single lines Dq + di and Dq + dj , and since β is a correlation, (di + dj)
β =

(Dq+di)
β .(Dq+dj)

β = 2di.2dj , which is a double line. Thus, under the polarity

β, the double points and double lines correspond as follows:

β : di + dj ←→ 2di.2dj (3)

for i, j = 0, 1, . . . , q, i 6= j. Note that the correspondence is one-to-one since 2Dq

is an oval.

Now let Z be a zero point. We study the line Zβ . Consider the pencil of

lines on Z. Since β is a correlation, the v = (q + 1)/2 double lines 2di′ .2di′′ , i =

1, 2, . . . , v, on Z must correspond under β to the double points di′ + di′′ , i =

1, 2, . . . , v, on Zβ . Since all the single points have been accounted for, these

double points are all the double points on Zβ , and so Zβ must be a zero line. If

Z ′ is another zero point, then Z ′β cannot be the same as Zβ as all double points

on Zβ have been occupied by the images under β of the double lines on Z.

Therefore the zero points and zero lines are also in one-to-one correspondence

under β given by

β : Z ←→ (2d1′ .2d1′′)
β . . . . .(2dv′ .2dv′′)β (4)

where 2di′ .2di′′ , i = 1, 2, . . . , v, are the double lines on Z.

We return to the oval 2Dq. We have shown that if there is a polarity β whose

absolute points are 2Dq, then β must be defined by (2), (3), and (4). In partic-

ular, this imposes the following condition on the configuration of double points

and double lines, given in terms of the difference set Dq:

Condition D. If the double lines 2di.2dj , 2dk.2dl, and 2dm.2dn are concurrent,

then the double points di + dj , dk + dl, and dm + dn are collinear.

Condition D is therefore a necessary condition for the oval 2Dq to be polar.

We shall assume that the odd order abelian projective plane π(Dq) satisfies Con-

dition D, define β as above, and proceed to study whether β thus defined is a

polarity. Since by definition β is order 2, we need only check whether β is a

correlation. It turns out that a further necessary condition is required. Finally,

we must also check that the set of absolute points of β is indeed 2Dq.

Let P be a point and consider its pencil of lines. With respect to β, we say

that a line l in the pencil is well-behaved if lβ ∈ P β . Dually, let l be a line and

consider its points. We say that a point P on the line is well-behaved if P β ∋ lβ .

If lines on points and points on lines are always well-behaved then β is (by

definition) a correlation.
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We shall also say that a pair of point P and line l is well-behaved with respect

to β if P ∈ l and P β ∋ lβ .

Lemma 3.3. The following lines on points and points on lines are well-behaved

with respect to β:

(i) lines on a single point, and points on a single line,

(ii) single and zero lines on a double point, and single and zero points on a

double line,

(iii) double lines on a zero point, and double points on a zero line.

Proof. Immediate consequences of the definition. To illustrate, consider the case

of a zero line zi on a double point da + db. We show zi
β ∈ (da + db)

β = 2da.2db.

Now zi
β is by definition the zero point where the images under β of the double

lines on it define by their collinearity the line zi. Since the double point da + db
is on zi, the double line 2da.2db must be on zi

β , as we wished. �

Lemma 3.4. The double lines on a double point are well-behaved with respect

to β.

Proof. Let u = (q − 1)/2. Let 2di′ .2di′′ , i = 1, 2, . . . , u, be the double lines on

the double point da + db. We show (2di′ .2di′′)
β ∈ (da + db)

β for each i, i.e.

di′ + di′′ ∈ 2da.2db. By Condition D, di′ + di′′ , i = 1, 2, . . . , u, are collinear on

a line l. If l is a double line, then it must be 2da.2db, since all the remaining

2u = q−1 single points have been accounted for by the u double points di′ +di′′

on l, and we are done. It remains to show that l can neither be a single nor a

zero line. If l were a single line, then the single point on it must be either

2da or 2db by counting as before, so that l is either Dq + da or Dq + db. By

comparing the double points on l with those on these two single lines it is clear

that l can be neither of these two. If l were a zero line, then l corresponds

under β to the zero point whose double lines must include those corresponding

to di′ + di′′ , i = 1, 2, . . . , u, i.e. 2di′ .2di′′ , i = 1, 2, . . . , u. But these lines are

concurrent on a double point, namely, da + db. So l cannot be a zero line

either. �

Lemma 3.5 (Converse of Condition D). If the double points di + dj , dk +

dl, and dm + dn are collinear, then the double lines 2di.2dj , 2dk.2dl, and 2dm.2dn
are concurrent.

Proof. Let l be the line of collinearity of the double points di + dj , dk + dl
and dm + dn. Suppose l is a double line, say, 2da.2db. Consider the double

point (2da.2db)
β = da + db. Let 2dp′ .2dp′′ , p = 1, 2, . . . , u, be the double lines on
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da+db. By Condition D, the images under β of these double lines are the double

points on 2da.2db. Furthermore, by Lemma 3.4, for each p, (2dp′ .2dp′′)β ∈

(da + db)
β , i.e. dp′ + dp′′ ∈ 2da.2db. Since di + dj , dk + dl, and dm + dn are

among these dp′ + dp′′ , p = 1, 2, . . . , u, their images under β are concurrent.

Next suppose l is a zero line. Then l = Zβ where Z is the zero point for which

the images under β of its double lines are collinear by Condition D and define

the double points of l. Since di + dj , dk + dl, and dm + dn are among these

double points, their images under β are concurrent. Finally suppose l is a single

line, say, Dq + da. Then di + dj , dk + dl, dm + dn and 2da are collinear, and so

2di.2dj , 2dk.2dl, and 2dm.2dn are concurrent on 2da. �

Lemma 3.6. The double points on a double line are well-behaved with respect

to β.

Proof. This is the dual version of Lemma 3.4, so the dual version of its proof

applies with Lemma 3.5 providing the dual of Condition D. �

It remains to study the behaviour of the zero points and zero lines under β.

Lemma 3.7. Let Z be a zero point. Any two lines in the pencil of Z correspond

under β to two points collinear on a zero line.

Proof. By definition, all v = (q + 1)/2 double lines on Z are mapped by β to

collinear double points on the zero line Zβ . So we only need to check the cases

where the lines are not both double lines. Consider a double line 2di′ .2di′′ , and

a zero line zj , on Z. Let l = (2di′ .2di′′)
β .zj

β = (di′ + di′′).zj
β . Since a single

line does not contain any zero point, l is either a double or a zero line. If l were

a double line, say, 2da.2db, then by definition of β, da + db has to be a double

point on zj . On the other hand, by the well-behaviour of a double line (2da.2db)

on a double point (di′ + di′′), we have da + db ∈ 2di′ .2di′′ . Thus 2di′ .2di′′ = zj ,

which is impossible. A similar argument applies to the case of two zero lines

and will not be repeated here. �

Lemma 3.8. Let Z be a zero point and zi, i = 1, 2, . . . , v = (q + 1)/2, the zero

lines on Z. If zi
β ∈ Zβ for some i, then zi

β ∈ Zβ for all i.

Proof. Suppose for some j 6= i, zj
β /∈ Zβ . Then the v+1 lines joining zj

β to the

v double points and the zero point zi
β on Zβ are distinct, so one of them must

be a double line. This contradicts Lemma 3.7. �

Remark 3.9. There are of course the dual versions of Lemmas 3.7 and 3.8.

Lemma 3.10. The following conditions are equivalent:
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(i) There exists a zero point Z and a zero line z such that Z ∈ z and Zβ ∋ zβ .

(ii) For every zero point Z and every zero line z, Z ∈ z if and only if Zβ ∋ zβ .

Proof. (i) ⇒ (ii). Let Zi, i = 1, 2, . . . , v = (q + 1)/2, be the zero points on z,

with Z1 = Z. Since zβ ∈ Zβ = Z1
β , zβ ∈ Zi

β for all i by the dual version of

Lemma 3.8. Next we consider, for each i = 1, 2, . . . , v, the zero lines zij , j =

1, 2, . . . , v, on Zi, with zi1 = z. Since zi1
β = zβ ∈ Zi

β , zij
β ∈ Zi

β for all j by

Lemma 3.8. In other words, if one zero point Z is well-behaved on a zero line z,

then all the zero points Zi on z are well-behaved, and all the zero lines zij on

each zero point Zi are well-behaved.

The above argument can be applied to the zero points Zijk, k = 1, 2, . . . , v,

of the zero line zij through Zi, with Zij1 = Zi. Indeed, as we have shown

above that Zij1
β = Zi

β ∋ zij
β , it follows for the same reason given above that

Zijk
β ∋ zij

β for all k. Thus, the zero points Zijk on the zero lines zij are well-

behaved. Then it follows that the zero lines zijkl on the zero points Zijk are

well-behaved. This process can therefore be repeated to generate zero points

and zero lines satisfying condition (ii).

It remains to show that any zero point (and dually any zero line) is generated

in the above process. Let Z ′ be a zero point. If Z ′.Zi is a zero line for some i,

then we are done. So we may assume that Z ′.Zi are double lines for all i. Now

Z ′.Z1 contains u − 2 zero points other than Z ′ and Z1. Since v − 1 > u − 2 =

(q − 1)/2 − 2, Z ′.Z1 intersects z2j at a double point for some j 6= 1. Consider

the intersections between Z ′.Zi and z2j for i = 2, . . . , v. As these intersections

use up at most v − 1 zero points on z2j , there is a zero point Z ′′ on z2j outside

of these intersections. The line Z ′.Z ′′ is a zero line z′′ as all v double lines on Z ′

have been accounted for by the Z ′.Zi’s. Thus Z ′ is a zero point on a zero line

z′′ through a zero point Z ′′ on a zero line z2j through the zero point Z2 on the

zero line z, as we wished.

(ii)⇒ (i). This is clear. �

With Lemma 3.10 we can now conclude that if there is a pair of zero point

and zero line well-behaved under β, then β is a correlation. We summarize the

results obtained in this section in the following theorem:

Theorem 3.11. Let π(Dq) be a projective plane of odd order q defined by an

abelian difference setDq = {0, d1, d2, . . . , dq}. Let β be defined by (2), (3) and (4).

Suppose Condition D holds, and there exists a pair of zero point and zero line well-

behaved with respect to β. Then β is a polarity whose set of absolute points contains

the oval 2Dq.
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4 Multipliers, conics, and Desarguesian planes

In this section we show that an abelian projective plane satisfying the hypothe-

ses of Theorem 3.11 is Desarguesian. We shall deduce this from the result of Ott

[21] with its generalization by Ho [13], and the classic characterization of the

multiplier group by Bruck [4], using the polarity β provided by Theorem 3.11.

Furthermore, we shall use the fact that in a Desarguesian plane of odd order q,

a classical unital can never contain a conic. It follows that the set of absolute

points of the polarity β, which contains the oval 2Dq (hence a conic by Segre’s

Theorem, [25]), is equal to 2Dq.

Let π(Dq) be an abelian projective plane of odd order q, with abelian Singer

group G and abelian difference set Dq = {0, d1, d2, . . . , dq} of G. Suppose the

conditions of Theorem 3.11 are satisfied, so that we have a polarity β satisfying

(2), (3), and (4). Let α be the Hall polarity given by (1), and consider the

collineation αβ.

Lemma 4.1. The collineation αβ is not in the normalizer N(G) of G in the full

automorphism group Aut(π(Dq)).

Proof. Suppose αβ ∈ N(G). Let di ∈ Dq\{0}. Then αβdi(αβ)
−1 = hi for some

hi ∈ G. Since α and β are polarities, we have αβdi
2βα = hi

2. Evaluating

at 0 we obtain from the definitions that −di = α(Dq + di) = αβ(2di) = 2hi.

So hi = −di/2. Returning to the original equation and evaluating at 0 we

obtain αβdiβα(0) = αβ(di) = −di/2. By the definition of α this gives β(di) =

Dq + di/2. Since β(di) = β(0 + di) is by definition the line 0.2di, there exist

dj , dk ∈ Dq such that 0 = dj + di/2 and 2di = dk + di/2. So −di/2, 3di/2 ∈ Dq.

But then 0−(−di/2) = 3di/2−di, giving two expressions for di/2 as differences

of elements of Dq and contradicting the definition of a difference set. �

In view of Theorem 4.3 given below, Lemma 4.1 implies that π(Dq) is De-

sarguesian. Before stating the result formally, we wish to describe an alternate

approach in which more emphasis is put on the role played by the multipliers.

We shall need the following results.

Theorem 4.2 ([4]). Let π(Dq) be an abelian projective plane with an abelian

Singer group G. Denote by M the group of all multipliers of Dq. Then MG =

N(G), where N(G) is the normalizer of G in the full automorphism group of

π(Dq). Moreover, N(G)/G is isomorphic to M .

Theorem 4.3 ([13], [3, Theorem VI 7.4]). Let π(Dq) be an abelian projective

plane with an abelian Singer group G. Then either π(Dq) is Desarguesian or G is

a normal subgroup of the full automorphism group of π(Dq).
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Note that Theorem 4.3 is a consequence of Theorem 4.2 and the result of Ho

[13], which states that an abelian projective plane is Desarguesian if it admits

another abelian Singer group. Indeed, since N(G) = MG by Theorem 4.2, if

π(Dq) is Desarguesian then it has elations and these are clearly not in N(G) and

so G is not normal in Aut(π(Dq)). On the other hand, if γ ∈ Aut(π(Dq))\G,

then γGγ−1 6= G and by the result of Ho [13], π(Dq) is Desarguesian.

We saw in Section 2 that −Dq is always an arc, and if q is odd then 2Dq is an

oval. Thus −1 is never a multiplier, nor is 2 for q odd. On the other hand, by

the Multiplier Theorem [10, 22], 2 is a multiplier for q even. We next study −2.

Lemma 4.4. −2 is not a multiplier for any abelian difference set Dq of arbitrary

order q.

Proof. First suppose q is even. Since 2 is a multiplier, −2Dq = −Dq + g for

some g ∈ G, which is an arc, and so −2 is not a multiplier. Next suppose q is

odd. Take di ∈ Dq such that di 6= 0. If −2 were a multiplier, we may assume

that Dq is invariant under −2 ([20]). Then −2Dq = Dq, so that −2di = dj
and −2dk = di for some dj , dk ∈ Dq. Then di + dj = 2dk. Now dj 6= di since

di 6= 0, and so di + dj is a double point. However, 2dk is a single point, giving a

contradiction. �

We are now ready to put the significance of the existence of the polarity β of

Section 3 in the following light.

Lemma 4.5. Let q be odd. An abelian projective plane π(Dq) with an abelian

group G is Desarguesian if and only if it admits a polarity satisfying (2).

Proof. If π(Dq) is Desarguesian, then since 2Dq is an oval and q is odd, 2Dq is

a conic by Segre’s Theorem [25]. Hence, 2Dq is the set of absolute points of an

orthogonal polarity. Conversely, we assume the contrary and obtain a contra-

diction. Suppose π(Dq) is not Desarguesian, and let β be a polarity satisfying

the hypothesis. Consider the collineation αβ, where α is the Hall polarity given

by (1). By Theorem 4.3, Aut(π(Dq)) ⊂ N(G) and so αβ ∈ N(G), where N(G)

is the normalizer of G in the automorphism group Aut(π(Dq)) of π(Dq). Then

Theorem 4.2 implies αβ ∈ MG and so for x ∈ π(Dq), αβ(x) = a(x) + g, for

some multiplier a ∈ M and g ∈ G. Since αβ(2di) = α(Dq + di) = −di for all

i, it follows that a(2di − 2dj) = a(2di)− a(2dj) = αβ(2di)− αβ(2dj) = dj − di
for all distinct pairs i, j. This covers every element of G and so a = − 1

2
, which

is not a multiplier by Lemma 4.4. We have a contradiction and this proves the

lemma. �
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For our purpose, Lemma 4.5 is an alternative to Lemma 4.1. In other words,

with either Lemma, we can add that π(Dq) is Desarguesian to the conclusion in

Theorem 3.11.

We have yet to prove that the set of absolute points of β is exactly 2Dq.

However, now that the plane in question is Desarguesian, if the set of absolute

points of β is larger than 2Dq, then β is a unitary polarity, its set of absolute

points is the set of points of a classical unital U , and the order q of the plane

is a square. We now have an oval 2Dq, which is a conic, contained in U , in a

Desarguesian plane. This is impossible, by the following classical result.

Lemma 4.6. In the Desarguesian plane PG(2, q2), where q is odd, a conic is not

a subset of a classical unital.

Proof. See, for example, [1, Corollary 4.20, p.79]. �

We have now proven the following result.

Theorem 4.7. Let π(Dq) be an abelian projective plane of odd order q defined by

an abelian difference set Dq = {0, d1, d2, . . . , dq}. Let β be defined by (2), (3)

and (4). Suppose Condition D holds, and there exists a pair of zero point and zero

line well-behaved with respect to β. Then 2Dq is a polar oval with respect to β, and

π(Dq) is Desarguesian.

Remark 4.8. The sufficient conditions in Theorem 4.7 are all satisfied by a

Desarguesian plane and are therefore necessary conditions.

Remark 4.9. Unlike the odd order case, where the single points with respect to

an oval of lines themselves form an oval, in the case of a plane of even order n,

the single points with respect to an arc of n + 1 lines are collinear. Hence, the

study of the analogous problem for the even order case requires the discovery

of a different approach. In this connection, in addition to ovals, it is of interest,

for planes of square order of both parities, to study the existence and types of

unitals embedded in a CPP/APP.
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