Maximal Levi subgroups acting on the Euclidean building of $\mathrm{GL}_{n}(F)$

Jonathan Needleman

Abstract

In this paper we give a complete invariant of the action of $\mathrm{GL}_{n}(F) \times$ $\mathrm{GL}_{m}(F)$ on the Euclidean building $\mathcal{B}_{e} \mathrm{GL}_{n+m}(F)$, where F is a discrete valuation field. We then use this invariant to give a natural metric on the resulting quotient space. In the special case of the torus acting on the tree $\mathcal{B}_{e} \mathrm{GL}_{2}(F)$, we obtain an algorithm for calculating the distance of any vertex in the tree to any fixed apartment.

Keywords: affine building, Euclidean building, Levi subgroup, group action
MSC 2000: 20E42, 20G25

1 Introduction

To understand distance in the 1 -skeleton of a building $\mathcal{B} G$ associated to a reductive algebraic group G, one may look at a stabilizer K of a point, and then study the action of K on $\mathcal{B} G$. When working over a discrete valuation field vertices correspond to maximal compact subgroups. This analysis gives rise to information about $K \backslash G / K$, and therefore the Hecke algebra [4, 5].

In this paper we specialize to $G=\mathrm{GL}_{n}(F)$ and are interested in the double cosets $L \backslash G / K$, where $L \cong \mathrm{GL}_{n_{1}}(F) \times \mathrm{GL}_{n_{2}}(F)$ is a maximal Levi subgroup of G. The study of the action of L on the building $\mathcal{B}_{e} \mathrm{GL}_{n}(F)$ will lead to a description of distance from any vertex to a certain subbuilding stabilized by L. In the case when $n=2$ and $L=T$ is a maximal split torus, our description gives a way of calculating the distance from a given point to a fixed apartment.

We also give a combinatorial description of the quotient space $L \backslash \mathcal{B}_{e} \mathrm{GL}_{n}(F)$ as follows. Let $A^{n}=\left\{\left(\alpha_{i}\right)_{i=1}^{n} \mid \alpha_{i} \in \mathbb{N}, \alpha_{i} \geq \alpha_{i+1}\right\}$. If $n_{1} \leq n_{2}$ there is an graph isometry between $L \backslash \mathcal{B}_{e} \mathrm{GL}_{n}(F)$ and $A^{n_{1}}$ where A^{n} is endowed with the
following metric: $d(\alpha, \beta)=\max _{i=1}^{n}\left|\alpha_{i}-\beta_{i}\right|$ where $\alpha, \beta \in A^{n}$. This result shows that the 1 -skeleton of the resulting quotient space only depends on $\min \left(n_{1}, n_{2}\right)$.

This paper is broken up into two main sections. The first gives a description of the building in terms of \mathcal{O}-lattices and describes an invariant of the action of L on this building. The second section gives a geometric interpretation of this invariant, yielding a combinatorial description of the quotient space $L \backslash \mathcal{B}_{e} \mathrm{GL}_{n}(F)$.

2 Orbits of maximal Levi factors on $\mathcal{B}_{e} \mathrm{GL}(V)$

2.1 \mathcal{O}-lattices and $\mathcal{B}_{e} \mathrm{GL}(V)$

Throughout this paper let F be a discrete valuation field with valuation v. We will denote the ring of integers in F by \mathcal{O}, and fix once and for all a uniformizer ϖ of \mathcal{O}. Let the unique maximal prime ideal be denoted as $\mathcal{P}=(\varpi)$, and the residue field $\mathcal{O} / \mathcal{P}$ will be denoted by \mathfrak{k}. Let $\mathcal{P}^{k}=\left(\varpi^{k}\right)$ for $k \in \mathbb{Z}$. Then $\log _{\mathcal{P}}\left(\mathcal{P}^{k}\right)=k$. Let V be a finite dimensional vector space defined over F of dimension n. We will describe the Euclidean building $\mathcal{B}_{e} \mathrm{GL}(V)$ associated to $\mathrm{GL}(V)$. For more details see [1]. Let $\Lambda \subset V$ be a finitely generated free \mathcal{O}-module of rank n. Denote by $[\Lambda]$ the homothety class of Λ, that is $[\Lambda]=\left\{a \Lambda \mid a \in F^{\times}\right\}$.

Homothety classes of lattices will form the vertices of $\mathcal{B}_{e} \mathrm{GL}(V)$. Two vertices $\lambda_{1}, \lambda_{2} \in \mathcal{B}_{e} \mathrm{GL}(V)$ are incident if there are representatives $\Lambda_{i} \in \lambda_{i}$ so that $\varpi \Lambda_{1} \subset \Lambda_{2} \subset \Lambda_{1}$, i.e. $\Lambda_{2} / \varpi \Lambda_{1}$ is a \mathfrak{k}-subspace of $\Lambda_{1} / \varpi \Lambda_{1}$. The chambers in $\mathcal{B}_{e} \mathrm{GL}(V)$ are collections of maximally incident vertices. To put this more concretely, a chamber is a collection of n vertices $\lambda_{0} \cdots \lambda_{n-1}$ with representatives $\Lambda_{0} \cdots \Lambda_{n-1}$ satisfying $\varpi \Lambda_{0} \subsetneq \Lambda_{1} \subsetneq \cdots \subsetneq \Lambda_{n-1} \subsetneq \Lambda_{0}$. A wall of a chamber is any subset of $n-1$ vertices in the given chamber. We will denote by $\mathcal{B}_{e} \mathrm{GL}(V)^{k}$ the set of all facets of $\mathcal{B}_{e} \mathrm{GL}(V)$ of dimension k.

A frame \mathcal{F} in V is a collection of lines $l_{1}, \ldots, l_{n} \subset V$ which are linearly independent and span all of V. We now describe certain subcomplexes of $\mathcal{B}_{e} \mathrm{GL}(V)$. Define $\mathcal{A}_{\mathcal{F}}$ to be the subcomplex consisting of vertices $[\Lambda]$ of the following form:

$$
\begin{equation*}
\Lambda=\bigoplus_{i=1}^{n} \mathcal{O} e_{i} \tag{1}
\end{equation*}
$$

where $e_{i} \in l_{i} \in \mathcal{F}$. Then $\mathcal{A}_{\mathcal{F}}$ is an apartment of $\mathcal{B}_{e} \mathrm{GL}(V)$, and every apartment is uniquely determined by a frame in this way.

The group $\mathrm{GL}(V)$ has a natural action of $\mathcal{B}_{e} \mathrm{GL}(V)$, namely the one induced from the action of $\mathrm{GL}(V)$ on V. This action preserves distance in the building.

A lemma which we will need later is the following.
Lemma 2.1. Let $\Lambda, \Lambda^{\prime}$ be \mathcal{O}-lattices of rank n in V with $\Lambda^{\prime} \subset \Lambda$. Then the natural map from $\mathrm{GL}(\Lambda) \cap \operatorname{stab}\left(\Lambda^{\prime}\right)$ to $\mathrm{GL}\left(\Lambda / \Lambda^{\prime}\right)$ is surjective.

Proof. This result appears to be well known, but the proof could not be found in the literature and so is given here. There is an \mathcal{O}-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of Λ so that $\left\{\varpi^{k_{1}} e_{1}, \ldots, \varpi^{k_{n}} e_{n}\right\}$ with $k_{i} \in \mathbb{N}$ is an \mathcal{O}-basis of Λ^{\prime}. This is equivalent to the statement that for any two vertices there is an apartment which contains them both. For $\bar{\sigma} \in \operatorname{GL}\left(\Lambda / \Lambda^{\prime}\right)$ we will construct $\sigma \in \mathrm{GL}(\Lambda) \cap \operatorname{stab}\left(\Lambda^{\prime}\right)$ which descends to $\bar{\sigma}$.

Let \bar{e}_{i} be the image of e_{i} in $\Lambda / \Lambda^{\prime}$. Then

$$
\begin{equation*}
\bar{\sigma}\left(\bar{e}_{i}\right)=a_{1}^{i} \overline{e_{1}}+\cdots+a_{n}^{i} \bar{e}_{n} \tag{2}
\end{equation*}
$$

where $a_{j}^{i} \in \mathcal{O}$. Observe that a_{j}^{i} is unique modulo $\mathcal{P}^{k_{j}}$. Then define σ on the \mathcal{O}-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of Λ as follows:

$$
\sigma\left(e_{i}\right)= \begin{cases}\sum_{j=1}^{n} a_{j}^{i} e_{j} & \text { if } \bar{e}_{i} \neq 0, \tag{3}\\ e_{i} & \text { if } \bar{e}_{i}=0 .\end{cases}
$$

What needs to be shown is that σ is invertible and leaves Λ^{\prime} invariant.
First, we show σ leaves Λ^{\prime} invariant.

$$
\begin{equation*}
0=\bar{\sigma}\left(\varpi^{k_{i}} \bar{e}_{i}\right)=a_{1}^{i} \varpi^{k_{i}} \overline{e_{1}}+\cdots+a_{n}^{i} \varpi^{k_{i}} \bar{e}_{n} \tag{4}
\end{equation*}
$$

This shows that $a_{j}^{i} \varpi^{k_{i}} \in \mathcal{P}^{k_{j}}$, and so $\sigma\left(\varpi^{k_{i}} e_{i}\right) \in \Lambda^{\prime}$.
Next we show invertibility. Let σ^{*} be the construction given above for $\bar{\sigma}^{-1}$, and let $\tau=\sigma \circ \sigma^{*}$. This will be a function which is a lift of the identity map in $\operatorname{GL}\left(\Lambda / \Lambda^{\prime}\right)$. Let $M=\operatorname{span}_{\mathcal{O}}\left\langle e_{i} \mid \bar{e}_{i} \neq 0\right\rangle$ and let $M^{\prime}=\operatorname{span}_{\mathcal{O}}\left\langle e_{i} \mid \bar{e}_{i}=0\right\rangle$. Then $\left.\tau\right|_{M}=\operatorname{id}+E$ where $E \in \operatorname{Hom}_{\mathcal{O}}\left(M, \Lambda^{\prime}\right)$ and is id on M^{\prime}. Any τ of this form is invertible and hence so is σ.

2.2 $\mathrm{GL}\left(\boldsymbol{W}_{1}\right) \times \mathrm{GL}\left(\boldsymbol{W}_{2}\right)$ acting on $\mathcal{B}_{e}\left(\mathrm{GL}\left(\boldsymbol{W}_{1} \oplus \boldsymbol{W}_{2}\right)\right)$

Let V be a vector space over F. Fix a maximal Levi subgroup L of GL(V). Associated to L are subspaces $W_{1}, W_{2} \subset V$ satisfying $V=W_{1} \oplus W_{2}$. Then $L \cong \mathrm{GL}\left(W_{1}\right) \times \mathrm{GL}\left(W_{2}\right)$. In this section we will describe the orbits of the action of $\mathrm{GL}\left(W_{1}\right) \times \mathrm{GL}\left(W_{2}\right)$ on $\mathcal{B}_{e} \mathrm{GL}(V)^{0}$ in terms of an invariant Q. Additionally we will give a representative of each orbit.

Let p_{i} be the projection of V onto W_{i} with respect to our given decomposition. We will use these maps to define invariants of the vertices and then show for our action that these invariants classify all orbits.

Let Λ be an \mathcal{O}-lattice. We make the following definitions for $i=1,2$:

$$
\begin{align*}
P_{i}(\Lambda) & =\operatorname{Im}\left(\left.p_{i}\right|_{\Lambda}\right), \tag{5}\\
K_{i}(\Lambda) & =\operatorname{Ker}\left(\left.p_{i^{\prime}}\right|_{\Lambda}\right)=\Lambda \cap W_{i}, \tag{6}
\end{align*}
$$

where $i^{\prime}=(i \bmod 2)+1$.
These are lattices in W_{i}.
Lemma 2.2. $K_{i}(\Lambda) \subset P_{i}(\Lambda)$.
Proof. If $v \in K_{i}(\Lambda)=\Lambda \cap W_{i}$, then $v \in \Lambda$, so $p_{i}(v) \in P_{i}(\Lambda)$. But $p_{i}(v)=v$ since $v \in W_{i}$.

By Lemma 2.2 we can define $Q_{i}(\Lambda)=P_{i}(\Lambda) / K_{i}(\Lambda)$. This is a finitely generated torsion \mathcal{O}-module.

Proposition 2.3. $Q_{1}(\Lambda) \cong Q_{2}(\Lambda)$ as \mathcal{O}-modules. This isomorphism class will be denoted by $Q(\Lambda)$.

Proof. We make slight modifications to the proof found in [2]. Let $p_{i}^{\prime}: \Lambda \rightarrow$ $Q_{i}(\Lambda)$ be the composition of p_{i} with the natural projection map $\pi_{i}: P_{i}(\Lambda) \rightarrow$ $Q_{i}(\Lambda)$. We define a map so that for all $v \in \Lambda$

$$
\begin{align*}
\Theta: Q_{1}(\Lambda) & \rightarrow Q_{2}(\Lambda) \\
p_{1}^{\prime}(v) & \mapsto p_{2}^{\prime}(v) . \tag{7}
\end{align*}
$$

We will show that Θ is well defined, and is an isomorphism.
Let $w_{1}+w_{2}, w_{1}^{\prime}+w_{2}^{\prime} \in \Lambda$ with $w_{i}, w_{i}^{\prime} \in W_{i}$ and $\pi_{1}\left(w_{1}\right)=\pi_{1}\left(w_{1}^{\prime}\right)$. Then $\pi_{1}\left(w_{1}-w_{1}^{\prime}\right)=0$, and therefore $w_{1}-w_{1}^{\prime} \in K_{1}(\Lambda)$. Similarly $w_{2}-w_{2}^{\prime} \in K_{2}(\Lambda)$ and $\pi_{2}\left(w_{2}\right)=\pi_{2}\left(w_{2}^{\prime}\right)$ showing Θ is well defined. It is an isomorphism, because the map θ, defined by reversing the roles of 1 and 2 , is an inverse map.

We now show that Q is a complete invariant of the action of L on $\mathcal{B}_{e} \mathrm{GL}(V)^{0}$.
Theorem 2.4. Let $\Lambda, \Lambda^{\prime}$ be \mathcal{O}-lattices. Then Λ and Λ^{\prime} are in the same $\operatorname{GL}\left(W_{1}\right) \times$ $\mathrm{GL}\left(W_{2}\right)$ orbit if and only if $Q(\Lambda)=Q\left(\Lambda^{\prime}\right)$.

Proof. The class $Q(\Lambda)$ is a $\mathrm{GL}\left(W_{1}\right) \times \mathrm{GL}\left(W_{2}\right)$-invariant since each factor of $\mathrm{GL}\left(W_{i}\right)$ commutes with the projection map p_{i}. We must show that if $Q(\Lambda)=$ $Q\left(\Lambda^{\prime}\right)$ then there is a $g \in \operatorname{GL}\left(W_{1}\right) \times \operatorname{GL}\left(W_{2}\right)$ so that $\Lambda=g \Lambda^{\prime}$.

We will need $g_{1} \in \mathrm{GL}\left(W_{1}\right)$ and $g_{2} \in \mathrm{GL}\left(W_{2}\right)$ so that $g_{i} P_{i}\left(\Lambda^{\prime}\right)=P_{i}(\Lambda)$ and $g_{i} K_{i}\left(\Lambda^{\prime}\right)=K_{i}(\Lambda)$ for $i=1,2$. There are certainly $g_{i} \in \mathrm{GL}\left(W_{i}\right)$ so that
$g_{i} P_{i}\left(\Lambda^{\prime}\right)=P_{i}(\Lambda)$. Then we may assume $K_{i}(\Lambda), K_{i}\left(\Lambda^{\prime}\right) \subset P_{i}(\Lambda)$. Since $Q(\Lambda)=$ $Q\left(\Lambda^{\prime}\right)$ we know by the elementary divisor theorem there are bases

$$
B_{i}=\left\{e_{1}, \ldots, e_{n_{i}}\right\} \text { and } B_{i}^{\prime}=\left\{e_{1}^{\prime}, \ldots, e_{n_{i}}^{\prime}\right\}
$$

of $P_{i}(\Lambda)$ so that $K_{i}(\Lambda)$ written in terms of B_{i} has the same elementary divisors as $K_{i}\left(\Lambda^{\prime}\right)$ written in terms of B_{i}^{\prime}. Let $h_{i} \in \mathrm{GL}\left(P_{i}(\Lambda)\right)$ be the linear transformation which takes the basis B_{i} to B_{i}^{\prime}. Then $h_{i} g_{i} \in \mathrm{GL}\left(W_{i}\right)$ has the desired properties.

So we may replace Λ^{\prime} with $\Lambda^{\prime \prime}=\left(h_{1} g_{1}, h_{2} g_{2}\right) \Lambda^{\prime}$. Let Θ be the map from Proposition 2.3 associated to Λ, and $\Theta^{\prime \prime}$ associated to $\Lambda^{\prime \prime}$.

We claim $\Lambda=\Lambda^{\prime \prime}$ if and only if $\Theta=\Theta^{\prime \prime}$. To prove this we show that one can reconstruct Λ from Θ (which implicitly encodes $Q_{i}(\Lambda)$ as the domain and range of the map), by taking

$$
\begin{equation*}
\Lambda_{\Theta}=\left\{w_{1}+w_{2} \mid w_{i} \in P_{i}(\Lambda) \text { and } \Theta\left(\pi_{1}\left(w_{1}\right)\right)=\pi_{2}\left(w_{2}\right)\right\} \tag{8}
\end{equation*}
$$

First, we show $\Lambda \subset \Lambda_{\Theta}$. Let $w=w_{1}+w_{2} \in \Lambda$, then by definition of Θ we have $\Theta\left(\pi_{1}\left(w_{1}\right)\right)=\pi_{2}\left(w_{2}\right)$. And so $v \in \Lambda_{\Theta}$. We now show $\Lambda_{\Theta} \subset \Lambda$. Let $w_{1}+w_{2} \in \Lambda_{\Theta}$. Then $w_{1} \in P_{1}(\Lambda)$ so there is a $w_{2}^{\prime} \in P_{2}(\Lambda)$ so that $w_{1}+w_{2}^{\prime} \in \Lambda \subset \Lambda_{\Theta}$. Then $0+\left(w_{2}-w_{2}^{\prime}\right) \in \Lambda_{\Theta}$. So $\pi_{2}\left(w_{2}-w_{2}^{\prime}\right)=0$ which implies $w_{2}-w_{2}^{\prime} \in K_{2}(\Lambda) \subset \Lambda$. Hence $w_{1}+w_{2}=\left(w_{1}+w_{2}^{\prime}\right)+\left(w_{2}-w_{2}^{\prime}\right) \in \Lambda$ as desired.

To complete the theorem, we will show there is an element $g \in \operatorname{stab}\left(P_{2}(\Lambda)\right) \cap$ $\operatorname{stab}\left(K_{2}(\Lambda)\right)$ which takes $\Theta^{\prime \prime}$ to Θ. There is an $\bar{h} \in \operatorname{GL}\left(P_{2}(\Lambda) / K_{2}(\Lambda)\right)$ so that $(1, \bar{h}) \Theta^{\prime \prime}=\Theta$. By Lemma 2.1 there is a pullback h of \bar{h} to $h \in \operatorname{stab}\left(P_{2}(\Lambda)\right) \cap$ $\operatorname{stab}\left(K_{2}(\Lambda)\right) \in \operatorname{GL}\left(W_{2}\right)$ then $(1, h) \Lambda^{\prime \prime}=\Lambda$.

Now let $[\Lambda] \in \mathcal{B}_{e} \operatorname{GL}(V)^{0}$, and $c \in F^{\times}$. Since $Q(\Lambda)=Q(c \Lambda)$ we will abuse notation and write $Q([\Lambda])=Q(\Lambda)$.

Corollary 2.5. $Q([\Lambda])$ is a complete invariant of the action of $\mathrm{GL}\left(W_{1}\right) \times \mathrm{GL}\left(W_{2}\right)$ on the space of vertices in $\mathcal{B}_{e}(V)^{0}$.

2.3 Orbit representatives

We now give a set representatives of each orbit. We first do this in the case when V is 2-dimensional, and then use this case to determine representatives for higher dimensions.

2.3.1 $\operatorname{dim}(V)=2$

Let V be a two-dimensional vector space over F, with decomposition $V=W_{1} \oplus$ W_{2}. Assume that W_{i} is spanned by the vector e_{i}. We then define the following
class of lattices:

$$
\begin{equation*}
\Lambda^{k}=\operatorname{span}_{\mathcal{O}}\left\langle\varpi^{k} e_{1}, e_{1}+e_{2}\right\rangle . \tag{9}
\end{equation*}
$$

Proposition 2.6. $Q\left(\left[\Lambda^{k}\right]\right) \cong \mathcal{O} / \mathcal{P}^{k}$.
Proof. We have $P_{1}\left(\Lambda^{k}\right)=\left\langle e_{1}\right\rangle$ and $K_{1}\left(\Lambda^{k}\right)=\left\langle\pi^{k} e_{1}\right\rangle$. Therefore $Q(\Lambda) \cong \mathcal{O} / \mathcal{P}^{k}$.

Corollary 2.7. $\left\{\left[\Lambda^{k}\right]\right\}_{k=0}^{\infty}$ is a complete set of representatives for the action of $\mathrm{GL}\left(W_{1}\right) \times \mathrm{GL}\left(W_{2}\right)$ on $\mathcal{B}_{e} \mathrm{GL}(V)^{0}$.

Proof. Let $[\Lambda] \in \mathcal{B}_{e} \mathrm{GL}(V)^{0}$. Then $Q([\Lambda]) \cong \mathcal{O} / \mathcal{P}^{k}$ for some $k \in \mathbb{N}$. By Theorem 2.4, $[\Lambda]$ is in the orbit of Λ^{k}.

2.3.2 General V

We now describe representatives when V is n-dimensional. We may assume that $\operatorname{dim} W_{i}=n_{i}$ and $n_{1} \leq n_{2}$. Choose a basis $\left\{e_{1}, \ldots, e_{n_{1}}\right\}$ of W_{1} and $\left\{f_{1}, \ldots, f_{n_{2}}\right\}$ of W_{2}, and let $Y_{i}=\operatorname{span}_{F}\left(e_{i}, f_{i}\right)$, for $1 \leq i \leq n_{1}$. Let $\alpha=\left(\alpha_{i}\right) \in \mathbb{N}^{n_{1}}$. Let $\left[\Lambda^{\alpha_{i}}\right] \in \mathcal{B}_{e} \mathrm{GL}\left(Y_{i}\right)$ defined as in equation (9) with respect to the basis $\left\{e_{i}, f_{i}\right\}$. This allows us to define the following class of lattices:

$$
\begin{equation*}
\Lambda^{\alpha}=\bigoplus_{i=1}^{n_{1}} \Lambda^{\alpha_{i}} \bigoplus_{i=n_{1}+1}^{n_{2}} \mathcal{O} f_{i} \tag{10}
\end{equation*}
$$

Proposition 2.8. Let $A^{n}=\left\{\alpha=\left(\alpha_{i}\right) \in \mathbb{N}^{n} \mid \alpha_{i} \geq \alpha_{i+1}\right\}$. Then $\left[\Lambda^{\alpha}\right]_{\alpha \in A^{n_{1}}}$ is a complete set of representatives of the orbits of $\mathrm{GL}\left(W_{1}\right) \times \mathrm{GL}\left(W_{2}\right)$ acting on $\mathcal{B}_{e} \mathrm{GL}(V)^{0}$.

Proof. By the elementary divisor theorem $Q_{1}(\Lambda)$ decomposes into a direct sum of \mathcal{O}-modules as follows: $Q_{1}([\Lambda]) \cong \mathcal{O}^{r} \bigoplus_{i=1}^{n_{1}} \mathcal{O} / \mathcal{P}^{\alpha_{i}}$ where $\alpha_{i} \in \mathbb{N}$ and $r \in \mathbb{N}$. However, $r=0$ since both $P_{1}(\Lambda)$ and $K_{1}(\Lambda)$ are rank n_{1}. We may assume $\alpha_{i} \geq \alpha_{i+1}$. Then by Theorem 2.4, [Λ] is in the same orbit as $\left[\Lambda^{\alpha}\right]$.

2.3.3 Double cosets

The description of orbits is equivalent to the space of double cosets $L \backslash \mathrm{GL}(V) / K$, where K is the stabilizer of a vertex in $\mathcal{B}_{e}(\mathrm{GL}(V))$. We now give an explicit description of a set of double coset representatives.

The Levi subgroup L is associated to a parabolic subgroup P with a decomposition $P=L N$, where N is the unipotent radical of P. The Iwasawa decomposition shows that $\mathrm{GL}(V)=P K$, and so we may choose the double coset representatives of $L \backslash \mathrm{GL}(V) / K$ to be in N.

We use the basis for V of the previous section to identify $\mathrm{GL}(V)$ with $\mathrm{GL}_{n}(F)$. We will also let $K=Z\left(\operatorname{GL}_{n}(F)\right) \mathrm{GL}_{n}(\mathcal{O})$. Then $N \cong M_{n_{1} \times n_{2}}(F)$, the $n_{1} \times n_{2}$ matrices embedded in $\mathrm{GL}_{n}(F)$ as follows:

$$
\begin{aligned}
u: M_{n_{1} \times n_{2}}(F) & \rightarrow N \\
B & \mapsto\left(\begin{array}{cc}
I_{n_{1}} & B \\
0 & I_{n_{2}}
\end{array}\right) .
\end{aligned}
$$

Let $\alpha \in A^{n_{1}}$ and define $m^{\alpha} \in M_{n_{1} \times n_{2}}$ as follows:

$$
\left[m^{\alpha}\right]_{i j}= \begin{cases}\varpi^{-\alpha_{i}} & \text { if } i=j \in\left\{1, \ldots, n_{1}\right\} \tag{11}\\ 0 & \text { else }\end{cases}
$$

Now let $n^{\alpha}=u\left(m^{\alpha}\right)$. Then we have the following proposition.
Proposition 2.9. We may write $\mathrm{GL}_{n}(F)$ as a disjoint union

$$
\mathrm{GL}_{n}(F)=\coprod_{\alpha \in A^{n_{1}}} L n^{\alpha} K
$$

Proof. Let $\alpha \in A^{n_{1}}$, and define l^{α} to be the linear transformation that sends e_{i} to e_{i} and f_{i} to $\varpi^{-\alpha_{i}} f_{i}$ for $1 \leq i \leq n_{1}$, and f_{j} to f_{j} for $n_{1}+1 \leq j \leq n_{2}$. Note that $l^{\alpha} \in L$.

Let $\Lambda=\operatorname{span}_{\mathcal{O}}\left(e_{1} \ldots, e_{n_{1}}, f_{1}, \ldots, f_{n_{2}}\right)$, and notice that K stabilizes [Λ]. Furthermore, we have $l^{\alpha} n^{\alpha}(\Lambda)=\Lambda^{\alpha}$.

This double coset decomposition is in no way canonical, although it has some nice properties. All the n^{α} are supported on the span of root groups $U^{i, i+n_{1}}$ for $1 \leq i \leq n_{1}$, with the roots taken with respect to the diagonal torus. In fact, these root group form a set of maximally mutually orthogonal root groups in N. Any such set of root groups can be a support of coset representatives. This can easily be seen by having $W_{n_{i}}$ the Weyl groups of $\mathrm{GL}_{n_{i}}$ act on the n^{α}. This leads to the following conjecture for more general groups.

Conjecture 2.10. Let G be a reductive group over F and P a parabolic subgroup with $P=L N$, and assume N is abelian. Let K be a maximal open, bounded subgroup of G. Then there is a discrete subset $N^{\prime} \subset N$ and a maximally mutually orthogonal set of root groups $U^{\alpha}<N$ so that:

1. each $n \in N^{\prime}$ is supported in the group generated by the U^{α};
2. $G=\coprod_{n \in N^{\prime}} \operatorname{Ln} Z(G) K$.

2.3.4 Stabilizers

We now wish to compute stabilizers for each orbit so that we may realize the orbits as homogeneous spaces. For spherical buildings knowing the stabilizers plays a role in representation theory, for instance [3]. For Euclidean buildings this may have applications to understanding cuspidal representations.

Fix a Λ and let $S_{i}=\operatorname{stab}\left(P_{i}(\Lambda)\right) \cap \operatorname{stab}\left(K_{i}(\Lambda)\right)$. Furthermore, let

$$
\begin{equation*}
T_{i}=\left\{I+A \mid A \in \operatorname{End}\left(W_{i}\right) \text { and } A\left(P_{i}(\Lambda)\right) \subset K_{i}(\Lambda)\right\} \cap S_{i} . \tag{12}
\end{equation*}
$$

Then $T_{i} \triangleleft S_{i}$ and $S_{i} / T_{i} \cong \operatorname{GL}\left(Q_{i}(\Lambda)\right)$ by Lemma 2.1. Let

$$
\begin{equation*}
\overline{S_{\Lambda}}=\left\{\left(h_{1}, \Theta_{\Lambda}^{*}\left(h_{1}\right)\right) \mid h_{1} \in \operatorname{GL}\left(Q_{1}(\Lambda)\right)\right\} \subset\left(\operatorname{GL}\left(Q_{1}(\Lambda)\right) \times \operatorname{GL}\left(Q_{2}(\Lambda)\right)\right. \tag{13}
\end{equation*}
$$

where Θ_{Λ}^{*} is the isomorphism induced on $\operatorname{GL}\left(Q_{1}(\Lambda)\right)$ from the isomorphism $\Theta_{\Lambda}: Q_{1}(\Lambda) \rightarrow Q_{2}(\Lambda)$ defined in equation (7). Finally, let S_{Λ} be the pullback of $\overline{S_{\Lambda}}$ in $S_{1} \times S_{2}$.

Proposition 2.11. $S_{\Lambda}=\operatorname{stab}_{L}(\Lambda)$.
Proof. Let $\left(A_{1}, A_{2}\right) \in S_{\Lambda}$ with $A_{i} \in \mathrm{GL}\left(W_{i}\right)$, and let $\Lambda^{\prime}=\left(A_{1}, A_{2}\right) \cdot \Lambda$. Then because $A_{i} \in S_{i}$ we have $P_{i}(\Lambda)=P_{i}\left(\Lambda^{\prime}\right)$ and $K_{i}(\Lambda)=K_{i}\left(\Lambda^{\prime}\right)$. We now wish to show $\Theta_{\Lambda}=\Theta_{\Lambda^{\prime}}$. By the proof of Theorem 2.4 this will show that $\Lambda=\Lambda^{\prime}$. Let B_{i} be the image of A_{i} in $S_{i} / T_{i} \cong \operatorname{GL}\left(Q_{i}(\Lambda)\right)$, and let $v \in Q_{1}(\Lambda)$ and $v^{\prime}=B_{1}^{-1} v$. Then

$$
\begin{align*}
\Theta_{\Lambda^{\prime}}(v) & =\Theta_{\Lambda^{\prime}}\left(B_{1} B_{1}^{-1} v\right) \tag{14}\\
& =B_{2} \Theta_{\Lambda}\left(B_{1}^{-1} v\right) \tag{15}\\
& =\Theta_{\Lambda}^{*}\left(B_{1}\right) \Theta_{\Lambda}\left(B_{1}^{-1} v\right) \tag{16}\\
& =\Theta_{\Lambda}\left(B_{1} \Theta_{\Lambda}^{-1}\left(\Theta_{\Lambda}\left(B_{1}^{-1} v\right)\right)\right) \tag{17}\\
& =\Theta_{\Lambda}(v) \tag{18}
\end{align*}
$$

Line (15) follows from the action of $\left(A_{1}, A_{2}\right)$ on Λ, line (16) comes from the fact that $B_{2}=\Theta_{\Lambda}^{*}\left(B_{1}\right)$, and line (17) is the definition of the induced map Θ_{Λ}^{*}.

This proves $S_{\Lambda} \subset \operatorname{stab}_{L}(\Lambda)$. We now prove the other direction. Assume $\left(A_{1}, A_{2}\right) \in \operatorname{stab}_{L}(\Lambda)$, then $A_{i} \in S_{i}$. The calculation above shows that the projection of A_{2} in $\operatorname{GL}\left(Q_{2}(\Lambda)\right)$ has to equal the image of A_{1} in $\operatorname{GL}\left(Q_{2}(\Lambda)\right)$ under Θ_{Λ}^{*}, proving the result.

We end this section by giving an explicit description of $S_{\Lambda^{\alpha}}$, the stabilizers of our orbit representatives. Let $\alpha \in A^{n_{1}}$, then we define Λ^{α} as in section 2.3. By
this definition $P_{1}\left(\Lambda^{\alpha}\right)=\operatorname{span}_{\mathcal{O}}\left\langle e_{1}, \ldots, e_{n_{1}}\right\rangle$ and $P_{2}\left(\Lambda^{\alpha}\right)=\operatorname{span}_{\mathcal{O}}\left\langle f_{1}, \ldots, f_{n_{2}}\right\rangle$. Also,

$$
\begin{aligned}
K_{1}\left(\Lambda^{\alpha}\right) & =\operatorname{span}_{\mathcal{O}}\left\langle\varpi^{\alpha_{1}} e_{1}, \ldots, \varpi^{\alpha_{n_{1}}} e_{n_{1}}\right\rangle, \text { and } \\
K_{2}\left(\Lambda^{\alpha}\right) & =\operatorname{span}_{\mathcal{O}}\left\langle\varpi^{\alpha_{1}} f_{1}, \ldots, \varpi^{\alpha_{n_{2}}} f_{n_{2}}\right\rangle,
\end{aligned}
$$

where $\alpha_{j}=0$ if $j>n_{1}$. Then S_{i} looks like

$$
S_{i}=\left(\begin{array}{ccccc}
\mathcal{P}^{\beta_{11}} & \mathcal{P}^{\beta_{12}} & \mathcal{P}^{\beta_{13}} & \ldots & \mathcal{P}^{\beta_{1 n_{i}}} \tag{19}\\
\mathcal{P}^{\beta_{21}} & \mathcal{P}^{\beta_{22}} & \mathcal{P}^{\beta_{23}} & \ldots & \mathcal{P}^{\beta_{2 n_{i}}} \\
\vdots & & \ddots & & \vdots \\
\mathcal{P}^{\beta_{n_{i} 1}} & \mathcal{P}^{\beta_{n_{i} 2}} & \mathcal{P}^{\beta_{n_{i} 3}} & \ldots & \mathcal{P}^{\beta_{n_{i} n_{i}}}
\end{array}\right) \cap \mathrm{GL}_{n_{i}}(\mathcal{O})
$$

where $\beta_{i j}=\max \left(0, \alpha_{i}-\alpha_{j}\right)$.
Also, T_{i} looks like

$$
T_{i}=\left(\begin{array}{ccccc}
\mathcal{U}^{\alpha_{1}} & \mathcal{P}^{\alpha_{1}} & \mathcal{P}^{\alpha_{1}} & \ldots & \mathcal{P}^{\alpha_{1}} \tag{20}\\
\mathcal{P}^{\alpha_{2}} & \mathcal{U}^{\alpha_{1}} & \mathcal{P}^{\alpha_{2}} & \ldots & \mathcal{P}^{\alpha_{2}} \\
\vdots & & \ddots & & \vdots \\
\mathcal{P}^{\alpha_{n_{i}}} & \mathcal{P}^{\alpha_{n_{i}}} & \mathcal{P}^{\alpha_{n_{i}}} & \cdots & \mathcal{U}^{\alpha_{n_{i}}}
\end{array}\right)
$$

where $\mathcal{U}^{k}=1+\mathcal{P}^{k}$ if $k \geq 1$ and $\mathcal{U}^{0}=\mathcal{O}^{\times}$.
The other component to Proposition 2.11 has to do with the map Θ_{Λ}. For Λ^{α} there is a life of this map $\overline{\Theta_{\Lambda^{\alpha}}}: P_{1}\left(\Lambda^{\alpha}\right) \rightarrow P_{2}\left(\Lambda^{\alpha}\right)$ which is independent of α, and is given by $\overline{\Theta_{\Lambda^{\alpha}}}\left(e_{i}\right)=f_{i}$ for $1 \leq i \leq n_{1}$. So by Theorem 2.11, $S_{\Lambda^{\alpha}}$ is the product of the group

$$
\left\{\left.\left(\begin{array}{ccc}
A & 0 & 0 \tag{21}\\
0 & A & 0 \\
0 & 0 & I_{n_{2}-n_{1}}
\end{array}\right) \right\rvert\, A \in S_{1}\right\}
$$

with the group $T_{1} \times T_{2}$ (embedded block diagonally into $\mathrm{GL}_{n_{1}+n_{2}}(F)$).

3 Geometric interpretation of Q

3.1 Distance between orbits

The main result of section 2.2 gives an invariant Q of the action of $L=\operatorname{GL}\left(W_{1}\right) \times$ $\mathrm{GL}\left(W_{2}\right)$ acting on $\mathcal{B}_{e} \mathrm{GL}\left(W_{1} \oplus W_{2}\right)^{0}$. In this section we give a geometric interpretation of this invariant in terms of a distance between orbits.

By Proposition 2.8 we may identify the space of orbits $L \backslash \mathcal{B}_{e} \mathrm{GL}(V)$ with $A^{n_{1}}$. We define a function called the orbital distance as follows:

$$
\begin{align*}
d_{O}: A^{n_{1}} \times A^{n_{1}} & \rightarrow \mathbb{N} \\
(\alpha, \beta) & \mapsto \max _{i=1, \ldots, n_{1}}\left(\left|\alpha_{i}-\beta_{i}\right|\right) . \tag{22}
\end{align*}
$$

The main result of this section is that the name "orbital distance" is justified; that is, d_{O} is actually the minimum distance between two orbits as measured in the 1 -skeleton of the building $\mathcal{B}_{e} \mathrm{GL}(V)$.

For simplicity if $[\Lambda] \in \mathcal{B}_{e}(V)$ then let $L[\Lambda]$ denote the orbit of $[\Lambda]$ under L.
Proposition 3.1. Let $\left[\Lambda_{1}\right],\left[\Lambda_{2}\right] \in \mathcal{B}_{e} \mathrm{GL}(V)$ be incident, then

$$
d_{O}\left(L\left[\Lambda_{1}\right], L\left[\Lambda_{2}\right]\right) \leq 1
$$

Proof. Let $\left[\Lambda_{1}\right],\left[\Lambda_{2}\right]$ be two incident vertices with $\varpi \Lambda_{1} \subset \Lambda_{2} \subset \Lambda_{1}$. Let $L\left[\Lambda_{1}\right]$ be identified with $\alpha \in A^{n_{1}}$ and $L\left[\Lambda_{2}\right]$ with $\beta \in A^{n_{1}}$. We have

$$
\begin{align*}
\varpi P_{i}\left(\Lambda_{1}\right) \subset P_{i}\left(\Lambda_{2}\right) & \subset P_{i}\left(\Lambda_{1}\right), \tag{23}\\
\varpi K_{i}\left(\Lambda_{1}\right) \subset K_{i}\left(\Lambda_{2}\right) & \subset K_{i}\left(\Lambda_{1}\right) \tag{24}
\end{align*}
$$

There are two extreme cases. First $P_{1}\left(\Lambda_{2}\right)=P_{1}\left(\Lambda_{1}\right)$ and $K_{1}\left(\Lambda_{2}\right)=\varpi K_{1}\left(\Lambda_{1}\right)$. In this case $\beta_{i}=\alpha_{i}+1$ for all $i \in\left\{1, \ldots n_{1}\right\}$.

In the second case $P_{1}\left(\Lambda_{2}\right)=\varpi P_{1}\left(\Lambda_{1}\right)$, and $K_{1}\left(\Lambda_{2}\right)=K_{1}\left(\Lambda_{1}\right) \cap \varpi P_{1}\left(\Lambda_{1}\right) \supset$ $\varpi K_{1}\left(\Lambda_{1}\right)$. In this case $\alpha_{i}=\beta_{i}+1$ or $\alpha_{i}=\beta_{i}$.

The above argument shows that no matter what $P_{1}\left(\Lambda_{2}\right)$ and $K_{1}\left(\Lambda_{2}\right)$ are we have $\left|\alpha_{i}-\beta_{i}\right| \leq 1$ as desired.

Proposition 3.1 shows that if two incident vertices are in different orbits, then their L-orbits have orbital distance 1 . To show d_{O} is actually the proposed metric we need to show if two orbits have orbital distance 1 , then there are incident representatives of each orbit. The following technical lemma proves this.

Lemma 3.2. Let $\left[\Lambda_{1}\right],\left[\Lambda_{2}\right] \in \mathcal{B}_{e} \mathrm{GL}(V)$. Assume $d_{O}\left(L\left[\Lambda_{1}\right], L\left[\Lambda_{2}\right]\right)=k>0$. Then there is an $\left[\Lambda_{3}\right] \in \mathcal{B}_{e} \mathrm{GL}(V)$ incident to $\left[\Lambda_{2}\right]$ so that $d_{O}\left(L\left[\Lambda_{1}\right], L\left[\Lambda_{3}\right]\right)=k-1$.

Proof. Let $\left[\Lambda_{1}\right],\left[\Lambda_{2}\right]$ be as in the statement of the lemma. Since we are working in L-orbits, and L preserves distance in $\mathcal{B}_{e} \mathrm{GL}(V)$ we may choose any representatives for $\left[\Lambda_{1}\right]$ and $\left[\Lambda_{2}\right]$ that we like. In particular if $L\left[\Lambda_{1}\right], L\left[\Lambda_{2}\right]$ are identified with $\alpha, \beta \in A^{n_{1}}$ respectively, we may take for our representatives $\Lambda^{\alpha}, \Lambda^{\beta}$ respectively, as defined in Proposition 2.8.

Recall that if W_{1} has basis $\left\{e_{i}\right\}_{i=1}^{n_{1}}$ and W_{2} has basis $\left\{f_{i}\right\}_{i=1}^{n_{2}}$ then $\Lambda^{\alpha}=$ $\bigoplus_{i=1}^{n_{1}} \Lambda^{\alpha_{i}} \bigoplus_{i=n_{1}+1}^{n_{2}} \mathcal{O} f_{i}$ where $\Lambda^{\alpha_{i}}=\left\langle\varpi^{\alpha_{i}} e_{i}, e_{i}+f_{i}\right\rangle$.

To find a $\left[\Lambda_{3}\right]$ with the desired property we need to show there exists $\gamma \in A^{n_{1}}$ so that $d_{O}(\alpha, \gamma)=k-1$ and $d_{O}(\beta, \gamma)=1$. To do this, we define $\gamma=\left(\gamma_{i}\right)$ where

$$
\gamma_{i}= \begin{cases}\beta_{i}+1 & \text { if } \alpha_{i}-\beta_{i}=k \\ \beta_{i}-1 & \text { if } \beta_{i}-\alpha_{i}=k \\ \beta_{i} & \text { else }\end{cases}
$$

Let $S=\left\{i \mid \beta_{i}-\alpha_{i}=k\right\}$. We now define Λ_{3} as follows:

$$
\begin{equation*}
\Lambda_{3}=\bigoplus_{i \in S} \varpi \Lambda^{\gamma_{i}} \bigoplus_{i \in\left\{1, \ldots, n_{1}\right\} \backslash S} \Lambda^{\gamma_{i}} \quad \bigoplus_{i=n_{1}+1}^{n_{2}} \mathcal{O} f_{i} \tag{25}
\end{equation*}
$$

By construction $d_{O}\left(L\left[\Lambda^{\alpha}\right], L\left[\Lambda_{3}\right]\right)=k-1$. So all we need to show is that $\left[\Lambda^{\beta}\right]$ and $\left[\Lambda_{3}\right]$ are incident. This follows from the two-dimensional case and the fact that

$$
\begin{equation*}
\Lambda^{k} \supset \Lambda^{k+1} \supset \varpi \Lambda^{k} \tag{26}
\end{equation*}
$$

and that

$$
\begin{equation*}
\Lambda^{k} \supset \varpi \Lambda^{k-1} \supset \varpi \Lambda^{k} \tag{27}
\end{equation*}
$$

Together Proposition 3.1 and Lemma 3.2 give us the following theorem.
Theorem 3.3. Let $\left[\Lambda_{1}\right],\left[\Lambda_{2}\right] \in \mathcal{B}_{e} \mathrm{GL}(V)^{0}$. Then $d_{O}\left(L\left[\Lambda_{1}\right], L\left[\Lambda_{2}\right]\right)$ is the minimal distance between any two representatives of the orbits as measured in the 1-skeleton of $\mathcal{B}_{e} \mathrm{GL}(V)^{0}$.

Theorem 3.3 gives a complete combinatorial description of the geometry of the orbit space $L \mathcal{B}_{e} \mathrm{GL}(V)^{0}$. Figure 1 on the next page is the quotient space for $L \backslash \mathcal{B}_{e} \mathrm{GL}(V)$ when V is 4 -dimensional and $n_{1}=n_{2}=2$.

3.2 Distance to $\overline{\mathcal{A}_{\mathcal{F}_{1} \cup \mathcal{F}_{2}}}$ in $\mathcal{B}_{e}\left(\mathrm{GL}\left(\boldsymbol{W}_{1} \oplus \boldsymbol{W}_{2}\right)\right)$

There is an important special case of Theorem 3.3. The orbit for which $Q(\Lambda)=0$ is distinguished. In this section we give both a description of this orbit, as well as another description of the distance from a given point to this orbit.

Recall from section 1 that an apartment $\mathcal{A}_{\mathcal{F}}$ is specified by a frame \mathcal{F} in $W_{1} \oplus W_{2}$. Denote by Frame (V) the set of all frames in a vector space V. We will be interested in the following collection of apartments:

$$
\begin{equation*}
\overline{\mathcal{A}_{W_{1} \oplus W_{2}}}=\bigcup_{\substack{\mathcal{F}_{1} \in \operatorname{Frame}\left(W_{1}\right) \\ \mathcal{F}_{2} \in \operatorname{Frame}\left(W_{2}\right)}} \mathcal{A}_{\mathcal{F}_{1} \cup \mathcal{F}_{2}} \tag{28}
\end{equation*}
$$

Figure 1: The quotient space for $L \backslash \mathcal{B}_{e} \mathrm{GL}(V)\left(\operatorname{dim} V=4, n_{1}=n_{2}=2\right)$.

Proposition 3.4. $\overline{\mathcal{A}_{W_{1} \oplus W_{2}}}$ is a subbuilding of $\mathcal{B}_{e} \mathrm{GL}(V)$.
Proof. Since $\overline{\mathcal{A}_{W_{1} \oplus W_{2}}}$ is a union of apartments from an actual building all that needs to be shown is that any two chambers $C_{1}, C_{2} \in \overline{\mathcal{A}_{W_{1} \oplus W_{2}}}$ are in a common apartment. Let $\Lambda_{1} \supset \Lambda_{2} \supset \cdots \supset \Lambda_{n} \supset \varpi \Lambda_{1}$ be a chain of \mathcal{O}-lattices corresponding to a chamber $C \in \overline{\mathcal{A}_{W_{1} \oplus W_{2}}}$, and $M_{1} \supset M_{2} \supset \cdots \supset M_{n} \supset \varpi M_{1}$ a chain of lattices corresponding to a chamber $D \in \overline{\mathcal{A}_{W_{1} \oplus W_{2}}}$. Since each $\left[\Lambda_{i}\right] \in \overline{\mathcal{A}_{W_{1} \oplus W_{2}}}$ we can write $\Lambda_{i}=\Lambda_{i}^{1} \oplus \Lambda_{i}^{2}$ with $\left[\Lambda_{i}^{j}\right] \in \mathcal{B}_{e}\left(\mathrm{GL}\left(W_{j}\right)\right)$. Similarly for the M_{i}. The $\left\{\left[\Lambda_{i}^{j}\right]\right\}_{i=1}^{n},\left\{\left[M_{i}^{j}\right]\right\}_{i=1}^{n}$ specify facets $C_{j}, D_{j} \in \mathcal{B}_{e}\left(\mathrm{GL}\left(W_{j}\right)\right)$ since $\Lambda_{1}^{j} \supset \Lambda_{i}^{j} \supset \varpi \Lambda_{1}^{j}$ (it will be the case that some of the $\Lambda_{i}^{j}=\Lambda_{i+1}^{j}$ but this will not matter), and similarly for the M_{i}^{j}. Then there are common apartments $\mathcal{A}_{j} \subset \mathcal{B}_{e} \mathrm{GL}\left(W_{j}\right)$ which contain C_{j} and D_{j}. Since each \mathcal{A}_{j} is specified by a frame \mathcal{F}_{j} in W_{j} the apartment specified by $\mathcal{F}_{1} \cup \mathcal{F}_{2}$, contains the chambers C and D.

Now let $[\Lambda] \in \mathcal{B}_{e} \mathrm{GL}(V)^{0}$. We define a function on $\mathcal{B}_{e} \mathrm{GL}(V)^{0}$ as follows:

$$
\begin{align*}
d_{p}: \mathcal{B}_{e}\left(\operatorname{GL}\left(W_{1} \oplus W_{2}\right)\right)^{0} & \rightarrow \mathbb{N} \tag{29}\\
{[\Lambda] } & \mapsto \log _{\mathcal{P}}[\operatorname{Ann}(Q(\Lambda))] .
\end{align*}
$$

Here $\operatorname{Ann}(Q(\Lambda))=\{x \in \mathcal{O} \mid x Q(\Lambda)=0\}$ is the annihilator of $Q(\Lambda)$ in \mathcal{O}. The p subscript is because it turns out d_{p} is distance it takes to project [Λ] onto
$\overline{\mathcal{A}_{W_{1} \oplus W_{2}}}$. This follows from the fact $\overline{\mathcal{A}_{W_{1} \oplus W_{2}}}$ is the orbit where $Q(\Lambda)=0$. We have the following theorem.

Theorem 3.5. Let $[\Lambda] \in \mathcal{B}_{e} \mathrm{GL}(V)^{0}$ then $d_{p}([\Lambda])=d_{O}\left(L[\Lambda], \overline{\mathcal{A}_{W_{1} \oplus W_{2}}}\right)$.
Proof. $d_{O}\left(L[\Lambda], \overline{\mathcal{A}_{W_{1} \oplus W_{2}}}\right)=d_{O}\left(L[\Lambda], L\left[\Lambda^{(0)}\right]\right)$, where $Q\left(\Lambda^{(0)}\right)=0$. If $L[\Lambda]$ is the orbit associated $\alpha \in A^{n_{1}}$ then $d_{O}\left(L[\Lambda], L\left[\Lambda^{(0)}\right]\right)=\max \left(\alpha_{i}\right)$ for $1 \leq i \leq n_{1}$ and $\alpha_{i} \in \alpha$, but this is the same as $d_{p}([\Lambda])$.

In the special case when $n_{1}=n_{2}=1, \overline{\mathcal{A}_{W_{1} \oplus W_{2}}}$ is just an apartment of $\mathcal{B}_{e} \mathrm{GL}(V)^{0}$. Then d_{p} is just measuring the distance of a given point to a fixed apartment. This suggests that one may be able to find the distance of a vertex to a fixed apartment by studying the action of a maximal split torus on the building.

References

[1] P. Abramenko and K.S. Brown, "Buildings: Theory and Applications", Springer-Verlag (2008).
[2] Yu.A. Neretin, On the compression of Bruhat-Tits buildings, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 325 (2005), 163-170.
[3] D. Prasad, Trilinear forms for representations of GL(2) and local ϵ-factors, Compositio Math. 75 (1990), 1-46.
[4] C.M. Ballantine, J.A. Rhodes and T.R. Shemanske, Hecke operators for GL_{n} and buildings, Acta Arith. 112 (2004), 131-140.
[5] T.R. Shemanske, The arithmetic and combinatorics of buildings for Sp_{n}, Trans. Amer. Math. Soc. 359 (2007), 3409-3423.

Jonathan Needleman
Department of Mathematics and Computer Science, Le Moyne College, 1419 Salt Springs Rd, Syracuse, NY 13214, USA
e-mail: needlejs@lemoyne.edu

