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Abstract

In this paper we give a complete invariant of the action of GLn(F ) ×

GLm(F ) on the Euclidean building BeGLn+m(F ), where F is a discrete

valuation field. We then use this invariant to give a natural metric on the

resulting quotient space. In the special case of the torus acting on the tree

BeGL2(F ), we obtain an algorithm for calculating the distance of any vertex

in the tree to any fixed apartment.
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1 Introduction

To understand distance in the 1-skeleton of a building BG associated to a re-

ductive algebraic group G, one may look at a stabilizer K of a point, and then

study the action of K on BG. When working over a discrete valuation field

vertices correspond to maximal compact subgroups. This analysis gives rise to

information about K\G/K, and therefore the Hecke algebra [4, 5].

In this paper we specialize to G = GLn(F ) and are interested in the double

cosets L\G/K, where L ∼= GLn1
(F ) × GLn2

(F ) is a maximal Levi subgroup

of G. The study of the action of L on the building BeGLn(F ) will lead to a

description of distance from any vertex to a certain subbuilding stabilized by L.

In the case when n = 2 and L = T is a maximal split torus, our description gives

a way of calculating the distance from a given point to a fixed apartment.

We also give a combinatorial description of the quotient space L\BeGLn(F )

as follows. Let An = {(αi)
n
i=1 | αi ∈ N, αi ≥ αi+1}. If n1 ≤ n2 there is an

graph isometry between L\BeGLn(F ) and An1 where An is endowed with the
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following metric: d(α, β) = maxni=1 |αi−βi| where α, β ∈ An. This result shows

that the 1-skeleton of the resulting quotient space only depends on min(n1, n2).

This paper is broken up into two main sections. The first gives a descrip-

tion of the building in terms of O-lattices and describes an invariant of the

action of L on this building. The second section gives a geometric interpreta-

tion of this invariant, yielding a combinatorial description of the quotient space

L\BeGLn(F ).

2 Orbits of maximal Levi factors on BeGL(V )

2.1 O-lattices and BeGL(V )

Throughout this paper let F be a discrete valuation field with valuation υ. We

will denote the ring of integers in F by O, and fix once and for all a uni-

formizer ̟ of O. Let the unique maximal prime ideal be denoted as P = (̟),

and the residue field O/P will be denoted by k. Let Pk = (̟k) for k ∈ Z.

Then logP(P
k) = k. Let V be a finite dimensional vector space defined over

F of dimension n. We will describe the Euclidean building BeGL(V ) associ-

ated to GL(V ). For more details see [1]. Let Λ ⊂ V be a finitely generated

free O-module of rank n. Denote by [Λ] the homothety class of Λ, that is

[Λ] = {aΛ | a ∈ F×}.

Homothety classes of lattices will form the vertices of BeGL(V ). Two ver-

tices λ1, λ2 ∈ BeGL(V ) are incident if there are representatives Λi ∈ λi so that

̟Λ1 ⊂ Λ2 ⊂ Λ1, i.e. Λ2/̟Λ1 is a k-subspace of Λ1/̟Λ1. The chambers in

BeGL(V ) are collections of maximally incident vertices. To put this more con-

cretely, a chamber is a collection of n vertices λ0 · · ·λn−1 with representatives

Λ0 · · ·Λn−1 satisfying ̟Λ0 ( Λ1 ( · · · ( Λn−1 ( Λ0. A wall of a chamber is

any subset of n− 1 vertices in the given chamber. We will denote by BeGL(V )k

the set of all facets of BeGL(V ) of dimension k.

A frame F in V is a collection of lines l1, . . . , ln ⊂ V which are linearly inde-

pendent and span all of V . We now describe certain subcomplexes of BeGL(V ).

Define AF to be the subcomplex consisting of vertices [Λ] of the following form:

Λ =

n
⊕

i=1

Oei (1)

where ei ∈ li ∈ F . Then AF is an apartment of BeGL(V ), and every apartment

is uniquely determined by a frame in this way.

The group GL(V ) has a natural action of BeGL(V ), namely the one induced

from the action of GL(V ) on V . This action preserves distance in the building.
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A lemma which we will need later is the following.

Lemma 2.1. Let Λ,Λ′ be O-lattices of rank n in V with Λ′ ⊂ Λ. Then the natural

map from GL(Λ) ∩ stab(Λ′) to GL(Λ/Λ′) is surjective.

Proof. This result appears to be well known, but the proof could not be found

in the literature and so is given here. There is an O-basis {e1, . . . , en} of Λ so

that {̟k1e1, . . . , ̟
knen} with ki ∈ N is an O-basis of Λ′. This is equivalent to

the statement that for any two vertices there is an apartment which contains

them both. For σ ∈ GL(Λ/Λ′) we will construct σ ∈ GL(Λ) ∩ stab(Λ′) which

descends to σ.

Let ei be the image of ei in Λ/Λ′. Then

σ(ei) = ai1e1 + · · ·+ ainen (2)

where aij ∈ O. Observe that aij is unique modulo Pkj . Then define σ on the

O-basis {e1, . . . , en} of Λ as follows:

σ(ei) =

{

∑n
j=1 a

i
jej if ei 6= 0,

ei if ei = 0.
(3)

What needs to be shown is that σ is invertible and leaves Λ′ invariant.

First, we show σ leaves Λ′ invariant.

0 = σ(̟kiei) = ai1̟
kie1 + · · ·+ ain̟

kien (4)

This shows that aij̟
ki ∈ Pkj , and so σ(̟kiei) ∈ Λ′.

Next we show invertibility. Let σ∗ be the construction given above for σ−1,

and let τ = σ ◦ σ∗. This will be a function which is a lift of the identity map in

GL(Λ/Λ′). Let M = spanO〈ei | ei 6= 0〉 and let M ′ = spanO〈ei | ei = 0〉. Then

τ |M = id + E where E ∈ HomO(M,Λ′) and is id on M ′. Any τ of this form is

invertible and hence so is σ. �

2.2 GL(W1) × GL(W2) acting on Be(GL(W1 ⊕ W2))

Let V be a vector space over F . Fix a maximal Levi subgroup L of GL(V ).

Associated to L are subspaces W1,W2 ⊂ V satisfying V = W1 ⊕ W2. Then

L ∼= GL(W1)×GL(W2). In this section we will describe the orbits of the action

of GL(W1)×GL(W2) on BeGL(V )0 in terms of an invariant Q. Additionally we

will give a representative of each orbit.

Let pi be the projection of V onto Wi with respect to our given decomposition.

We will use these maps to define invariants of the vertices and then show for

our action that these invariants classify all orbits.
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Let Λ be an O-lattice. We make the following definitions for i = 1, 2:

Pi(Λ) = Im(pi|Λ), (5)

Ki(Λ) = Ker(pi′ |Λ) = Λ ∩Wi, (6)

where i′ = (i mod 2) + 1.

These are lattices in Wi.

Lemma 2.2. Ki(Λ) ⊂ Pi(Λ).

Proof. If v ∈ Ki(Λ) = Λ ∩Wi, then v ∈ Λ, so pi(v) ∈ Pi(Λ). But pi(v) = v since

v ∈ Wi. �

By Lemma 2.2 we can define Qi(Λ) = Pi(Λ)/Ki(Λ). This is a finitely gener-

ated torsion O-module.

Proposition 2.3. Q1(Λ) ∼= Q2(Λ) as O-modules. This isomorphism class will be

denoted by Q(Λ).

Proof. We make slight modifications to the proof found in [2]. Let p′i : Λ →

Qi(Λ) be the composition of pi with the natural projection map πi : Pi(Λ) →

Qi(Λ). We define a map so that for all v ∈ Λ

Θ: Q1(Λ) → Q2(Λ)

p′1(v) 7→ p′2(v).
(7)

We will show that Θ is well defined, and is an isomorphism.

Let w1 + w2, w
′
1 + w′

2 ∈ Λ with wi, w
′
i ∈ Wi and π1(w1) = π1(w

′
1). Then

π1(w1 − w′
1) = 0, and therefore w1 − w′

1 ∈ K1(Λ). Similarly w2 − w′
2 ∈ K2(Λ)

and π2(w2) = π2(w
′
2) showing Θ is well defined. It is an isomorphism, because

the map θ, defined by reversing the roles of 1 and 2, is an inverse map. �

We now show that Q is a complete invariant of the action of L on BeGL(V )0.

Theorem 2.4. Let Λ,Λ′ be O-lattices. Then Λ and Λ′ are in the same GL(W1)×

GL(W2) orbit if and only if Q(Λ) = Q(Λ′).

Proof. The class Q(Λ) is a GL(W1) × GL(W2)-invariant since each factor of

GL(Wi) commutes with the projection map pi. We must show that if Q(Λ) =

Q(Λ′) then there is a g ∈ GL(W1)×GL(W2) so that Λ = gΛ′.

We will need g1 ∈ GL(W1) and g2 ∈ GL(W2) so that giPi(Λ
′) = Pi(Λ)

and giKi(Λ
′) = Ki(Λ) for i = 1, 2. There are certainly gi ∈ GL(Wi) so that
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giPi(Λ
′) = Pi(Λ). Then we may assume Ki(Λ),Ki(Λ

′) ⊂ Pi(Λ). Since Q(Λ) =

Q(Λ′) we know by the elementary divisor theorem there are bases

Bi = {e1, . . . , eni
} and B′

i = {e′1, . . . , e
′
ni
}

of Pi(Λ) so that Ki(Λ) written in terms of Bi has the same elementary divisors as

Ki(Λ
′) written in terms of B′

i. Let hi ∈ GL(Pi(Λ)) be the linear transformation

which takes the basis Bi to B′
i. Then higi ∈ GL(Wi) has the desired properties.

So we may replace Λ′ with Λ′′ = (h1g1, h2g2)Λ
′. Let Θ be the map from

Proposition 2.3 associated to Λ, and Θ′′ associated to Λ′′.

We claim Λ = Λ′′ if and only if Θ = Θ′′. To prove this we show that one can

reconstruct Λ from Θ (which implicitly encodes Qi(Λ) as the domain and range

of the map), by taking

ΛΘ =
{

w1 + w2 | wi ∈ Pi(Λ) and Θ(π1(w1)) = π2(w2)
}

(8)

First, we show Λ ⊂ ΛΘ. Let w = w1 + w2 ∈ Λ, then by definition of Θ we have

Θ(π1(w1)) = π2(w2). And so v ∈ ΛΘ. We now show ΛΘ ⊂ Λ. Let w1+w2 ∈ ΛΘ.

Then w1 ∈ P1(Λ) so there is a w′
2 ∈ P2(Λ) so that w1 + w′

2 ∈ Λ ⊂ ΛΘ. Then

0 + (w2 − w′
2) ∈ ΛΘ. So π2(w2 − w′

2) = 0 which implies w2 − w′
2 ∈ K2(Λ) ⊂ Λ.

Hence w1 + w2 = (w1 + w′
2) + (w2 − w′

2) ∈ Λ as desired.

To complete the theorem, we will show there is an element g ∈ stab(P2(Λ))∩

stab(K2(Λ)) which takes Θ′′ to Θ. There is an h ∈ GL(P2(Λ)/K2(Λ)) so that

(1, h)Θ′′ = Θ. By Lemma 2.1 there is a pullback h of h to h ∈ stab(P2(Λ)) ∩

stab(K2(Λ)) ∈ GL(W2) then (1, h)Λ′′ = Λ. �

Now let [Λ] ∈ BeGL(V )0, and c ∈ F×. Since Q(Λ) = Q(cΛ) we will abuse

notation and write Q([Λ]) = Q(Λ).

Corollary 2.5. Q([Λ]) is a complete invariant of the action of GL(W1)×GL(W2)

on the space of vertices in Be(V )0.

2.3 Orbit representatives

We now give a set representatives of each orbit. We first do this in the case

when V is 2-dimensional, and then use this case to determine representatives

for higher dimensions.

2.3.1 dim(V ) = 2

Let V be a two-dimensional vector space over F , with decomposition V = W1⊕

W2. Assume that Wi is spanned by the vector ei. We then define the following
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class of lattices:

Λk = spanO〈̟
ke1, e1 + e2〉. (9)

Proposition 2.6. Q([Λk]) ∼= O/Pk.

Proof. We have P1(Λ
k) = 〈e1〉 and K1(Λ

k) = 〈πke1〉. Therefore Q(Λ) ∼= O/Pk.

�

Corollary 2.7. {[Λk]}∞k=0 is a complete set of representatives for the action of

GL(W1)×GL(W2) on BeGL(V )0.

Proof. Let [Λ] ∈ BeGL(V )0. Then Q([Λ]) ∼= O/Pk for some k ∈ N. By Theo-

rem 2.4, [Λ] is in the orbit of Λk. �

2.3.2 General V

We now describe representatives when V is n-dimensional. We may assume that

dimWi = ni and n1 ≤ n2. Choose a basis {e1, . . . , en1
} of W1 and {f1, . . . , fn2

}

of W2, and let Yi = spanF (ei, fi), for 1 ≤ i ≤ n1. Let α = (αi) ∈ Nn1 . Let

[Λαi ] ∈ BeGL(Yi) defined as in equation (9) with respect to the basis {ei, fi}.

This allows us to define the following class of lattices:

Λα =

n1
⊕

i=1

Λαi

n2
⊕

i=n1+1

Ofi (10)

Proposition 2.8. Let An = {α = (αi) ∈ Nn | αi ≥ αi+1}. Then [Λα]α∈An1

is a complete set of representatives of the orbits of GL(W1) × GL(W2) acting on

BeGL(V )0.

Proof. By the elementary divisor theorem Q1(Λ) decomposes into a direct sum

of O-modules as follows: Q1([Λ]) ∼= Or
⊕n1

i=1 O/Pαi where αi ∈ N and r ∈ N.

However, r = 0 since both P1(Λ) and K1(Λ) are rank n1. We may assume

αi ≥ αi+1. Then by Theorem 2.4, [Λ] is in the same orbit as [Λα]. �

2.3.3 Double cosets

The description of orbits is equivalent to the space of double cosets L\GL(V )/K,

where K is the stabilizer of a vertex in Be(GL(V )). We now give an explicit de-

scription of a set of double coset representatives.

The Levi subgroup L is associated to a parabolic subgroup P with a decom-

position P = LN , where N is the unipotent radical of P . The Iwasawa de-

composition shows that GL(V ) = PK, and so we may choose the double coset

representatives of L\GL(V )/K to be in N .
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We use the basis for V of the previous section to identify GL(V ) with GLn(F ).

We will also let K = Z(GLn(F ))GLn(O). Then N ∼= Mn1×n2
(F ), the n1 × n2

matrices embedded in GLn(F ) as follows:

u : Mn1×n2
(F ) → N

B 7→

(

In1
B

0 In2

)

.

Let α ∈ An1 and define mα ∈ Mn1×n2
as follows:

[mα]ij =

{

̟−αi if i = j ∈ {1, . . . , n1},

0 else.
(11)

Now let nα = u(mα). Then we have the following proposition.

Proposition 2.9. We may write GLn(F ) as a disjoint union

GLn(F ) =
∐

α∈An1

LnαK.

Proof. Let α ∈ An1 , and define lα to be the linear transformation that sends ei
to ei and fi to ̟−αifi for 1 ≤ i ≤ n1, and fj to fj for n1 + 1 ≤ j ≤ n2. Note

that lα ∈ L.

Let Λ = spanO(e1 . . . , en1
, f1, . . . , fn2

), and notice that K stabilizes [Λ]. Fur-

thermore, we have lαnα(Λ) = Λα. �

This double coset decomposition is in no way canonical, although it has some

nice properties. All the nα are supported on the span of root groups U i,i+n1 for

1 ≤ i ≤ n1, with the roots taken with respect to the diagonal torus. In fact,

these root group form a set of maximally mutually orthogonal root groups in N .

Any such set of root groups can be a support of coset representatives. This can

easily be seen by having Wni
the Weyl groups of GLni

act on the nα. This leads

to the following conjecture for more general groups.

Conjecture 2.10. Let G be a reductive group over F and P a parabolic subgroup

with P = LN , and assume N is abelian. Let K be a maximal open, bounded

subgroup of G. Then there is a discrete subset N ′ ⊂ N and a maximally mutually

orthogonal set of root groups Uα < N so that:

1. each n ∈ N ′ is supported in the group generated by the Uα;

2. G =
∐

n∈N ′ LnZ(G)K.
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2.3.4 Stabilizers

We now wish to compute stabilizers for each orbit so that we may realize the

orbits as homogeneous spaces. For spherical buildings knowing the stabilizers

plays a role in representation theory, for instance [3]. For Euclidean buildings

this may have applications to understanding cuspidal representations.

Fix a Λ and let Si = stab(Pi(Λ)) ∩ stab(Ki(Λ)). Furthermore, let

Ti = {I +A | A ∈ End(Wi) and A(Pi(Λ)) ⊂ Ki(Λ)} ∩ Si. (12)

Then Ti ⊳ Si and Si/Ti
∼= GL(Qi(Λ)) by Lemma 2.1. Let

SΛ = {(h1,Θ
∗
Λ(h1)) | h1 ∈ GL(Q1(Λ))} ⊂ (GL(Q1(Λ))×GL(Q2(Λ)) (13)

where Θ∗
Λ is the isomorphism induced on GL(Q1(Λ)) from the isomorphism

ΘΛ : Q1(Λ) → Q2(Λ) defined in equation (7). Finally, let SΛ be the pullback of

SΛ in S1 × S2.

Proposition 2.11. SΛ = stabL(Λ).

Proof. Let (A1, A2) ∈ SΛ with Ai ∈ GL(Wi), and let Λ′ = (A1, A2) · Λ. Then

because Ai ∈ Si we have Pi(Λ) = Pi(Λ
′) and Ki(Λ) = Ki(Λ

′). We now wish to

show ΘΛ = ΘΛ′ . By the proof of Theorem 2.4 this will show that Λ = Λ′. Let

Bi be the image of Ai in Si/Ti
∼= GL(Qi(Λ)), and let v ∈ Q1(Λ) and v′ = B−1

1 v.

Then

ΘΛ′(v) = ΘΛ′(B1B
−1
1 v) (14)

= B2ΘΛ(B
−1
1 v) (15)

= Θ∗
Λ(B1)ΘΛ(B

−1
1 v) (16)

= ΘΛ

(

B1Θ
−1
Λ (ΘΛ(B

−1
1 v))

)

(17)

= ΘΛ(v). (18)

Line (15) follows from the action of (A1, A2) on Λ, line (16) comes from the

fact that B2 = Θ∗
Λ(B1), and line (17) is the definition of the induced map Θ∗

Λ.

This proves SΛ ⊂ stabL(Λ). We now prove the other direction. Assume

(A1, A2) ∈ stabL(Λ), then Ai ∈ Si. The calculation above shows that the pro-

jection of A2 in GL(Q2(Λ)) has to equal the image of A1 in GL(Q2(Λ)) under

Θ∗
Λ, proving the result. �

We end this section by giving an explicit description of SΛα , the stabilizers of

our orbit representatives. Let α ∈ An1 , then we define Λα as in section 2.3. By
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this definition P1(Λ
α) = spanO〈e1, . . . , en1

〉 and P2(Λ
α) = spanO〈f1, . . . , fn2

〉.

Also,

K1(Λ
α) = spanO〈̟

α1e1, . . . , ̟
αn1 en1

〉, and

K2(Λ
α) = spanO〈̟

α1f1, . . . , ̟
αn2 fn2

〉,

where αj = 0 if j > n1. Then Si looks like

Si =















Pβ11 Pβ12 Pβ13 · · · Pβ1ni

Pβ21 Pβ22 Pβ23 · · · Pβ2ni

...
. . .

...

Pβni1 Pβni2 Pβni3 · · · Pβnini















∩GLni
(O) (19)

where βij = max(0, αi − αj).

Also, Ti looks like

Ti =















Uα1 Pα1 Pα1 · · · Pα1

Pα2 Uα1 Pα2 · · · Pα2

...
. . .

...

Pαni Pαni Pαni · · · Uαni















(20)

where Uk = 1 + Pk if k ≥ 1 and U0 = O×.

The other component to Proposition 2.11 has to do with the map ΘΛ. For Λα

there is a life of this map ΘΛα : P1(Λ
α) → P2(Λ

α) which is independent of α,

and is given by ΘΛα(ei) = fi for 1 ≤ i ≤ n1. So by Theorem 2.11, SΛα is the

product of the group











A 0 0

0 A 0

0 0 In2−n1





∣

∣

∣ A ∈ S1







(21)

with the group T1 × T2 (embedded block diagonally into GLn1+n2
(F )).

3 Geometric interpretation of Q

3.1 Distance between orbits

The main result of section 2.2 gives an invariant Q of the action of L = GL(W1)×

GL(W2) acting on BeGL(W1 ⊕W2)
0. In this section we give a geometric inter-

pretation of this invariant in terms of a distance between orbits.
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By Proposition 2.8 we may identify the space of orbits L\BeGL(V ) with An1 .

We define a function called the orbital distance as follows:

dO : An1 ×An1 → N

(α, β) 7→ max
i=1,...,n1

(|αi − βi|).
(22)

The main result of this section is that the name “orbital distance” is justified;

that is, dO is actually the minimum distance between two orbits as measured in

the 1-skeleton of the building BeGL(V ).

For simplicity if [Λ] ∈ Be(V ) then let L[Λ] denote the orbit of [Λ] under L.

Proposition 3.1. Let [Λ1], [Λ2] ∈ BeGL(V ) be incident, then

dO(L[Λ1], L[Λ2]) ≤ 1.

Proof. Let [Λ1], [Λ2] be two incident vertices with ̟Λ1 ⊂ Λ2 ⊂ Λ1. Let L[Λ1] be

identified with α ∈ An1 and L[Λ2] with β ∈ An1 . We have

̟Pi(Λ1) ⊂ Pi(Λ2) ⊂ Pi(Λ1), (23)

̟Ki(Λ1) ⊂ Ki(Λ2) ⊂ Ki(Λ1). (24)

There are two extreme cases. First P1(Λ2) = P1(Λ1) and K1(Λ2) = ̟K1(Λ1).

In this case βi = αi + 1 for all i ∈ {1, . . . n1}.

In the second case P1(Λ2) = ̟P1(Λ1), and K1(Λ2) = K1(Λ1) ∩̟P1(Λ1) ⊃

̟K1(Λ1). In this case αi = βi + 1 or αi = βi.

The above argument shows that no matter what P1(Λ2) and K1(Λ2) are we

have |αi − βi| ≤ 1 as desired. �

Proposition 3.1 shows that if two incident vertices are in different orbits,

then their L-orbits have orbital distance 1. To show dO is actually the proposed

metric we need to show if two orbits have orbital distance 1, then there are

incident representatives of each orbit. The following technical lemma proves

this.

Lemma 3.2. Let [Λ1], [Λ2] ∈ BeGL(V ). Assume dO(L[Λ1], L[Λ2]) = k > 0. Then

there is an [Λ3] ∈ BeGL(V ) incident to [Λ2] so that dO(L[Λ1], L[Λ3]) = k − 1.

Proof. Let [Λ1], [Λ2] be as in the statement of the lemma. Since we are working

in L-orbits, and L preserves distance in BeGL(V ) we may choose any represen-

tatives for [Λ1] and [Λ2] that we like. In particular if L[Λ1], L[Λ2] are identified

with α, β ∈ An1 respectively, we may take for our representatives Λα,Λβ re-

spectively, as defined in Proposition 2.8.
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Recall that if W1 has basis {ei}
n1

i=1 and W2 has basis {fi}
n2

i=1 then Λα =
⊕n1

i=1 Λ
αi

⊕n2

i=n1+1 Ofi where Λαi = 〈̟αiei, ei + fi〉.

To find a [Λ3] with the desired property we need to show there exists γ ∈ An1

so that dO(α, γ) = k − 1 and dO(β, γ) = 1. To do this, we define γ = (γi) where

γi =











βi + 1 if αi − βi = k,

βi − 1 if βi − αi = k,

βi else.

Let S = {i | βi − αi = k}. We now define Λ3 as follows:

Λ3 =
⊕

i∈S

̟Λγi

⊕

i∈{1,...,n1}\S

Λγi

n2
⊕

i=n1+1

Ofi. (25)

By construction dO(L[Λ
α], L[Λ3]) = k−1. So all we need to show is that [Λβ ]

and [Λ3] are incident. This follows from the two-dimensional case and the fact

that

Λk ⊃ Λk+1 ⊃ ̟Λk (26)

and that

Λk ⊃ ̟Λk−1 ⊃ ̟Λk. (27)

�

Together Proposition 3.1 and Lemma 3.2 give us the following theorem.

Theorem 3.3. Let [Λ1], [Λ2] ∈ BeGL(V )0. Then dO(L[Λ1], L[Λ2]) is the minimal

distance between any two representatives of the orbits as measured in the 1-skeleton

of BeGL(V )0.

Theorem 3.3 gives a complete combinatorial description of the geometry of

the orbit space LBeGL(V )0. Figure 1 on the next page is the quotient space for

L\BeGL(V ) when V is 4-dimensional and n1 = n2 = 2.

3.2 Distance to AF1∪F2
in Be(GL(W1 ⊕ W2))

There is an important special case of Theorem 3.3. The orbit for which Q(Λ) = 0

is distinguished. In this section we give both a description of this orbit, as well

as another description of the distance from a given point to this orbit.

Recall from section 1 that an apartment AF is specified by a frame F in

W1⊕W2. Denote by Frame(V ) the set of all frames in a vector space V . We will

be interested in the following collection of apartments:

AW1⊕W2
=

⋃

F1∈Frame(W1)
F2∈Frame(W2)

AF1∪F2
. (28)
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Figure 1: The quotient space for L\BeGL(V ) (dimV = 4, n1 = n2 = 2).
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Proposition 3.4. AW1⊕W2
is a subbuilding of BeGL(V ).

Proof. Since AW1⊕W2
is a union of apartments from an actual building all that

needs to be shown is that any two chambers C1, C2 ∈ AW1⊕W2
are in a common

apartment. Let Λ1 ⊃ Λ2 ⊃ · · · ⊃ Λn ⊃ ̟Λ1 be a chain of O-lattices correspond-

ing to a chamber C ∈ AW1⊕W2
, and M1 ⊃ M2 ⊃ · · · ⊃ Mn ⊃ ̟M1 a chain of

lattices corresponding to a chamber D ∈ AW1⊕W2
. Since each [Λi] ∈ AW1⊕W2

we can write Λi = Λ1
i ⊕ Λ2

i with [Λj
i ] ∈ Be(GL(Wj)). Similarly for the Mi. The

{[Λj
i ]}

n
i=1,{[M j

i ]}
n
i=1 specify facets Cj , Dj ∈ Be(GL(Wj)) since Λj

1 ⊃ Λj
i ⊃ ̟Λj

1

(it will be the case that some of the Λj
i = Λj

i+1 but this will not matter), and

similarly for the M j
i . Then there are common apartments Aj ⊂ BeGL(Wj)

which contain Cj and Dj . Since each Aj is specified by a frame Fj in Wj the

apartment specified by F1 ∪ F2, contains the chambers C and D. �

Now let [Λ] ∈ BeGL(V )0. We define a function on BeGL(V )0 as follows:

dp : Be(GL(W1 ⊕W2))
0 → N

[Λ] 7→ logP [Ann(Q(Λ))].
(29)

Here Ann(Q(Λ)) = {x ∈ O | xQ(Λ) = 0} is the annihilator of Q(Λ) in O.

The p subscript is because it turns out dp is distance it takes to project [Λ] onto
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AW1⊕W2
. This follows from the fact AW1⊕W2

is the orbit where Q(Λ) = 0. We

have the following theorem.

Theorem 3.5. Let [Λ] ∈ BeGL(V )0 then dp([Λ]) = dO(L[Λ],AW1⊕W2
).

Proof. dO(L[Λ],AW1⊕W2
) = dO(L[Λ], L[Λ

(0)]), where Q(Λ(0)) = 0. If L[Λ] is the

orbit associated α ∈ An1 then dO(L[Λ], L[Λ
(0)]) = max(αi) for 1 ≤ i ≤ n1 and

αi ∈ α, but this is the same as dp([Λ]). �

In the special case when n1 = n2 = 1, AW1⊕W2
is just an apartment of

BeGL(V )0. Then dp is just measuring the distance of a given point to a fixed

apartment. This suggests that one may be able to find the distance of a vertex

to a fixed apartment by studying the action of a maximal split torus on the

building.
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