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1 Introduction and definitions

There are many characterizations of shadows of residues and apartments of

residues in building shadow spaces seemingly dependent on the specific geom-

etry (e.g. [3, 2, 7]). In the present paper we give a general characterization

of shadows of residues in a building shadow space (Theorems 2.1 and 3.1) and

then apply our results to buildings with diagram Yl,m,n (Theorem 6.1). As an

immediate corollary we obtain the following (for notation see Subsection 1.2).

Corollary 1.1. Suppose B is a building with Coxeter diagram M over a set I and

Σ = (P,L) is its shadow space. Let φ : Σ|PO → Σ|P1 be an isomorphism, where

O is a residue of B and P1 is a subspace of Σ. Below, all subscripts are positive

integers.

(1) Suppose Σ is of type An,k with n ≥ 3 and 1 ≤ k ≤ n, of type Dn,k with n ≥ 4

and k ∈ {1, n, n − 1}, or of type En,k with n ∈ {6, 7, 8} and k ∈ {1, 2, n}.

Then P1 = PO′ for a residue O′ of B with MO
∼=MO′ , where the isomorphism

stabilizes the point node.
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(2) Suppose typ(O) = I − {α}. Suppose further that Σ is of type Dn,{n−1,n} and

α ∈ {1, . . . , n−3}, Σ is of type Dn,{1,n} and α = n−1, or Σ is of type E6,{1,6}

and α = 2. Then P1 = PO′ for a residue O′ of B with typ(O) = typ(O′).

1.1 Incidence geometries and point-line geometries

A point-line geometry Σ = (P,L) is a bipartite graph with parts P and L labelled

“points” and “lines”; we write Pts(Σ) = P and Lin(Σ) = L. Let Σ = (P,L) and

Σ1 = (P1,L1) be point-line geometries. Suppose that (1) P1 ⊆ P, (2) L1 ⊆ L,

and (3) if a point p ∈ P1 and a line L ∈ L1 are incident in Σ1, then p and L are

incident in Σ. Then Σ1 is a subgeometry of Σ. We say that a subgeometry Σ1 of

Σ is an induced subgeometry of Σ if a point p ∈ P1 and a line L ∈ L1 are incident

in Σ1 if and only if they are incident in Σ. A subgeometry Σ1 = (P1,L1) of Σ

is a full subgeometry of Σ if (1) Σ1 is an induced subgeometry of Σ and (2) for

every L ∈ L1, we have PL ⊆ P1, where PL is the set of points of Σ incident

with L. A subgeometry Σ1 = (P1,L1) of Σ = (P,L) is full if and only if,

for every line L ∈ L1, (P1)L = PL. A morphism of point-line geometries is

a morphism of the underlying graphs that maps points to points and lines to

lines; monomorphisms, epimorphisms, and isomorphisms are defined similarly.

If φ : Σ1 → Σ is a morphism of point-line geometries, then the image of Σ1

under φ is a subgeometry of Σ in which a point p and a line L are incident if

and only if p = φ(p′) and L = φ(L′) for an incident point-line pair {p′, L′} of Σ1.

Lemma 1.2. Suppose φ : Σ = (P,L) → Σ′ = (P ′,L′) is a morphism of point-line

geometries. If φ(PL) = (P ′)φ(L) for all L ∈ L′, then the image of Σ under φ is a

full subgeometry of Σ′.

Proof. Let Σ1 = (P1,L1) be the image of Σ under φ, and suppose L′ ∈ L1

and p′ ∈ (P ′)L′ . Let L ∈ L be such that L′ = φ(L). Since φ(PL) = (P ′)φ(L),

p′ ∈ (P ′)φ(L). Therefore p′ = φ(p) for some p ∈ PL and p′ is incident with L′

in Σ′. �

1.2 Builidings and building Grassmannians

In this paper buildings are chamber systems. For a chamber system C, we denote

typ(C) the type set of C and, for a set of chambers X of C, we denote typ(X)

the type set of the chamber subsystem of C induced on X.

Let M be a Coxeter matrix over a set I and let W be a Coxeter group of type

M with generators {si | i ∈ I}. A building of type M is a chamber system B
of type M (that is, for every {i, j} ⊆ I, every residue of B of type {i, j} is a

generalized mij-gon) satisfying the following condition.
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(P) If two galleries w and w′ of reduced types t1 . . . tn and t′1 . . . t
′
n′ have the

same initial and terminal chambers, then st1 . . . stn = st′1 . . . st′n′
in W .

All buildings have the following properties.

(Bld1) If {Qα | α ∈ S} is a family of residues of B and ∩α∈SQα 6= ∅, then

∩α∈SQα is a residue of B of type ∩α∈Styp(Qα).

(Bld2) Suppose R, P , and Q are residues of B such that R∩P 6= ∅, R∩Q 6= ∅,

and P ∩Q 6= ∅. Then R ∩ P ∩Q 6= ∅.

For these and other properties of buildings see [13, 14, 9, 11, 12, 15]. We

now define shadow spaces and Grassmann geometries of buildings (cf. [8, Chap-

ter 5], [4], and [1, Sections 2.5 and 11.4]). Suppose B is a building of type M

over a set I, |I| ≥ 1. Let I ′ ⊆ I, let J = I − I ′, and assume that I ′ 6= I.

For a set of chambers X of B, let ShI′(X) be the set of residues of B of type

I ′ meeting X. Let P = {ShI′(X) | X is a residue of B, typ(X) = I ′} and let

L = {ShI′(X) | X is a panel of B, typ(X) ⊆ J}. We remark that here we distin-

guish between an I ′-residue X of B and the corresponding point p = {X} of P,

which is a set whose only element is X. The J -shadow space of B is the point-

line geometry ShSp(B, J) = (P,L) with the incidence being the symmetrization

of the strict containment of sets. We denote G(B, J) the point-collinearity graph

of ShSp(B, J).

The geometry ShSp(B, J) is the truncation to types 1 and 2 of the J -Grass-

mann geometry ShGm(B, J) defined as follows. For T ⊆ I, let KI,I′(T ) denote

the union of the vertex sets of the connected components of M |T meeting J .

The J -Grassmann geometry ShGm(B, J) of B is an incidence geometry (that

is a multipartite graph with labeled parts) over the type set {k ∈ N | 1 ≤
k ≤ |KI,I′(I)|}. The objects of ShGm(B, J) are the sets ShI′(R) with R a

residue of B and KI,I′(typ(R)) finite; the object O = ShI′(R) is of type k in

ShGm(B, J) if and only if |KI,I′(typ(R))| = k − 1; the incidence is the sym-

metrization of the strict containment of sets. The set of objects of ShGm(B, J)
will be denoted ShSet(B, J). For O ∈ ShSet(B, J), the set of all residues R of

B with ShI′(R) = O ordered by inclusion has at least one minimal element O#

and a unique maximal element O#. We have typ(O#) = KI,I′(typ(R)) and

typ(O#) = typ(O#)∪L, where L ⊂ I ′ − typ(O#) consists of the types in I ′ not

adjacent in M to any vertices in typ(O#) (see [13, Chapter 12], [4], or [6]).

For O ∈ ShSet(B, J) and for every residue R of B with ShI′(R) = O, we let

MO =MR :=M |typ(O#).

A plane of ShGm(B, J) (or of ShSp(B, J)) is any object of type 3. For Γ =

ShGm(B, J), the sets of points, lines, and planes will be denoted Pts(Γ), Lin(Γ),

and Pln(Γ). If π ∈ Pln(Γ), then |typ(π#)| = 2 and either typ(π#) ⊆ J or, else,

typ(π#) ∩ J 6= ∅ and M |typ(π#) is connected. A point-line geometry Σ′ ∼=
ShSp(B, J) will be called a J -shadow space of B; a geometry Γ′ ∼= ShGm(B, J)
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is a J -Grassmann geometry of B.

For future reference we introduce the following notation that will be referred

to as Hypothesis (A). We let Γ = ShGm(B, J), let Σ = ShSp(B, J), let O =

ShSet(B, J), let ∼Γ denote the incidence relation in Γ, and let τ denote the

labeling map of Γ assigning to each object O ∈ ShSet(B, J) its type k. For

O ∈ O we denote typ#(O) = typ(O#), typ
#(O) = typ(O#), and we let T =

{typ#(O) | O ∈ O}. We let P = Pts(Γ), L = Lin(Γ), and Π = Pln(Γ). For

X ∈ O and for Y ∈ {P,L,Π}, we let YX = {O ∈ Y | O ∼Γ X}. For a residue R

of B, we let YR = YO, where O = ShI′(R). For R a residue of B or R ∈ O, we

let ΣR = (PR,LR) be the induced subgeometry of Σ.

Remark 1.3. Suppose hypothesis (A) holds.

1. Suppose X, Y , and Z are objects of Γ of types k1, k2, and k3, where k1 <

k2 < k3. If X is incident with Y , and Y is incident with Z, then X is incident

with Z.

2. The shadow space Σ is a partial linear space ([4, Corollary 5.4] and [1,

Lemma 11.4.6]). For collinear points p and q of Γ, the unique line on p and

q will be denoted 〈p, q〉.

3. All singular subspaces of Σ are projective spaces ([5, Corollary 3.14]; [1,

Theorem 11.5.13 and Proposition 11.5.15]). If X is a singular subspace of

finite rank, then X = PR for a residue of B such that M |typ(R) is of type Ak

and typ(R) ∩ J is one of its end nodes ([5, Corollary 3.15]).

4. For every O ∈ O, PO is a convex subspace of Σ ([4, Corollary 6.2]; [1,

Proposition 11.4.9]).

5. For X,Y ∈ O, X ∼Γ Y if and only if X# ∩ Y # 6= ∅ and either typ#(X) (

typ#(Y ) or typ#(Y ) ( typ#(X) (see [13, Theorem 12.15] or [4, Proposi-

ton 4.5]).

Suppose hypothesis (A) holds. For P1 ⊆ P, we denote L|P1 the set of lines of

Σ meeting P1 in at least two distinct points, and we denote Σ|P1 = (P1,L|P1)

the subgeometry induced in Σ on P1 ∪ (L|P1). For a residue R of B, we let

Σ(R) = ShSp(R, J ∩ typ(R)).

Remark 1.4. Let R be a residue of B with |typ#(R)| ≥ 2. By Remark 1.3(4)

and [5, Proposition 3.6] (see also [1, Proposition 11.4.9]) Σ|PR = ΣR and

ΣR
∼= Σ(R), where the isomorphism takes a point or line X of ΣR to the point

or line Y of Σ(R) with Y # = X# ∩R.
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2 Characterization of shadows of residues: Theo-

rem 2.1

Theorem 2.1. Suppose hypothesis (A) holds and let T ∈ T be such that |T | ≥ 2.

Suppose Σ1 = (P1,L1) is a connected full subgeometry of Σ satisfying conditions

(Shd-loc) and (Shd-pln):

(Shd-loc) For every p ∈ P1 there is an object Op of Γ on p with typ#(Op) = T

such that Lp ∩ L1 = Lp ∩ LOp
.

(Shd-pln) For every pair of distinct collinear points p and q of Σ1, and for every

plane π ∈ Π incident with p and q, we have L1 ∩ Lp ∩ Lπ − {〈p, q〉} 6= ∅ if

and only if L1 ∩ Lq ∩ Lπ − {〈p, q〉} 6= ∅.

Then Σ1 = Σ|PO, where O ∈ O and typ#(O) = T .

We need two lemmas.

Lemma 2.2. Suppose the hypothesis of Theorem 2.1 holds and let p, q ∈ P1 be

distinct collinear points of Σ1.

(i) If |T | = 2, then Op = Oq.

(ii) If |T | ≥ 3, then Π〈p,q〉 ∩ΠOp
= Π〈p,q〉 ∩ΠOq

.

Proof. By condition (Shd-loc)Op andOq are both incident with 〈p, q〉. If |T | = 2,

let π = Op; if |T | ≥ 3, let π ∈ Π〈p,q〉 ∩ΠOp
.

By [4, Lemma 5.6(2)] applied to π, there is a line L of π on p distinct from

〈p, q〉. By Remark 1.3(1) L ∈ LOp
, therefore by condition (Shd-loc) L ∈ L1. By

condition (Shd-pln) there is a line N ∈ L1∩Lq ∩Lπ−{〈p, q〉}, and by condition

(Shd-loc) N ∈ LOq
. Since 〈p, q〉 and N are distinct lines of π on q incident with

Oq, by [4, Lemma 5.6(1)] π ⊆ Oq.

If |T | = 2 we have shown that Op = Oq. If |T | ≥ 3, then the above shows

that Π〈p,q〉∩ΠOp
⊆ Π〈p,q〉∩ΠOq

; the reverse inclusion follows by symmetry. �

Lemma 2.3. Assume that the hypothesis of Theorem 2.1 holds and |T | ≥ 2. Then,

for all p, q ∈ P1, we have Op = Oq.

Proof. Since Σ1 is connected it suffices to show that Op = Oq for any two dis-

tinct collinear points p and q of Σ1. For |T | = 2 this is Lemma 2.2(i). Suppose

|T | ≥ 3. By condition (Shd-loc) 〈p, q〉 is incident with both Op and Oq. For

r ∈ {p, q}, let Zr = r# ∩ 〈p, q〉# ∩ O#
r ; by Remark 1.3(5) and by property

(Bld2) of buildings Zr 6= ∅. Let Sr denote the set of all planes π of Γ such that

π# ∩ Zr 6= ∅ and

typ#(〈p, q〉) ⊆ typ#(π) ⊆ T. (2.1)
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We claim that Sr = Π〈p,q〉 ∩ ΠOr
. By the definition of Sr we have Sr ⊆ Π〈p,q〉 ∩

ΠOr
. Suppose π ∈ Π〈p,q〉 ∩ ΠOr

. By Remark 1.3(1) π ∈ Πr, therefore π ∈ Πr ∩
Π〈p,q〉∩ΠOr

and by Remark 1.3(5) and property (Bld2) of buildings π#∩Zr 6= ∅
and (2.1) holds. By Lemma 2.2 Π〈p,q〉 ∩ΠOp

= Π〈p,q〉 ∩ΠOq
, therefore Sp = Sq.

By [4, Corollary 7.4] applied to Zp and Zq this implies that O#
p = O#

q . �

Proof of Theorem 2.1. By Lemma 2.3 there is O ∈ O with typ#(O) = T such

that, for all p ∈ P1, Op = O. We show that O is as in the conclusion. Since Σ1

and Σ|PO are induced subgeometries of Σ, it suffices to prove that P1 ∪ L1 =

PO ∪ (L|PO). By condition (Shd-loc) and the definition of O,

(1) for every point p ∈ P1 and for every L ∈ Lp, L ∈ L1 if and only if L ∈ L|PO.

By the definition of O we have P1 ⊆ PO. Suppose p ∈ PO − P1. Since by

Remark 1.4 Σ|PO
∼= Σ(O) is connected, we can assume that p is collinear in

Σ|PO with q ∈ P1. Therefore by (1) 〈p, q〉 ∈ L1. Since Σ1 is a full subgeometry

of Σ, p ∈ P1, a contradiction. Therefore

(2) P1 = PO.

Let L ∈ L1 ∪ (L|PO). By (2) L is incident with some p ∈ P1, therefore by (1)

L ∈ L1 if and only if L ∈ L|PO. �

3 Characterization of shadows of residues: Theo-

rem 3.1

Suppose hypothesis (A) holds. Let O be an object of Γ and let T = typ#(O). If

O is a point, or if the graph M |T is a string and T ∩ J is one of its end nodes,

then we say that O is an object of Γ of the first kind. All other objects of Γ are

objects of the second kind.

Suppose O is an object of Γ and let k = τ(O). We denote Γ−
O the subgeometry

of Γ induced on the set {O′ ∈ O | O′ ∼Γ O and τ(O′) < k} and we denote Γ+
O

the subgeometry of Γ induced on the set {O′ ∈ O | O′ ∼Γ O and k < τ(O′)}
(cf. [8, Chapter 5]); for p ∈ P, we let Γp = Γ+

p . When they exist, the points,

lines, and planes of Γ−
O are the points, lines, and planes of Γ incident with O;

the points, lines, and planes of Γ+
O are the objects of Γ of types k+1, k+2, and

k + 3 incident with O.

For a building B with the diagram M over a type set I we consider the fol-

lowing conditions.

(Bld-iso) For every X ⊆ I, all residues of B of type X are isomorphic to each

other.
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(Bld-str) For every residue R of B with M |typ(R) a string, and for every {i}-

shadow space ∆ of R with i an end node of M |typ(R), every monomorphism

of ∆ to itself which is surjective on points is an isomorphism.

Theorem 3.1. Suppose hypothesis (A) holds, all mij are integers, and B satisfies

(Bld-iso) and (Bld-str). Let φ : Σ|PO → Σ1 be an isomorphism, where O is an

object of Γ and Σ1 is a subgeometry of Σ. Suppose

(Phi-str) for every object U of Γ of the first kind with PU ⊆ PO, we have φ(PU ) =

PU ′ , where U ′ ∈ O and typ#(U
′) = typ#(U).

Then Σ1 = Σ|PO′ , where O′ ∈ O and typ#(O
′) = typ#(O).

Remark 3.2. Every L ∈ LO is an object of Γ of the first kind, therefore by

(Phi-str) φ(PL) = PL′ for some L′ ∈ L. Since L, and hence φ(L), are incident

with at least two points of Γ and by Remark 1.3(2) Σ is a partial linear space,

L′ = φ(L). Therefore by Lemma 1.2 Σ1 is a full subgeometry of Σ.

Our proof of Theorem 3.1 consists of Propositions 3.3, 3.4, and the conclu-

sion. The conclusion is proved below; Proposition 3.3 and 3.4 will be proved in

Sections 4 and 5 respectively. We let Σ1 = (P1,L1) and T = typ#(O).

Proposition 3.3. Suppose hypothesis (A) holds. Let π be a plane of Γ of the

second kind with typ#(π) = {i, j} and mij ∈ Z. Let {i′, j′} ⊆ J be such that

mij = mi′j′ , and let ξ : {i, j} → {i′, j′} be a bijection. Suppose φ : Σ|Pπ → Σ1 is

an isomorphism, where Σ1 is a full subgeometry of Σ, and

(Phi-lin) for every L ∈ L|Pπ and k ∈ {i, j}, if typ#(L) = {k} then typ#(φ(L)) =

{ξ(k)}.

Then Σ1 = Σ|Pπ′ , where π′ ∈ Π and typ#(π
′) = {i′, j′}.

Proposition 3.4. Suppose the hypothesis of Theorem 3.1 holds and let n = |T |.
Suppose O is of the second kind, n ≥ 3, and the statement of Theorem 3.1 is true

for every object U of the second kind with |typ#(U)| ≤ n− 1. Then

(1) Σ1 satisfies condition (Shd-loc) of Theorem 2.1.

(2) Σ1 satisfies condition (Shd-pln) of Theorem 2.1.

Proof of Theorem 3.1. Suppose first that O is an object of the first kind. Then by

(Phi-str) there exists an object O′ with typ#(O) = typ#(O
′) such that φ(PO) =

φ(PO′). Therefore φ induces a monomorphism α : Σ|PO → Σ|PO′ . Since

typ#(O) = typ#(O
′), by (Bld-iso) and Remark 1.4 there exists an isomorphism

β : Σ|PO′ → Σ|PO. By (Bld-str) α ◦ β : Σ|PO′ → Σ|PO′ is an isomorphism,

therefore so is α.

Suppose now that O is an object of the second kind an let n = |T |; we

have n ≥ 2. We use induction on n. If n = 2, then the conclusion holds by
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Proposition 3.3. Suppose the statement is true for all n ≤ k, where k ∈ Z and

k ≥ 2, and suppose n = k + 1. We claim that Σ1 satisfies the hypothesis of

Theorem 2.1, therefore the conclusion holds. By Remark 1.4 Σ1 is connected

and by Remark 3.2 Σ1 is a full subgeometry of Σ. By Proposition 3.4 Σ1 satisfies

conditions (Shd-loc) and (Shd-pln). �

4 Proof of Proposition 3.3

Suppose C is a chamber system of type M = (mij) over I. Let W = (c0, . . . , cn)

be a gallery in C and suppose that, for i ∈ {0, . . . , n − 1}, the label of the edge

{ci, ci+1} is {ti}. The type of W is t(W ) = t0 . . . tn−1, a word in the free monoid

of words on I. For {i, j} ⊆ I, we denote p(i, j) the word iji . . . of length mij .

Let G = (V,E) be a graph. Suppose that n ≥ 0 is an integer. A walk of

length n in G is a sequence of vertices w = (p0, . . . , pn) such that, for all i ∈
{0, . . . , n−1}, {pi, pi+1} ∈ E; we denote l(w) the length of w. A segment of w is a

concatenation v = w′◦u◦w′′, where w′, u, and w′′ are walks; we also say that the

walk u is a segment of w. The walk w is circular if p0 = pn. A circuit is a circular

walk in which no two vertices are equal. Suppose F = (V ′, E′) is a subgraph of

G and let x ∈ V . The subgraph F is strongly gated inGwith respect to x if there is

a vertex g ∈ V ′ such that, for every vertex y ∈ V ′, dG(x, y) = dG(x, g)+dF (g, y);

we say that g is the gate of x in F and we write g = gateF (x). If F is a subgraph

of G and X ⊆ V , then we let GateF (X) = {gateF (x) | x ∈ X}. A subgraph

is strongly gated in G if it is strongly gated with respect to every vertex of G.

Every residue of a building B is strongly gated in B (see [12, 10, 9]).

Suppose hypothesis (A) holds and let G := G(B, J). Every gallery W =

(c0 . . . , cn) of B determines a walk wG(W ) in G, consisting of p ∈ P with p#

the residues of B of type I ′ traversed by W ; we assume that no two consecutive

vertices of wG(W ) are equal.

Remark 4.1. Suppose hypothesis (A) holds and w = (p0, . . . , pn) is a walk in

G; let c0 ∈ p#0 , and let cn ∈ p#n . Every p#, p ∈ P, is a connected chamber

system and by [5, Lemma 3.10], if 〈p, q〉 ∈ L, then there is a chamber in p#

connected by an edge to a chamber in q#. Therefore, there is a gallery W =

(c0, c
′
1) ◦W1 ◦ (c1, c

′
2) ◦W2 ◦ · · · ◦ (cn−1, c

′
n) ◦Wn from c0 to cn in B such that,

for every i ∈ {1, . . . , n}, {c′i, ci} ⊆ p#i and Wi is a walk from c′i to ci in p#i . We

have wG(W ) = w; in general, the gallery W is not unique.

For k ∈ J , let Lk = {L ∈ L | typ#(L) = {k}}. Suppose w = (p0, . . . , pn) is

a walk in G, and every edge of w spans a line in ∪k∈HLk, H ⊆ J . Then we say

that w is an {Lk | k ∈ H}-walk. If, for every k ∈ H, there is at least one edge
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of w spanning a line in Lk, then we say that w is a strictly {Lk | k ∈ H}-walk

in G. The {Lk | k ∈ H}- and strictly {Lk | k ∈ H}-circular walks, circuits, and

segments are defined similarly.

Remark 4.2. Suppose hypothesis (A) holds. Let w be a circular strictly {Li,Lj}-

walk such that w = w′ ◦ w′′, where w′ = (p0, . . . , pk), w
′′ = (pk, . . . , pn),

〈pk−1, pk〉 ∈ Li, 〈pk, pk+1〉 ∈ Lj and, for all {i, j} ⊆ {0, . . . , k} and all {i, j} ⊆
{k, . . . , n}, pi 6= pj . Then there exists a segment of w containing pk which is

a strictly {Li,Lj}-circuit: it is the shortest circular segment of w containing

(pk−1, pk, pk+1).

Proposition 4.3. Suppose hypothesis (A) holds. Let {i, j} ⊆ J and suppose mij ∈
Z. Let w be a strictly {Li,Lj}-circuit in G with the smallest possible length among

all strictly {Li,Lj}-circuits of G. Then w = wG(C) for a circuit C in B with

t(C) = p(i, j) ◦ p(j, i)−1.

The proof of Proposition 4.3 consists of Lemmas 4.4 and 4.5 below. First,

we introduce some notation. Suppose the hypothesis of Proposition 4.3 holds

and w = (p0, . . . , pn). Since w is a strictly {Li,Lj}-circuit, there is a vertex

pk of w, such that the edges {pk−1, pk} and {pk, pk+1} span lines in Lj and Li

respectively, where the indices are added modulo n. Renumbering the vertices

of w if neccessary, we can assume that 〈pn−1, p0〉 ∈ Lj and 〈p0, p1〉 ∈ Li; we let

p = p0. Let W be defined as in Remark 4.1 with c0 = cn. We let x = c0, x′ = c′1,

y = c′0, and y′ = cn−1. Since 〈p0, p1〉 ∈ Li and 〈pn−1, p0〉 ∈ Lj , the edges {x, x′}
and {y′, y} are labelled {i} and {j} respectively.

Lemma 4.4. Suppose the hypothesis of Proposition 4.3 holds. Then l(w) cannot

be odd.

Proof. Suppose l(w) is odd, let l = (l(w) − 1)/2, let q′ = pl, and let q′′ = pl+1.

Let a = cl and let b = c′l+1; then {a, b} is an edge of B labelled {k} for some k ∈
{i, j}. Let Q be the panel of B of type {k} containing {a, b}, let z ∈ Gatep#(Q),

and let c = gateQ(z); then z = gatep#(c) (see, for example, [4, Lemma 2.2]).

We are going to construct a strictly {Li,Lj}-circuit of length less than l(w).

Let U = (c0, c
′
1) ◦W1 ◦ · · · ◦ (cl−1, c

′
l) ◦Wl and V = Wl+1 ◦ (cl+1, c

′
l+2) ◦ · · · ◦

(cn−1, c
′
0). Then U is a walk from x to a, V is a walk from b to y, and W =

U ◦ (a, b) ◦ V ◦W0. We define u = wG(U) and v = wG(V ); then l(u) = l = l(v),

the first edge of u spans a line in Li, the last edge of v spans a line in Lj , and

w = u ◦ (q′, q′′) ◦ v.

Let W ′
0 be a geodesic from x to z in p# and let U ′ = (W ′

0)
−1 ◦ U ◦ (a, c).

Let U ′′ be a geodesic from z to c, such that t(U ′′) is obtained from t(U ′) ex-

clusively by deleting terms, without using any other operations; U ′′ exists by
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[6, Corollary 2.2]. Similarly, let W ′′
0 be a geodesic from y to z in p#, let

V ′ = (c, b) ◦ V ◦ W ′′
0 , and let V ′′ be a geodesic from c to z, such that t(V ′′)

is obtained from t(V ′) by deleting terms.

Define u′ = wG(U
′), u′′ = wG(U

′′), v′ = wG(V
′), and v′′ = wG(V

′′). Let

W ′ = U ′′ ◦ V ′′ and let w′ = wG(W
′). We show that w′ is a strictly {Li,Lj}-

circular walk and l(w′) < l(w). This will be done in steps.

(1) l(u′′) ≥ 1 and l(v′′) ≥ 1.

Suppose l(u′′) = 0 or l(v′′) = 0. Then z = c. Since w is a strictly {Li,Lj}-circuit,

typ(U) or typ(V ) or both contain l ∈ {i, j} such that l 6= k; without loss of

generality assume that l is in typ(U). Then (p0, . . . , pl, p0) is a strictly {Li,Lj}-

circuit of length less than l(w), since it does not contain pl+1; a contradiction.

(2) Either c = a and l(u′) = l(u) or, else, c 6= a, l(u′) = l(u) + 1, and the last

letter k is deleted from t(U ′) when moving to t(U ′′). Similarly, either c = b

and l(v′) = l(v) or, else, c 6= b, l(v′) = l(v)+1, and the first letter k is deleted

from t(V ′) when moving to t(V ′′).

We prove the statement regarding u. Suppose c 6= a; then l(u′) = l(u)+1. Since

U ′′ is a geodesic from z to gateQ(z), the last edge of U ′′ cannot be labelled {k}.

(3) l(u′′) = l(u) and l(v′′) = l(v).

We prove the statement regarding l(u′′). By (1) and (2) 1 ≤ l(u′′) ≤ l(u).

Suppose that l(u′′) < l(u). If the first edge of u′′ spans a line in Li, then let

W ′′ = U ′′ ◦ (c, b) ◦ V ◦ W ′′
0 . If the first edge of u′′ spans a line in Lj , then

let W ′′ = U ′′ ◦ (c, a) ◦ U−1 ◦ W ′
0. Let w′′ = wG(W

′′). Then w′′ is a circular

strictly {Li,Lj}-walk, and either its first edge spans a line in Li and its last

edge spans a line in Lj , or the other way around. Using that l(u) = l(v), we

obtain l(w′′) = l(u′′) + l(v) + 1 < l(u) + l(v) + 1 = l(w). By Remark 4.2 this

contradicts the minimality of w.

(4) The first edge of u′′ spans a line in Li and the last edge of v′′ spans a line

in Lj .

We prove the statement regarding u′′. By (2) there are two possibilities. If

c = a, then l(u′) = l(u). By (3) l(u′′) = l(u), therefore no letters i or j are

deleted when switching from t(U ′) to t(U ′′). Suppose c 6= a. Then by (2)

l(u′) = l(u) + 1 and the last letter k is deleted when switching from t(U ′) to

t(U ′′). By (3) l(u′′) = l(u), therefore no other letters i of j were deleted. Since

by (1) l(u′′) ≥ 1, the first letter i in typ(U ′) remains in typ(U ′′).

We can now finish the proof of the lemma. By (4) w′ is a circular strictly

{Li,Lj}-walk and by (3) l(w′) = l(u) + l(v) ≤ l(w) − 1. By Remark 4.2 this

contradicts the minimality of l(w). �
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Lemma 4.5. If the hypothesis of Proposition 4.3 holds and l(w) is even, then the

conclusion of Proposition 4.3 holds.

Proof. Let l = (1/2)l(w) and let q = pl. Let z ∈ Gatep#(q#) and let c =

gateq#(z); then z = gatep#(c). Let a = c′l and let b = cl; then Wl is a gallery

from a to b. Let U = (c0, c
′
1) ◦ W1 ◦ · · · ◦ (cl−1, c

′
l) and let V = (cl, c

′
l+1) ◦

Wl+1 ◦ . . . (cn−1, c
′
0); then U is a walk from x to a, V is a walk from b to y, and

W = U ◦Wl ◦ V ◦W0. Define u = wG(U) and v = wG(V ); then u is walk from

p to q, v is a walk from q to p, l(u) = l = l(v), the first edge of u spans a line in

Li, the last edge of v spans a line in Lj , and w = u ◦ v.

Let W ′
0 and W ′′

0 be geodesics from x to z and from y to z, and let W ′
l and

W ′′
l be geodesics from a to c and from b to c. Define U ′ = (W ′

0)
−1 ◦ U ◦W ′

l .

There exists a geodesic U ′′ from z to c, such that t(U ′′) is obtained from t(U ′)

by deleting terms. Similarly, let V ′ = (W ′′
l )

−1 ◦V ◦W ′′
0 and let V ′′ be a geodesic

from c to z, such that t(V ′′) is obtained from t(V ′) by deleting terms.

Define u′ = wG(U
′), u′′ = wG(U

′′), v′ = wG(V
′), and v′′ = wG(V

′′).

(1) l(u′′) = l(u), and the first edge of u′′ spans a line in Li. Similarly, l(v′′) =

l(v), and the last edge of v′′ spans a line in Lj .

We prove the statement regarding u′′. Suppose l(u′′) < l(u). If the first edge of

u′′ spans a line in Li, let W ′ = U ′′ ◦ (W ′′
l )

−1 ◦ V ◦W ′′
0 . If the first edge of u′′

spans a line in Lj , let W ′ = U ′′ ◦ (W ′
l )

−1 ◦U−1 ◦W ′
0. Define w′ = wG(W

′). Then

w′ is a circular {Li,Lj}-walk, and either its first edge spans a line in Li and its

last edge spans a line in Lj , or the other way around. Using that l(u) = l(v), we

have l(w′) = l(u′′) + l(v) < l(u) + l(v) = l(w). By Remark 4.2 this contradicts

the minimality of w. Therefore l(u′′) = l(u) and t(U ′′) is obtained from t(U ′)

by deleting letters not contained in {i, j}. This implies that the first edge of u′′

spans a line in Li.

(2) Let x′′ be the chamber that follows z in the walk U ′′, and let y′′ be the

chamber that preceeds z in the walk V ′′. Then the edge {z, x′′} is labelled

{i} and the edge {z, y′′} is labelled {j}.

Since (U ′′)−1 is a geodesic from c to z = gatep#(c), we have x′′ 6∈ p#. Therefore

the conclusion follows from (1). The proof for V ′′ is similar.

(3) Let a′ be the chamber that preceeds c in the walk U ′′, and let b′ be the

chamber that follows c in the walk V ′′. Then a′ 6= b′ and the labels of the

edges {a′, c} and {c, b′} are distinct elements of {{i}, {j}}.

Since the walks U ′′ and (V ′′)−1 are geodescis from z to c = gateq#(z), the edges

{a′, c} and {c, b′} do not lie in q#. Suppose that the label of both {a′, c} and

{c, b′} is {k}, k ∈ {i, j}, and let Q be the panel of B of type {k} on c. Since U ′′

and (V ′′)−1 are geodesics from z to c, we have d(z, a′) = d(z, c) − 1 = d(z, b′),
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therefore a′ = gateQ(z) = b′. Let U ′′′ be the initial segment of U ′′ begining

with z and ending with a′, let V ′′′ be the terminal segment of V ′′ begining

with b′ and ending with z, let W ′ = U ′′′ ◦ V ′′′, and let w′ = wG(W
′). By (1)

l(w′) = l(u)− 1+ l(v)− 1 < l(w), and the first and last edges of w′ span lines in

Li and Lj respectively. By Remark 4.2 this contradicts the minimality of w.

Let R be the residue of B of type {i, j} containing z and let g = gateR(c).

(4) z and g are opposite in R, and c = gateq#(g).

Since g = gateR(c), g lies on a geodesic from c to z in B. Therefore, g lies

on a geodesic from z to c in B. Since gateq#(z) = c, gateq#(g) = c. By (2)

x′′, y′′ ∈ R. Since U ′′ is a geodesic from z to c, dB(c, x
′′) = dB(c, z) − 1. Since

g = gateR(c), this implies dR(g, x
′′) = dR(g, z) − 1. Similarly, dR(g, y

′′) =

dR(g, z)− 1. Therefore z and g are opposite in R.

(5) Suppose g 6= c. Let Y be a geodesic from g to c in B, and let c′ be the vertex

of Y that preceeds c. Then c′ = a′ or c′ = b′.

All letters appearing in t(U ′′) belong to I ′∪{i, j}, therefore z and c are contained

in one residue R′ of B of type I ′ ∪ {i, j}, and R ⊆ R′. By convexity of R′ all

vertices of Y lie in R′, therefore the label of the edge {c′, c} is contained in

I ′ ∪ {i, j}. Since by (4) c = gateq#(g), we have c′ 6∈ q#, therefore the label of

{c′, c} is {i} or {j}. Let {k} be the label of {a′, c}, let {l} be the label of {b′, c},

and let {m} be the label of {c′, c}. By (3) m ∈ {k, l}. Suppose m = k and let

Q be the panel of B of type {k} on c. Since a′ and c′ lie on geodesics from z

to c, we have dB(z, a
′) = dB(z, c) − 1 = dB(z, c

′), therefore a′ = gateQ(z) = c′.

Similarly, if m = l then b′ = c′.

(6) c = g.

Suppose g 6= c; then by (5) c′ = a′ or c′ = b′. Suppose c′ = a′. Let S be

the initial segment of V ′′ starting with c and ending with y′′, and let Z be a

geodesic from y′′ to g; then Z ◦ Y and S−1 are geodesics from y′′ to c in B. Let

A be an apartment of B containing c and z; since A is a convex induced chamber

subsystem of B, the galleries Z ◦ Y and S−1 lie in A. Let r be the reflection in

the Coxeter group of A stabilizing the edge {a′, c}. Then r must stabilize exactly

one edge of S. Therefore, S = S1 ◦ (d, d
′) ◦ S2, where {d, d′} is stabilized by r.

Let S′
1 be the image of S1 under r; then S′

1 is a walk from a′ to d′. Let

U ′′
1 be the initial segment of U ′′ that begins with z and ends with a′. Define

s′1 = wG(S
′
1), s2 = wG(S2), u

′′
1 = wG(U

′′
1 ) and let w′ = u′′1 ◦ s′1 ◦ s2 ◦ (y′′, z).

Then w′ is a circular {Li,Lj}-walk, and by (1) the first and last edges of w′′

span lines in Li and Lj respectively and l(u′′1) = l(u) − 1. Therefore l(w′) =

l(u′′1) + l(s′1) + l(s2) + 1 ≤ l(u)− 1 + l(v) < l(w), by Remark 4.2 a contradiction

with the minimality of w. The case c′ = b′ is similar.

(7) The walks u and v−1 are geodesics from p to q in G.
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We prove the statement regarding u. By (1) l(u) = l(u′′). We show that u′′

is a geodesic from p to q in G. By (6) the gallery U ′′ lies in R. Let ∆ =

ShSp(R, {i, j}); the points and lines of ∆ are the chambers and panels of R

respectively, and the point-collinearity graph of ∆ is the graph of the chamber

system R with the lables removed. Let ψ : Σ|PR → ∆ be the isomorphism of

Remark 1.4; the image under ψ of the walk u′′ is U ′′. Since U ′′ is a geodesic in

R, and by Remark 1.3(4) PR is a convex subspace of Σ, u′′ is a geodesic in G.

(8) All vertices of w are in PR.

By (7) u and v−1 are geodesics from p to q in G, and by by Remark 1.3(4) PR is

a convex subspace of Σ, therefore (8) holds.

We can now finish the proof of the lemma. Let ∆ and ψ be as in the proof

of (7) and let G be the point-collinearity graph of ∆; let L′
i and L′

j be the sets

of the panels of R of types {i} and {j} respectively. By (8) ψ(w) is a shortest

strictly {L′
i,L

′
j}-circuit of G. Since R is a generalized mij-gon, ψ(w) = C for a

circuit C of R of type p(i, j) ◦ p(j, i)−1. Then w = wG(C). �

Corollary 4.6. Suppose hypothesis (A) holds, let {i, j} ⊆ J , and let w be a

strictly {Li,Lj}-circuit of G of length 2mij . Then there exists a plane π of Γ

with typ#(π) = {i, j} such that all vertices of w lie in Pπ.

Proof. By Proposition 4.3 there is a circuit C of B of type p(i, j) ◦ p(j, i)−1 such

that w = wG(C). Let π ∈ Π be such that typ#(π) = {i, j} and π# contains C.

�

The following is immediate from Remark 1.4 and [5, Proposition 3.8(2)].

Lemma 4.7. Suppose hypothesis (A) holds, let {i, j} ⊆ J , and let π be a plane

of Γ with typ#(π) = {i, j}. Then Σ|π is a generalized 2mij-gon with exactly two

lines on each point; its point-collinearity graph is isomorphic to the graph of the

residue π# with the labels removed. �

Proof of Proposition 3.3. By Lemma 4.7 G|Pπ contains a strictly {Li,Lj}-circuit

w0 of length 2mij . Let w = (p0, . . . , pn) be the image of w0 under φ. By (Phi-lin)

w is a strictly {Li′ ,Lj′}-circuit of G of length 2mij , therefore by Corollary 4.6

there is a plane π′ of Γ, such that typ#(π
′) = {i′, j′} and {p0, . . . , pn} ⊆ Pπ′ .

We claim that

(1) P1 ⊆ Pπ′ .

To prove (1) we consider two cases. Suppose first that mij = 2; then l(w) = 4.

By Lemma 4.7 Σ1 is a grid, therefore it is spanned by the vertices of w. By

Remark 1.3(4) Pπ′ is a subspace of Σ, therefore (1) holds.
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Suppose now that mij ≥ 3 and let G1 denote the point-collinearity graph of

Σ1. Let q ∈ P1 and let w′ = (q0, . . . , ql) be a geodesic from q0 = p0 to ql = q

in G1. By Lemma 4.7 and condition (Phi-lin), l ≤ mij , the edges of w′ span

lines belonging alternately to Li′ and Lj′ , and the walk w′ can be completed to

a strictly {Li′ ,Lj′}-circuit w′′ of G1 of length 2mij . By Corollary 4.6 there is a

plane π′′ of Γ, such that typ#(π
′′) = {i′, j′} and Pπ′′ contains the vertices of w′′.

We are going to show that π′ = π′′.

Suppose first that w and w′′ share two edges on p0. Since typ#(〈p0, p1〉) 6=
typ#(〈p0, pn〉), 〈p0, p1〉 and 〈p0, pn〉 are two distinct lines incident with both π′

and π′′. Therefore by [4, Lemma 5.6(1)] π′ = π′′.

Suppose now that {p1, pn} 6= {q1, qn}. First, replacing w′′ with (w′′)−1 if

necessary, we can assume that qn 6∈ {p1, pn}. Then replacing w with w−1 if

necessary, we can assume that 〈p0, p1〉 ∈ Lα and 〈p0, qn〉 ∈ Lβ , where {α, β} =

{i′, j′}. By hypothesis mij ≥ 3, therefore every gallery of B of type iji or jij is a

geodesic and can be extended to a circuit of length 2mij of type p(i, j)◦p(j, i)−1.

Therefore by condition (Phi-lin) every walk in G1 of length 3, whose edges

span lines belonging alternately to Li′ and Lj′ , can be extended to a strictly

{Li′ ,Lj′}-circuit of length 2mij . Let w1 and w2 be strictly {Li′ ,Lj′}-circuits of

G1 of length 2mij containing segments (p2, p1, p0, qn) and (p1, p0, qn, qn−1) re-

spectively. By Corollary 4.6, for each γ ∈ {1, 2}, there is a plane πγ of Γ, such

that typ#(πγ) = {i′, j′} and the shadow Pπγ
contains the vertices of wγ . The

planes π1 and π2 share the lines 〈p0, p1〉 and 〈p0, qn〉. Since 〈p0, p1〉 ∈ Lα and

〈p0, qn〉 ∈ Lβ , 〈p0, p1〉 6= 〈p0, qn〉. Therefore by [4, Lemma 5.6(1)] π1 = π2.

Similarly, π1 = π′ and π2 = π′′. Therefore, π′ = π′′ and q ∼Γ π
′.

(2) P1 = Pπ′ .

Suppose q ∈ Pπ′ − P1. Since Σ|Pπ′ is connected, we can assume that q is

collinear with a point r ∈ P1 via a line L1 ∈ L|Pπ′ . By Lemma 4.7 r lies

on exactly two lines L1, L2 of Σ|Pπ′ and on exactly two lines N1, N2 of Σ1.

Since, for every i ∈ {1, 2}, Ni is incident with at least two points in P1, and

by Remark 1.3(4) Pπ′ is a subspace of Σ, we have {L1, L2} = {N1, N2}. By

Remark 3.2 Σ1 is a full subgeometry of Σ, therefore q ∈ P1, a contradiction

with the choice of q. �

5 Proof of Proposition 3.4

Here and in Subsections 5.1–5.2 we prove preliminary results. We complete the

proof of Proposition 3.4 in Subsection 5.3.

Lemma 5.1. Suppose the hypothesis of Proposition 3.4 holds. Then, for every

object U of Γ−
O, φ induces an isomorphism Σ|PU → Σ|PU ′ , where U ′ ∈ O and
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typ#(U
′) = typ#(U).

Proof. If U is an object of the second kind, then |typ#(U)| < |T | and the re-

striction φ|PU satisfies the hypothesis of Theorem 3.1, therefore the conclu-

sion holds by hypothesis. Suppose U is an object of the first kind. Then by

condition (Phi-str) of Theorem 3.1 there is U ′ ∈ O such that φ(PU ) = PU ′

and typ#(U) = typ#(U
′). By Remark 1.4, condition (Bld-iso), and condition

(Bld-str), U ′ is as in the conclusion. �

Corollary 5.2. Suppose the hypothesis of Proposition 3.4 holds. Then φ induces a

monomorphism φ : Γ−
O → Γ defined by, for all objects U of Γ−

O, φ(U) = U ′, where

U ′ is as in Lemma 5.1. �

5.1 An auxiliary proposition

Suppose hypothesis (A) holds. Let p ∈ P and let H ⊆ J . We let Γ(p,H) be the

subgeometry induced in Γ on the set of all objects U of Γ incident with p, that

have the property that typ#(U) ∩ J = H. If U is an object of Γ(p,H), then its

type in Γ(p,H) is τ(U) − |H|. The objects of Γ(p,H) of types 1 and 2 will be

called points and lines of Γ(p,H) respectively. We denote Σ(p,H) and Op,H the

point-line truncation and the set of objects of Γ(p,H). For U ∈ O incident with

p, we denote Γ(p,H)−U and Σ(p,H)U the subgeometries of Γ(p,H) and Σ(p,H)

induced on the sets of objects belonging to Γ−
U .

For H ⊆ I, define H := typ#(U), where U ∈ O and typ#(U) ⊆ H ⊆
typ#(U). Recall that p# is an I ′-residue of B. Suppose now that H ⊆ J .

Let H ′ = I ′ ∩ H, H ′′ = I ′ − H ′, Φ(p,H) = ShGm(p#, H ′′), and ∆(p,H) =

ShSp(p#, H ′′). For U ∈ O, we define Up,H = ShH′(U# ∩ p#). For T ⊆ I

we let TH = typ#(Up,H) and TH = typ#(Up,H), where U ∈ O is such that

typ#(U) ⊆ T ⊆ typ#(U); both TH and TH are subsets of I ′.

The purpose of this subsection is to prove the following.

Proposition 5.3. Suppose the hypothesis of Proposition 3.4 holds. Let p ∈ PO, let

q = φ(p), and let H ⊆ J ∩ T . Suppose that (C1) or (C2) holds.

(C1) |H| = 1 and Op,H is an object of Φ(p,H) of the first kind.

(C2) |H| ∈ {1, 2} and Op,H is an object of Φ(p,H) of the second kind.

Then φ induces isomorphisms

(1) Σ(p,H)O → Σ(q,H)O′ , where O′ ∈ O and typ#(O′) = H ∪ TH .

(2) ∆(p,H)Op,H
→ ∆(q,H)Oq,H

, whereOq,H is an object of Φ(q,H) with typ#(Oq,H) =

TH .
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The proof of Proposition 5.3 consists of Lemmas 5.4–5.9 below. First, we

will show that Parts (1) and (2) of the conclusion are equivalent. Suppose

hypothesis (A) holds. We say that S ⊆ I is I ′-closed if S = typ#(U) for some

U ∈ O. For S ⊆ I with typ#(U) ⊆ S ⊆ typ#(U) we let ClI,I′(S) := S, where

S is as defined before Proposition 5.3, and we call this the I ′-closure of S in

I. If D is the diagram graph of B (that is, the diagram M with the edge labels

removed), then typ#(U) = typ#(U) ∪ (I ′ − X), where X = ∪{D0,1(k) | k ∈
typ#(U)} and D0,1(k) denotes the set of vertices equal or adjacent to k in D.

Lemma 5.4. Suppose hypothesis (A) holds, D is the diagram graph of B, and

H ⊆ J . We use the notation of the beginning of this subsection.

(1) Suppose T is an I ′-closed subset of I and T ∩ J = H. Then T ∩ I ′ is an

H ′-closed subset of I ′.

(2) Suppose S is an H ′-closed subset of I ′ and T = H ∪ S. Then T is an I ′-closed

subset of I.

(3) Let T ⊆ I and S ⊆ I ′. Let T ′ = ClI′,I′−S(T ∩ I ′), K = KI,I′(T ), and

K ′ = KI′,I′−S(T
′). Suppose T ∩ S ⊆ K. Then the graph D|K ′ is the union

of the connected components of the graph D|(K ∩ I ′) meeting S nontrivially.

(4) Under the hypothesis of Proposition 5.3 the graph D|TH is the union of the

connected components of D|(T ∩ I ′) meeting H ′′ nontrivially. �

Lemma 5.5. Suppose hypothesis (A) holds, let p ∈ P, and let H ⊆ J .

(1) Let ψp,H : Γ(p,H) → Φ(p,H) be defined by, for every U ∈ Op,H , ψp,H(U) =

ShH′(U# ∩ p#). Then ψp,H is an isomorphism.

(2) Let V ∈ O, p ∈ PV , and H ⊆ typ#(V ) ∩ J . Then ψp,H induces an isomor-

phism Γ(p,H)−V → Φ(p,H)−Vp,H
.

Proof. Part (1) is immediate from Remark 1.3(5), Lemma 5.4 (1) and (2), and

properties (Bld1) and (Bld2) of buildings. To prove (2) we need to show that

U is an object of Γ(p,H)−V if and only if U ′ := ShH′(U# ∩ p#) is an object of

Φ(p,H)−Vp,H
. Let S = typ#(V ). Suppose U is an object of Γ(p,H), let N =

typ#(U) and N ′ = typ#(U
′); we have N ′ = N −H.

Suppose first that U is an object of Γ(p,H)−O. By property (Bld2) of buildings

U# ∩V # ∩ p# 6= ∅, therefore (U ′)# ∩V #
p,H 6= ∅. Since N ⊆ S, by Lemma 5.4(3)

N ′ ⊆ SH . Therefore by Remark 1.3(5) U ′ is incident with Vp,H in Φ(p,H).

Suppose now that U ′ is an object of Φ(p,H)−Vp,H
. Then (U ′)# ∩V #

p,H contains

a residue of V #
p,H of type SH − SH , therefore (U ′)# meets every residue of

V #
p,H of type SH nontrivially. Since by Lemma 5.4(4) SH ⊆ S, we obtain that

(U ′)#∩V # 6= ∅. Therefore, using Lemma 5.4(1), U#∩V # 6= ∅. Since N ′ ( SH

and H ⊆ S, N ( S. This shows that U is an object of Γ(p,H)−V . �
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From Lemma 5.5(2) applied to O we immediately obtain the following.

Corollary 5.6. Conclusions (1) and (2) of Proposition 5.3 are equivalent. �

Suppose the hypothesis of Proposition 5.3 holds, except possibly for (C1) and

(C2). By Corollary 5.2 and Lemma 5.5(2) ψq,H ◦ φ ◦ ψ−1
p,H induces a monomor-

phism φ∗ : Φ(p,H)−Op,H
→ Φ(q,H).

Lemma 5.7. If the hypothesis of Proposition 5.3 holds and condition (C1) is sat-

isfied, then Part (2) of the conclusion of Proposition 5.3 holds.

Proof. Suppose H = {i}. First we prove that

φ∗(Pts(Φ(p,H)Op,H
) = Pts(Φ(q,H))Oq,H

for an object Oq,H of Φ(q,H)

with typ#(Oq,H) = TH .

Let S = H ∪ TH and let U ∈ O be such that U# is the residue of B of type S

containing O#
p,H . By condition (C1) U is of the first kind and by hypothesis O is

of the second kind, therefore U 6= O. Using Lemma 5.4(4) and Remark 1.3(5)

we see that U is an object of Γ−
O, therefore by Lemma 5.1 φ induces a bijection

(L|PU ) → (L|PU ′) taking lines with typ# equal to H to lines with typ# equal

to H, where U ′ ∈ O and typ#(U ′) = S. By Lemma 5.5(2) the object Oq,H :=

ShH′((U ′)# ∩ q#) is as claimed.

By Remark 1.4 and (Bldg-iso) Φ(p,H)Op,H
∼= Φ(q,H)Oq,H

. Therefore by

Corollary 5.2, condition (Bld-str), and the claim above φ induces an isomor-

phism ∆(p,H)Op,H
→ ∆(q,H)Oq,H

. �

Suppose hypothesis (A) holds and let φ : Σ|PO → Σ be a monomorphism,

where O ∈ O. We consider the following extension of (Phi-str).

(Phi-all) for every object U of Γ−
O, we have φ(PU ) = PU ′ , where U ′ ∈ O and

typ#(U
′) = typ#(U).

Suppose the hypothesis of Proposition 5.3 holds, except possibly for (C1) and

(C2). By (Bld-iso) there exists an isomorphism λ : Φ(p,H) → Φ(q,H). Let

Op,H,λ = λ(Op,H) and let θ : ∆(q,H)Op,H,λ
→ ∆(q,H) be the monomorphism

induced by φ∗ ◦ λ−1.

Lemma 5.8. Suppose the hypothesis of Proposition 5.3 holds, except possibly for

conditions (C1) and (C2), and suppose |H| ∈ {1, 2}. Then θ satisfies (Phi-all).

Proof. Let U be an object of Φ(q,H)−Op,H,λ
and let S0 = typ#(U). Let S = H∪S0,

and let V ∈ O be such that typ#(V ) = S and (λ−1(U))# ⊆ V #; then by

Lemma 5.5 V is an object of Γ(p,H)−O. Let V ′ = φ(V ); then V ′ is an object

of Γ(q,H) and typ(V ′) = S. Define U ′ := ψq,H(V ′). By Lemma 5.5(1) to

show that U ′ is as in the conclusion it suffices to show that φ(A) = A′, where
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A = Pts(Γ(p,H))V and A′ = Pts(Γ(q,H))V ′ . Since by Lemma 5.1 φ satisfies

condition (Phi-all), and the incidence is inclusion, φ(A) ⊆ A′. It remains to

prove the reverse inclusion.

Case 1. Suppose |H| = 1. Then the elements of Pts(Γ(p,H)) and Pts(Γ(q,H))

are lines of Γ with typ# equal to H, and all lines of Γ incident with V and

V ′ have typ# equal to H, therefore A = LV ∩ Lp and A′ = LV ′ ∩ Lq. By

Lemma 5.1 φ(LV ) = LV ′ , therefore φ(A) = A′.

Case 2. Suppose |H| = 2. Then the elements of Pts(Γ(p,H)) and Pts(Γ(q,H))

are planes of Γ of the second kind with typ# equal to H. Let π′ ∈ A′ and

let φπ′ be the restriction of φ−1 to Σ|Pπ′ . Then φπ′ satisfies the hypothesis

of Proposition 3.3. Indeed, let Σ′ = (P ′,L′) be the image of Σ|Pπ′ under

φπ′ . Since φ satisfies condition (Phi-str), Σ′ is a full subgeometry of Σ and

condition (Phi-lin) holds. By Proposition 3.3 there is a plane π ∈ A, such

that φ(π) = π′. Therefore A′ ⊆ φ(A). �

Lemma 5.9. Suppose that the hypothesis of Proposition 5.3 holds and condition

(C2) is satisfied, then Part (2) of the conclusion of Proposition 5.3 holds.

Proof. The morphism θ satisfies the hypothesis of Theorem 3.1. Indeed, by

Lemma 5.8 θ satisfies (Phi-str) and, since B satisfies (Bld-iso) and (Bld-str),

so does the building q. By Lemma 5.4(4) (H ∪ TH) ⊆ T and, since H 6= ∅,

|TH | < T . Therefore the object Oq,H exists by the inductive hypothesis. �

5.2 Intersections of pairs of residues Qq,{i}

The object of this section is to prove the following.

Proposition 5.10. Suppose the hypothesis of Proposition 3.4 holds. Let p ∈ PO

and let q = φ(p). For every i ∈ T ∩ J , let Oq,{i} be the object of Φ(q, {i}) whose

existence is asserted in Proposition 5.3. Then O#
q,{i} ∩ O

#
q,{j} 6= ∅ for all {i, j} ⊆

J ∩ T .

Lemma 5.11. Suppose that the hypothesis of Theorem 3.1 holds. Let p ∈ PO,

let q = φ(p), let {i, j} ⊆ T ∩ J , and suppose Li ∈ Pts(Γ(p, {i})) and Lj ∈
Pts(Γ(p, {j})) are such that L#

i ∩ L#
j 6= ∅. Then φ(Li)

# ∩ φ(Lj)
# ∩ q# 6= ∅.

Proof. For α ∈ {i, j}, let L′
α = φ(Lα); by condition (Phi-str), for α ∈ {i, j},

typ#(L
′
α) = {α}. Let π ∈ Pts(Γ(p, {i, j})) be such that π# ∩ p# = L#

i ∩

L#
j ∩ p#. By Proposition 3.3 φ induces an isomorphism Σ|Pπ → Σ|Pπ′ , where

π′ ∈ Pts(Γ(q, {i, j})). Since the incidence is inclusion, π′ is incident with L′
i, L

′
j ,

and q. Therefore (L′
i)

# ∩ (L′
j)

# ∩ q# = (π′)# ∩ q# 6= ∅. �
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Using notation of Proposition 5.3, for H ⊆ J ∩ T , let O′
q,H = ψ−1

q,H(Oq,H);

then (O′
q,H)# is the residue of B of type H ∪ TH containing O#

q,H .

Recall that for S ⊆ I and U ∈ O with typ#(U) ⊆ S ⊆ typ#(U) we denote

ClI,I′(S) = typ#(U), the I ′-closure of S in I (see Subsection 5.1). For a residue

R of B we define the I ′-closure ClI,I′(R) of R in B to be the residue of B of type

ClI,I′(typ(R)) containing R.

Proof of Proposition 5.10. Let {i, j} ∈ T ∩ J . Suppose Op,{i,j} is an object of

Φ(p, {i, j}) of the first kind. Then, since typ#(Op,{i,j}) is the union of the vertex

sets of the connected components of D|(T ∩I ′) meeting D(i)∪D(j) nontrivially,

|(D(i) ∪ D(j)) ∩ T ∩ I ′| ≤ 1. Therefore Cases 1 and 2 below exhaust all the

possibilities.

Case 1. |(D(i) ∪D(j)) ∩ T ∩ I ′| ≤ 1.

First, we prove two claims.

(1) For every lineNi ∈ Pts(Γ(q, {i}))O′
q,{i}

, there is a lineNj ∈ Pts(Γ(q, {j}))O′
q,{j}

such that N#
i ∩N#

j 6= ∅.

Let Ni ∈ Pts(Γ(q, {i}))O′
q,{i}

and let Li ∈ Pts(Γ(p, {i}))O be such that Ni =

φ(Li). By (Bld2) and Remark 1.3(5) the intersection L#
i ∩p#∩O# is nonempty,

therefore there is a line Lj ∈ Pts(Γ(p, {j}))O such that L#
i ∩ L#

j ∩ p# ∩ O# 6=

∅. Let Nj = φ(Lj); then Nj ∈ Pts(Γ(q, {j}))O′
q,{j}

. Since L#
i ∩ L#

j 6= ∅, by

Lemma 5.11 Ni
# ∩Nj

# 6= ∅.

Let S = {i, j} ∪ (I ′ −D(i) ∩D(j)). Then

(2) ClI′,I′∩S(O
#
q,{i}) = ClI′,I′∩S(O

#
q,{j}).

First, we show that ShS(O
#
q,{i}) = ShS(O

#
q,{j}). Indeed, let R ∈ ShS(O

#
q,{i}), and

let Ni ∈ Pts(Γ(q, {i})O′
q,{i}

be such that Ni∩R∩O#
q,{i} 6= ∅. By (1) there is a line

Nj ∈ Pts(Γ(q, {j})O′
q,{j}

, such that Ni
# ∩ Nj

# 6= ∅. Since Nj
# ∩ Ni

# 6= ∅ and

Ni
# ⊆ R, we have Nj

# ⊆ R. By property (Bld2) of buildings Nj
# ∩O#

q,{j} 6= ∅,

therefore R∩O#
q,{j} 6= ∅. Since ShS(O

#
q,{i}) = ShS(O

#
q,{j}), and O#

q,{i}∪O
#
q,{j} ⊆

q, by properties (Bld1) and (Bld2) of buildings ShI′∩S(O
#
q,{i}) = ShI′∩S(O

#
q,{j}).

Therefore, by [13, Theorem 12.15] or by [4, Proposition 4.5] (2) holds.

We let X = ClI′,I′∩S(O
#
q,{i}) and let T ′ = typ(X). Up to interchanging i

and j, there are two subcases of Case 1.

Case 1.1. D(i) ∩ T ∩ I ′ = D(j) ∩ T ∩ I ′.

Recall that, for k ∈ J , {k} := ClI,I′({k}). We claim that
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(3) for every k ∈ {i, j}, T ′ ∩ {k} = T {k} ∩ {k}.

Let K ′ = KI′,I′∩S(T
′). By the hypothesis of Case 1.1, for every k ∈ {i, j},

K ′ = T{k}, therefore

T ′ ∩ {k} = (K ′ ∪ [(I ′ ∩ S)− ∪α∈K′D0,1(α)]) ∩ {k}

= (T{k} ∪ [(I ′ ∩ {k})− ∪α∈T{k}
D0,1(α)]) ∩ {k}

= T {k} ∩ {k}.

Let Ni ∈ Pts(Γ(q, {i}))O′
q,{i}

. By (1) there is a line Nj ∈ Pts(Γ(q, {j}))O′
q,{j}

,

such that Ni
# ∩ Nj

# 6= ∅. Since O#
q,{i} ∪ O#

q,{j} ⊆ X, by property (Bld2) of

buildings Ni
# ∩Nj

# ∩X 6= ∅. By (3), for every k ∈ {i, j}, Nk
# ∩X ⊆ O#

q,{k}.

Therefore O#
q,{i} ∩O

#
q,{j} 6= ∅.

Case 1.2. D(j) ∩ T ∩ I ′ = ∅.

In this case typ#(Oq,{j}) = T {j} = I ′∩{j}, therefore the set Pts(Γ(q, {j}))O′
q,{j}

consists of exactly one line, which we denote N . We have q# ∩ N# = O#
q,{j}.

By (1), for every line N{i} ∈ Pts(Γ(q, {i}))O′
q,{i}

, we have N{i}
# ∩ O#

q,{j} 6= ∅.

Since the residue O#
q,{i} is (I ′ ∩ {i})-closed in I ′, by [13, Theorem 12.15] or by

[4, Proposition 4.5] O#
q,{i} ∩O

#
q,{j} 6= ∅.

Case 2. Op,{i,j} is an object of Φ(p, {i, j}) of the second kind.

Let H = {i, j}. By Proposition 5.3 φ induces an isomorphism Σ(p,H)O →
Σ(q,H)O′

q,H
, where O′

q,H = ψ−1
q,H(Oq,H), Oq,H ∈ ShSet(q#, H ′′), typ#(Oq,H) =

TH . We claim that

(4) for every k ∈ H, Pts(Γ(q, {k}))O′
q,H

= Pts(Γ(q, {k}))O′
q,{k}

.

Suppose L′ ∈ Pts(Γ(q, {k}))O′
q,{k}

. Let L ∈ Pts(Γ(p, {k}))O be such that L′ =

φ(L), let π ∈ Pts(Γ(p,H))O be a plane incident with L, and let π′ = φ(π). Then

(π′)# ∩ O#
q,H 6= ∅ and (π′)# ∩ q# ⊆ (L′)# ∩ q#. Therefore (L′)# ∩ O#

q,H 6= ∅.

Suppose L′ ∈ Pts(Γ(q, {k}))O′
q,H

and let π′ ∈ Pts(Γ(q,H))O′
q,H

be a plane inci-

dent with L′. Then π′ = φ(π) for some plane π ∈ Pts(Γ(p,H))O. By Lemma 5.1

L′ = φ(L) for a line L ∈ Pts(Γ(p, {k}))π, therefore L′ ∈ Pts(Γ(q, {k})O′
q,{k}

.

Since (4) holds and the residue O#
q,{k} is (I ′ ∩ {k})-closed in I ′, by [13, The-

orem 12.15] or by [4, Proposition 4.5] Cl
I′,I′∩{k}

(O#
q,H) = O#

q,{k}. Therefore

O#
q,H ⊆ O#

q,{k} for all k ∈ H, which implies O#
q,{i} ∩O

#
q,{j} 6= ∅. �
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5.3 Final part of the proof of Proposition 3.4

Recall that T = ClI,I′(T ) (see Subsection 5.1).

Proof of Proposition 3.4(1). Let S = T ∩ J , let p ∈ PO, and let q = φ(p). By

Proposition 5.3, for every i ∈ S, there is an object Oq,{i} of Φ(q, {i}) such that φ

induces an isomorphism ∆(p, {i})Op,{i}
→ ∆(q, {i})Oq,{i}

. Let Rq = ∩i∈SO
#
q,{i}.

By Proposition 5.10, for all i, j ∈ S, we have O#
q,{i} ∩ O#

q,{j} 6= ∅ and by the

definition of ShGm(B, J) the set S is finite. Therefore, by properties (Bld1) and

(Bld2) of buildings Rq 6= ∅ and typ(Rq) = ∩i∈ST
{i}. We claim that

(1) typ(Rq) = T ∩ I ′.

By the definition of T {i}, for every i ∈ S, T ∩ I ′ ⊆ T {i}, therefore T ∩ I ′ ⊆
∩i∈ST

{i}. Suppose i ∈ I ′ − T . Since T = T ∪ [I ′ − ∪α∈TD0,1(α)], we have

i ∈ D0,1(j) for some j ∈ T . Suppose first that j ∈ T ∩ J . We have T {j} =

T{j} ∪ [I ′ −D0,1(j)−∪α∈T{j}
D0,1(α)]. Since i 6∈ T , we have i 6∈ T{j} and, since

i ∈ D0,1(j), we have i 6∈ T {j} − T{j}. Therefore, i 6∈ T {j}.

Suppose now that j ∈ T ∩I ′. LetK be the connected component ofD|(T ∩I ′)
containing j, and let k ∈ T ∩ J be such that D0,1(k) ∩ K 6= ∅. We claim that

i 6∈ T {k}. We have T {k} = T{k} ∪ [I ′ −D0,1(k) − ∪α∈T{k}
D0,1(α)]. Since i 6∈ T ,

we have i 6∈ T{k}. By Lemma 5.4(3) the set T{k} is the union of the vertex sets

of the connected components of D|(T ∩I ′) that meet D0,1(k) at a nonempty set.

Therefore, j ∈ K ⊆ T{k} and i 6∈ T {k} − T{k}. This shows that i 6∈ T {k}.

We can now finish the proof of Proposition 3.4(1). Let R′
q be the residue

of B of type T containing Rq, and let Oq = ShI′(R′
q). By (1) R′

q ∩ q# = Rq

therefore, for every i ∈ S, Cl
I′,I′∩{i}

(Rq) = (Oq,{i})
# and Pts(Φ(q, {i}))Rq

=

Pts(Φ(q, {i}))Oq,{i}
. This shows that Oq is as required in (Shd-loc). �

To prove Proposition 3.4(2) we need the following two results. Recall that φ

was defined in Corollary 5.2 and φ∗ was defined before Lemma 5.7.

Lemma 5.12. Suppose the hypothesis of Proposition 3.4 holds. Let p ∈ PO, let

q = φ(p), let Oq be the object of Γ as in (Shd-loc) (existing by Proposition 3.4(1))

and let Rq = q# ∩ (Oq)
#. Then, for every H ⊆ T ∩ J with |H| = 2, φ∗ induces a

bijection Pts(Φ(p,H))Op,H
→ Pts(Φ(q,H))Rq

.

Proof. Suppose H = {i, j} and let P0 = φ∗(Pts(Φ(p,H))Op,H
).

(1) P0 ⊆ Pts(Φ(q,H))Rq
.

Let π ∈ Pts(Γ(p,H))O and let π′ = φ(π). Let L ∈ Pts(Γ(p, {i}))O and N ∈
Pts(Γ(p, {j}))O be two distinct lines of π on p, let L′ = φ(L) and N ′ = φ(N).

Then (L′)# ∩ Rq 6= ∅, (N ′)# ∩ Rq 6= ∅, and by Lemma 5.11 (L′)# ∩ (N ′)# 6= ∅,
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therefore by property (Bld2) of buildings (L′)# ∩ (N ′)# ∩ Rq 6= ∅. By Lemma

5.1 (π′)# ∩ q# = (L′)# ∩ (N ′)# ∩ q, therefore (π′)# ∩Rq 6= ∅.

(2) IfOp,H is an object of Φ(p,H) of the second kind, then P0 = Pts(Φ(q,H))Rq
.

Let Oq,H be the object of Φ(q,H) existing by Proposition 5.3, such that P0 =

Pts(Φ(q,H))Oq,H
. Then, comparing typ(Rq) and typ#(Oq,H), by (1) and [13,

Theorem 12.15] or by [4, Proposition 4.5] (Oq,H)# = ClI′,H′(Rq), therefore

(2) holds.

(3) If Op,H is an object of Φ(p,H) of the first kind, then Pts(Φ(q,H))Rq
⊆ P0.

If Op,H is an object of Φ(p,H) of the first kind, then |(D(i)∪D(j))∩ (T ∩ I ′)| ≤
1. Therefore, up to interchanging i and j, there are two possibilities: either

D(i) ∩ T ∩ I ′ = D(j) ∩ T ∩ I ′ or |D(i) ∩ T ∩ I ′| = 1 and D(j) ∩ T ∩ I ′ = ∅. In

both cases

D(i) ∩ (T ∩ I ′) = (D(i) ∪D(j)) ∩ (T ∩ I ′) (5.1)

Let π′ ∈ Pts(Γ(q,H)) be such that (π′)# ∩ Rq 6= ∅. Let L′ ∈ Pts(Γ(q, {i}))π′ .

Since (π′)# ∩ q# ⊆ (L′)# ∩ q# and (π′)# ∩ Rq 6= ∅, we have (L′)# ∩ Rq 6= ∅.

Therefore L′ = φ(L) for some line L ∈ Pts(Γ(p, {i}))O. Let πL ∈ Pts(Γ(p,H))O
be a plane incident with L and let π′

L = φ(πL). By Lemma 5.1 typ#(π
′) =

typ#(π
′
L). We have (π′)# ∩ q# ⊆ (L′)# ∩ q# and (π′

L)
# ∩ q# ⊆ (L′)# ∩ q#. By

(1) (π′
L)

# ∩ Rq 6= ∅, therefore by equation (5.1) (π′)# ∩ Rq = (L′)# ∩ Rq =

(π′
L)

# ∩Rq. This shows (π′)# ∩ (π′
L)

# 6= ∅, therefore π′ = π′
L. �

Lemma 5.13. Suppose the hypothesis of Proposition 3.4 holds. Let π be a plane

of Γ incident with two distinct intersecting lines in L1. Then π = φ(π′) for some

plane π′ of Γ−
O.

Proof. Suppose {L,N} ⊆ L1 are distinct intersecting lines of Γ incident with π,

let q be the common point of L and N , let p = φ−1(q), and let H = typ#(π) ∩
J . Either π is of the first kind and typ#(L) = typ#(N) = H or π is of the

second kind and H = typ#(L)∪ typ#(N). Since φ satisfies (Phi-str), typ#(L)∪
typ#(N) ⊆ T ∩ J . Therefore in both cases H ⊆ T ∩ J .

Case 1. π is a plane of the first kind. By Proposition 5.3 there is an object Oq,H of

Φ(q,H) such that φ induces an isomorphism ∆(p,H)Op,H
→ ∆(q,H)Oq,H

.

Let L1 = ψq,H(L), N1 = ψq,H(N), and π1 = ψq,H(π). Then {L1, N1} ⊆
Pts(Φ(q,H))Oq,H

and π1 ∈ Lin(Φ(q,H)). Since the line π1 of Φ(q,H) is

incident with two distinct points of Pts(Φ(q,H))Oq,H
, by Remark 1.3(4)

π1 is incident with Oq,H , therefore the conclusion holds.

Case 2. π is a plane of the second kind. Let Oq be as in (Shd-loc) (Oq exists

by Proposition 3.4(1)) and let Rq = q# ∩ (Oq)
#. Then L# ∩ Rq 6= ∅

and N# ∩ Rq 6= ∅. Since π# ∩ q# = L# ∩ N# ∩ q# 6= ∅, by (Bld2)
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L# ∩N# ∩Rq 6= ∅ and π# ∩Rq 6= ∅. Therefore the conclusion follows by

Lemma 5.12. �

Proof of Proposition 3.4(2). Let p and q be distinct collinear points of Σ1 and let

π ∈ Π be incident with p and q. We show that L1∩Lp∩Lπ−{〈p, q〉} 6= ∅ implies

L1 ∩ Lq ∩ Lπ − {〈p, q〉} 6= ∅; the converse follows by symmetry.

Let N = 〈p, q〉; then N ∈ L1 and, since π is incident with two distinct points

of N , by Remark 1.3(4) π is incident with N . Suppose Lp ∈ L1 ∩ Lp ∩ Lπ −
{N}. Then π is incident with two distinct lines {Lp, N} ⊆ L1, therefore by

Lemma 5.13 π = φ(π′) for some plane π′ of Γ−
O. Let q′ = φ−1(q) and let

N ′ = φ−1(N). By [4, Lemma 5.6(2)] every point of π′ lies on at least two

distinct lines incident in Γ with π′, therefore there is a line Lq′ of π′ on q′

distinct from N ′. By Remark 1.3(1) Lq′ is incident with O. Let Lq = φ(Lq′).

Then Lq ∈ L1 − {N} and Lq is incident with π and q. �

6 Application of Theorem 3.1 to simply laced dia-

grams

We consider the diagram Yl,m,n. If m ≥ 0 we assume that the three arms of

the diagram Yl,m,n are labelled (−l, . . . ,−1, 0), (0, 1′, . . . ,m′), and (0, 1, . . . , n),

where 0 is the label of the branching node; we let I1 = {−l, . . . ,−1, 0}, I2 =

{0, 1, . . . , n}, and I3 = {1′, . . . ,m′}. We denote Yl,−1,n the diagram Al×An with

the two connected components labelled (−l, . . . ,−1) and (1, . . . , n), and we let

I1 = {−l, . . . ,−1}, I2 = {1, . . . , n}, and I3 = ∅. We define I = I1 ∪ I2 ∪ I3. The

diagrams Ak, Dk, and Ek are examples of the diagram Yl,m,n. For a building B
with diagram M we consider the following generalization of (Bld-iso).

(Bld-iso’) For all residuesR andQ of B, if there is an isomorphisms of diagrams ξ :

M |typ(R) → M |typ(Q), then there is an isomorphism of chamber systems

ξ′ : R→ Q mapping, for every i ∈ typ(R), the edges labelled {i} to the edges

labelled {ξ(i)}.

Theorem 6.1. Suppose hypothesis (A) holds, B has property (Bld-iso’), and M =

Yl,m,n, where l, m, and n are integers, l > 0, n > 0, m ≥ −1. Let φ : Σ|PO →
Σ|P1 be an isomorphism, where O is a residue of B and P1 is a subspace of Σ.

(1) Suppose m ≥ 0 and J = {m′} or, else, m = −1 and J = {−1, 1}. Then

P1 = PO′ for a residue O′ of B with MO
∼= MO′ and the isomorphism of

diagrams takes typ#(O) ∩ J to typ#(O
′) ∩ J .

(2) Suppose that J = {−l, n} and typ(O) = I − {α′} with 1 ≤ α ≤ m. Suppose

further that either M is Dk and k ≥ 4 or, else, M is E6 and m = 1. Then
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P1 = PO′ for a residue O′ of B with MO =MO′ .

Remark 6.2. If in Part (1) of Theorem 6.1 we allow I1 or I2 to be infinite, then

the conclusion fails. Indeed, suppose I1 is infinite and let U be an object of Γ

with typ#(U) = I − {1}; then PU is a maximal singular subspace of Σ. The

geometry Σ|PU is a projective space of infinite rank, therefore it has a proper

subspace X such that Σ|X ∼= Σ|PU . The subspace X is not the shadow of any

object of Γ.

Under the hypothesis of Theorem 6.1 we let Σ1 = Σ|P1.

Lemma 6.3. Suppose the hypothesis of Theorem 6.1 holds, except possibly for the

condition (Bld-iso’). Suppose U is an object of Γ of the first kind, and U = O or U

is in Γ−
O. Then φ induces an isomorphism Σ|PU → Σ|PU ′ , where U ′ is a residue of

B with MU ′ ∼= Ak, k = |typ#(U)|.

Proof. Let Σ′ = (P ′,L′) be the image of ΣU under φ. Since the diagram MU is

of type Ak, Σ′ is a projective space ([13]). By Remark 1.3(4) PU is a subspace

of Σ|PO, and by hypothesis P1 is a subspace of Σ, therefore P ′ is a subspace of

Σ. The conclusion follows from Remark 1.3(3). �

Suppose the hypothesis of Theorem 6.1 holds, except possibly for the con-

dition (Bld-iso’). First, suppose that part (1) of the hypothesis holds and O

is an object of Γ of the second kind. Then typ#(O) = I − {−1 − a, 1 + b},

where 1 ≤ a ≤ l and 1 ≤ b ≤ n, and the maximal singular subspaces of

ΣO are point shadows of residues of B of types A = I − {−1 − a, 1} and

B = I−{−1, 1+b}. Here, a and b are integers; for instance if a = l and b = n−1,

then typ#(O) = I −{−1− l, 1+ n− 1} = I −{n}. Let A′ = I −{−1, 1+ a}, let

B′ = I − {−1− b, 1}, and let M−, M+, M′
−, M′

+ be the sets of objects U of Γ

with typ#(U) equal to A, B, B′, A′ respectively. Suppose now that part (2) of

the hypothesis holds and let M−, M+, M′
−, and M′

+ be the sets of objects U of

Γ with typ#(U) equal to I−{α′,−l}, I−{α′, n}, I−{−l,−1}, and I−{n, 1}. The

maximal singular subspaces of ΣO are point shadows of objects in M−∪M+. In

both cases, by Lemma 6.3, if U ∈ M−∪M+ then U ′ ∈ M−∪M+∪M′
−∪M′

+.

Suppose that, for all {U, V } ⊆ M−∪M+ incident withO, typ#(U ′) = typ#(V ′)

if and only if typ#(U) = typ#(V ). If, in addition, (U, V ) ∈ M− ×M+, implies

(U ′, V ′) ∈ (M− × M+) ∪ (M′
+ × M′

−) under part (1) of the hypothesis and

(U ′, V ′) ∈ (M− ×M+) ∪ (M+ ×M−) under part (2) of the hypothesis, then

we say that φ preserves classes. If φ preserves classes for all U and V in a set

S ⊆ M− ∪M+, then we say that φ preserves classes for S. For a point p ∈ PO,

we denote MO,p the set of spaces in M− ∪M+ incident with O and p.
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Lemma 6.4. Suppose either the hypothesis of Theorem 6.1(1) holds with m = −1

and O is an object of the second kind or the hypothesis of Theorem 6.1(2) holds.

Then φ preserves classes.

Proof. Since Σ|PO is connected and, for every pair of collinear points {p, q} ⊆
PO, MO,p ∩ MO,q 6= ∅, it suffices to show that for every p ∈ PO, φ preserves

classes for MO,p.

Let k = |I|. Let p ∈ PO, let q = φ(p), and let ∆p,O and ∆q be the ge-

ometries of lines and projective planes of Γ on p incident with O, and of lines

and projective planes of Γ on q respectively. Then ∆p,O is the disjoint union

of two projective spaces ∆−
p,O and ∆+

p,O, whose point sets L− and L+ are in-

tesections of shadows of some U ∈ M− and V ∈ M+ with the shadow of O.

The projective dimensions of ∆−
p,O and ∆+

p,O are both k − 3 if the hypothesis of

Theorem 6.1(2) holds and Σ is not Dk,{k−1,k}, are both α if Σ is Dk,{k−1,k}, and

are a− 1 and b− 1 if M = Am × An.

The geometry ∆q is the disjoint union of geometries ∆−
q and ∆+

q , whose

points are the lines of Γ on q corresponding to residues of types I − {−l, n− 1}
and I − {n,−(l − 1)} if the hypothesis of Theorem 6.1(2) holds, and of types

I − {−2, 1} and I − {−1, 2} if M = Al × An. We have the following cases.

Case 1. M = Al ×An or Σ is Dk,{k−1,k}; then ∆−
q and ∆+

q are projective spaces.

Case 2. Σ is Dk,{1,k} and l ≥ 2; then ∆+
q is a projective space and ∆−

q is a line

Grassmannian of a projective space;

Case 3. Σ is E6,{1,6}; then ∆−
q and ∆+

q are polar spaces of type D4.

Let {N−,N+} = {φ(L−), φ(L+)}. Suppose N− and N+ are subspaces of

the same ∆δ
q, δ ∈ {+,−}. Then, checking Cases 1–3, there exist x ∈ N−

and y ∈ N+ collinear in ∆δ
q, a contradiction since no two points of L− and

L+ are collinear in ∆p,O. Therefore we can assume that N− ⊆ Pts(∆−
q ) and

N+ ⊆ Pts(∆+
q ).

Let S−, S ′
− and S+, S ′

+ be the sets of nontrivial shadows of the elements of

M−, M′
− in Pts(∆−

q ) and of the elements of M+, M′
+ in Pts(∆+

q ). In Case 1,

if M = Al × An then the set of singular subspaces of ∆−
q and ∆+

q of projective

dimensions a − 1 and b − 1 is S− ∪ S+ ∪ S ′
− ∪ S ′

+; if Σ is of type Dk,{k−1,k},

then the set of singular subspaces of dimension α is S− ∪ S+. In Case 2 with

l ≥ 3 the set of singular subspaces of ∆−
q and ∆+

q of projective dimension k − 3

is S− ∪ S+. Therefore the proof is complete in these cases.

Consider Case 2 with l = 2 and Case 3. If Σ is Dk,{1,k−1} the set of singular

subspaces of ∆+
q of projective dimension k − 3 is S+, and if Σ is E6,{1,6} then

it is S+ ∪ S ′
+; in both cases the set of singular subspaces of ∆−

q of projective

dimension k − 3 is S− ∪ S ′
−. For every L ∈ L+, let SL be the set of lines
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M ∈ Pts(∆−
p ) lying in a grid of Σ|PO with L; then SL ∈ S ′

− and codim(SL ∩
L−,L−) = 1. Suppose by way of contradiction N− ∈ S ′

−. For N ∈ Pts(∆+
q ),

let SN be the set of lines M ∈ Pts(∆−
q ) lying in a grid of Σ with N ; then

SN ∈ S ′
−. Therefore codim(SN ∩ N−,N−) = 0 for exactly one N ∈ Pts(∆+

q )

and codim(SN ∩ N−,N−) ∈ {2, 4} for the rest, a contradiction. This shows

N− ∈ S−. In case (3) N+ ∈ S+ by symmetry. �

Lemma 6.5. Suppose the hypothesis of Theorem 6.1(1) holds and O is an object

of Γ of the second kind. Then φ preserves classes.

Proof. We use induction on m. For m = −1 the statement is true by Lemma 6.4.

Suppose the statement is true for m = k, where k ≥ −1, and let m = k + 1.

Since the geometry Σ|PO is connected and, for any two collinear points p and

q of Σ|PO, MO,p ∩ MO,q 6= ∅, it suffices to show that, for every p ∈ PO, φ

preserves classes for MO,p.

SinceO is an object of Γ of the second kind andm ≥ 0, |typ#(O)| ≥ 3. Let p ∈
PO, let q = φ(p), and let H = {m′}. For r ∈ {p, q}, let Σ(r,H), ∆(r,H), Φ(r,H)

be defined as in Subsection 5.1; let Op,H be an object of Φ(p,H) such that

O#
p,H = p# ∩ O#. Since by Lemma 6.3 planes are mapped to planes, φ induces

a monomorphism Σ(p,H)O → Σ(q,H). Therefore by Lemma 5.5(2) φ induces

a monomorphism ∆(p,H)Op,H
→ ∆(q,H). By condition (Bld-iso’) there is an

isomorphism of chamber systems λ : q → p and, composed with φ, it induces

a monomorphism θ : ∆(q,H)Op,H,λ
→ ∆(q,H), where Op,H,λ is an object of

Φ(q,H) such that O#
p,H,λ = λ−1(O#

p,H). We show that θ satisfies the induction

hypothesis, therefore preserves classes. Since (Bld-iso’) holds for B, it holds for

the building q. Since m ≥ 0, the geometry Φ(q,H) is of the required type with

m = k, and Op,H is its object of the second kind. Let ∆′(q,H) = (L′,P ′) be the

image of ∆(q,H)Op,H,λ
under θ. Since all planes of Γ are projective planes, P1

is a subspace of Σ, and Σ1 = Σ|P1, we obtain that L′ is a subspace of ∆(q,H)

and ∆′(q,H) = ∆(q,H)|L′. �

Proof of Theorem 6.1. For objects of the first kind the conclusion holds by Lemma

6.3. Suppose O is an object of the second kind. By hypothesis the diagram of

B is finite, all mij are integers, and condition (Bld-iso’) holds. If R is a residue

of B such that M |typ(R) is a string and j is one of its end nodes, then the {j}-

shadow space of R is a projective space. Therefore condition (Bld-str) holds. If

φ satisfies condition (Phi-str) of Theorem 3.1, then φ satisfies the hypothesis of

Theorem 3.1 and the conclusion holds.

Suppose φ does not satisfy (Phi-str). By Lemmas 6.4 and 6.5 φ preserves

classes. Let ξ be a map defined by ξ(i) = −i for all i ∈ I1 ∪ I2 and ξ(i) = i for

all i ∈ I3. If Part (1) of the hypothesis holds and typ#(O) = I −{−1− a, 1+ b},
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then let X be an object of Γ with typ#(X) = I − {−1 − b, 1 + a}. If Part (2)

of the hypothesis holds, then let X = O. In both cases, applying (Bld-iso’)

to X# and O#, there is an isomorphism of geometries µ : Γ−
X → Γ−

O such

that, for every object U in Γ−
X of the first kind, µ(U) is an object of ΓO with

typ#(µ(U)) = ξ(typ#(U)). Then φµ = φ ◦ µ satisfies (Phi-str), therefore it

satisfies the hypothesis of Theorem 3.1. �
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