
Innovations in Incidence Geometry
Volume 14 (2015), Pages 27–42

ISSN 1781-6475

On the autotopism group of the commutative

Dickson semifield K and the stabilizer of the

Ganley unital embedded in the semifield

plane Π(K)

Alice M. W. Hui Yee Ka Tai Philip P. W. Wong∗

Abstract
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1 Introduction

In the study of a unital of order n, that is, a 2-(n3 + 1, n+ 1, 1) design, for n an

integer greater than 2, a basic problem is the determination of its automorphism

group. If the unital is embedded in a projective plane of order n2, one begins

by studying the collineation subgroup of the plane stabilizing the unital. For

example, if U is the classical unital of order q defined by a hermitian curve in

the classical plane PG(2, q2), then its stabilizer, Col(U), is given by PΓU(3, q2),

a result from classical group theory (see [5]). The question is then whether
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the stabilizer, which is a subgroup of the automorphism group of the design,

is actually the full group. For the classical unital, the question is answered

affirmatively in 1972 in the fundamental paper of O’Nan [15], in which Col(U)

is proven to be equal to the automorphism group Aut(U).

In the case of the Ganley unitals [9], which are polar unitals in the commuta-

tive Dickson semifield planes ([7], see also [14]), the same conclusion has been

reached in [12, 13]. However, there remains the problem of determination of

the collineation groups of the planes and the subgroups stabilizing the unitals.

This is Problem 21 in the list of open problems presented in [3]. Partial results

on the collineation groups have been obtained earlier in 1962 by Sandler [17].

In this paper we give a complete solution to the problem.

Let q = pe be a prime power where p is an odd prime and e an integer

greater than 1. For any non-square δ in the finite field Fq and non-identity

automorphism σ ∈ Aut(Fq), let K = K(δ, σ) be the (commutative) Dickson

semifield as defined in [17]. The autotopism group A of K is computed in [17]

only for the case when σ2 6= id, and is shown to be solvable.

Now let Π(K) be the projective plane coordinatized by K. It is shown in [2]

that the collineation group Col(Π(K)) is given by A⋉ (S ⋉ T ), where T is the

group of translations, S is the group of shears andA is the group of autotopisms

of Π(K) (see also [9]). Since T ∼= K(+) × K(+) and S ∼= K(+), and the two

autotopism groups A and A are isomorphic, the determination of Col(Π(K)) is

complete with the determination of either A or A.

The aim of this paper is to determine the autotopism group A of K when

σ2 = id, and to complete the computation of the collineation stabilizer subgroup

Col(U) of the Ganley unital U in the Dickson semifield plane Π(K) begun in

Ganley [9].

The plan of the paper is as follows: In Section 2, we review standard facts

on semifields, the (commutative) Dickson semifield K, their autotopism groups,

the projective planes they coordinatize, and the collineation groups of these

planes. In Section 3, we determine the autotopism group A of K for the case

σ2 = id (Theorem 3.1) using algebraic computations similar to those employed

in Sandler [17]. In Section 4, we recall the definition of the Ganley unital U em-

bedded in the Dickson semifield plane Π(K), and exhibit the structure of Col(U)

as a semidirect product whose factor groups are semidirect products of abelian

groups (Theorems 4.1, 4.2). In Section 5 we describe an alternative geometric

approach to the study of A and Col(U). This requires the methodology and

results from [12] to determine Col(U) via inversive plane geometry, and a key

structure theorem from [13] to retrieve the autotopism group A of Π(K) from

Col(U).
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2 The Dickson semifield and the Dickson semifield

plane

2.1 Semifield and semifield plane

A finite semifield K(+, ·) is a finite algebraic system with two binary operations,

addition and multiplication, which satisfy the following axioms:

1. K(+) is a group with identity 0.

2. For any a, b ∈ K, if a · b = 0, then a = 0 or b = 0.

3. There is an element 1 ∈ K such that for any a ∈ K, 1 · a = a · 1 = a.

4. For any a, b, c ∈ K, a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

In this paper we refer to a finite semifield simply as a semifield and we usually

write ab for a · b. In [14], it is shown that K is a vector space over the middle

nucleus N of K, where N is the set {a ∈ K | (xa)y = x(ay) for all x, y ∈ K} and

is a field. Thus the cardinality of a semifield is a prime power. Two semifields

K1(+1, ·1) and K2(+2, ·2) are said to be isotopic if there exists an ordered triple

(P,Q,R) of additive bijections from K1 to K2 such that P (x) ·2Q(y) = R(x ·1 y)

for all x, y ∈ K1. The triple (P,Q,R) is called an isotopism from K1 to K2. An

isotopism (P,Q,R) from a semifield K to itself is called an autotopism. The set

of autotopisms of a semifield forms a group A under the operation (P1, Q1, R1)◦

(P2, Q2, R2) = (P1 ◦P2, Q1 ◦Q2, R1 ◦R2). It is a conjecture of Hughes [11] that

the autotopism group of any semifield is solvable.

A semifield K can be used to coordinatize a projective plane Π(K). The set

of points of Π(K) is the set K × K together with the set {(m) | m ∈ K} and

a point denoted by (∞) where ∞ is a symbol not in K. The set of lines of

Π(K) is given by {[m, k] | m, k ∈ K} ∪ {[x] | x ∈ K} ∪ {[∞]}, where [m, k] =

{(m)} ∪ {(x, y) ∈ K ×K | mx + y = k}, [x] = {(∞)} ∪ {(x, y) | y ∈ K}, and

[∞] = {(∞)} ∪ {(m) | m ∈ K}. We note that Π(K) is a projective plane of

order the cardinality of K. Points not on [∞] are affine points. The geometric

significance of isotopism is the following result of Albert ([2, Theorem 6]): Two

semifields coordinatize isomorphic planes if and only if they are isotopic.

The collineation group Col(Π(K)) of a semifield plane Π(K) is well-known

(see [2]) to consist of translations, shears and autotopisms defined as follows.

Let T = {τ(a, b) | a, b ∈ K} be the group of translations given by

τ(a, b) :











(x, y) 7−→ (x+ a, y + b), [m, k] 7−→ [m, k +ma+ b],

(m) 7−→ (m), [x] 7−→ [x+ a],

(∞) 7−→ (∞), [∞] 7−→ [∞].

(1)
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Let S = {ς(c) | c ∈ K} be the group of shears given by

ς(c) :











(x, y) 7−→ (x,−cx+ y), [m, k] 7−→ [m+ c, k],

(m) 7−→ (m+ c), [x] 7−→ [x],

(∞) 7−→ (∞), [∞] 7−→ [∞].

(2)

Note that T ∼= K(+)×K(+) and S ∼= K(+). LetA be the group of collineations

fixing (∞), (0) and (0, 0). By [14, Theorem 3.3.3],

A = {γ(P,Q,R) | (P,Q,R) ∈ A},

where γ(P,Q,R) is defined by

γ(P,Q,R) :











(x, y) 7−→ (Q(x), R(y)), [m, k] 7−→ [P (m), R(k)],

(m) 7−→ (P (m)), [x] 7−→ [Q(x)],

(∞) 7−→ (∞), [∞] 7−→ [∞].

(3)

The set A is a group under composition of maps whose elements are also

called autotopisms. Indeed, the autotopism group A of K is isomorphic to A

via the isomorphism sending (P,Q,R) ∈ A to γ(P,Q,R) ∈ A. We call A

the autotopisms group of Π(K). By [2, Theorems 5 and 7] (see also [9]),

Col(Π(K)) = A⋉ (S ⋉ T ).

A note on notations: For the composition f ◦ g of two maps we will

write fg when there is no danger of confusion.

2.2 The Dickson semifield and the Dickson semifield plane

We now focus our attention on the (commutative) Dickson semifields [6, 7].

Consider the finite field Fq, where q = pe for an odd prime p, and e > 1. Then

there is a non-square element δ in Fq and a non-identity automorphism σ of Fq.

Note that σ ∈ Aut(Fq) is given by

uσ = ups

, 0 < s < e. (4)

Define multiplication in the two-dimensional vector space of column vectors

over Fq by
(

x′

x′′

)(

y′

y′′

)

=

(

x′y′ + δx′′σy′′
σ

x′y′′ + x′′y′

)

. (5)

The resulting algebraic system is a commutative semifield denoted by K(σ, δ)

and is called a Dickson semifield of order q2. Note that if σ = id the system is



On the autotopism group of the commutative Dickson semifield 31

isomorphic to Fq2 . For any σ1, σ2 ∈ Aut(Fq) \ {id} and non-squares δ1, δ2 ∈ Fq,

K(σ1, δ1) and K(σ2, δ2) are isomorphic if and only if σ1 = σ2, and are isotopic if

and only if σ1 = σ2 or σ1 = σ2
−1 ([17, Theorem 2]; see also [4]). Since K(σ, δ1)

and K(σ, δ2) are isomorphic, without loss of generality we may take δ to be a

generator of F∗
q , and write K(σ) instead of K(σ, δ).

In case σ2 6= id, Sandler ([17, Theorem 3]) computed generators for the

autotopism group A(σ) of K(σ) and show that the group is solvable. We recall

his results. Let (P,Q,R) be an autotopism of K(σ). By [17, Lemma on p. 190],

P and Q take the forms:

P :

(

x′

x′′

)

7−→M(P )

(

x′εP

x′′εP

)

,

Q :

(

x′

x′′

)

7−→M(Q)

(

x′εQ

x′′εQ

)

,

(6)

for some εP , εQ ∈ Aut(Fq) and some 2-by-2 non-singular matrices M(P ) and

M(Q). As for R, since (P,Q,R) is an autotopism, P (x)Q(y) = R(xy) for all

x, y ∈ K(σ). In particular, if x =
(

x′

x′′

)

and y = ( 10 ), then

P

(

x′

x′′

)

Q

(

1

0

)

= R

(

x′

x′′

)

. (7)

Thus, if M(P ) = ( p1 p2

p3 p4
) and M(Q) = ( q1 q2

q3 q4 ), then by (5), the equation (7)

implies

R :

(

x′

x′′

)

7−→

(

p1q1 p2q1
p1q3 + p3q1 p2q3 + p4q1

)(

x′εP

x′′εP

)

+

(

δp3
σq3

σ δp4
σq3

σ

0 0

)(

x′εPσ

x′′εPσ

)

. (8)

Sandler now considered the case when σ2 6= id and proceeded to show that p2 =

p3 = q2 = q3 = 0, p1 6= 0, p4 6= 0, q1 6= 0, q4 = q1p4/p1, δεp1p1
σq1 = δ(p4

σ)2q1
σ

and εP = εQ. It follows that (P,Q,R) satisfies the following equations:

P :

(

x′

x′′

)

7−→M(P )

(

x′ε

x′′ε

)

,

Q :

(

x′

x′′

)

7−→M(Q)

(

x′ε

x′′ε

)

,

R :

(

x′

x′′

)

7−→M(R)

(

x′ε

x′′ε

)

,

(9)(a)
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where ε ∈ Aut(Fq), and M(P ), M(Q), M(R) are non-singular matrices such

that

M(P ) =

(

p1 0

0 p4

)

, M(Q) =
q1
p1

M(P ), and M(R) = q1M(P ) (9)(b)

for some p1, p4, q1 ∈ F
∗
q satisfying

δεp1p1
σq1 = δ(p4

σ)2q1
σ. (9)(c)

It is straightforward to check that an ordered triple (P,Q,R) of additive map-

pings between K(σ) satisfying (9) is an autotopism of K(σ) and that the set of

such triples is a subgroup of A(σ) regardless of whether σ2 is the identity or

not. When σ2 is not the identity, the above arguments by Sandler show that the

subgroup is in fact the full group A(σ). Furthermore, generators of A(σ) are

given whereby it is shown that A(σ) is solvable. From the discussion in [17],

the structure of the group can be determined.

We shall complete the computations for A(σ) in case σ2 = id in Section 3.

Furthermore, we show in Section 5 that when σ2 6= id, A(σ) can also be written

as a semidirect product with factors a semidirect product of cyclic groups and a

cyclic group via a design theoretic approach.

3 The autotopism group A(σ) of K(σ)

In this section we compute A(σ) when σ2 = id. Let A′′(σ) be the set of auto-

topisms (P,Q,R) defined as follows:

P :

(

x′

x′′

)

7−→M(P )

(

x′ε

x′′ε

)

,

Q :

(

x′

x′′

)

7−→M(Q)

(

x′ε

x′′ε

)

,

R :

(

x′

x′′

)

7−→M(R)

(

x′εσ

x′′ε

)

,

(10)(a)

where ε ∈ Aut(Fq), and M(P ), M(Q), M(R) are non-singular matrices such

that

M(P ) =

(

0 p2
p3 0

)

, M(Q) =
q3
p3

M(P ), and M(R) =

(

δp3
σq3

σ 0

0 p2q3

)

(10)(b)

for p3, p2, q3 ∈ F
∗
q satisfying

δδεσp3p3
σq3

σ = p2
2q3. (10)(c)
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Theorem 3.1. When σ2 = id, the autotopism group A(σ) = A′(σ)∪A′′(σ), where

A′(σ) is the group of autotopisms satisfying (9) and A′′(σ) is the set of autotopisms

(P,Q,R) satisfying (10).

Proof. Let (P,Q,R) be an autotopism. Recall that P , Q and R satisfy (6)

and (8). Since M(P ) and M(Q) are non-singular matrices,

p1p4 − p2p3 6= 0 and q1q4 − q2q3 6= 0. (11)

We deduce more necessary conditions. Write ε = εP . Let

(

a′

a′′

)

∈ K(σ).

Since

(

δa′′
σ

a′

)

=

(

a′

a′′

)(

0

1

)

by (5) and (P,Q,R) is an autotopism,

R

(

δa′′
σ

a′

)

= P

(

a′

a′′

)

Q

(

0

1

)

. (12)

By (6), (8) and (5), the equation (12) becomes

(

p2q1a
′ε + δp4

σq3
σa′

εσ
+ δεp1q1a

′′σε + δδεσp3
σq3

σa′′
σεσ

(p2q3 + p4q1)a
′ε + (δεp1q3 + δεp3q1)a

′′σε

)

=

(

p1q2a
′ε + δp3

σq4
σa′

εσ
+ p2q2a

′′ε + δp4
σq4

σa′′
εσ

(p1q4 + p3q2)a
′ε + (p2q4 + p4q2)a

′′ε

)

. (13)

Note that (13) is true for all a′, a′′ ∈ Fq. In particular, (13) is true when a′ = 0

or a′′ = 0. By comparing the first coordinates and the second coordinates of

both sides of (13) when a′ = 0 or a′′ = 0, we obtain

p2q1a
′ε + δp4

σq3
σa′

εσ
= p1q2a

′ε + δp3
σq4

σa′
εσ
, (14)(a)

(p2q3 + p4q1)a
′ε = (p1q4 + p3q2)a

′ε, (14)(b)

δεp1q1a
′′σε + δδεσp3

σq3
σa′′

σεσ
= p2q2a

′′ε + δp4
σq4

σa′′
εσ
, (14)(c)

(δεp1q3 + δεp3q1)a
′′σε = (p2q4 + p4q2)a

′′ε. (14)(d)

Collecting like terms of (14)(c), we have, since σ 6= id and σ2 = id,

(δεp1q1 − δp4
σq4

σ)a′′
σε

+ (δδεσp3
σq3

σ − p2q2)a
′′ε = 0. (15)

Note that since (15) is a polynomial in a′′ of degree less than q which van-

ishes for all a′′ ∈ Fq, it is the zero polynomial. Hence, δεp1q1 − δp4
σq4

σ =

δδεσp3
σq3

σ − p2q2 = 0. Applying similar arguments to the other equations

of (14), we obtain

p2q1 = p1q2, p4q3 = p3q4,

p2q3 + p4q1 = p1q4 + p3q2,

δεp1q1 = δp4
σq4

σ, δδεσp3
σq3

σ = p2q2,

p1q3 + p3q1 = 0, p4q2 + p2q4 = 0.

(16)
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We need a necessary condition on ε and εQ. Let

(

0

x′′

)

∈ K(σ). Since

(

0

x′′

)(

0

1

)

=

(

δx′′σ

0

)

=

(

0

1

)(

0

x′′

)

by (5) and (P,Q,R) is an autotopism,

P

(

0

x′′

)

Q

(

0

1

)

= P

(

0

1

)

Q

(

0

x′′

)

. (17)

Expanding (17) using (6), (5) and then comparing the first coordinates of both

sides, we obtain

p2q2(x
′′εQ − x′′ε) + δp4

σq4
σ(x′′εQ − x′′ε)σ = 0. (18)

From (11) and (16), we obtain either

p3 = p2 = q3 = q2 = 0,

p1 6= 0, p4 6= 0, q1 6= 0,

q4 = q1p4/p1,

δεp1p1
σq1 = δ(p4

σ)2q1
σ,

or

p1 = p4 = q1 = q4 = 0,

p3 6= 0, p2 6= 0, q3 6= 0,

q2 = q3p2/p3,

δδεσp3p3
σq3

σ = p2
2q3.

(19)

Using this information in (18) we conclude that ε(= εP ) = εQ. There are two

cases in (19). In the former case, (6), (8) imply (9), and in the latter case,

(6)and (8) imply (10). It is routine to verify that any (P,Q,R) satisfying either

(9) or (10) is an autotopism. This completes the proof of the theorem. �

We now show that A′′(σ) is a coset of A′(σ) and deduce from Theorem 3.1

the following:

Theorem 3.2. The following statements hold when σ2 = id:

(a) A(σ) = A′(σ)∪γ(P ∗, Q∗, R∗)A′(σ), where A′(σ) is the group of autotopisms

given by (9) and γ(P ∗, Q∗, R∗) is given by

P ∗ :

(

x′

x′′

)

7−→

(

0 −δ

−1 0

)(

x′σ

x′′σ

)

,

Q∗ :

(

x′

x′′

)

7−→

(

0 δ

1 0

)(

x′σ

x′′σ

)

,

R∗ :

(

x′

x′′

)

7−→

(

−δ 0

0 −δ

)(

x′

x′′σ

)

.

(20)

.

(b) A(σ) is solvable.

(c) The order of A(σ) is 4e(q − 1)2.
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Proof. (a) We prove A′′(σ) = γ(P ∗, Q∗, R∗)A′(σ). Let γ(P1, Q1, R1) ∈ A
′′(σ).

Then γ(P1, Q1, R1) = γ(P ∗, Q∗, R∗)γ(P2, Q2, R2) where

P2 :

(

x′

x′′

)

7−→

(

−p3
σ 0

0 (−δ−1p2)
σ

)(

x′σε

x′′σε

)

,

Q2 :

(

x′

x′′

)

7−→

(

q3
σ 0

0 (δ−1p2q3/p3)
σ

)(

x′σε

x′′σε

)

,

R2 :

(

x′

x′′

)

7−→

(

(−p3q3)
σ 0

0 (−δ−1p2q3)
σ

)(

x′σε

x′′σε

)

.

In order to check that γ(P2, Q2, R2) ∈ A
′(σ), note that since σ2 = id and

δδεσp3p3
σq3

σ = p2
2q3 by (10)(c), we have

δεσ(−p3
σ)(−p3

σ)σq3
σ = δεσp3

σp3q3
σ = δ−1p2

2q3

= δ(((−δ−1p2)
σ)2)σ(q3

σ)σ.

Hence, γ(P2, Q2, R2) ∈ A
′(σ) and γ(P1, Q1, R1) ∈ γ(P ∗, Q∗, R∗)A′(σ).

Conversely, let γ(P3, Q3, R3) ∈ A
′(σ). Then γ(P ∗, Q∗, R∗)γ(P3, Q3, R3) =

γ(P ∗ ◦ P3, Q
∗ ◦Q3, R

∗ ◦R3) where

P ∗ ◦ P3 :

(

x′

x′′

)

7−→

(

0 −δp4
σ

−p1
σ 0

)(

x′εσ

x′′εσ

)

,

Q∗ ◦Q3 :

(

x′

x′′

)

7−→

(

0 δ(q1p4/p1)
σ

q1
σ 0

)(

x′εσ

x′′εσ

)

,

R∗ ◦R3 :

(

x′

x′′

)

7−→

(

−δp1q1 0

0 −δ(p4q1)
σ

)(

x′ε

x′′εσ

)

for some p1, p4, q1 ∈ F
∗
q and ε ∈ Aut(Fq) such that δεp1p1

σq1 = δ(p4
σ)2q1

σ.

To check that γ(P ∗, Q∗, R∗)γ(P3, Q3, R3) ∈ A
′′(σ), first note that such an

element satisfies (10)(a) and (10)(b). Furthermore, since δεp1p1
σq1 =

δ(p4
σ)2q1

σ,

δ(δεσ)σ(−p1
σ)(−p1

σ)σ(q1
σ)σ = δ(δεp1p1

σq1) = δδ(p4
σ)2q1

σ

= (−δp4
σ)2q1

σ,

and so γ(P ∗, Q∗, R∗)γ(P3, Q3, R3) satisfies (10)(c) and is in A′′(σ).

(b) By (a), A(σ) is an index two extension of A′(σ). Since A′(σ) is identical to

A(σ) when σ2 6= id, which is solvable by Sandler, A(σ) is solvable.

(c) By (a), |A(σ)| = 2|A′(σ)|. By Sandler, |A′(σ)| = 2e(q − 1)2. The result

follows. �

Part (b) of the theorem gives positive evidence for the conjecture of Hughes

mentioned in Section 2.1.
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4 The Ganley unital U and the colineation stabi-

lizer subgroup Col(U)

In [9], the Dickson semifield K = K(σ) is shown to admit an involutory auto-

morphism α defined by

α :

(

x′

x′′

)

7−→

(

1 0

0 −1

)(

x′

x′′

)

=

(

x′

−x′′

)

. (21)

It follows (by [8, Theorem 5]) that Π(K) admits a unitary polarity ρ given by

ρ :



































(∞)←→ [∞] ,
((

x′

x′′

))

←→

[(

x′

−x′′

)]

,

((

x′

x′′

)

,

(

y′

y′′

))

←→

[(

x′

−x′′

)

,

(

−y′

y′′

)]

.

(22)

Denote by U = U(σ) the polar unital defined by ρ, whose points are the

absolute points of ρ and whose blocks are the non-absolute lines of ρ. By [13],

any unitary polarity in Π(K) is conjugate to ρ. We call U the Dickson–Ganley

unital, or simply the Ganley unital. In [12] it is shown that U is not isomorphic

to the classical unital (see [loc. cit., Corollary 3.3 and Corollary 4.5]; only a few

special cases were known previously in [9]). Furthermore, it is shown that the

automorphism group Aut(U) is isomorphic to the colineation stabilizer Col(U)

(see [loc. cit., Corollary 7.9]). The group Col(U) is studied in [9] and is given

by (see [loc. cit., Lemma 2]):

Col(U) =

{

γ(P,Q,R)ς(α(a))τ(a, b) ∈ Col(Π(K))

∣

∣

∣

∣

a, b ∈ K;α(a)a = b+ α(b);

Pα = αQ;Rα = αR

}

.

(23)

Since Col(Π(K)) = A⋉ (S ⋉ T ), straightforward computations using (23) show

that

Col(U) ∩ A = {γ(P,Q,R) ∈ A | Pα = αQ;Rα = αR}, (24)

and

Col(U) ∩ (S ⋉ T )

=

{

ς

((

a′

−a′′

))

τ

((

a′

a′′

)

,

(

1
2 (a

′2 − δ(a′′
2
)σ)

b′′

))

∈ S ⋉ T
∣

∣

∣
a′, a′′, b′′ ∈ Fq

}

.

(25)
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When σ2 6= id, using (9) and (24), we obtain

Col(U) ∩ A = {γ(P,Q,R) ∈ A | (P,Q,R) given in (9) with p1 = q1}. (26)

Indeed, in this case, by Sandler’s result, any autotopism satisfies (9), and then

by (24), p1 = q1. Conversely, it is straightforward to show that any autotopism

satisfying (9) with p1 = q1 must satisfy (24). Similarly, when σ2 = id, using

Theorem 3.1 and (24), we obtain

Col(U) ∩ A =

{

γ(P,Q,R) ∈ A

∣

∣

∣

∣

(P,Q,R) given by (9) with p1 = q1;

or by (10) with p3 = −q3

}

. (27)

Note also that by [1, Theorem 3.9], Col(U) ∩ (S ⋉ T ) is regular on the affine

points of U and is normal in Col(U).

We now exhibit Col(U) as a semidirect product whose factors are given by

(24) and (25), and that these factors are both semidirect products of cyclic or

abelian groups.

First we note the following formula for composition in Col(Π(K)):

γ(P1, Q1, R1)ς(c1)τ(a1, b1)γ(P,Q,R)ς(c)τ(a, b)

= γ(P1P,Q1Q,R1R)ς(P−1(c1) + c)τ(Q−1(a1) + a, cQ−1(a1) +R−1(b1) + b).

Next we consider the following two subgroups of S ⋉ T :

B′ =

{

ς

((

a′

0

))

τ

((

a′

0

)

,

(

1
2 (a

′2)

0

))

∈ S ⋉ T

∣

∣

∣

∣

a′ ∈ Fq

}

∼= Fq(+), (28)

B′′ =

{

ς

((

0

−a′′

))

τ

((

0

a′′

)

,

(

1
2 (−δ(a

′′2)σ)

b′′

))

∈ S ⋉ T

∣

∣

∣

∣

a′′, b′′ ∈ Fq

}

(29)

∼= Fq(+)× Fq(+).

Then we have the following:

Theorem 4.1. We have Col(U) = (Col(U) ∩A)⋉ (Col(U) ∩ (S ⋉ T )). Moreover,

Col(U) ∩ (S ⋉ T ) = B′
⋉ B′′, where B′, B′′ are given respectively by (28) and

(29), and is solvable and of order q3.

Proof. To show that Col(U) = (Col(U) ∩ A) ⋉ (Col(U) ∩ (S ⋉ T )), we exhibit

a homomorphism f1 from Col(U) to itself such that f1(Col(U)) = Col(U) ∩ A,

f1|Col(U)∩A = 1Col(U)∩A and ker(f1) = (Col(U) ∩ (S ⋉ T )) (apply e.g. [16,

Lemma 7.20]). Take the homomorphism f1 : Col(U) → Col(U) defined by

f1(γ(P,Q,R)ς(α(a))τ(a, b)) = γ(P,Q,R) for any γ(P,Q,R)ς(α(a))τ(a, b) ∈

Col(U). It is straightforward to verify that f1 satisfies our requirement.
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Similarly, take the homomorphism f2 : Col(U)∩ (S ⋉T )→ Col(U)∩ (S ⋉T )

given by

f2

(

ς

((

a′

−a′′

))

τ

((

a′

a′′

)

,

(

1
2 (a

′2 − δ(a′′
2
)σ)

b′′

)))

= ς

((

a′

0

))

τ

((

a′

0

)

,

(

1
2 (a

′2)

0

))

.

Then f2(Col(U) ∩ (S ⋉ T )) = B′, f2|B′ = 1B′ and ker(f2) = B′′. It follows that

Col(U)∩ (S⋉T ) is B′
⋉B′′, and is therefore of order q3. Since Col(U)∩ (S⋉T )

is a semidirect product of two abelian groups, it is solvable. �

Next we consider Col(U) ∩ A. We define the following subgroups of A:

E = {γ(P,Q,R) ∈ A | (P,Q,R) given by (9) with p1 = q1 = 1}, (30)

D′ =

{

γ(P,Q,R) ∈ A

∣

∣

∣

∣

(P,Q,R) given by (9) with p1 = q1 = p4
σ, ε = id

}

,

(31)

D′′ =

{

γ(P,Q,R) ∈ A

∣

∣

∣

∣

(P,Q,R) given either by (9) with p1 = q1 = p4
σ,

ε = id; or by (10) with p2 = δp3
σ = −δq3

σ, ε = σ

}

.

(32)

For geometric interpretations of these groups, see Section 5.

We have the following:

Theorem 4.2. (a) E ∼= Z/2eZ.

(b) D′ ∼= Z/(q − 1)Z.

(c) D′′ ∼= Z/2(q − 1)Z.

(d) When σ2 6= id, Col(U)∩A is E⋉D′, and hence solvable and of order 2e(q−1).

(e) When σ2 = id, Col(U)∩A is E⋉D′′, and hence solvable and of order 4e(q−1).

Proof. (a) Consider γ(P,Q,R) ∈ E with p4 = δp
e−s(p−1)/2 and xε = xp. By a

straightforward computation γ(P,Q,R)i ∈ E with p4 = δp
e−s(pi

−1)/2 and

xε = xpi

. The order of γ(P,Q,R) is the smallest positive integer j such

that pj ≡ 0 (mod q) and (pj − 1)/2 ≡ 0 (mod q − 1), and thus j = 2e. By

solving (9)(c) and p1 = q1 = 1, we check that any element in E is of the

form γ(P,Q,R)i. Hence, E is isomorphic to Z/2eZ.

(b) D′ is generated by γ(P,Q,R) ∈ D′ with p1 = δ. Since δ is a generator of F∗
q ,

D′ is isomorphic to Z/(q − 1)Z.
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(c) D′′ is generated by γ(P,Q,R) ∈ D′′ \ D′′ with p3 = −1, p2 = −δ. Since

γ(P,Q,R)2 is the generator of D′ stated in (b), D′′ is indeed isomorphic to

Z/2(q − 1)Z.

(d) Similar to the proof of Theorem 4.1, consider f3 : Col(U)∩A → Col(U)∩A

given by f3(γ(P,Q,R)) = γ(P ′, Q′, R′) where p′1 = 1 and p′4 = p4/(p1
σ−1

).

Then f3(Col(U) ∩ A) = E, f3|E = 1E and ker(f3) = D′.

(e) Consider f4 : Col(U) ∩ A → Col(U) ∩ A given by f4|E⋉D′ = f3, and if

γ(P,Q,R) ∈ Col(U) ∩ A \ (E ⋉ D′), then f4(γ(P,Q,R)) = γ(P ′, Q′, R′)

where (P ′, Q′, R′) is given by (9) with p′1 = q′1 = 1, p′4 = p2
σ/(δσp3), and

ε′ = εσ. Then f4(Col(U) ∩ A) = E, f4|E = 1E and ker(f4) = D′′. �

The structure of Col(U) is completely determined by Theorem 4.1 and The-

orem 4.2: it is a semidirect product of solvable groups, hence solvable, with

order equals 2eq3(q − 1) when σ2 6= id, and 4eq3(q − 1) when σ2 = id.

5 An alternative geometric approach

In this section we describe an alternative geometric approach to obtain the re-

sults in the previous sections. Furthermore, we give an alternative description

of the structure of A when σ2 6= id.

We construct from the Dickson–Ganley unital U a design S as in Wilbrink [18]

which is isomorphic to the residual I [1,0]
t

of the classical inversive plane I. We

then construct a group homomorphism from Col(U) to Aut(S). Since Aut(S)

is isomorphic to Aut(I [1,0]
t

), we can gain information on the structure of sub-

groups of Col(U) by studying their images in Aut(I [1,0]
t

). This leads to another

proof of Theorem 4.2.

In more details, the design S is defined as follows (see [12] for full details).

The points of S are the q2 non-absolute lines on (∞). The blocks of S are

the equivalence classes 〈[m, k]〉 of the non-absolute lines missing (∞). Recall

that [m1, k1] ∼ [m2, k2] if and only if m1 = m2 and the first coordinates of k1
and k2 equal. Thus 〈[m, k]〉 consists of the q parallel lines described by [12,

Lemma 4.1]. Incidence of S is defined as follows: [x] is incident with 〈[m, k]〉

in S if and only if [x] meets [m, k] at an absolute point. By [12, Section 6], S is

a 2-(q2, q + 1, q) design.

Consider the classical inversive plane I = (X , C) of order q, whose points are

points of the projective line PG(1, q2) and whose circles are all sublines PG(1, q)

in PG(1, q2) [10]. Recall (see also [12, Lemma 6.1]) that the circle set C is given

by C = {ca0,a1,b | a0, a1 ∈ Fq, b ∈ Fq2 ; a0, a1, b not all zeros; a0a1 − bq+1 6= 0},

where ca0,a1,b = {[z, w]
t ∈ PG(1, q2) | a0z

q+1 + bzqw + bqzwq + a1w
q+1 = 0}.
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Let κ ∈ Fq2 be a zero of X2 − δ ∈ Fq[X]. Then any element of Fq2 can be

written as a1 + κa2 where a1, a2 ∈ Fq. By [12, Theorem 6.2], the map

H : S −→ I [1,0]
t

(33)

defined by

H :























[(

x′

x′′

)]

7−→

[

x′ + κx′′σ

1

]

,

〈[(

m′

m′′

)

,

(

k′

k′′

)]〉

7−→ c−1,−2k′,m′−κm′′σ

(34)

is an isomorphism. This induces the group isomorphism ([12, (6.4)])

h : Aut(S) −→ Aut(I [1,0]
t

), (35)

where for any Ψ ∈ Aut(S), h(Ψ) is defined by

h(Ψ): [z, 1]t 7−→ H(Ψ(H−1([z, 1]t))) (36)

for [z, 1]t ∈ I [1,0]
t

. Next we define a group homomorphism,

Λ: Col(U) −→ Aut(S), (37)

as follows. For any Φ ∈ Col(U), consider the automorphism of S given by

Λ(Φ): [x] 7−→ Φ([x]) (38)

for [x] ∈ S. Note that by definition Λ is a group homomorphism. We study

Col(U) via the homomorphism

h ◦ Λ: Col(U) −→ Aut(I [1,0]
t

). (39)

Since A fixes the line [0], it can be shown that (h◦Λ)|Col(U)∩A is injective. Since

any autotopism γ(P,Q,R) ∈ Col(U) ∩ A has the from given in (6) and (8), we

have

(h ◦ Λ)(γ(P,Q,R)) :

[u+ κv, 1]t 7−→ [q1u
εQ + q2(v

σ−1

)εQ + κ(q3u
εQ + q4v

σ−1εQ)σ, 1]t. (40)

Since (h◦Λ)(γ(P,Q,R)) ∈ Aut(I [1,0]
t

) and P = αQα−1, a tedious computation

shows (h◦Λ|Col(U)∩A)(Col(U)∩A) is {ϕ ∈ Aut(I [1,0]
t

) | ϕ([z, 1]t) = [a1z
ǫ, 1]t for

some a1 ∈ F
∗
q , ǫ ∈ Aut(Fq2)} or {ϕ ∈ Aut(I [1,0]

t

) | ϕ([z, 1]t) = [(a1 + κa2)z
ǫ, 1]t
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for some a1, a2 ∈ Fq, a1a2 = 0, ǫ ∈ Aut(Fq2)}, depending on whether σ2 6= id

or not. We retrieve Col(U) ∩ A ((26) and (27)). Theorem 4.2 can be obtained

again by studying h ◦ Λ|Col(U)∩A.

To retrieve A, we need the result [13, the seventh paragraph of the introduc-

tion and Theorem 1.2] that any polar unital in Π(K) is conjugate to U . Recall

from [13] that any unitary polarity is conjugate to one that maps (0, 0) to [0, 0],

and that ([13, Theorem 1.2]) any unitary polarity mapping (0, 0) to [0, 0] is

conjugate to ρ by an element of the group Gρ given by

Gρ = {γ(P,Q,R) ∈ A | P,Q,R, given by (9) with ε = id, p4 = 1}. (41)

Note that Gρ
∼= F

∗
q . Then, by [13, Corollary 1.3], any autotopism of Π(K) is a

unique composition of an element of Col(U) ∩ A and an element of Gρ. Thus

we are able to determine A and hence recover the result of Sandler and The-

orem 3.1. Furthermore, it is straighforward to verify the following alternative

description of the structure of A; we omit the computational details here.

Theorem 5.1. When σ2 6= id, A(σ) = (E⋉D′)⋉Gρ where E and D′ are defined

by (30) and (31).
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